
Intelligent Motion Planning in Human-Robot
Collaboration Environments

Zahid Iqbal, Liliana Antão, Vı́tor H. Pinto, Gil Gonçalves

SYSTEC, Research Center for Systems and Technologies
DIGI2, Digital and Intelligent Industry Lab

Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Email: {zahid, lpsantao, vitorpinto, gil} @fe.up.pt

Abstract—A robot needs to have adequate Artificial Intel-
ligence (AI) support for operating as a human co-worker,
making its behaviour flexible and autonomous. Applications and
development methodology for collaborative robots (cobots) differ
substantially from the norm of traditional robot applications
marked by pre-programmed, repetitive tasks with well-defined
behaviours and little or no autonomy on the part of the robot.
We present a modular solution for application development
for cobots. Intelligent workspace monitoring, motion planning,
and re-planning make for essential solution components. Our
solution incorporates safety by design, imparts the robotic arm
a partly autonomous behaviour and is a step in the direction of
collaborative interactions with the arm. We implement perception
and planning as separate modules and demonstrate how these
modules integrate. The main focus of the work is the motion
planning component, developed in Robot Operating System
(ROS) and MoveIt. The proposed framework can receive multiple
goal points, monitor safety thresholds, and account for many
humans in the workspace modelled as dynamic obstacles. In
particular, we show path planning with obstacle avoidance and
report some performance measurement results of different built-
in planning algorithms.

Index Terms—collaborative robots, motion planning, sampling-
based planning, MoveIt.

I. INTRODUCTION

Several industries employed robots to improve produc-
tion volumes and acquire better precision and accuracy in
the overall production process. Traditional industrial appli-
cations (between the 1960s through 1990s) used robots for
simple repetitive tasks with well-defined, pre-programmed
behaviours. From the 2000s onwards, the development of
robotic technology is driven primarily by advancements in the
industrial Internet of Things (IoT) sensors [1][2], industrial
wireless communication protocols [3], and software, in partic-
ular, AI techniques such as Machine Learning (ML), to make
robots more autonomous. McMorris [4] and International
Federation of Robotics (IFR) [5] nicely outline important
milestones in technology development for robots. Typically,
a sequence of steps makes up an industrial process. Along the
process, human-robot interaction happens at defined points,
for instance, when loading or unloading items. Such cases
present obvious hazards due to the size of the robotic arm and

proximity of the human [6]. Typical industrial environments
confine robots to separate operation spaces isolated from
human workers and bring robot operation to a halt if a human
enters this space [7][8], safety being the primary concern.

A notable transition aims to position robots as co-workers
for humans. While robots have proven efficient with haz-
ardous, unpleasant or repetitive jobs, a complex process calls
for creative thinking, flexibility, decision making or adaptabil-
ity where the human role becomes crucial. When placed side-
by-side with humans, we need to equip robots with strong AI
making their behaviour nearly as skilful and flexible as that
of humans. We call this approach Human-Robot Collaboration
(HRC) [9]. To that end, we have cobots or collaborative robots
that include some integrated safety features, such as force-
limited joints and smooth surfaces to minimise impact hazards.
Computer vision or similar techniques [10][11] that detect the
presence of humans in the environment make for an essential
component of the application developed for cobots. Most
works on collaborative interactions concern safety aspects.
Rybski et al. [11] and Bdiwi et al. [12] identify zones based on
human position in the co-space and choose a safety operation
accordingly. The work in [10] turns a standard industrial robot
into a human-safe platform. It uses Light Emitting Diode
(LED) markers for actors in the workspace and thus poses
limitations for scalability and the presence of arbitrary persons
in the co-space. Safety being a baseline, our work further
explores task distributions using hierarchical task models and
is promising for large industrial settings.

