
Exploiting Heterogeneous Computing Platforms By Cataloging Best Solutions For
Resource Intensive Seismic Applications

Thomas Grosser, Alexandros Gremm, Sebastian Veith,
Gerald Heim, and Wolfgang Rosenstiel

University of T̈ubingen, Germany
{tgrosser,gremm,veith,heim,rosenstiel}@informatik.uni-tuebingen.de

Victor Medeiros and
Manoel Eusebio de Lima

Federal University of Pernambuco, Brazil
{vwcm,mel}@cin.ufpe.br

Abstract—Large heterogeneous data centers of today lack
methods to appraise the best fitting solutions regarding, among
others, hardware acquisition cost, development time, and
performance. Especially resource intensive applicationsbenefit
from increased data center utilization to leverage heterogeneous
resources and accelerators. In this paper, we implement various
methods to accelerate a seismic modeling application, which
is available for CPU, GPU, and FPGA. With the underlying
heterogeneous environment, the current programming stan-
dard OpenCL is examined regarding CPUs and GPUs, and
compared to traditional acceleration approaches in order to
evaluate sets of platforms. Based on the variety of available ver-
sions, a flow is introduced, which allows to catalog best solutions
by experimenting with different implementations for available
hardware platforms. We encourage to derive indicators as hints
for data center operators with respect to finding a cost-benefit
trade-off, which must also be observed over time. The results
highlight the GPU and FPGA implementations, and correlate
performance optimizations with development time, regarding
the seismic application and the underlying hardware platforms.

Keywords-heterogeneous computing platform, accelerator,
seismic exploration, OpenCL, CPU, GPU, FPGA

I. I NTRODUCTION

Large data centers consist of heterogeneous combina-
tions of hardware resources, accelerators, operating systems,
compilers, software libraries, and APIs. In this paper, we
explore a multiplicity of heterogeneous resources guided by
a workflow to track and evaluate the best solution for a
given application. This enables exploration of varying sets of
hardware platforms, as well as different implementations and
optimizations regarding hardware accelerators. We choose
a resource-intensive seismic modeling application, which
is both compute and data-intensive. The parallelization of
seismic modeling can be implemented on many different
types of machines like CPUs, GPUs, and FPGAs [1]. This
is ideal for a mixed heterogeneous data center as each
architecture exhibits facilities to parallelize stencil opera-
tions regarding various multi-core architectures [2]. In the
course of exploring heterogeneous computing platforms, we
are especially interested in the OpenCL [3], [4] compute
standard, as it promises to provide an abstraction from
the underlying hardware. Our intention is to exploit and
evaluate heterogeneous data centers with a set of available

implementations, rather than implementing novel optimiza-
tion schemes for seismic processing. To appraise the best
fitting platform for the given application, a flow is introduced
that allows to catalog the manifoldness of available solu-
tions along with additional information about the underlying
hardware platform and operating experiences. Based on our
experiments, we exemplify how to derive indicators that
correlate achieved performance with development time. The
application of the proposed catalog allows to reuse program-
ming and operating experiences, and also to correlate several
parameters for multiple platforms in order to support future
decision making processes for data center operators.

The rest of the paper is structured as follows: Section II
reviews heterogeneous resources with respect to program-
ming seismic modeling. In the following Section III, we
demonstrate the intensiveness of the seismic application,
and delve into the implementation on various platforms in
Section IV. After describing the implementation and opti-
mization for specific platforms, we introduce the workflow
in Section V, which is used to build the catalog incorporating
various platforms and versions. Section VI presents the
results regarding performance and discusses the development
time of particular implementations. We close this work by
providing an outlook to future work, followed by concluding
remarks in Sections VII and VIII, respectively.

