
Virtual Internet Connections Over Dynamic
Peer-to-Peer Overlay Networks

Telesphore Tiendrebeogo, Damien Magoni
University of Bordeaux – LaBRI

Bordeaux, France
{tiendreb,magoni}@labri.fr

Oumarou Sié
University of Ouagadougou
Ouagadougou, Burkina Faso

sie@univ-ouaga.bf

Abstract—Current Internet applications are still mainly bound
to the state of their transport layer connections. This prevents
many features such as end-to-end security and mobility from
functioning smoothly in a dynamic network. In this paper, we
propose a novel architecture for decoupling communications from
their supporting devices. This enables the complete separation of
the devices, applications and users. Our architecture is based on
a peer-to-peer overlay network that provides its own distributed
hash table system. Preliminary simulation results show that our
proposal is feasible.

Keywords-Overlay; virtual connection; distributed hash table.

I. INTRODUCTION

Current Internet communications are still based on the
paradigms set by the TCP/IP protocol stack 30 years ago
and they are lacking several key features. Although many
efforts have been done during the last decade to provide
mobility, security and multicasting, those efforts have mainly
been focused on the equipments themselves (e.g., computers,
smart phones, routers, etc.) and not on the logical part of the
communications. In fact, although we already have a lot of
mobile equipments, it is still impossible to transfer a com-
munication from one device to another without interrupting
the communication (and thus start it all over again). In the
same way, although we have the choice of many applications
for carrying one task, it is also still impossible to transfer
a communication from one application to another without
interrupting the communication. Layer 2 device mobility (e.g.,
WiFi, WiMAX, 3G and beyond) is nowadays well supported
but users still have a very limited access to upper layers
mobility (e.g., MobileIP, TCP-Migrate).

In this paper we propose and describe a new architecture
for using virtual connections setup over dynamic P2P overlay
networks built on top of the TCP/IP protocol stack of the
participating devices. We have called this architecture CLOAK
(Covering Layers Of Abstract Knowledge). This architecture
supports names for entities (i.e., users) and devices, virtual
addresses for devices and logical sessions that enable a full
virtualization of all kinds of Internet communications. The new
semantics brought by our proposal open up many novel possi-
bilities for Internet communications. The virtual connections
setup and managed by our solution enable for instance the
transparent handling of the breakdown and restore of transport
layer connections (e.g., such as TCP or SCTP connections).

The remainder of this paper is organized as follows. Sec-
tion II outlines the related previous work done on virtual
connections. Section III presents the design and features of
our architecture. Section IV describes its implementation.
Section V presents some preliminary results obtained by
simulations. Finally, we conclude the paper and present our
future research directions.

II. RELATED WORK

Virtual connections, as we define them, can be considered
as providing (among other benefits) transport layer connection
mobility. Research on such transport layer connection mobility
has mainly remained experimental up to now. Concerning the
TCP connection management, several solutions have been pro-
posed. TCP-Migrate [1], [2] developed at the Massachusetts
Institute of Technology, provides a unified framework to
support address changes and connectivity interruptions. Mi-
grate provides mobile-aware applications with a set of system
primitives for connectivity re-instantiation. Migrate enables
applications to reduce their resource consumption during peri-
ods of disconnection and resume sessions upon reconnection.
Rocks [3] developed at the University of Wisconsin, protect
sockets-based applications from network failures, such as link
failures, IP address changes and extended periods of discon-
nection. Migratory TCP [4], developed at Rutgers University,
is a transport layer protocol for building highly-available net-
work services by means of transparent migration of the server
endpoint of a live connection between cooperating servers
that provide the same service. The origin and destination
servers cooperate by transferring the connection state in order
to accommodate the migrating connection. Finally, the Fault-
Tolerant TCP [5], [6] developed at the University of Texas,
allows a faulty server to keep its TCP connections open until
it either recovers or it is failed over to a backup. The failure
and recovery of the server process are completely transparent
to client processes. However, all these projects only deal with
TCP re-connection. They do not enable the total virtualization
of a communication. They also do not allow to switch both
applications and/or devices from any communicating user at
will.