We present a modular solution that incorporates safety by
design, imparts the robotic arm a partly autonomous behaviour,
and is a step towards collaborative interactions with the robotic
arm. We develop the work, in particular, for Universal Robot
manipulator UR5 [13]. Implementation is carried out within
ROS [14], using the motion planning framework MoveIt [15].
We define distinctly task planning and path planning. We
assume that target scenarios comprise specific task objectives
that we can discretize in granular operations. A task planner
automatically generates a graph (i.e., a hierarchical task model)
in which nodes constitute sub-tasks or atomic operations [16].
Thus, it encapsulates the different operation sequences that

19Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

high level task
representation

motion planner robotic arm
 controller

vision + task planning trajectory / path planning

Fig. 1. Overall architecture

can fulfil a given task objective (root node of the graph).
If the operation’s actor is the robot, the task planner will
input the specific coordinates that the path planner employs
to compute a correct robot motion. For implementation, we
divide the activity into two parts, namely, perception and
planning. Perception provides the requisite vision information
to the system about the robot workspace and the available
objects, i.e., objects to manipulate, obstacles or humans. It
already encapsulates the task planning referred to earlier. Path
planning refers to robot motion planning that will take it
to a target point while avoiding collision with workspace
objects. We have decoupled the system making perception
and path planning separate modules. The path planner uses
the information provided by the perception module and guides
the movement of the robotic arm to the target position. The
work reported in this paper, in particular, encompasses mo-
tion planning. Having perception available as an independent
module takes off the significant computational effort of the
path planner. Conducting perception offline allows planners to
process the workspace more efficiently. Fig. 1 shows a high
level relationship of the main system components.

The presented work concerns industrial robotic arms or so-
called manipulators. In particular, the proposed ideas apply to
trajectory planning of UR5. The contributions of the paper are
as follows:
(a) We provide an overview of the collaboration approach

highlighting some aspects in which it differs from other
works.

(b) We describe in detail the development steps of the
motion planning component of our solution within ROS
and MoveIt and provide some results that validate the
implementation.

The rest of the paper is organized as follows. In the
following section, we describe the tools and frameworks in
which we have developed our solution. Section III presents
the solution approach, i.e., how different modules integrate.
In Section IV, we detail the development steps of our method.
Section V presents some results from the implementation, in
particular, the motion planning. Finally, in Section VI, we
conclude the paper and indicate some future work directions.

II. TOOL SUPPORT FOR DEVELOPING A MOTION PLANNING
APPLICATION

In this section, we overview the main tools and framework
used to develop the motion planning for the robotic arm.

A. Robot Operating System (ROS)

ROS provides a flexible platform for writing software for
robots. Over the years, robot hardware, applications, and
capabilities have significantly grown. A typical robotic system
is complex, often combining several components that incor-
porate cameras, laser scanners, and odometry information.
A functional robot system must include code for sensing,
coordinate transforms, trajectory planning, navigation, hard-
ware abstraction, control and more. For individual engineers,
it becomes very challenging to cover each aspect of robot
software development and then seamlessly integrate it into a
complete system. ROS manages this complexity efficiently by
providing tools, libraries, and open packages for standard robot
functionality, allowing developers to reuse existing code from
the available repositories and focus on their project-specific
features. Such an approach lends fast and easy development
of working prototypes for testing and experimentation in a
simulated world, saving cost and time. Hardware interfaces
allow running the program on the real robot. ROS supports
C++ and Python for its API and Linux (Ubuntu) as its
platform.

Within ROS, roscore is the system core providing a
collection of nodes and programs. roscore contains three
main functional module suits, which are ROS Master,
Parameter Server and rosout logging node. The Mas-
ter provides name registration and lookup for the rest of
the nodes. The Parameter Server is a global key-value store
through which nodes can share configuration information.
node is the smallest unit of computation within ROS, i.e.,
an executable process. An application may distribute its
functionality across several nodes. ROS maintains a peer-
to-peer computation graph of ROS nodes which send and
receive messages over named channels called topics. A
package is the basic unit of ROS. It has the minimum
structure to develop an application. It contains the application-
specific configurations and launch files that allow running
nodes from the same package and other packages. Concerning
communication, there are different possibilities, i.e., topics,
services, or actions. Topics follow a publish-subscribe model
of asynchronous communication. Nodes publish to a topic to
send a message and subscribe to it to receive a message;
sender and receiver are decoupled. Service follows a request-
response paradigm where communication is bi-directional and
synchronized. The service client requests a service and the
server responds to the request. Action is similar to service,
however, it is used when the requested objective takes a long
time to complete and intermediate feedback is necessary. The
communication is asynchronous in this case (Fig. 2).