II. STATE OF THE ART

As technology of processors is scaling down, manufactur-
ers are moving from high-frequency designs to multi-core
chips, instead of improving single-threaded performance.
Recent processors, like IBM’s Power7 or Intel’s Core i7,
implement four up to eight cores per processor, whereas
each core may provide multiple threads in hardware. Besides
programming CPUs, general-purpose computation on graph-
ics processing units (GPGPUs) has become increasingly
popular as a flexible, cost-competitive alternative [5]. Other
studies show that state of the art multi-core CPUs are able
to compete with GPUs, by exploiting single instruction
multiple data processing (SIMD), multi-threading, and cache
blocking techniques. For example, by particularly tuning a

30

INTENSIVE 2011 : The Third International Conference on Resource Intensive Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-135-9

convolution algorithm on a CPU, it was shown that the
processing is only about2.8 times slower than on a GPU [6].

The recent heterogeneous compute standard OpenCL [3],
[4] is up-and-coming to exploit heterogeneous platforms
and promises the development of compute kernels indepen-
dent from the underlying hardware. As an open standard
for heterogeneous computing, we investigate OpenCL for
both GPUs and CPUs. Different vendors meanwhile offer
OpenCL implementations, e.g., Nvidia [7], AMD/ATI [8],
IBM [9], and recently Intel [10], targeting GPGPUs, CPUs,
and the combination thereof. Unlike software, fine-grained
arrays, such as FPGAs, allow to implement custom pipelines
that makes them extremely efficient and also hard to program
on the other hand. Programming FPGAs using OpenCL
is a matter of research today, i.e., research activities exist
to use OpenCL as a high-level abstraction for FPGA ac-
celerators [11]. Meanwhile, the hardware designer has to
design and implement a hardware architecture specific to the
algorithm, which is more costly in terms of development
time as compared to software engineering. On the other
hand, FPGAs are a powerful alternative because of low
power consumption for certain applications [12], as they are
running at moderate frequencies.

The seismic modeling algorithm is an embarrassingly par-
allel problem, which means that it can easily be divided into
subproblems. Thus, the algorithm can be efficiently imple-
mented on various platforms like CPUs, GPUs, FPGAs [1],
and Cell/B.E. [13]. Even more exploitation of parallelism
is also possible by leveraging a cluster of GPUs [14]. So,
due to the paradigm shift from high-speed sequential to
massively parallel processing, the acceleration of seismic
modeling fits for many recent multi-core and many-core
platforms. In this context, the best performance can be
achieved if an appropriate accelerator is provided, whereas
finding the bestsolution, with regard to a cost-benefit trade-
off, requires consideration of additional parameters, e.g.,
hardware acquisition cost, development time, and power
consumption.

III. SEISMIC EXPLORATION APPLICATION

Seismic exploration of oil can be divided into three areas:
data acquisition, data processing, and data interpretation.
The acquisition is responsible for capturing seismic traces
by geophones, through the injection of an excitation source
(seismic pulse) into the Earth. The processing step includes
various algorithms such as Kirchhoff [15] and reverse time
migration (RTM) [1], which enables to extract the hidden
information obtained from seismograms. This step essen-
tially comprises the seismic modeling and migration stages
that operate on a previously developed Earth model, i.e.,
an acoustic velocity model. In the interpretation stage an
image, which represents several geological layers, is finally
analyzed by experts. The development of this work focuses
on the processing stage, particularly the seismic modeling,

which will be referred to asforward propagationthroughout
the rest of this paper.

A. Intensity

In our research of the data intensiveness, typical op-
erations on cubical Earth models with the dimensions of
1250× 250× 2500 points results in781, 250, 000 points to
be processed for each time step during the RTM algorithm
execution. As the RTM algorithm execution consists of the
forward and reverse propagation this number has to be
doubled, which results in1, 562, 500, 000 points.

In the field, typically 100, 000 shots are recorded by
multiple receivers per survey. For each shot, the RTM
algorithm runs for at least10, 000 time-steps and all points
must be calculated individually in each time step. In this
scenario we conclude that109 operations for each point are
necessary. For simplicity, we omit that there may be multiple
refinement steps performed by the geologist, which repeats
the computation of the seismic exploration.

