
A Collaboration Mechanism Between Wireless Sensor Network and a Cloud

Through a Pub/Sub-based Middleware Service

Mohammad Hasmat Ullah
1,3

Sung-Soon Park
1,3

1
Department of Computer Science

and Engineering

Anyang University,

Anyang, Korea

e-mails: {raju, sspark}@anyang.ac.kr

Jaechun No
2

2
Dept. of Computer Software,

Collage of Electronics and

Information Engineering

Sejong University,

Seoul, Korea

e-mail: jano@sejong.ac.kr

Gyeong Hun Kim
3

3
Gluesys Co., Ltd.

Anyang, Korea

e-mail: kgh@gluesys.com

Abstract— Cloud computing has emerged as a new paradigm

of computing platform. It covers almost every area of

computing and provides platform to most of the data services.

On the other hand, Wireless Sensor Networks (WSN) has

gained attention for their potential supports and attractive

solutions such as environment monitoring, bio-median

acknowledgment, healthcare monitoring, industrial

automation, etc. Additionally, our virtual groups and social

networks are in main role of information sharing. However,

this sensor driven data is not available to community groups or

cloud environment for general purpose research or utilization

yet. If we reduce the gap between real and virtual world by

adding this WSN driven data to cloud environment and virtual

communities by providing censor driven contents to general

researchers, and it can gain a remarkable attention from all

over, by giving us the benefit in various sectors. Collaboration

between WSN and the cloud environment can achieve this. We

have proposed an integrated Publish/Subscribe (pub/sub)-

based middleware service for the cloud platform to collaborate

with WSN. This collaboration will provide resource, service,

and storage with sensor driven data to the community.

Furthermore, we have proposed a content-based event

matching algorithm to analyze subscriptions and publish

proper contents easily. We have evaluated our algorithm which

sows better performance comparing with previously proposed

algorithms.

Keywords-Cloud computing; WSN; middleware service;

event matching; pub/sub

I. INTRODUCTION

Interests are increasing about WSN for their essentiality.
Multiple small sensing nodes gather information and monitor
events to provide data processing, which couples the digital
world with physical environment. It has been gaining

1
This research is supported by WBS (World Best S/W)

Development Project, Grants No. 10040957, funded by Ministry of
Knowledge Economy Korea, 2011 and by Global IT Development
project, Grants No. 10043026, funded by Ministry of Knowledge
Economy Korea, 2012.

2
This work is also supported by the 2008 Sabbatical year

project from Anyang University.

importance for their contribution by sensing processing and
communicating in vast areas like environmental monitoring
and forecasting, medical, military, transportation, crisis
management, bio-median acknowledgment, industrial
automation, etc. They allow the interaction between users
and physical environment. Although a WSN has unlimited
potentiality for numerous application areas, it contains sensor
devices with limited sensing capability, low processing
power, and poor communication power.

Besides, cloud computing provides unlimited resource,
processing power, storage and reliable services. Cloud
computing provides access to applications and data from
anywhere and anytime. The applications are hosted as
“Software as a Service”. Only cloud computing can provide
unlimited resource, computing power, bandwidth, storage,
dedicated servers to access from anywhere anytime to use
application like software. If we can utilize both powerful
platforms together, we may get benefitted by all means.

Super computer may provide resource and power to
process sensor data, but it is not easily available for general
use and needs much overhead. Cloud computing can
analyze, process and store the vast amount of data collected
by sensors and these sensors can be shared by applications
and users easily, which is the main reason to collaborate
WSN to the cloud. Not only cloud provides powerful
computation but also serves with huge amount of storage to
store processed sensor data for further use.

We propose an integrated pub/sub-based middleware for
cloud platform to collaborate with sensor network. It will
monitor the subscriptions for sensor driven data through
cloud and will receive sensor produced data, also will
encapsulate those data as event and will provide them to
appropriate subscribers. This middleware will deliver
information to the subscribers, who has subscribed for the
sensor driven data through cloud-based application.

To accomplish this, we need an algorithm for event
matching, which will provide sensor driven data to
subscribers. Our proposed middleware will simplify the
integration of sensor network with cloud-based community
centric applications. The middleware provides an efficient
event matching algorithm to bring appropriate sensor driven
data to appropriate users.