B. MoveIt

MoveIt is a set of software packages with specific capa-
bilities for mobile manipulation, such as kinematics, motion
planning and control, 3D perception and navigation. MoveIt
runs on top of ROS and builds on the ROS messaging
and build systems, and uses some of the common tools in
ROS, e.g., the ROS Visualizer (RViz) and the Unified Robot

20Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

Parameter server

Publisher

Service Server

Action Server

Subscriber

Service Client

Action Client

Topic

service request

service response
action goal

action feedback
action result

ROS master

registration registration

roscore

ROS master rosout

Node 1 Node 2

Fig. 2. ROS core communication system, and different message
communication modes between nodes (adapted from [17]).

Description Form (URDF). It uses plugins for most of its
functionality; motion planning (Open Motion Planning Library
(OMPL) [18]), collision detection (default: Fast Collision
Library (FCL) [19], and kinematics (default: OROCOS Kine-
matics and Dynamics Library (KDL) for forward and inverse
kinematics for generic arms. A motion-planning framework
such as MoveIt aims to lower the barrier of entry to robotic
software. Additional to the underlying principle of code reuse
and easy customisation as in ROS, MoveIt has specific design
goals [20] primarily addressing the user-base without the
breadth of knowledge to customise each toolchain with the
right parameters or where time, effort or expertise needed
to integrate different software components into the robot are
considerable.

III. PROPOSED APPROACH - AN OVERVIEW

Our solution to collaborative motion planning comprises
three phases, namely perception, pre-planning and planning
phases. The perception and pre-planning phases involve scene
acquisition, voxelization of the workspace and generation of
atomic operations. The planning phase is the focus of this
work, which involves building collision-free paths between
given start and goal positions. Fig. 3 presents the overall
architecture of the motion-planning solution for collaborative
environments.

The output of the perception phase is a voxel grid. A voxel
represents a value on a regular grid in three-dimensional space,
useful for many applications such as Dynamic Roadmaps [21]
to create a mapping from an area in the workspace to states
in the configuration space. For efficient path planning with
obstacle avoidance and considering a collaboration scenario,

an intelligent monitoring system is inevitable [22][23]. The
present work uses the monitoring solution in [22]. We integrate
the voxel-based grid with the motion planner. The voxel-based
grid renders the entire scene of the collaborative environment
as a grid composed of cubes with a given dimension, known
as voxels. We can describe the granularity of the grid with the
size of one side of the cube. The resolution can be set higher
or lower by choosing the dimension of the unit cube in the
grid, i.e., for a higher resolution, we choose a smaller size of
the voxel, thus corresponding to more voxels in the grid, and
vice versa. The pre-planning phase can produce voxel grids
with varying degrees of information. A simple voxel grid is the
occupancy voxel grid, which will set a voxel 1 or 0 depending
if the corresponding workspace is free or occupied.

A. Mapping voxels to the system coordinates

A complementary framework loads the voxel grid into a
3d array within the planning solution in ROS and allows
us to access the position of each voxel. Fig. 4 shows an
overview of the approach. When the information is available,
we segment regions of interest in the workspace, i.e., obstacles
or humans. Corresponding voxels to such objects are occupied
in the grid. With the distinct regions available, we can use
specific algorithms to create bounding shapes around them,
e.g., bounding boxes or spheres. ROS / MoveIt needs key
dimensions, i.e., for a sphere it needs its radius and centre
point, to render objects of interest in the simulation or real
tests. Within MoveIt, we can calculate each point on the
robotic arm and in the workspace in reference to the planning
frame, which is the frame of the base-link of the arm, and
its origin is at position (0, 0, 0). In robotics, this frame is often
referred to as the world frame. With this information, and
knowing the dimensions of individual voxels and the hyper-
cube that represents the complete voxel grid, we map the
goal positions and obstacle positions from the voxel grid into
the MoveIt so that we can test path planning with obstacle
avoidance in real environments.