Assuming that the calculation of a single point requires
about37 floating point operations (FLOPs), it becomes clear
that this results in57, 812, 500 TFLOPs for the cubical input
data. Regarding data storage, the total amount of raw data
of the cubical input, with respect to4 bytes per float value,
results in3.125 GB. As the algorithm requires an additional
cubical data set as temporary data buffer, two cubes have to
be stored for each shot resulting in a total amount of625

TB data for one survey. To partition the intensiveness of
this application, the cubical input data can be decomposed
into several subcubes in order to be processed on multiple
heterogeneous machines of the data center simultaneously.

IV. I MPLEMENTATION ON VARIOUS ARCHITECTURES

The forward propagation algorithm is essentially an imag-
ing algorithm that moves a stencil operator over a matrix.
This algorithm exhibits regular memory access patterns and
thus allows to be performed in SIMD fashion. As the input
data can be split into several blocks, the algorithm can easily
be executed by multiple threads, processing a number of
subproblems in parallel. Considering the FPGA, there is the
possibility to improve the throughput by implementing a
pipeline of processing elements, which realizes increased
parallelization in the time domain of the forward propaga-
tion.

A. CPUs

The basic calculation of the forward propagation on 2-
dimensional data is shown in Figure 1. The main computa-
tion is contained in two nested loops processing all entries
of the input matrices. These two nested loops are referred to
as the spatial loop, which is working on 2-dimensional data
(the operation can be extended to operate on 3-dimensional
data [1], [2]). In order to simulate the excitation source,
a 1-dimensional array is used (seismicPulseVector).

31

INTENSIVE 2011 : The Third International Conference on Resource Intensive Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-135-9

// time loop
for (t=0; t < timeSteps; t++) {

// inject seismic pulse into ’actual pressure field’
APF[spPosX][spPosY] += seismicPulseVector[t];
// 2D spatial loop, moving stencil
for (i=2; i < (dimX-2); i++) {
for (j=2; j < (dimY-2); j++) {

// compute ’next pressure field’
NPF[i][j] = apply_stencil(i, j, APF, PPF, VEL);

}
}
// switch pointers to buffers
PPF = APF, APF = NPF, NPF = PPF;

}

Figure 1. Pseudo code implementing the 2-dimensional forward propaga-
tion.

The spatial loop itself is nested inside the time loop, which
performs the wave propagation over time. For simplicity, the
calculation of the wave propagation equation is performed
by the functionapply_stencil. This function uses the
previous pressure field matrixPPF and the actual pressure
field matrix APF to calculate the next pressure field matrix
NPF using the Earth model, which represents the wave
propagation velocityVEL of different layers of soil, e.g.,
sand or stone. Once one time step is done the pointers to the
pressure field’s matrices are switched to omit unnecessary
copying.

1) Pthreads: By partitioning the pressure fields into
squares, the data is shared among multiple threads as de-
picted in Figure 2(a). As threads operate on shared memory,
there is no additional memory transfer overhead when oper-
ating on overlapped regions. When moving the stencil, the
operating thread for a specific square should be scheduled to
the same core to prevent cache misses. For this purpose, the
pthreads library offers functions that enable the exploitation
of data locality by pinning threads to a specific core.

The main thread of the application calculates essential
offsets for each thread, in order to access the pressure
field matrices. That way, each thread reads valid memory
locations fromPPF andAPF and writes the results into the
NPF without the need of extra synchronization. Once one
time step is calculated, two barriers are needed to safely
switch the pointers to the pressure fieldsPPF, APF, and
NPF.

2) Single Instruction Multiple Data:As the memory
access pattern of the seismic algorithm is regular, the
stencil uses data from nearest neighbors, i.e., there are no
scatter/gather operations needed. Therefore, the algorithm
exhibits ideal prerequisites to a straight-forward SIMD im-
plementation. So, the stencil is extended to compute four
points in parallel, as shown in Figure 2(b). This is achieved
by loading four consecutive float values into 128-bit wide
vector registers to enable SIMD processing. While AltiVec
on POWER machines provides intrinsics for aligned loads,
which results in shorter loading time as data is aligned to 16-
byte boundaries, SSE on x86 machines provides intrinsics

Figure 2. (a) Single stencil operator on decomposed matrix.(b) 4-way
stencil operator.

for both aligned and unaligned loads. For performance and
comparability reasons, we always implement the stencil
operation using aligned loads. Reconsidering the 4-way
stencil, an alignment offset has to be introduced as the
algorithm starts accessing the array at the third element,
depicted in Figure 2(b). We extend the input data by two
entries, which does not affect the calculation and effectively
enables padding, so aligned loads become possible. As a
side effect of SIMDizing the algorithm, the widths of the
pressure fields must be divisible by 4.