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

mailto:jano@sejong.ac.kr

In Section II, we review the previous work in this field.
Section III illustrates the content-based middleware and
describes our system overview, Section IV presents our
proposed algorithm, Section V provides experimental
methodology and experimental evaluation of content-based
event matching algorithm for sensor cloud middleware, and
Section VI states the conclusion of our work.

II. RELATED WORKS

So far, no many efforts were taken to address the issue of
integrating sensor networks to cloud computing-based
networks. SGIM [4] addresses the opportunity and
challenges for sensor-cloud framework only for analyzing
the healthcare sensor data for range predicate case only.
Sensor-Grid [5] architecture is already proposed, but grid
computing is not same as cloud computing [6] and setting up
the infrastructure is not easy. Grid focuses on High
Performance Computing (HPC) related applications, whether
cloud focuses on general purpose applications, which is
easily accessible from anywhere anytime for general users.

Our proposed middleware contains a content-based
pub/sub model to deliver sensor driven processed data to
subscribers, facilitating exchange between sensor networks
and cloud-based networks. Pub/Sub system encapsulates
sensor data into events and provides the service of event
publications and subscriptions for asynchronous data
exchange. The most notable pub/sub systems implemented in
recent years are:

The MQTT-S [7] is a topic-based pub-sub protocol that
hides the topology of the sensor network and allows data to
be delivered based on interests rather than individual
device addresses. It allows a transparent data exchange
between WSNs and traditional networks and even between
different WSNs. Mires [8] is a pub/sub architecture for
WSNs. Basically sensors only publish readings if the
user has subscribed to the specific sensor reading.
Subscriptions are issued from the sink node which then
receives all publications. Subscriptions are made based on
the content of the desired messages in Distance
Vector/Dynamic Receiver Partitioning (DV/DRP) [9].
Though subscriptions are flooding over the network, but
DV/DRP only publishes data if there are some subscriptions
for the specific data.

Several event matching algorithms are proposed to
deliver published sensor data or events to subscribers. In
Sequential and sub-order [10] algorithm, according to each
predicate, searching space is gradually reduced by deleting
unsatisfied subscriptions. The second algorithm, sub-order,
reduces the expected number of predicate evaluations by
analyzing the expected cost differences when subscriptions
are evaluated in different orders. If two predicates are same
and trying to create a chain in range predicate case, it is
difficult to make chain in such scenario. So, it creates heavy
overloads while inserting and deleting subscriptions as it has
to maintain a complete graph.

III. MIDDLEWARE ARCHITECTURE

A. Pub/Sub Middleware

Our current environmental data monitoring and analyzing
system does not provide real-time auto generated data when
sensor gets such information about natural calamities just
started to take place by passing sensor driven data to cloud
environment through some collaborating middleware to
share with the community. On the other hand, the researchers
who are trying to solve some complex problems need data
storage, computational capability, security at the same time
to process vast amount of real time data. For example,
assume that a team is working on the unusual environmental
situation. They plot sensors on some specific regions to
monitor the magnitude continuously and use this data for
large multi-scale simulations to track the natural calamities
along with providing auto generated forecast to the end-
users, who has subscribed to know the forecast. This may
requires computational resources and a platform for sharing
data and results that are not immediately available to the
team. Traditional HPC approach like Sensor-Grid model [5]
can be used in this case, but setting up the infrastructure as
mentioned above is not easy in this environment. Cloud data
centers, such as Amazon EC2, can provide resource and
platform to keep many copies in a data center and to provide
them when needed. Though, they did not address the issue of
integrating sensor network with cloud applications, and thus,
have no infrastructure to support this scenario. Here, the
subscribers need to register their interests to get various
environmental states (magnitude, temperature of ionosphere,
electromagnetic field, etc.) from sensors for large scale
parallel analysis and to share this information with each
other for finding useful solutions for their research related
problem. So, the sensor data needs to aggregate first, then
process and, lastly disseminate based on user’s subscriptions.

B. System Overview

In our proposed system, we have a pub/sub-based
middleware to make interaction between cloud and a WSN
to provide appropriate data to appropriate subscribers. WSN
generates real-time data and needs to be processed at the
same time. Our proposed middleware connects to such
WSNs and receives real-time data, then processes them and
prepares those data as events. The sensor data come in many
forms, such as raw data and that raw data must be captured,
filtered and analyzed in real-time, and also sometimes it
should be stored and cached for further use. Pub/Sub-based
middleware also has registry, analyzer and disseminator.
Subscribers can request for sensor data through cloud API
(Application Programming Interface). There may be two
kinds of subscription: i) general purpose for end-users or
community-based users to get processed data like forecast
about earthquake or natural calamities, ii) special purpose for
encapsulated data as event for further research.