We define two structures, one representing a voxel-point
vp in the grid V G. The other structure represents a point rp
that we use to specify the position of any object within ROS,
so-called real-point. The notion vpi(x) gives the value of x
coordinate for ith voxel-point. Similarly, rpj(y) provides the
value of y coordinate for a real-point j. Let sz denote the
voxel size in the given V G, and let lx, ly, lz indicate the lower
limits on the voxel grid. Then, we can find the value of the
real coordinate points for a given voxel point, as shown in
equations (2)-(4). Considering that coordinates are expressed
in meters, we divide the final result by 100 in each case.

vp = (x, y, z) (1)

rpj(x) =

lx, if vpj(x) = 0

lx+ vpj(x)× sz

100
, otherwise

(2)

21Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

Fig. 3. Path planning solution architecture and module relationship.

Voxel grid (Python)
3d array (C++)

csv file

segment regions
bounding sphere(s)

Fig. 4. An overview of the preliminary approach for integration of
voxel grid within the planning solution.

rpj(y) =

ly, if vpj(y) = 0

ly + vpj(y)× sz

100
, otherwise

(3)

rpj(z) =

lz, if vpj(z) = 0

lz + vpj(z)× sz

100
, otherwise

(4)

In dynamic scenarios, the scene can change over time, and
the robotic arm must be able to plan accordingly. We can
input fresh voxel grids to the planning program with a certain
frequency. The refresh rate of the voxel grid depends on the
response time of the previous planning query. Currently, we
are looking into solutions to address this issue.

IV. DEVELOPMENT OF THE MOTION PLANNING SOLUTION

We detail the main steps required for manipulator con-
trol with ROS, including developing a model of the robot’s
physical structure, publishing coordinate transforms data and
applying standard algorithms, such as path planning. We have
used ROS industrial repositories of UR5 [24], in particular,
ur_modern_driver [25] to control the actual robotic arm.

A. Modeling the workcell with URDF

URDF is an XML format to describe the robot model in
ROS. The principal components describing a robot model are
the joints and links. The link component outlines the body
by its physical aspects (dimensions, position of origin, colour
etc.), and the joint describes the kinematic properties of the
connection (axis of rotation, type of joint, connected links
etc.). A joint connects two links, a parent link that precedes the
joint and a child link that follows the joint. Such a topology
makes a tree structure, where each link has precisely one
parent, but can have multiple child nodes.

For the robot to move, we set the joint type as revolute
and specify the axis around which the following child link
will rotate. The visual tag in the urdf file lends a visual
appearance to the respective element in the simulator. The
visual representation of an element could be specified by
primitive geometric shapes such as a box or a cylinder or
by using carefully created meshes such as COLLAborative
Design Activity (COLLADA) models. The urdf model of
UR5 used in this work uses meshes for defining visual com-
ponents. In particular, the urdf model describes parts of the
robot that do not change over time. Some examples include
the topology, the relation between links and joints, and the
complete link tree. Listing 1 shows part of the urdf model
of the UR5 robotic arm. The information in the urdf does
not depend on the robot 3d position. For the ROS system to
know about the robot model, a launch script loads the urdf
file to the Parameter Server; robot_description
is the name of the ROS parameter where the urdf file is
stored on the Parameter Server. This format allows us
to model other objects in the workspace, such as the table
where the robotic arm is mounted.

<link name="base_link">
<visual>
<geometry>
<mesh filename="package://ur_description/

meshes/ur5/visual/base.dae"/>
</geometry>

22Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

<material name="LightGrey">
<color rgba="0.7 0.7 0.7 1.0"/>

</material>
</visual>
...

</link>
<joint name="shoulder_pan_joint" type="revolute">

<parent link="base_link"/>
<child link="shoulder_link"/>
<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0

0.089159"/>
<axis xyz="0 0 1"/>

<limit effort="150.0" lower="-6.28318530718" upper
="6.28318530718" velocity="3.15"/>

<dynamics damping="0.0" friction="0.0"/>
</joint>

Listing 1. Part of UR5 urdf file.

We can use a command line tool check_urdf to check the
model validity. This tool attempts to parse the file and either
prints a description of the resulting kinematic chain or an error
message. Fig. 5 shows the output after running check_urdf
on the UR5 urdf model.

test.txt Thu Jan 05 14:31:43 2023 1

robot name is: myworkcell

---------- Successfully Parsed XML ---------------

root Link: world has 1 child(ren)

 child(1): table

 child(1): base_link

 child(1): base

 child(1): tool0_controller

 child(2): shoulder_link

 child(1): upper_arm_link

 child(1): forearm_link

 child(1): wrist_1_link

 child(1): wrist_2_link

 child(1): wrist_3_link

 child(1): ee_link

 child(2): tool0

Fig. 5. The link tree of UR5 manipulator mounted on a flat surface
’table’.