58

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

III. ARCHITECTURE

A. Design

In the context of our architecture, a communication is a set
of interactions between several entities. It can be any form
of simplex or duplex communication where information is
processed and exchanged between the entities (e.g., talk, view
video, check bank account, send mail, etc.). An interaction is
simply a given type of action carried out between two or more
entities by using an application protocol (e.g., FTP, HTTP,
etc.). An entity is typically a human user but it can also be an
automated service such as a server. A communication typically
involves a minimum of two entities but it can involve many
more in the case of multicast and broadcast communications.
Finally, a device is a communication terminal equipment. On
the device are running applications that are used by an entity
to interact with other entities. Given this context, the aim of
our architecture is to enable a communication to be carried
out without any definitive unwanted interruption when some
or all of its components (i.e., device, application or entity)
are evolving (i.e., moving or changing) over space and time.
Our architecture enables a communication to have a lifetime
that only depends on the will of the currently implied entities.
Changes in devices, applications and even entities (when it
makes sense) will not terminate the communication.

Fig. 1 shows the CLOAK communication paradigm. In
order to untie entities, applications and devices, CLOAK
introduces the use of a session. A session is a communication
descriptor that contains everything needed for linking entities,
applications and devices together in a flexible way. A session
can be viewed as a container storing the identity and the
management information of a given communication. Thus the
lifetime of a communication between several entities is equal
to the lifetime of its corresponding session. As shown on
Fig. 1, a device can move or be changed for another with-
out terminating the session. Similarly, an application can be
changed for another if deemed appropriate or even moved (i.e.,
mobile code) also without terminating the session. Finally,
entities can move or change (i.e., be transferred to another
entity) without terminating the session if this is appropriate
for a given communication. We can see that in our new
architecture, entities, applications and devices are loosely
bound together (i.e., represented by yellow arrows in Fig. 1)
during a communication and all the movements and changes
of devices, applications and entities are supported. Note that
in Fig. 1, only one instance of each part (device, application,
entity) of a communication is shown, other instances would
obey the same scheme.

B. Operation

In order to provide all the above mentioned features, our
architecture sets up and maintains a P2P overlay network. All
the devices that wish to share resources in order to benefit from
the architecture join together to form an overlay. Fig. 2 shows
an overlay example with the links shown in dotted red lines.
The devices (i.e., end-hosts) connect to the others by creating

Figure 1. CLOAK communication paradigm.

NETWORK
LAYER

(IP Protocol)

OVERLAY
LAYER

(CLOAK)

Figure 2. Overlay network.

virtual links (i.e., transport layer connections). Devices with
two or more links play the role of overlay routers. We allow the
overlay network to build up without any constraints. Network
devices can connect arbitrarily to each other and join and leave
the P2P network at any time.

When joining the overlay, each device obtains a unique
overlay address. The method for addressing the peers and
routing the packets inside the overlay is based on the ground-
breaking work of Kleinberg [7] that assigns addresses equal
to coordinates adequately taken from the hyperbolic plane
(represented by the open unit disk). This method creates a
greedy embedding of an addressing tree upon the overlay
network. This addressing tree is a regular tree of degree
k. However in Kleinberg’s proposal, the construction of the
embedding requires a full knowledge of the graph topology
which is also considered static. This is required as the degree
k of the addressing tree is equal to the highest degree found
in the network. We have enhanced his proposal in order to
manage a dynamic topology which is able to grow and shrink
over time. Indeed, as we setup an overlay network, we are
able to set the degree k of the addressing tree to an arbitrary
value and as such, we are able to avoid the discovery of
the highest degree node. This specificity renders our method
scalable because unlike [7], we do not have to make a two-
pass algorithm over the whole network to find its highest

59

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

degree. The fixed degree that we choose determines how many
addresses each peer will be able to give. The degree of the
addressing tree is therefore set at the creation of the overlay
for all its lifetime. In the overlay however, a peer can connect
to any other peer at any time in order to obtain an address
thus setting the degree does not prevent the overlay to grow.
These hyperbolic addresses enable the use of a greedy routing
based on the hyperbolic distance metric that is guaranteed to
work. Thus, only the addresses of the neighbors of a peer are
needed to forward a message to its destination. This is highly
scalable as the peers do not need to build and maintain routing
tables. Our dynamic method is fully described in our previous
paper [8].