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

Simple architecture of our proposed middleware is shown
in Fig. 1

Figure 1. Simple middleware architecture

Interested subscribers can subscribe through cloud

application; this subscription will be stored and categorized.
The Pub/Sub middleware receives sensor driven data from
the gateway between WSN and the middleware, then event
matching and monitoring section encapsulates these data as
event and passes to the analyzer. The analyzer analyzes
subscription types and the disseminator provides
corresponding data to subscribed users by matching the
registry through the cloud API. The cloud environment may
manage these data, process them and may also keep to the
repository for further utilization as needed. General user will
be able to get user friendly output of these complex data by
matching its predicates and by normalizing it.

Figure 2. Middleware service integrating WSN and cloud
environment.

Figure 2 shows the overview of proposed system. Our

proposed middleware service is integrated with cloud
platform joining the WSN with cloud. Cloud service
provides the application for users to subscribe based on their

interests as needed. The proposed event matching algorithm
will provide appropriate data efficiently to the subscribers.

IV. EVENT MATCHING ALGORITHM

We need an efficient event matching algorithm for our
system to deliver published data to appropriate subscribers.
Our target is a cloud-based environmental data monitoring
and analyzing system, where researchers can express their
interests into attributes, and also general end-users can
request for easy to understand outputs. First, we have
implemented to support range predicates to cover multi
range data only; then, we have extended the algorithm to
support overlapping predicates also.

A. Event Matching

In our system, a subscription S is expressed by a pair
(ID, Ci, Pi), where ID is the subscriber’s ID, C is
subscription category and P is a set of predicates
specifying subscriber’s interest.

Here is an example of a subscription and an event in the
system. Subscription: S [magnitude, 7(+), ionosphere
temperature, 300K(+)] contains two predicates that are
joined together to specify a discrete value predicate; here,
magnitude 7(+) represents 7 and more alternately ionosphere
temperature 300K(+) indicates from 300K to max, i.e., P1 =
magnitude >= 7 and P2 = ionosphere temperature >= 300K.
We also can express it as 6.9 < magnitude < 8 and 299K <
temperature < 500K. Let event e be; e: [magnitude = 7.6,
ionosphere temperature = 350K].

Figure 3. Pseudo code for event matching algorithm

1. C is set of indexes {C1, ,….Cn-1,Cn} where n is no of indexes
2. Each Ci points to a set of category index or single category S'

3. P is set of predicates {p1, p2,….pm-1,pm} where m is number of

predicates in a subscription
4. Initialize pj = searching predicate

5. Event E containing set of predicates P' = {p'1, p'2,….p'm-1,p'm}

6. Procedure Search (pj, C, E, C_out) search event E in C where
C_out is output subscription set

7. S_tmp is a temporary set

8. for each Ci in C check each category for desired subscription
9. if (Ci contains E) then

10. if (j ≠ m) then

11. Procedure Search(pj, Ci, E, C_out)

12. else then already found

13. Initialize S_tmp = S'
14. C_out = C_out U S_tmp

15. for each p'j in P'

16. for each s'r in S_tmp
17. if (s'r. p'j doesn’t match E. p'j) then

18. Delete the subscription from output set

19. Delete the subscription from temporary set
20. end if

21. end for

22. end for
23. end if

24. end if

25. end for

Application Service

Event matching and processing

Disseminator

Analyzer

Registry

Sensor Network

Gateway

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

An event satisfies a subscription only if it satisfies all
predicates in the subscription. Here, the event [magnitude =
7.6, ionosphere temperature = 350K, 375K] satisfies the
subscription S as our proposed method supports discrete
predicate values also. So, the matching problem is: Given an
event e and a set of predicates in subscription set S. We need
to find all subscriptions in set S that are satisfied by e. Our
middleware supports various expressions of predicates. First,
“(data >= LV || data <= UV)” [here LV = lower value and
UV = upper value] is used when consumers want to know
normal patterns of sensed data. Second, “(LV > data || UV <
data)” is used when consumers need to receive unusual states
of the situation such as natural calamities.