B. Creating the MoveIt pacakge based on URDF

The MoveIt Setup Assistant (MSA) provides a graphical
user interface for configuring a robot with MoveIt. It can
automatically set up the task pipeline for producing an initial
configuration quickly. Its main functions comprise generating
a Semantic Robot Description Format (SRDF) file, creating the
collision matrix of the robot and defining the planning groups.
The robot model URDF (section IV-A) is a prerequisite for the
MoveIt setup assistant. The configurations set by the assistant
include a self-collision matrix, planning group definitions,
robot poses, end effector semantics and virtual and passive
joints list. The first step of the Setup Assistant (SA) is the
generation of a self-collision matrix for the robot used in future
planning to speed up collision checking. This collision matrix
encodes pairs of links on a robot that we can safely discard
from collision checking due to the kinematic infeasibility of
a collision. We have modelled a flat table surface into the
work cell. The collision matrix, calculated at the initial step,
will now find which links are in collision accounting for the
table. Hence, the generated plans at runtime will only be made
in the reachable workspace, making the planning faster and
correct. The user can provide information on different motion

planning aspects in a step-by-step process. Virtual joints attach
the robot to the world. Planning groups semantically describe
parts of the manipulator, i.e., what constitutes a gripper or
which joints and links comprise an arm. MoveIt plans for a
group considering only the joints that belong to that group.
MSA allows adding certain fixed poses of the manipulator. We
can define query positions as the initial and goal configurations
of the manipulator, and end-effectors can be labelled. In the
last step, the MSA generates several configurations and launch
files that can be used inside a ROS package.

C. Planning and algorithms integration

On the planning side, we use MoveIt to integrate state-
of-the-art sample-based motion planning algorithms in our
solution. Using the motion planning APIs of MoveIt, the
MoveGroupInterface, we have implemented and tested
simple motions of the robotic arm. In particular, we can specify
either pose goals or joint-space goals. Pose goals define the
end-effector position in 3-d cartesian coordinates, whereas a
joint-space goal identifies a distinct final configuration for the
joints (given by individual joint angles). For both cases, we
can plan the movement of the robotic arm to the desired
goal. These tests have been done within the graphical sim-
ulator RViz and on the UR5 robotic arm. The Kinematics
solver and planner algorithm are the main components of a
motion-planning solution. MoveIt has built-in support for this
functionality; it uses plugins for computing kinematics and
path planning, Open Motion Planning Library (OMPL) [18]
for motion planning, and Kinematics and Dynamics Library
(KDL) for forward and inverse kinematics. In recent tests,
we have used trac_ik inverse kinematics solver [26] that
performs better in terms of its speed and success rate of
finding a solution (in a set of 10000 random tests, it was
10% more successful and solving time was about half than
KDL, on average [27]). In the OMPL library, we have ran-
dom sample-based planners such as Probabilistic RoadMaps
(PRM), Rapidly Exploring Random Trees (RRT), RRTConnect
etc. We have tested with PRM and RRTs in our work. The
framework allows us to add collision objects (obstacles) to the
workspace. Collision objects are geometric primitives such as
a box or a cylinder that we can easily define through their key
dimensions and 3d position. In this case, the planned trajectory
will avoid the obstacle or report failure when it cannot reach
the target configuration.

We organize different nodes into a launch file to run the
system. In Listing 2, we see an excerpt of the main ROS
launch file of the system.

<launch>
<rosparam command="load" file="$(find

liu_moveit_config)/config/joint_names.yaml"/>
<arg name="sim" default="true" />
<arg name="robot_ip" unless="$(arg sim)" />
<include file="$(find liu_moveit_config)/launch/

planning_context.launch" >
<arg name="load_robot_description" value="true"

/>
</include>
<group if="$(arg sim)">

23Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

<include file="$(find industrial_robot_simulator)
/launch/robot_interface_simulator.launch" />

</group>
<group unless="$(arg sim)">
<include file="$(find ur_modern_driver)/launch/

ur5_bringup_compatible.launch" >
<arg name="robot_ip" value="$(arg robot_ip)"/>

</include>
</group>
<group if="$(arg sim)">
<node name="robot_state_publisher" pkg="

robot_state_publisher" type="
robot_state_publisher" />

</group>

...

