
From Hardware Trace to System Knowledge –
Data-intensive Hardware Trace Analysis

Andreas Gajda, Rainer G. Spallek
Department of Computer Science

Technische Universität Dresden (TUD)
Dresden, Germany

{Andreas.Gajda|Rainer.Spallek}@tu-dresden.de

Abstract—The capture of large amounts of hardware trace
data by recent hardware trace units in System-on-a-Chip (SoC)
defines the new requirements for hardware trace analysis. Several
hundreds of MiB need to be processed in near real-time. The
requirements on analyses are further increased with long-term
trace capture and increasing frequencies of SoC. Hence, hard-
ware trace analysis has become a data-intensive computing task.
The article proposes an approach based on data, functional and
pipeline parallelism in combination with data stream processing.
As this is a ‘work in progress’, we will only outline the approach
and the preconditions and decisions leading to the approach.

Keywords-data-intensive computing; large data streams; data-
processing pipelines; hardware trace analysis; analysis frame-
work

I. INTRODUCTION

Embedded Systems, also called System-on-a-Chip (SoC),
facilitate multiple system units on a single chip. Current SoC
consist of multiple processors, I/O units, graphic accelerators
and highly specialized data processing units. Because most
embedded systems cannot be easily debugged in-situ, vendors
use special hardware units to gather information, so-called
traces, of the system’s behavior.

These hardware trace units are configurable devices, that
record parts of the hardware context data and publish the
records as a packet stream via dedicated hardware interfaces.
Capturing the trace data influences the runtime behavior of
the processor to varying degrees, depending on the kind of
hardware unit. If the runtime behavior is not influenced by
the trace capture, the trace capture is called non-intrusive. The
captured context data contain the control and data flow, event
counter data, and ownership identifier.

Trace data provide valuable insight into the dynamic be-
havior of the system, because non-intrusive data collecting in
hardware concurrently with the execution represents the orig-
inal system’s behavior, which might have strict constraints on
runtime. And it yields more detailed information about system
events: the location, time, and order of their occurrence.

However, hardware trace units produce a great amount of
data. These data must be transferred outside the chip by
low bandwidth interfaces. This problem is addressed by the
techniques of on-chip filtering, compression, and widening
the bandwidth of trace interfaces. Nevertheless, observing the
system’s behavior over long periods of time results in a large

amount of trace data. With future prospects of approximately
109 bytes of trace data to analyze, the recent trace data anal-
ysis, designed for small time periods, needs new approaches
to yield results shortly after the data is captured.

The basic idea of our approach, is to preserve the natural
format of a trace stream and apply all analyses as a stream
transformation. The analyses aim to be highly parallel, be-
cause they are decomposed and arranged by data, function,
and pipeline parallelism.

Of course, this requires the trace to express software level
concepts that cannot be solved in current hardware trace
formats. Software trace formats can carry this information,
but their ability to carry hardware information is limited.

We will describe some distinctions and similarities of both
trace formats (Section II), to motivate their combination into
one trace format. The requirements of trace analysis (Section
III) and the properties of a trace analysis framework (Section
IV) will be described in order to provide a rough view of the
idea.

II. CHARACTERIZATION OF TRACE

The properties of hardware (HW) and software (SW)
trace are summarized in the format, content, and amount of
the trace. We refer to the IEEE-ISTO 5001TM [1] standard
(NEXUS) and Open Trace Format [2] (OTF) for examples of
hard- and software trace. The same properties can be found in
other formats as well (e.g., [3], [4]).

A. Trace Format

Hardware traces [3] are transmitted out of chip via data and
signal lines. The data are submitted sequentially, such that they
can be packed into a stream format, consisting of packets of
variable length. The NEXUS standard already defines packets
as ther basis of its message system. Software trace is written
to file by instrumented software and can have several distinct
formats, e.g., unstructured files, structured log files, or packet
based software trace formats1. For comparison, we will only
focus on the latter.