B. Proposed Method

Here, we describe the Category Matching Algorithm
(CMA). This algorithm operates in three stages. In the first
stage, it preprocesses subscriptions by categorizing them
through the predicates corresponding to the relevant
properties of events. The basic categorizing idea from
statistics is employed to decide the number of category. In
the second stage, matching subscriptions or predicates are
derived sequentially. All predicates stored in the system are
associated with a unique ID. Similarly, subscriptions are
identified with subscription ID. Finally, it will store the
sensor driven data to knowledgebase for future analysis.

Suppose S is a set of subscriptions, S = {s1, s2,….sn-1, sn},
where n is total number of subscriptions and P is a set of
predicates in S, P = {p1, p2,….pm-1, pm}, where m is the total
number of predicates in a subscription. In our system, we
have two predicates in a subscription (i.e., data > LV and
data < UV) and these two predicates are used to categories

the subscriptions. We define a set S′ that contains all the

subscriptions of S sorted by LV value in ascending order.
Then, we define a categorizing sequence (mC1,

mC2,….mCg). The categorizing space, denoted by SP (S′ ,

c), is defined as the set containing all such category

sequences over S′ and c. Now, each mCi=1…c ∈ SP (S′,

c) contains k = n/c subscriptions; that are why category index

is created for each cIi ∈mCi=1…c. Here, this categorizing

sequence is called almost balanced categorizing sequence
since every category contains same number of subscriptions
except the last one which may or may not contain the same
number of subscriptions. It depends on the value of c and n.

When categorizing of subscriptions is done in the above
way, first predicate of an event is compared with category

index cI1 ∈ mC1 and, if any match found then second

predicate is compared with category indexes hIi ∈ MCi=1….h.

This way all categories are found that matches with event
data. Finally, sequential matching is done in the selected
categories to find the subscriptions that are satisfied by all
predicates in the event.

V. EVALUATION

Our experimental methodology and simulation results are
presented in this section. We have compared our proposed
method with sequential sub-order [10], forwarding [14], and
naïve [10] algorithms. Naive, a baseline algorithm, evaluates

the subscriptions independently. Specifically, it evaluates the
subscriptions one by one and for each subscription, evaluates
its predicates until either one of them becomes false or all of
them are evaluated.

A. Experimental Methodology

Due to the lack of real-world application data, it is not easy

to evaluate this kind of pub/sub system. Previous works

show that in most applications, events and subscriptions

follow either uniform or Zipf [10] distribution. We have

used both distributions to evaluate our proposed algorithm.

We used subscription evaluation cost, which is the average

number of predicates that the system evaluates to match an

event for the subscription. This is only a rough estimation of

the absolute time that the matching process may take,

because different operators may have different complexity

and even the same operator may take different time slots for

different parameters. However, in a long-term average sense,

we believe the number of evaluated predicates can well

reflect the efficiency of the evaluation process.

B. Experimantal Results

We have compared Naïve, Sequential and sub-order
algorithms with our CMA using a uniform distribution. The
experiment results of evaluation are given below:

Figure 4. Matching time vs. number of subscriptions.

From first comparison, we can observe that CMA
performs better than all other algorithms. For example, with
10K subscriptions and 5000 events, the naïve, sequential,
sub-order and CMA evaluate predicates in 0.4, 0.38, 0.36,
0.2 micro sec respectively. Thus, CMA reduces the
evaluation cost by 50%, 42%, and 38% as compared to
naïve, sequential, and sub-order algorithms, respectively.

Figure 5. Matching time vs. number of subscriptions (Zipf distribution)

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

Again, we repeated the experiments with the same
parameter settings except the distribution follows Zipf rather
than the uniform distribution. The experiment results exhibit
similar trends as in first comparison.

Figure 6. Evaluation cost for multi range predicates

Figure 6 shows that for multiple ranges of predicates, our

algorithm performs much better than others. For example,
beginning from 10k subscriptions and 5000 events; Naïve,
sequential, and sub-order event matching performed 35% ~
55% poorer than CMA. The cost is evaluated in micro
seconds.

Figure 7. Evaluation cost for overlapping predicates

Figure 7 shows the comparison result for the overlapping

predicates. As the subscription increases, CMA shows better
and better performance than others. So, it will outperform if
the subscriptions are larger.