...

</launch>

Listing 2. moveit_planning_execution.launch file to
bring up UR5.

V. EVALUATIONS

In this section, we report the results from system execution.
In particular, we present an analysis of the nodes’ communi-
cation graph, the performance of different planning algorithms
and an experiment with path planning and obstacle avoidance.

A. ROS computation graph

The program can be tested in RViz as well as on the robotic
arm by simply setting sim:=true or false in the following
command which launches the main script from Listing 2.

roslaunch liu_moveit_config
moveit_planning_execution.launch
sim:=false robot_ip:=192.168.0.103

Besides Listing 2, we run other nodes, i.e., for publishing
goal positions, or the coordinate points of the bounding boxes
for dynamic obstacles such as humans. Fig. 6 shows the
ROS graph of our application. The developed motion planning
node CMotionPlanner receives a target pose on topic
sp1_pose, whereas, it receives coordinates for the human
bounding box on topic chatter. The primary node provided
by MoveIt is the move_group node which serves as an in-
tegrator pulling individual components together. It loads three
kinds of information from ROS param server: URDF of
the work cell in robot_description parameter, SRDF
of the work cell in robot_description_semantic
parameter, and different configurations created by MSA for
kinematics, trajectory control. ur_driver node publishes
the real-time joint states on /joint_states and robot_-
state_publisher converts the /joint_states mes-
sages to corresponding /tf messages. It looks at the urdf
of the robot and listens on the joint_state messages.
It then calculates where each link of the robot is and then
broadcasts it to the rest of the system on tf, which is sub-
scribed by move_group too. Thus, it handles the common
task of computing forward kinematics. Finally, the move_-
group node talks to the controller on the robot using the

TABLE I. PERFORMANCE OF DIFFERENT ALGORITHMS.

pose goal joint-space goal
algorithm states time (s) states time (s)

no obstacle

PRM 1412 5.002649 1417 5.005281
PRMstar 868 5.001812 847 5.004916

RRT 12 0.039855 11 0.042702
RRTstar 2159 5.002191 2227 5.009980

RRTconnect 4 0.034107 7 0.035261

obstacle

PRM 1552 5.003105 1568 5.002542
PRMstar 992 5.009589 972 5.013361

RRT 10 0.042280 26 0.062595
RRTstar 1856 5.024425 1792 5.001743

RRTconnect 5 0.028506 6 0.034078

FollowJointTrajectoryAction interface by publish-
ing a goal point on follow_joint_trajectory/goal.

B. Planning with obstacle

In this experiment, we use the PRMstar algorithm. We
consider a pose goal given by the configuration vector
{−0.1304, 0.43455, 0.19730, 1.41,−2.46,−4.88} where the
first three elements indicate the position and the last three
indicate the orientation of the end-effector. We test the motion
of the UR5 arm to this goal configuration in the presence and
absence of an obstacle. The obstacle is a human bounding
box with the following vertices’ coordinates (0.046, 0.95, 0.6),
(0.046, 0.48, 0.6), (0.046, 0.95,−0.59), (0.046, 0.48,−0.59),
(−0.03, 0.95, 0.6), (−0.03, 0.48, 0.6), (−0.03, 0.95,−0.59),
(−0.03, 0.48,−0.59). Fig. 7 shows the results for this test.
Fig. 7 (a) depicts the case with no obstacle and start (yellow)
and goal positions of the robotic arm. In Fig. 7 (b), we see the
path trail that UR5 follows to reach the goal position in the
absence of an obstacle. Fig. 7 (c) and (d) show the collision
object in the workspace and the path trail. Notice that the arm
follows a different path to avoid the obstacle. For case (b), the
algorithm creates 808 roadmap states and the solution is found
in 4.998913s. For cases (c) and (d), the algorithm creates 835
roadmap states and the solution is found in 5.014565s.