In order to set up the DHT (Distributed Hash Tables)
structure needed by our architecture on top of the P2P overlay
network, we only need to add a mapping function between a
keyspace and the addressing space of the peers. When a peer
wants to store an entry in the DHT, it first creates a fixed length
key by hashing a key string with the SHA-1 algorithm. Then,
the peer maps the key to an angle by a linear transformation.
The peer computes a virtual point on the unit circle by using
this angle. Next, the peer determines the coordinates of the
closest peer to the computed virtual point. The peer then sends
a store request to this closest peer. This request is routed inside
the overlay by using the greedy routing algorithm presented
above.

With the addressing, routing and mapping services provided
by our architecture, any user/entity of the P2P overlay network
can communicate with any other by setting up a virtual
connection on top of the overlay. The steps for establishing
a communication between two entities of an overlay are the
following:

1) Bootstrap into the overlay by setting transport layer
connections to one or more devices (i.e., neighbor peers).

2) Obtain an overlay address from one of those neighbor
peers.

3) Identify oneself in the overlay with unique device and
entity identifiers.

4) Create a session.
5) Invite in this session another entity to communicate with.
6) Set an overlay layer virtual connection to this entity as

shown in Fig. 3.
7) Send the data stream through this connection.

To be able to implement our architecture, we need to
introduce several new types of identifiers. More specifically
we need to define the following new namespaces:

• Session namespace: any session should be attributed
a unique identifier that defines the session during its
lifetime in the overlay.

• Device namespace: any device should be attributed a
unique identifier that permanently represents the device.
The lifespan of this identifier should be as long as the
lifespan of its corresponding device.

• Entity namespace: any entity should be attributed a
unique identifier that represent the entity in a given

Device BDevice A
Device C

Overlay connection
(CLOAK)

Entity E -Entity F

Transport connection
(e.g. TCP)

Device A – Device B

Link connection
(e.g. Ethernet)

Router W – Router X

Router W Router X Router Y Router Z

Entity E

Entity F

Figure 3. Virtual connections.

context. It can be the name of a real person (John
Smith) but it could also be the identifier of a professional
function (Sales Manager) or the name of an organization
(Michelin Company) or a specific service (Areva Ac-
counting service). The lifespan of this identifier should
be as long as the lifespan of its corresponding entity.

• Application namespace: any application used during a
part or all of a session should be attributed a unique
identifier that enables it to receive data from the other
applications of this session. The lifespan of this identifier
should be equal to the lifespan of the use of the appli-
cation. If the entity switches to another application, this
identifier should be updated.

The identifiers will be stored in a DHT built on the P2P
overlay network. Each peer will store a fraction of all the
records in its naming module. There will be records for the
devices (containing pairs like: device ID - overlay address), for
the entities (containing pairs like: entity ID - device ID), for
the applications (containing pairs like: application ID - session
ID) and finally for the sessions (containing pairs like: session
ID - session data information). An application using CLOAK
will not directly open a connection with an IP address and a
port number as with the usual sockets API but it will use the
destination’s entity ID as well as a stream ID. Fig. 4 shows
a typical scenario relying on this naming system for solving
an entity’s location. The yellow oval represents the CLOAK
DHT. An entity B registers itself in the DHT by providing the
device identifier it is on and its overlay address. Any entity
A can now retrieve the location of B by querying the DHT.
It can then connect to B via the overlay. When B switches to
another device during the same session, A can reconnect to B
by using its new overlay address.

As defined earlier, a session is a communication’s context
container storing everything necessary to bind together en-
tities, applications and devices that are involved in a given
communication. Any device, application or entity can be
changed or moved without terminating the session. In order
to make this possible, the session will be stored in the DHT
built by the peers of the overlay network. The DHT will ensure
reliability by redundantly storing the sessions on several peers.
This session management system will enable the survival of
the session until all the entities involved decide to stop it. Fig. 5
shows a typical scenario relying on this session management

60

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

Figure 4. Identification and localization.

Figure 5. Session management.

system. The yellow oval represents the CLOAK DHT. Let
us assume that an entity A wants to start a video conference
communication with an entity B. It first creates a session called
X describing the desired interaction (e.g., video conference)
as well as the destination entity that it wants to communicate
with (here the entity B). Then A sends an invite message to
B that replies by joining the session X. Later on the entity B
invites another entity C to participate in the video conference.
C accepts and joins the session X. Three entities are now
involved in the session X. Later on, the entity A leave the
session X allowing the others to continue. This thus does not
end the session X. Later on the entity C leaves the session X.
The entity B being the last one involved decides to destroy
the session and thus to end the communication.