In packet based trace formats, the packet consists of a
fixed size header and a variable packet payload. For some
packets, the payload size is zero, because the header already

1In the literature, hardware trace packets are often referred to as ‘messages’,
whereas software trace packets are referred to as ‘records’.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

TABLE I: Comparison of not-expanded raw (NEXUS) trace data and the same data expanded without (UTF) and with inherent
compression (UTFc) for the AutoBench benchmarks of the EEMBC [5] benchmark suite.

Benchmark Covered Ticks Size (MiB) Emit Volume (Byte per Tick) Expansion Factor
(Million) NEXUS UTF UTFc NEXUS UTF UTFc UTF UTFc

a2time 9.18 27.44 111.95 63.37 3.14 12.79 7.24 4.08 2.31
aifftr 28.86 88.47 440.99 178.50 3.21 16.02 6.49 4.98 2.02
aifirf 9.32 27.84 114.09 64.27 3.13 12.84 7.23 4.10 2.31
aiifft 27.93 85.53 424.58 172.10 3.21 15.94 6.46 4.96 2.01
basefp 9.19 27.56 114.46 63.34 3.14 13.05 7.22 4.15 2.30
bitmnp 9.20 27.20 110.94 63.38 3.10 12.64 7.22 4.08 2.33
cacheb 9.18 27.59 112.46 63.11 3.15 12.84 7.21 4.08 2.29
canrdr 9.22 26.45 112.90 64.14 3.01 12.83 7.29 4.27 2.43
empty 9.21 27.52 112.19 63.59 3.13 12.77 7.24 4.08 2.31
idctrn 9.22 28.04 119.62 62.62 3.19 13.60 7.12 4.27 2.23
iirflt 9.27 27.73 113.37 63.97 3.14 12.82 7.23 4.09 2.31
matrix 156.91 596.35 2447.58 1013.95 3.99 16.36 6.78 4.10 1.70
pntrch 9.20 26.96 110.10 64.00 3.07 12.55 7.30 4.08 2.37
puwmod 9.19 25.91 113.97 64.70 2.96 13.00 7.38 4.40 2.50
rspeed 9.22 27.21 112.89 63.96 3.09 12.84 7.28 4.15 2.35
tblook 9.17 27.36 112.41 63.49 3.13 12.86 7.26 4.11 2.32
ttsprk 9.23 26.93 113.43 64.25 3.06 12.88 7.30 4.21 2.39
average 20.16 67.77 288.11 132.75 3.36 14.29 6.59 4.25 1.96
median 9.22 27.52 113.37 63.97 2.98 12.30 6.94 4.12 2.32

carries all of the information. Trace formats typically utilize
several kinds of compression, summarization, and conditional
information. Conditional information is indicated by length
fields or signaled by bits in the packet header and/or packet
payload.

B. Trace Content

Most packets can be categorized into ‘control flow’, ‘data
flow’, ‘event counter’, and ‘run/trace control’. Hardware trace
may contain additional packets for the manipulation of register
and memory content. The NEXUS distinction of ‘ownership
trace’ and ‘device ID’ is included in the categories of ‘control
flow’ and ‘data flow’. Software trace may provide additional
packets for concepts above the software level, like peer to peer
and collective communication.

Hardware trace content consists of memory and instruction
addresses, device and thread identifiers, timestamp and tick
counter information, memory content, break- and watchpoint
events, and synchronization events.

Software trace content consists of numerical or text identi-
fiers of processes, functions and variables, accessed variable
value and performance counter value. Usually the content
is ordered with respect to the execution, but timestamps or
tick counter value provide an inherent (weak) ordering of
concurrent processes and additional timing information for
functions. Some trace formats allow global or interval based
summaries.

C. Trace Amount

All formats support some kind of in-stream compression to
reduce the bandwidth needs for transferred data.

In hardware trace streams, the used methods comprise trans-
mitting differences to reference value, leading zero suppres-
sion, sampling and tagging of repeated data. Some hardware
trace units use an on-chip filter, to limit the location and time

of observation to points of interest. Software trace uses data
reduction analysis, e.g., smart compression algorithms and
sampling.