C. Performance of planning algorithms

We measure the performance of some sample-based motion-
planning algorithms, namely PRM, PRMstar, RRT, RRTstar,
and RRTconnect. Similar to the last experiment, we consider
two cases, i.e., with and without an obstacle. Table I lists
the results. RTConnect performs the best with the minimum
number of states in all the experiments. RRTConnect uses two
RRTs, one rooted at the source and another rooted at the goal
point, and seeks to grow both trees until they get connected,
thus finding the path. This methodology leads to faster solution
time.

VI. CONCLUSIONS AND FUTURE WORK

Application development for robots is a challenging task
with several dimensions, i.e., motion planning, scene acqui-
sition, and control. A modular approach can cope with such

24Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

/test_topic

/CMotionPlanner

/sp1_pose

/add_coll_obj
/move_group/trajectory_execution_event

/ur_driver

/joint_states

/robot_state_publisher
/joint_states

/follow_joint_trajectory/feedback

/tf_static

/tf_static

/place/result /follow_joint_trajectory/goal

/obstacleNode

/chatter

Fig. 6. rqt_graph view of the nodes and topics involved in actuating the model.

complexity. We showed how we could combine independently
developed components namely perception and planning. In
particular, we showed how we modelled the proposed solution
architecture. ROS is a popular platform that offers open-source
packages for different aspects of robot software development.
We detailed the steps required to model a motion planning
application within ROS and its motion planning framework
MoveIt. Since the planner is not responsible for mapping
free and occupied spaces, there is an efficiency benefit,
especially for static scenarios. The paper focused on the
motion planning aspect. We presented the ROS communication
graph of the running system, validating the presence of all
system components as indicated by respective nodes and their
communication topics. For space limitation, we did not present
additional capabilities of our solution, e.g., safety tracking
and re-planning. Our results showed that the manipulator
successfully adapts the trajectory in the presence of obstacles.
Due to its unique strategy for exploring configuration space,
RRTConnect performed better as a path planner in different
test cases.

A complete work cell can be modelled in a urdf, containing
the static objects. Thus, all the modelled objects are checked
when generating a self-collision matrix. At run-time, the
configuration space to be checked when planning trajectories
is smaller, and hence the faster solution. This will be part of
future work. We also plan to prepare a case study based on a
collaborative assembly operation that involves all components
of our proposed approach and demonstrates its efficacy.

ACKNOWLEDGMENTS

The authors acknowledge the support of the ARISE
Associated Laboratory (LA/P/0112/2020) and R&D Unit
SYSTEC -Base (UIDB/00147/2020) and Programmatic
(UIDP/00147/2020), and also the support of project RE-
CLAIM – “RE-manufaCturing and Refurbishment LArge In-
dustrial equipment”- GA no. 869884, funded by the European
Commission under the H2020 and project PRODUTECH
4S&C - SUSTAINABLE & CIRCULAR PRODUTECH,
with reference POCI-01-0247-FEDER-046102, co-funded by
FEDER, through COMPETE 2020.

REFERENCES

[1] W. Z. Khan, M. H. Rehman, H. M. Zangoti, M. K. Afzal,
N. Armi, and K. Salah, “Industrial internet of things: Recent ad-
vances, enabling technologies and open challenges,” Computers
& Electrical Engineering, vol. 81, p. 106522, 2020.

[2] Z. Sheng, C. Mahapatra, C. Zhu, and V. C. M. Leung, “Recent
Advances in Industrial Wireless Sensor Networks Toward Effi-

cient Management in IoT,” IEEE Access, vol. 3, pp. 622–637,
2015.

[3] X. Li, D. Li, J. Wan, A. V. Vasilakos, C.-F. Lai, and S. Wang, “A
review of industrial wireless networks in the context of industry
4.0,” Wireless networks, vol. 23, pp. 23–41, 2017.

[4] B. McMorris, “A History Timeline of Industrial
Robotics,” https://futura-automation.com/2019/05/15/
a-history-timeline-of-industrial-robotics/, 2022, accessed:
2022-10-15.

[5] IFR, “IFR International Federation of Robotics - Robot History,”
https://ifr.org/robot-history, 2021, accessed: 2022-10-10.

[6] J. A. Marvel, “Performance Metrics of Speed and Separation
Monitoring in Shared Workspaces,” Transactions on Automa-
tion Science and Engineering, vol. 10, no. 2, pp. 405–414, 2013.