B. OpenCL on CPUs

An OpenCL system consists of the host (CPU) and
multiple devices, e.g., a GPU or the CPU itself. In turn,
one device itself contains multiple compute units (CU), that
execute one or more work-groups. The host is responsible
to launch compute kernels, which are mapped to work-items
that are moreover arranged as groups to allow scheduling
blocks of threads. Regarding CPUs, OpenCL aims to provide
a portable vector abstraction by introducing data types like
float4. That is, the mapping of data to vectorized registers
is subject to the vendor’s compiler. By using these data
types, the OpenCL compiler for CPUs should be able to
exploit SIMD for individual work-items and map multiple
work-groups to threads. So, our approach to use OpenCL on
CPUs is to develop a kernel that is suited for CPU devices.

In the OpenCL memory hierarchy, there is the notion
of global and local device memory. In case of the CPU,
global and local device memory reside in the CPU’s main
memory, hence using global memory accesses inside the
kernel are sufficient on CPUs. Loading data into local
memory first is counterproductive as this may result in
hidden memory operations. Considering a quad-core CPU,
we launch four work-groups each containing a single work-
item that processes a subset of the data in a loop.

C. GPGPU Implementation

In contrast to the CPU implementation, the computations
are performed by a multitude of work-items, which map to
the stream processors of the GPU. Due to the architecture of
the GPU, there are typically hundreds of threads to exploit
massive parallelism, and unlike the CPU implementation,

32

INTENSIVE 2011 : The Third International Conference on Resource Intensive Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-135-9

there are typically no loops in a GPU kernel. When launch-
ing a kernel, the host determines the number of work-groups
according to the dimension of the input data, while a single
work-group contains16 × 16 work-items that operate in
parallel. One work-group is then mapped to one compute
unit of the OpenCL device.

With regard to the OpenCL memory hierarchy, the local
memory is shared for a work-group, i.e., all work-items
have fastest access to. As a rule of thumb, access times for
the GPU’s local and global memory are of similar order of
magnitude as compared to access times of the CPU’s cache
and memory, respectively.

Under control of the OpenCL runtime, work-groups are
scheduled on the CUs. If there are fewer groups than CUs,
the device may not be utilized completely. Therefore, the
number of work-groups must be maximized for one OpenCL
device. By launching as many work-groups as possible, the
OpenCL runtime schedules threads independently on the
CUs, which in effect hides memory latencies. According to
the OpenCL standard, the processing order of neither work-
items nor work-groups can be influenced by the programmer
directly. Work-groups must be synchronized by the host for
each time step in our implementation. So, each time step the
host invokes the kernel, which calculates the spatial domain
in parallel. This applies to both CPUs and GPUs. In the
following, we describe two different compute kernels, as
we are also exploiting special hardware facilities common
to GPUs.

1) Default Kernel: As the default implementation of a
GPU-aware kernel, data values are loaded from GPU global
memory to the CU’s local memory at first. Each work-
item and work-group has unique ids to compute offsets
to global and local memory buffers, which are given as
argument to the kernel. After staging global memory to
local memory, work-items operate on the low-latency local
memory for all operations performing the wave propagation.
To avoid unnecessary memory accesses between host and
device memory, temporary results remain in the GPU’s
global memory buffers. The host performs the outer loop
in the time domain, switches pointers to memory buffers,
and sets kernel arguments accordingly before initiating the
compute kernel for the next time step.