The size of a single packet in both formats is small and
limited, but recording billions of events sums up to a few
hundred MiB. See Table I for a few examples of NEXUS
trace file sizes. Typically, hardware trace records a fine grained
execution trace of the processors in a few seconds, and
software trace records a coarse-grained program execution in
minutes or hours.

The amount of the trace stream grows with the observation
time and depth of analysis. One important use of hardware
trace units will be the constant monitoring of the SoC, so-
called long-term or endless trace, especially for near real-time
analysis. Once available, the amount of data to process requires
more computing power to extract the knowledge hidden in the
data.

Experiences from working with the EEMBC [5] benchmark
(Table I) show the median trace file size reaching 28MiB raw
trace data for roughly 100ms of a single benchmark run. How-
ever, trace data volumes up to 600MiB were also retrieved.
These trace data are compressed by any measures available in
the trace format, including a branch based representation (i.e.,
not-expanded trace) of the control flow. When expanding the
trace data to a single instruction based control flow trace (i.e.,
expanded trace), the expansion factor is about 4, which means
dealing with about 115MiB of trace data.

Based on these data, transferring and analyzing the raw trace
stream in near real-time, requires approximately 315MB/s
bandwidth and data processing power for a single 100 MHz
embedded target processor.

III. HARDWARE TRACE ANALYSIS

Trace stream analyses consist of filtering and analyzing the
content. Filtering is the reduction of the trace events to a small

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

Min

Avg

Max

C
P

I

Max

CPI

Time

Avg

Min

Analysis

AnalysisAnalysis

200.5 1.0 2.3 1.57

200.5 1.0 2.3 1.57

200.5 1.0 2.3 1.57

AvgMin MaxCycles per Instruction

FFT

MatMul

Scalar

Sum

ScalarMatMulFFT

AtomAtom Filter

Atom Filter Atom

AtomAtomAtom

Filter

T
ra

c
e
 S

o
u
rc

e
s

AnalysesSources

Compiler−Flag

−O3

−O2

Visualization

Min

Avg

Max

C
P

I

Max

CPI

Time

Avg

Min

A
n
al
y
si
s

A
n
al
y
si
s ScalarMatMulFFT

200.5 1.0 2.3 1.57

200.5 1.0 2.3 1.57

200.5 1.0 2.3 1.57

AvgMin MaxCycles per Instruction

FFT

MatMul

Scalar

Sum

Interface Interface InterfaceInterface

Atom

Atom

Atom

Atom

Interface Interface

Atom Filter

Filter

T
ra

c
e

 S
o

u
rc

e
s

Sources Analyses Visualization

Trace Streams

Compiler−Flag

−O3

−O2

Fig. 1: Vertical and horizontal view of the analysis framework. The views are simplified, by not showing the interfaces between
the atoms within an analysis. The arrows point in the direction of the data flow.

window of interest. This process is done at a minimum of two
times: On-chip filter restrict the trace capture to code ranges,
data ranges, or other user specified trigger events. These filter
are set-up pre-trace versus post-trace filter, which reduce the
amount of captured trace by suppressing trace packets. Post-
Trace filter analyze the trace with similar criterion like pre-
trace filter, but mostly more specific to the follow up analysis.
Some filters are analysis inherent, like restricting the analysis
to a certain kind of packets, e.g., those for data flow trace.

The analysis of hardware trace content maps the raw trace
data back to different levels of the executing environment
abstractions. For instance, analyses reconstruct the control or
data flow at the instruction level, analyze the call graph at
the function level and observe the scheduling behavior at the
system level. Analyses may be built up on other analyses
too, like measuring function execution times and calculating
the statistical values afterwards. The structure of intermediate
results might change, like reconstructing the instruction control
flow from raw trace and mapping it onto control flow graphs.
Intermediate results might be used multiple times, like creating
the static and dynamic call graph from the software level
function trace.