C. Usage

Our architecture has a wide range of usages. It pro-
vides mechanisms for mobile and switchable applications,
for adaptive transport protocol switching and enables the
definition and use of new namespaces. It can build scalable
and reliable dynamic Virtual Private Networks, define fully
isolated Friend-to-Friend networks, serve as an anonymizing
layer for Darknets or be used as a convergence layer for
IPv4, NATs and IPv6. The Table I shows the benefits of
cloaked applications. Applications are grouped by families.
Messaging applications contain e-mail, talk and chat programs.
Conferencing applications regroup real-time audio and video
communications based on protocols such as SIP and H323.
Sharing applications encompass file-sharing, blogging and

TABLE I
FEATURES FOR cloaked APPLICATIONS.

Application type Messaging Conferencing Sharing Streaming
Reachability X
Mobility X X
E2E privacy X X
E2E authentication X X
Anonymity X X
Redirection X X
Multicasting X X X

social networking applications. Finally, streaming applications
contain audio and video broadcasting services such as Internet
radios, IPTV, and VoD. Most of the features are usually self-
explaining but we give now a few examples to highlight
possible scenarios. Reachability is the ability to be reached on
whatever device the user is currently using. When someone
sends a message to an entity, the CLOAK DHT can be
used dynamically to determine on which device is the entity
and the message is routed to the proper device. Mobility is
the ability of CLOAK to hide the handovers of the lower
layers to the applications. If an entity is moving or switching
devices, real-time applications will be maintained without
interruption at the application level. CLOAK uses security by
using entity IDs, thus establishing End-to-End (E2E) privacy
and authentication. Because CLOAK packets usually transit
through several terminals before reaching destination, the IP
address of the source is often unknown to the destination thus
providing anonymity. Redirection is the ability to forward a
message or a stream to another entity. Finally, multicasting
support is provided by CLOAK as group addresses can be
easily set up in the DHT. This feature is useful for saving
bandwidth during group communications.

IV. IMPLEMENTATION

Fig. 6 shows the OSI layers where the CLOAK architecture
fits in. CLOAK uses the session layer and the presentation
layer between the transport and application layers. These
layers do not exist in the Internet stack model but they do
already exist in the OSI model. In these two layers we add
two new protocols. We add a CLOAK session protocol (CSP)
at the session layer and a CLOAK interaction protocol (CIP) at
the presentation layer. We also define new identifiers for these
new protocols. These new identifiers enable data streams to
be bound by virtual identifiers instead of the typical network
identifiers (i.e., IP address, protocol n◦, port n◦) that are now
able to change without breaking the communication. As shown
in Fig. 1, identifiers of devices, applications and entities are
interwoven together inside a session, but for the purpose of
implementation, we have to order them. We chose to manage
a session and its involved devices at the session layer. We
also chose to manage the interactions between entities at the
presentation layer. As previously said, an interaction is a type
of action carried out between two or more entities. It is equal
to the use of an existing application layer protocol (e.g.,
FTP, SMTP, HTTP, etc.). Indeed, our architecture will use
the existing application layer protocols as well as the existing

61

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

Figure 6. CLOAK architecture in the OSI model.

Figure 7. CLOAK protocol encapsulation.

transport layer protocols. Thus a file transfer (FTP [9]) client
application will still use the FTP protocol to speak to a FTP
server. Only the portion of code for establishing a session
and thus a connection to the server will have to be rewritten
for using the CLOAK API instead of the socket API [10].
The code implementing the application layer protocol will not
have to be changed. Please note that the CLOAK API and the
mapping of application connections to transport sockets inside
the middleware are not defined yet. They will be presented in
a future work.

We have shown in Fig. 6 how the CLOAK architecture
fits in the network protocol stack. We will show now how
this design translates into the format of the packet headers.
Fig. 7 shows a CLOAK packet exchanged between a web
client and a web server. The application header involving the
HTTP protocol is now located after the CLOAK headers. We
have added two additional headers. The CSP header is located
directly above the TCP protocol managing the connection in
the operating system of the device. It contains the overlay
addresses for routing inside the overlay and enabling device
mobility, the device identifiers for switching devices and
enabling entity mobility and the entity identifiers for switching
entities. The CIP header is located between the CSP and the
application level header. It is used for identifying streams
and applications. The stream identifiers allow for virtual port
numbering on top of the entity. The application identifiers
allow for selecting or switching applications when it makes
sense in a communication.