2) Image Kernel: Another approach to operate on data
is to use image objects provided by the OpenCL API. On
a GPU device these images reside in the texture memory,
which corresponds to a specialized cache optimized for
spatial locality access. Images must be declared read-only
and write-only, which applies to the input buffers (PPF
and APF) and output buffer (NPF) respectively. As kernel
arguments, two image buffers for the input and one for the
output are used, which is different from using simple array-
like buffers as in the default kernel. From the programmers
point of view, the kernel code is more obvious, because the
calculation of required addresses and offsets to read data

from is done by the OpenCL runtime using a so called
sampler. The sampler specifies how to access the data inside
images, also specifying how to behave at borders. The GPU
hardware has natural limits here, e.g., our Tesla system
allows images to a maximum size of8192×8192. However,
this was not exceeded in our experiments so far. Once the
problem is getting bigger, the algorithm has to be refined by
splitting data accordingly.

The functions to read images return data directly into
a float4 variable. So, the kernel code using images is
similar to the SIMD implementation, as vectors containing
four values are processed by one work-item, incorporating
fastest loading times due to image objects. As GPUs are
designed to process data this way, we expect the image
kernel to yield even more performance that the default
kernel.

D. Implementation on FPGAs

The current design of the FPGA implementation is a
pipeline-based stream processing architecture composed by
a set of processing elements (PEs) that implement the wave
propagation equation. These processing elements operate
on single precision floating point data. Due to memory
bandwidth and FPGA internal resource constraints, four PEs
are instantiated inside the processing core. The solution can
be optimized when using a more powerful FPGA as the
number of PEs in the architecture can be increased easily.
However, due to the great amount of data in the algorithm,
the memory bandwidth is already a bottleneck regarding
four PEs. So, it is not possible to increase the number of
PEs exploring the spatial domain parallelization, but it is
possible to allocate more PEs to explore the time domain
parallelization, i.e., processing more time steps concurrently.
This approach allows increasing the computational power
without the requirement of a larger memory bandwidth.
Other possible optimizations, like data compression tech-
niques or different floating point precisions, can also be
explored. This is a great advantage over other platforms like
CPUs and GPUs, which do not feature such comparable
customizations at the lower-level architecture.

In our current approach, we focus on modeling opti-
mizations to trade-off performance benefits before actually
implementing them. In order to validate further refinements
of the architectural design, a software model of the FPGA
architecture is developed, which estimates the system per-
formance when implementing several improvements. Ex-
perimental results show that the model yields over99%

accuracy, and is therefore also considered in the course of
improved heterogeneous data center exploitation.

V. CATALOGING BEST SOLUTIONS

Evaluation of all implementations on all available ma-
chines results in an ample amount of potential solutions.
A solution consists of a specific machine with associated

33

INTENSIVE 2011 : The Third International Conference on Resource Intensive Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-135-9

versions of the implementation. In order to evaluate scala-
bility scenarios, for example by increasing the input data,
series of experiments have to be performed, which are
stored in a set of configurations. Due to the manifoldness
of implemented versions and configurability options, we
propose the elementary flow shown in Figure 3, which man-
ages the complexity of different sets of machines, available
versions, and applied configurations. Since the catalog is
intended to enable inspection of multiple parameters, we
focus on a correlation of different hardware platforms with
development time in this experiment. Considering future
applications, the catalog is intended to add additional di-
mensions, i.e., correlating hardware platforms with different
classes of parallel problems besides the seismic application.

Figure 3. Flow to automate exploration of heterogeneous data centers by
building a catalog containing best solutions.

A. Building and Execution Facilities

The building facility is aware of the underlying machine,
its capabilities, and associated versions. Additional hosts
can be added easily as build rules are generalized for each
version. According to the available host and its capabilities,
we are able to run all of the following:

• sequential C code,
• multi-threaded code,
• SIMD intrinsics (both SSE1 and AltiVec2),
• threads and SIMD combined,
• OpenCL on CPUs3,
• OpenCL on GPGPUs4,
• FPGA5 through a host CPU.