All (intermediate) results need appropriate structures and
storage management, which provide fast access and large stor-
age. Moreover, the intermediate and final results of the analysis
need to be stored externally, e.g., for creating checkpoints or
comparison with the results of other traces.

IV. TRACE ANALYSIS FRAMEWORK

This section introduces the trace analysis framework. We
will describe the framework and the decisions that lead to
the structure of it, on an abstract level. We will introduce
the aspect of analysis parallelization, the internal structure of
the framework, and the internal trace format and provide the
current state of implementation.

We call it ‘trace analysis framework’ to emphasize the
aim of hardware and software trace analysis, using the same
generic structure.

A. Parallelization

As shown before, the challenges of hardware trace analysis
result mostly from the amount of data to process. Furthermore,

since analysis is an interactive process, the period between
trace capture and visualization of the analysis results must be
short, since the developer might need to refine or restart the
trace capturing process. Displaying intermediate results gives
additional feedback of the analysis progress. In addition, the
results from long-term trace are expected to be available before
the trace has finished. Therefore, the trace analysis should be
near real-time at least.

To achieve a speedup in data processing, the analysis task
needs to be parallelized. The fundamentals of parallelization
are the decomposition of data and function and the concurrent
use of processing units to execute (different) functions on
(different) data. Since all possible tasks for hardware trace
analysis need to be decomposed for that purpose, this task
might provide enough work for years.

Another approach is to create a parallelized analysis frame-
work, which provides the means for complex analysis and the
inherent decomposition of the analysis itself.

B. Framework Structure

The analysis framework (see Figure 1) shall exploit func-
tional and data parallelism as much as possible. The analysis
process is broken down into the functional units of the
trace data source, analyses, and visualization. All the data
exchanged between these components are transferred as trace
data streams. All the data are encapsulated in one trace format,
which is designed to host the hardware trace data and the
analyses results at once.

The analyses are decomposed into atomic functions, which
are also connected via trace data streams. Each atomic analysis
has a minimal functionality. The atoms are combined into a
complex analysis by connecting them via trace streams, where
the output of an atom serves as the input to several other atoms.
The analysis atoms might filter, transform, or enrich the trace
stream, such that the output of the analyses can be visualized.

Since the atoms depend only on each other via their
interconnections, the whole framework is highly parallel. The
ability to duplicate the trace stream and use different atoms
at once, using the same input data, provides a functional
decomposition of complex analysis. The ability to duplicate
and enrich the trace stream, provides additional data decom-
position. Both kinds of decompositions are arranged via the

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

network, which is generated by the trace stream connections
between the atoms.

The acceleration of the analysis is expected to come from
the concurrent execution of different analyses at once. The
input trace stream and any intermediate trace data can by
duplicated and serve as input to several subsequent atomic
analyses, which extract the different properties of the data con-
currently. The independence of the atoms allows concurrent
execution, only with synchronization at the input and output
channels.

The visualization of the intermediate results benefits from
the concurrent handling of raw, intermediate, and final trace
data. If the visualization receives the first result, the first atom
still processes trace data from the trace source.

The framework is able to balance the workload by examin-
ing the amount of data transferred between the atoms. As long
as there is no input for an atomic analysis, the task does not
need to be processed. Since this enables the dynamic switching
between active and dormant state of atoms, this might lead to
further optimizations.

We understand that a complex analysis might not be de-
composable, or at least not without introducing significant
overhead. In this case, the analysis can be treated as an atom
itself, without the loss of generality of the framework.

C. An Analysis-oriented Trace Format

Several reasons lead to the design of a trace format for the
framework’s internal use: At first, there are several hardware
trace formats defined and used by different vendors. Support-
ing all of these formats for all analyses is an expensive task.
Second, hardware trace formats are bandwidth-oriented. They
invoke several compression techniques, reducing redundant
or otherwise reconstructible data from the transferred data,
to decrease the bandwidth requirements for on-chip trace
hardware. While this is very desirable for communication
purposes, it is a large overhead creating task for trace analysis,
to expand the trace into an analysis-usable format. Third,
hardware trace represents events, control, and data flow at
the hardware level only, which is fine for the purpose for
which they were defined, but makes it impossible to represent
software level trace. Software trace formats were designed
to represent, e.g., the control flow at the function level and,
therefore, lack (efficient) support of control flow trace at the
instruction level.