The definition and implementation of the CLOAK additional
protocols (CSP and CIP) and their corresponding headers
enable our architecture to solve NAT issues because appli-
cations using CLOAK will not use IP addresses and ports
numbers for setting up or managing connections. They will
use unique permanent entity identifiers, thus restoring the end-
to-end principle of the Internet communications. The CLOAK
architecture will also solve firewall issues because any type
and any number of transport layer connections can be used
to connect a CLOAK overlay. A transport layer connection
can act as a multiplex tunnel for the applications using
CLOAK. Thus on a given device, the applications can even
use only a single port number and a single transport protocol
if this is required by the firewall of the device. Indeed, a
CLOAK packet has a session ID field and two application
ID fields that enable numerous applications to be multiplexed
on a single transport connection if necessary. CLOAK also
solves security issues because the security protocols can create
security associations by using entity identifiers instead of IP
addresses. The security is then by design independent from
the devices and applications involved.

Fig. 8 shows the modules composing the CLOAK middle-
ware. We can see that many are needed to enable the proper
functioning of the CLOAK architecture. The functionality
provided by each module is briefly described below:

• Bootstrap: primitives for creating a new or joining an
existing CLOAK overlay.

• Link: primitives for managing overlay links (i.e., transport
layer connections) with the neighbor peers.

• Address: primitives for obtaining an overlay address from
an addressing tree parent and for distributing overlay
addresses to the addressing tree children.

• Route: primitives for greedily routing the overlay packets
with the hyperbolic distance metric.

• Steer: primitives for rerouting overlay packets by using
their device or entity identifiers to update their overlay
destination address.

• Connect: primitives for establishing and managing over-
lay virtual connections (i.e., CLOAK layer connections)
to other entities.

• Bind: primitives for querying the DHT of the overlay.
• Name: primitives for managing the identifiers used by the

peer.
• Interact: primitives for managing the bindings between

the data streams and the applications.

For not overwhelming the paper with too much details, the
functioning of the bootstrap, steering and interacting modules
will be done in a future work.

V. SIMULATIONS

In this section, we present the preliminary results of the
simulations that we have carried out to establish a proof-of-
concept of our dynamic P2P overlay architecture. We have
used our packet driven discrete event network simulator called
nem [11] for obtaining all the results shown in this paper.

62

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

Transport API

CLOAK API

Figure 8. Modules of the middleware.

A. Parameters

In order to evaluate our overlay system on a realistic
topology, we have used a 4k-node IP level Internet map created
from real data measurements with the nec software [12]. In
all simulations, the first peer creating the overlay is always a
randomly picked node of the map. We have considered that
only some part of the nodes of a map at any given time are
acting as overlay peers. The simulator’s engine manages a
simulation time and each overlay peer starts at a given time
for a given duration on a random node of the map. The peer
that creates the overlay remains active for all the duration of
a simulation. The packets are delivered between the nodes
by taking the transmission time of the links into account.
Peers bootstrap by contacting the node that holds the peer
that created the overlay, search for other peers to which they
can connect, obtain an address from one of the peers they are
connected to and send data or requests messages. This process
models the birth, life and death of the overlay.

In any dynamic simulations, there is a warm up phase at the
beginning and a cool down phase at the end that must both
be considered as transitory regimes. Indeed, at the beginning
only the creator peer exists before new peers start and join
it. Similarly, at the end, all peers are gradually leaving the
overlay until only the creator peer is left and then it stops.
Each simulation runs for 1 hour, thus only measurements
in the middle of the simulation (around 30 minutes) can
be considered as representing a steady state regime. This
comment must be taken into account when looking at all the
plots of the graphs shown below. Indeed, most of them show a
curve with a typical plateau in the middle. The most significant
measurements are those located in this flat part of the plots.