Before execution, the facility checks for available builds
and executes those that are listed in the specified scenario,
including a set of configuration files. As part of the execution
facility, a shared library is implemented to read configuration

1Intel Xeon E5405 and AMD Athlon 64 X2 6000+
2IBM PPC970MP (JS21 blade)
3AMD Athlon 64 X2 6000+
4Nvidia Tesla T10p
5Altera Stratix III 80E

files and set parameters in the application accordingly. This
allows to observe implications of parameter changes, e.g.,
increased input sizes or number of threads.

B. Catalog with Indicators

After executing the scenario on a certain machine, all
versions are summarized into a CSV file. This allows to
manage different scenarios on various machines, compar-
ing each other. The current functionality locates the most-
optimal solution for a given host and problem size, and adds
these to a set of validated solutions.

Relevant information about the underlying machine and
additional operating experiences are stored in the catalog.
So, the catalog allows to archive snapshots of different solu-
tion to recapitulate which specific implementation performed
best on a given accelerator. This enables guidance for data
center operators when deploying specific implementations to
a machine. In our experiments, we consider the development
time of specific solutions in correlation with the achieved
performance.

VI. RESULTS

In the current state of our work, we perform multiple
runs based on specific configurations and extract runtime
information to find the best solution regarding performance
at first. This includes scaling input sizes from600× 748 to
2300× 748 points for all versions. Multi-threaded versions
are executed multiple times with a varying number of
threads. After finding the best solutions with respect to
performance, we are able to correlate that with development
time and feed back this information into the catalog.

A. Results on CPUs

On the CPUs in our data center, we evaluate the achieved
speed-up of SIMD-enabled and multi-threaded versions
compared to the single-threaded sequential version. When
OpenCL is available, we compare this to the version running
SIMD and threads combined.

1) SIMD: As the SIMD processing implements the 4-
way stencil (shown in Figure 2(b)), the theoretical speed-up
is limited to 4. On the Intel Xeon E5405, we observed that
SIMD-enabled processing achieves an average speed-up of
2.12, while on the JS21 blade an average speed-up of2.35

is achieved. For both machines, the maximum speed-up of
2.5 is achieved with the largest input data set of2300×748.

2) Threads: The evaluated Intel Xeon E5405 and JS21
blade hosts exhibit four cores, thus there is also a theoretical
speed-up limited to4. As the computation is not bandwidth-
bound, we observe that launching more threads than cores
can slightly increase performance for certain input sizes.
That is, the maximum achieved speed-up is3.38 on the Intel
Xeon E5405 machine with the input image dimension of
1600× 748.

34

INTENSIVE 2011 : The Third International Conference on Resource Intensive Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-135-9

3) Combinations:Upon evaluating all input sizes stated
above, we observe no additional significant performance
gains using the combined versions (threads/SIMD) on the
Intel Xeon E5405 machine. However, on the JS21 blade the
threads/SIMD solution achieves a total speed-up of3.38

using four threads and even4.83 using 12 threads, as
compared to the plain SIMD or multi-threaded versions,
which only yield an average speed-up of2.38.

B. OpenCL on CPUs

The AMD Athlon 64 X2 6000+ machine is the only
machine equipped with an OpenCL runtime environment
to run kernels on the CPU. Hence, we compare execution
times of the combined threads/SIMD version to the OpenCL
kernel, which is effectively mapped to SIMD intrinsics and
threads by the OpenCL compiler. In our evaluation, the
OpenCL-enabled solution runs even faster than the tradi-
tional approach. When comparing the threads/SIMD version
with four threads, the OpenCL equivalent code runs1.31

times faster. With an overcommitment of 12 threads, the
OpenCL solution is1.23 times faster.

C. Results on GPGPUs

When evaluating the two implemented GPU kernels to the
sequential code, we observe speed-ups of16.81 and 31.23

regarding the default kernel and image kernel, respectively.
As it is intend to locate the best solution, the comparison
of the single-threaded sequential CPU code to the highly
parallel GPU version is not legitimate. So, we also compare
the two GPU kernels to the best solution of the Intel
Xeon E5405 machine, which is the combined usage of
threads/SIMD. In this case, the speed-ups are6.63 and
12.31, regarding the default and image kernel, respectively.