These are enough reasons to create a new analysis-oriented
trace format, which

1) is structurally compatible with the existing hardware
traces,

2) provides a framework to host analysis results,
3) provides a framework to host a software level represen-

tation of hardware level events, and
4) has a low overhead impact on analysis tasks.
We call it ‘Universal Trace Format’ (UTF). It is packet

based, provides a means for the representation of control and
data flow at the hard- and software level, multidimensional

event counter and control packets for trace formatting, mes-
saging and other events. The definition space for new packets
is still extendible, such that new concepts can be introduced
in later versions.

Since we expect trace stream transfers to the hard disk and
over networks, the trace format includes an inherent lossless
compression, which reduces the transferred number of bytes.
To avoid a large computational overhead, the compression
algorithm is kept simple. Table I shows the reduction of the
trace file sizes, when using the compressed trace format.

D. Work in Progress
The framework exists in an experimental stage, with a

few atoms and analyses implemented. In this stage of im-
plementation, we focus on the proof of concept. While we
are already testing complex trace analysis, no results are
published yet. The first implementations focus on instruction
level analysis, including instruction covering, control flow
analysis, and timing analysis. The next steps include block
level analysis such as call stack and call graph visualization.

Looking beyond this framework, the visualization of the
results needs to be included. To date, there are only textual rep-
resentations of the trace data, but we know the importance of
the graphical representation. We imagine a generic framework,
which will be fed from the trace data and provides generic
visualizations of flow graphs, counter time lines, diagrams,
and animations.

V. CONCLUSION AND FUTURE WORK

This paper has provided a view of our parallel trace analysis
framework. We presented the preconditions of the analysis and
the resulting conclusions. Hardware and software trace prop-
erties were explained and the implications for the combination
into a single trace format given. The internals of the framework
were outlined and an outlook of future development directions
were given.

The framework still has to prove its usefulness, but we
expect performance results soon. Further research in parallel
trace analysis and performance improvement is possible and
encouraged. We also imagine extending the framework for
analyses at abstract levels, e.g., the ‘runtime verification’ in
the field of model checking.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of
the European Union and the Free State of Saxony.

REFERENCES

[1] (2011, Oct) Nexus 5001 ForumTM Standard. Website. [Online]. Available:
http://www.nexus5001.org/standard

[2] (2011, Oct) Open Trace Format – Homepage. Website. [Online].
Available: http://www.tu-dresden.de/zih/otf

[3] C. MacNamee and D. Heffernan, “Emerging on-ship debugging tech-
niques for real-time embedded systems,” Computing Control Engineering
Journal, vol. 11, no. 6, pp. 295 –303, dec 2000.

[4] (2011, Oct) Introduction into ParaVer. Website. [On-
line]. Available: http://www.bsc.es/ssl/apps/performanceTools/files/docs/
intro2paraver MPI.tar.gz

[5] (2011, Oct) The embedded microprocessor benchmark consortium.
Website. [Online]. Available: http://www.eembc.org

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

http://www.nexus5001.org/standard
http://www.tu-dresden.de/zih/otf
http://www.bsc.es/ssl/apps/performanceTools/files/docs/intro2paraver_MPI.tar.gz
http://www.bsc.es/ssl/apps/performanceTools/files/docs/intro2paraver_MPI.tar.gz
http://www.eembc.org

	Introduction
	Characterization of Trace
	Trace Format
	Trace Content
	Trace Amount

	Hardware Trace Analysis
	Trace Analysis Framework
	Parallelization
	Framework Structure
	An Analysis-oriented Trace Format
	Work in Progress

	Conclusion and Future Work
	Acknowledgments
	References