The number of new peers is set to 30 per minute with
random inter-arrival times set with a probability following
an exponential distribution. Each peer has a random lifetime
set with a probability following an exponential distribution
with λ = 10e − 5 which gives a median value of 300
seconds and a 90th percentile value of 1000 seconds. As

 80

 85

 90

 95

 100

 600 1200 1800 2400 3000 3600

%
 o

f r
ou

tin
g

su
cc

es
s

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 9. Average routing success rate

each dynamic simulation lasts for 1 hour, this distribution
of the peers’ session lengths produces a lot of churn. The
peers create overlay links with other peers by selecting those
which are closer in terms of network hops. Finally, we collect
measurements every 600 seconds.

B. Results

We evaluate here the performances of the overlay routing
depending on the chosen fixed addressing tree degree as
explained in III-B. Data packets are sent by each peer at a
rate of 1 every 10 seconds. We only want to evaluate routing
success, query success and path lengths but not bandwidth or
throughput for now that is why we do not use more realistic
generated traffic patterns. The routing success rate for a given
peer is equal to the number of data packets properly received
by their destinations divided by those sent by the peer. Each
point shown on the following graphs is the average value of 20
runs, and the associated standard deviation values are plotted
as error bars. We observe the average routing success rate, the
average path length and the 90th percentile path length as a
function of the addressing tree degree of the overlay. In Fig. 9,
we can see that the routing success rate is always above 90%
which confirms the proper functioning of our system which
maintains a high routing success rate despite the churn.

Fig. 10 shows the average path length of the hyperbolic
routing. The path length is measured as the number of IP hops
covered by the packet from the source peer to the destination
peer. We can see that values are larger than the ones measured
in the static simulations because here only a subset of the
nodes are peers belonging to the overlay thus statistically
increasing the distances. In the static simulations, the paths
from all pairs were evaluated and the overlay topology was
the same as the map itself. Here the nodes form an overlay
which may have a different topology and thus lower path
length optimality. This remains true even though overlay peers
always try to establish overlay links to hop-wise closer peers.

Fig. 11 shows the 90th percentile value of the path length.
Here also, the path length is measured as the number of IP
hops covered by the packet. This value gives an acceptable
statistical upper bound on the path length by excluding ex-

63

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 10. Average path length between peers

 0

 10

 20

 30

 40

 50

 600 1200 1800 2400 3000 3600

pa
th

 le
ng

th
 (9

0t
h

pe
rc

en
til

e)

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 11. 90th percentile path length between peers

treme cases. We can observe that the path length, for degrees
above 4, is around 35 compared to the average path length
of 18 seen in fig. 10. We conclude that including the values
from the median to the 90th percentile yields a path inflation
of 100% which is important but still bearable.

We now evaluate the DHT efficiency. The only difference
with the previous simulations is that now the peers do not
send data packets but only storing and solving requests. The
frequency of the storing requests generated in each peer is
1 every 30 seconds. The frequency of the solving requests
generated in each peer is 1 every 5 seconds. We do not
consider any redundancy parameters for now. Thus, a given
pair is stored on one peer only. We observe the influence of
the addressing tree degree of the overlay on the performances
of the storing and the solving requests. More precisely we
measure the rate of success as well as the average overlay
path length of both storing and solving requests.

Fig. 12 shows the percentage of successful storing requests
over the simulation duration. We assume here that only one
copy of a given pair is stored in the system. We can see that
given the parameters of the simulation, the rate of success is
very high despite the churn.

Fig. 13 shows the average path length of the storing requests
in the overlay network over the simulation duration. The

 80

 85

 90

 95

 100

 600 1200 1800 2400 3000 3600

%
 o

f s
uc

ce
ss

fu
l s

to
rin

g
re

qu
es

ts

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 12. Percentage of successful storing requests.

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

 o
f s

to
rin

g
re

qu
es

ts

 in
 th

e
ov

er
la

y

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 13. Average path length of the storing requests in the overlay network.

 80

 85

 90

 95

 100

 600 1200 1800 2400 3000 3600

%
 o

f s
uc

ce
ss

fu
l s

ol
vi

ng
 re

qu
es

ts

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 14. Percentage of successful solving requests.

number of peers to go through including the destination before
storing a pair varies from 6 to 9 depending on the addressing
tree degree. This number is decreasing when the degree is
increasing with a diminishing return effect that can be seen
starting at degree 16.

Fig. 14 shows the percentage of successful solving requests
over the simulation duration. As for the storing request, we
can see that given the parameters of the simulation, the rate
of success is very high despite the churn.