[7] P. Anderson-Sprecher, “Intelligent Monitoring of Assembly
Operations,” Robotics Institute, Carnegie Mellon University,
Tech. Rep. CMU-RI-TR-12-03, June 2011.

[8] J. Fryman and B. Matthias, “Safety of Industrial Robots: From
Conventional to Collaborative Applications,” in 7th German
Conference on Robotics (ROBOTIK). VDE, 2012, pp. 1–5.

[9] P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human–robot
interaction review and challenges on task planning and program-
ming,” International Journal of Computer Integrated Manufac-
turing, vol. 29, no. 8, pp. 916–931, 2016.

[10] P. A. Lasota, G. F. Rossano, and J. A. Shah, “Toward Safe
Close-Proximity Human-Robot Interaction with Standard Indus-
trial Robots,” in 10th International Conference on Automation
Science and Engineering (CASE). IEEE, 2014, pp. 339–344.

[11] P. Rybski, P. Anderson-Sprecher, D. Huber, C. Niessl, and
R. Simmons, “Sensor Fusion for Human Safety in Industrial
Workcells,” in International Conference on Intelligent Robots
and Systems. IEEE/RSJ, 2012, pp. 3612–3619.

[12] M. Bdiwi, M. Pfeifer, and A. Sterzing, “A new strategy for
ensuring human safety during various levels of interaction with
industrial robots,” CIRP Annals, vol. 66, no. 1, pp. 453–456,
2017.

[13] U. Robots, “UR5 collaborative robotic arm,”
https://www.universal-robots.com/products/ur5-robot/, 2015,
accessed: 2019-12-20.

[14] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot
Operating System,” in ICRA workshop on open source software,
vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[15] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19,
2012.

[16] A. Roncone, O. Mangin, and B. Scassellati, “Transparent Role
Assignment and Task Allocation in Human Robot Collabo-
ration,” in IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 1014–1021.

[17] Y. Pyo, H. Cho, R. Jung, and T. Lim, ROS Robot Programming.
Robotis Co., Ltd., 2017, p. 50.

25Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

(a)

(b)

(c)

(d)

Fig. 7. Motion planning of UR5 manipulator.

[18] I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion
Planning Library,” IEEE Robotics & Automation Magazine,
vol. 19, no. 4, pp. 72–82, 2012.

[19] J. Pan, S. Chitta, and D. Manocha, “FCL: A General Purpose
Library for Collision and Proximity Queries,” in International
Conference on Robotics and Automation (ICRA). IEEE, 2012,
pp. 3859–3866.

[20] D. Thornton Coleman IV, “Methods for Improving Motion
Planning Using Experience,” Ph.D. dissertation, University of
Colorado, 2017.

[21] M. Kallman and M. Mataric, “Motion Planning Using Dynamic
Roadmaps,” in International Conference on Robotics and Au-
tomation (ICRA), vol. 5. IEEE, 2004, pp. 4399–4404.

[22] L. Antão, J. Reis, and G. Gonçalves, “Voxel-based Space
Monitoring in Human-Robot Collaboration Environments,” in
24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2019, pp. 552–559.

[23] R. Nogueira, J. Reis, R. Pinto, and G. Gonçalves, “Self-adaptive
Cobots in Cyber-Physical Production Systems,” in 24th Inter-
national Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2019, pp. 521–528.

[24] I. GitHub, “Universal Robot,” https://github.com/ros-industrial/
universal robot, 2019.

[25] T. T. Andersen, “Optimizing the Universal Robots
ROS driver.” https://orbit.dtu.dk/en/publications/
optimizing-the-universal-robots-ros-driver, Technical
University of Denmark, Tech. Rep., 2015.

[26] P. Beeson and B. Ames, “TRAC-IK: An Open-Source Library
for Improved Solving of Generic Inverse Kinematics,” in 15th
International Conference on Humanoid Robots (Humanoids).
IEEE-RAS, 2015, pp. 928–935.

[27] P. Beeson and B. Ames, “trac ik,” https://bitbucket.org/traclabs/
trac ik/src/master/, 2019, accessed: 2020-01-25.

26Copyright (c) IARIA, 2023. ISBN: ISBNFILL

INTELLI 2023 : The Twelfth International Conference on Intelligent Systems and Applications