D. FPGA and GPGPU

When comparing the GPU with the FPGA, it must
be stated that the comparison is to handle with care, as
architecture-specific optimizations cannot be compared eas-
ily. However, with the intention to derive indicators to find
the best fitting solution, the comparison becomes legitimate
henceforth as other requirements can also be incorporated,
e.g., power consumption. It is also conceivable that compar-
isons are less appropriate, as changes to the implementation
on a specific platform result in different parallelization
strategies. Therefore, we argue that the catalog becomes
even more important, as it allows to evaluate different
platforms and workloads with respect to gathered operating
experiences.

The results, depicted in Figure 4, show that the initial
FPGA design is up to5.63 times slower than the default
kernel, while the improved FPGA model is1.14 times
faster than the best GPU solution, which is using the image
kernel. The FPGA model considers two main optimizations
when compared to the hardware version. The first is the

 0

 20

 40

 60

 80

 100

 120

 140

600x748

800x748

1000x748

1200x748

1400x748

1600x748

1800x748

2000x748

2200x748

2300x748

P
ro

c
e
s
s
in

g
 t
im

e
 [
s
]

Matrices size

GPU
GPU image

FPGA
FPGA model

Figure 4. Results comparing available FPGA and GPGPU implementa-
tions.

usage of three available memory banks, instead of one. This
change allows us to increase the system clock frequency
from 50 MHz to 150 MHz. The second optimization is the
time domain parallelization. All of these optimizations are
completely feasible and are currently being implemented in
real hardware.

E. Development Time

The most-promising platforms for our seismic application
are the GPU and the FPGA, as both achieve the best
performance compared to the CPU implementations. The
performance results reveal that the GPU optimization of the
image kernel over the default kernel enables an additional
speedup of1.86, while the modeled FPGA optimization
achieves an additional speedup of11.7, compared to the
initial FPGA implementation. Based on our experiments, the
initial development of the FPGA architecture took roughly
8 months with four engineers working, while both the GPU
prototype and the optimization could be developed each
within only 1.5 months with a single programmer.

To summarize this, the GPU allows to start quickly and
promises good performance results. On the other hand, the
GPU has natural limits regarding available compute cores,
so further speed-ups may not be expected. Considering the
FPGA, the development time is much longer and more
intensive in terms of acquisition cost and development time.
On the other hand, the FPGA is likely to enable very
specialized optimizations. We estimate that the development
of a pipelined architecture inside the FPGA would require
another 3 months for one engineer. So, in this specific
experiment, the GPU is the best solution regarding achieved
performance and development time.

35

INTENSIVE 2011 : The Third International Conference on Resource Intensive Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-135-9

VII. O UTLOOK

When storing additional information inside the catalog,
it is possible to evaluate multiple parameters for given plat-
forms in heterogeneous data centers. For instance, the FPGA
could evolve as better solution with respect to performance
and power consumption over time. To find a cost-benefit
trade-off for a given time period, hardware acquisition cost
can also be considered. We believe that more beneficial
indicators can be extracted out of the catalog, which enables
an added value to heterogeneous data centers.

VIII. C ONCLUSION

In this paper we explore a seismic modeling application
on a set of heterogeneous machines, including CPUs, GPUs,
and FPGAs, guided by a workflow to manage the manifold-
ness of heterogeneous resources. The proposed flow allows
to explore different hardware platforms and versions of the
application, which leads to locating and cataloging the best
fitting solutions regarding performance. We elaborated on
implementation details in order to gather operating experi-
ences of different parallelization approaches. This includes
multi-threaded, SIMD, and OpenCL processing on CPUs
and GPUs. The promise that OpenCL kernels will run on
each architecture is to handle with care: in our operating
experience, OpenCL compute kernels exploit more perfor-
mance when still being aware of the underlying hardware’s
capabilities. In the results section, we show that the best
solutions are accomplished using GPUs and FPGAs. We
also discuss the development time of GPU and FPGA-
specific optimizations and correlate that with the achieved
performance, which reveals that in the GPU is the best
fitting solution in our experiment. The overall benefit of
the proposed heterogeneous platform exploration flow is to
support decision making processes for choosing the best
fitting solution with regard to resource intensive seismic
applications.