64

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

 o
f s

ol
vi

ng
 re

qu
es

ts

 in
 th

e
ov

er
la

y

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 15. Average path length of the solving requests in the overlay network.

Fig. 15 shows the average path length of the solving requests
in the overlay network over the simulation duration. The
number of peers to go through to reach the holder of the pair
and including the return trip to the sender of the request varies
roughly from 9 to 16 depending on the addressing tree degree.
A degree of 4 yields a typical path length of 16, a degree of
8 reduces the path length to 12 and degree values above 8 all
yield path lengths between 9 and 10. Thus the number of hops
is decreasing when the degree is increasing with a diminishing
return effect around degree 16, similar to the storing requests
path lengths of Fig. 13.

We can conclude that given those simulation results, our
DHT shows encouraging performances whatever the degree
chosen. The rate of success of both the storing and solving
requests, for an overlay running for one hour with a total
of 1800 peers, is very high. The average path lengths of the
requests are also acceptable and show typical values for these
kind of systems.

VI. CONCLUSION

In this paper, we have presented a new architecture called
CLOAK designed for providing flexibility to Internet com-
munications by using virtual connections set upon an over-
lay network. This architecture will be implemented as two
protocols running on top of the transport protocols of the
devices. The devices using the CLOAK middleware will freely
interconnect with each other and thus will form a dynamic
P2P overlay network. This overlay will enable the applications
to maintain their communications even if some transport
layer connections are subject to failures. The middleware will
transparently restore the transport connections without killing
the applications. The architecture, by giving identifiers to users
and devices, will provide flexibility, security and mobility to
applications despite the IP address changes suffered by the
devices. We have implemented the overlay addressing and
routing part as well as the DHT part of our middleware in
a simulator and preliminary results are encouraging.

Our future work will be aimed at defining the CLOAK API,
implementing the middleware as a library, modifying a rele-
vant test application (such as a video streaming application)

and testing it on a virtualized platform for studying the impact
of transport layer connection pipelining created by the P2P
overlay network.

REFERENCES

[1] A. C. Snoeren, H. Balakrishnan, and M. F. Kaashoek, “Reconsidering
ip mobility,” in Proceedings of the 8th HotOS, 2001, pp. 41–46.

[2] A. Snoeren and H. Balakrishnan, “An end-to-end approach to host
mobility,” in Proceedings of the 6th ACM MobiCom, 2000, pp. 155–
166.

[3] V. Zandy and B. Miller, “Reliable network connections,” in Proceedings
of the 8th ACM MobiCom, 2002, pp. 95–106.

[4] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory tcp: Connec-
tion migration for service continuity in the internet,” in Proceedings of
the 22nd International Conference on Distributed Computing Systems,
2002, pp. 469–470.

[5] D. Zagorodnov, K. Marzullo, and T. Bressoud, “Engineering fault toler-
ant tcp/ip services using ft-tcp,” in Proceedings of the IEEE International
Conference on Dependable Systems and Networks, 2003, pp. 393–402.

[6] T. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorodnov, “Wrap-
ping server-side tcp to mask connection failures,” in Proceedings of the
20th IEEE INFOCOM, 2001, pp. 329–338.

[7] R. Kleinberg, “Geographic routing using hyperbolic space,” in Proceed-
ings of the 26th IEEE INFOCOM, 2007, pp. 1902–1909.

[8] C. Cassagnes, T. Tiendrebeogo, D. Bromberg, and D. Magoni, “Over-
lay addressing and routing system based on hyperbolic geometry,” in
Proceedings of the 16th IEEE Symposium on Computers and Commu-
nications, to appear, 2011.

[9] J. Postel and J. Reynolds, “File transfer protocol (ftp),” Request For
Comments 959, 1985.

[10] G. Wright and R. Stevens, TCP/IP Illustrated, Volume 2: The Imple-
mentation. Addison-Wesley, 1995.

[11] D. Magoni, “Network topology analysis and internet modelling with
nem,” International Journal of Computers and Applications, vol. 27,
no. 4, pp. 252–259, 2005.

[12] D. Magoni and M. Hoerdt, “Internet core topology mapping and
analysis,” Computer Communications, vol. 28, no. 5, pp. 494–506, 2005.

65

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