The above experiments clearly show that our CMA
algorithm performs better (in case of uniform and Zipf
distribution) than the existing ones in terms of efficiency and
scalability.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a pub/sub-based
middleware service for the collaboration between sensor
networks and the cloud environment for utilizing the ever-
expanding sensor data for various next generation
community-based sensing applications. For the
computational tools needed to launch this exploration, it is
more appropriate to build them in the data center of “cloud”
computing model than the traditional HPC approaches or
Grid approach. We proposed a middleware to enable this by
content-based pub/sub model. To deliver published sensor

data or events to appropriate users of cloud applications, we
also have proposed an efficient and scalable event matching
algorithm. We evaluated its performance and also compared
it with existing algorithms in a cloud based environment
analysis scenario. In the future, we will study further to make
the middleware more efficient for distributing sensor driven
data to appropriate subscribers and will try to simplify the
communication overhead between WSNs and cloud
environment.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market Oriented
Cloud Computing: Vision, Hype and Reality for Delivering
IT Services as Computing Utilities,” Proc. of 10th IEEE
Conference on HPCC, Dalian, China, Sep 2008, pp. 5-13.

[2] K. K. Khedo and R. K. Subramanian, “A Service-Oriented
Component-Based Middleware Architecture for Wireless
Sensor Networks,” International Journal of Computer Science
and Network Security, vol. 9, no. 3, Mar 2009, pp. 174-182.

[3] A. Weiss, “Computing in the Clouds,” netWorker
magazine, ACM Press, vol. 11(4), Dec 2007, pp. 16-25, doi:
10.1145/1327512.1327513.

[4] M. M. Hassan, B. Song, and E. N. Huh, “A framework of
sensor-cloud integration opportunities and challenges,” Proc.
ICUIMC’09, ACM, 2009, pp. 618-626, doi:
10.1145/1516241.1516350.

[5] H. B. Lim, et al., “Sensor Grid: integration of wireless
sensor networks and the grid,” Proc. of the IEEE Conf. on
Local Computer Networks, Nov 2005, Sydney, Australia, pp.
91-98.

[6] D. Harris, “The Grid Cloud Connection (Pt. l): Compare and
Contrast,” http://www.hpcinthecloud.com/hpccloud/2008-10-
08/the_grid-cloud_connection_pt_i_compare_and_contrast.html,
retrived: July, 2013.

[7] U. Hunkeler, H. L. Truong, and A. S. Clark, “MQTT-S – A
publish/subscribe protocol for Wireless Sensor Networks,”
IEEE Conf. on COMSWARE, Bangalore, India, Jan 2008, pp.
791-798, doi: 10.1109/COMSWA.2008.4554519.

[8] E. Souto, et al., “Mires: a publish/subscribe middleware for
sensor networks,” ACM, Personal and Ubiquitous
Computing, vol. 10(1), Dec 2005, pp. 37-44, doi:
10.1007/s00779-005-0038-3.

[9] C. P. Hall, A. Carzaniga, J. Rose, and A. L. Wolf, “A content-
based networking protocol for sensor networks,”
Department of Computer Science, University of Colorado,
Technical Report, Aug 2004.

[10] Z. Liu, S. Parthasarthy, A. Ranganathan, and H. Yang,
“Scalable event matching for overlapping subscriptions in
pub/sub systems,” Proc. DEBS’07, ACM Press, 2007, pp.
250-261, doi: 10.1145/1266894.1266940.

[11] M. Gaynor, et al., “Integrating wireless sensor networks with
the grid,” IEEE Internet Computing, vol. 8(4), Jul-Aug 2004,
pp. 32–39, doi: 10.1109/MIC.2004.18.

[12] P. Th. Eugster, P. A. Felber, R. Guerraoui, and A. M.
Kermarrec, “The many faces of publish/subscribe,” ACM
Computing Surveys, vol.35(2), June 2003, pp. 114–131, doi:
10.1145/857076.857078.

[13] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos,
and K. Kim, “TinyREST – A Protocol for Integrating Sensor
Networks into the Internet”, Proc. of Real-World Wireless
Sensor Networks (REALWSN), Stockholm, Sweden, June
2005.

[14] A. Carzaniga and A. L Wolf, “Forwarding in a content-based
network,” Proc. SIGCOMM, ACM Press, 2003, pp. 163-174,
doi: 10.1145/863955.863975.

Subscriptions

C
o

st

Subscriptions

C
o

st

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

http://www.hpcinthecloud.com/hpccloud/2008-10-08/the_grid-cloud_connection_pt_i_compare_and_contrast.html
http://www.hpcinthecloud.com/hpccloud/2008-10-08/the_grid-cloud_connection_pt_i_compare_and_contrast.html