REFERENCES

[1] R. G. Clapp, H. Fu, and O. Lindtjorn, “Selecting the right
hardware for reverse time migration (in High-performance
computing),” inLeading Edge, Tulsa, OK, 2010, pp. 48–58.

[2] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker et al., “Stencil computation optimization and au-
totuning on state-of-the-art multicore architectures,” in In
(submitted to) Proc. SC2008: High performance computing,
networking, and storage conference, 2008.

[3] Khronos Group, “OpenCL - The open standard for paral-
lel programming of heterogeneous systems,” 2011/01, URL:
http://www.khronos.org/opencl/.

[4] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems,”
Computing in Science and Engineering, vol. 12, pp. 66–73,
2010.

[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krger, A. Lefohn, and T. J. Purcell, “A survey
of general-purpose computation on graphics hardware,”
Computer Graphics Forum, vol. 26, no. 1, pp. 80–
113, 2007. [Online]. Available: http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x

[6] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen et al., “Debunking the 100X GPU vs. CPU myth:
an evaluation of throughput computing on CPU and GPU,”
in Proceedings of the 37th annual international symposium
on Computer architecture, ser. ISCA ’10. New York,
NY, USA: ACM, 2010, pp. 451–460. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1816021

[7] NVIDIA, “Developer Zone – OpenCL,” 2010/11, URL:
http://developer.nvidia.com/object/opencl.html.

[8] AMD, “AMD Accelerated Paral-
lel Processing SDK,” 2010/11, URL:
http://developer.amd.com/gpu/AMDAPPSDK/Pages/
default.aspx.

[9] IBM, “OpenCL Development Kit for
Linux on Power,” 2011/01, URL:
http://www.alphaworks.ibm.com/tech/opencl. [Online].
Available: http://www.alphaworks.ibm.com/tech/opencl

[10] Intel, “Intel OpenCL SDK,” 2011/01, URL:
http://software.intel.com/en-us/articles/intel-opencl-sdk/.

[11] D. Singh, “Higher Level Programming Abstractions for
FPGAs using OpenCL.” Presented at the FPGA 2011
Pre-Conference Workshop: The Role of FPGAs in
a Converged Future with Heterogeneous Programmable
Processors, Monterey, CA, 2011. [Online]. Available:
http://www.eecg.toronto.edu/˜jayar/fpga11/
Singh Altera OpenCL FPGA11.pdf

[12] D. B. Thomas, L. Howes, and W. Luk, “A comparison of
CPUs, GPUs, FPGAs, and massively parallel processor arrays
for random number generation,” inFPGA ’09: Proceeding
of the ACM/SIGDA international symposium on Field pro-
grammable gate arrays. New York, NY, USA: ACM, 2009,
pp. 63–72.

[13] M. Perrone, “Finding Oil with Cells: Seismic Imag-
ing Using a Cluster of Cell Processors,” 2009, URL:
https://www.sharcnet.ca/my/documents/show/44.

[14] R. Abdelkhalek, H. Calendra, O. Coulaud, J. Roman,
and G. Latu, “Fast Seismic Modeling and Reverse Time
Migration on a GPU Cluster,” inThe 2009 High Performance
Computing & Simulation - HPCS’09, Leipzig Germany, 2009,
Best Paper Award at HPCS’09 Total. [Online]. Available:
http://hal.inria.fr/inria-00403933/en/

[15] Ö. Yilmaz, Seismic Data Analysis. Tulsa, OK: Society
of Exploration Geophysicists, 2001. [Online]. Available:
http://link.aip.org/link/doi/10.1190/1.9781560801580

36

INTENSIVE 2011 : The Third International Conference on Resource Intensive Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-135-9

