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Abstract—This paper presents a new approach for anomaly
detection based on possibility theory for normal behavioral mod-
eling. Combining subspace identification algorithms and Kalman
filtering techniques could be a good basis to find a suitable model
to build a decision variable where, a new decision process can
be applied to identify anomalous events. A robust final decision
scheme can be built, by means of possibility distributions to
find the abnormal space where anomalies happen. Our system
uses a calibrated state space dynamical linear model where
the model’s parameters are found by the principal component
analysis framework. The multidimensional Kalman innovation
process is used to build the unidimensional decision variable.
Thereafter this variable is clustered and possibility distributions
are used to separate the clusters into normal and abnormal spaces
when anomalies happen. We had studied the false alarm rate
vs. detection rate trade-off by means of the Receiver Operating
Characteristic curve to show the high performance obtained via
this new methodology against other approaches. We validate the
approach over different realistic network traffic.

Index Terms—Anomaly detection, GMM, probability-
possibility theory, subspace identification, PCA, Kalman filter.

I. INTRODUCTION

Kalman filter based techniques first calibrate a Maximum-
Likelihood based model for normal behavior modeling for the
entropy reduction step [10][11][12]. Thereafter the decision
variable is obtained as the filter innovation process. Analyzing
residual for anomaly detection can be a good approach, since
in favorable conditions, this process is assumed to be a
zero mean gaussian white noise. However, if we believe that
anomalies can cause low, high or abrupt changes in the traffic,
this can attempt to appear in different statistical properties in
the residual, making us to believe that, this signal is instead
an ensemble of normal distributions. So, it will be interesting
to take into account the residual process and, try to build a
few set of (normal/abnormal) clusters. Finally, our attention
can be put on the abnormal clusters to track anomalies.

Principal component analysis (PCA) approach [7][8][15]
provides very good model of normal behavior with strong
differentiation with abnormal behavior. However it is weaken
by its high sensitivity to non-stationarity and parameter set-
tings. Whereas Kalman filtering approach is inherently more
robust to some level of non stationarity in the data because
of its feedback structure. However, the main weakness in the
approach proposed initially in [10] is within the Maximum
Likelihood estimation that fails in capturing the essential

properties of the normal behavior. The previous analysis lead
us to believe that combining a PCA based normal model
with Kalman filtering step, can be a good basis for building
a suitable decision variable where possibilistic test could be
applied for anomaly detection. In this work, we show that
subspace identification algorithm can be used in combination
of a Kalman filter to build the decision variable.

In this work, we are interested in anomaly detection based
robust unsupervised clustering. If we assumed that, generally,
anomalies might be rare, one can build a few number of
clusters and try to find them in some of these classes. There
are two major informations which seem to be relevant for
detecting true anomalous events, and which we want to
exploit here, to build a robust anomaly detector. One can
determine clearly the posterior probability of a data sample
being distributed in the different clusters, but we have no
idea of the probability of generating the clusters themselves.
Thus, using possibility distribution to estimate the degree a
cluster can be seen as ”possible”, should be a great interest
for anomaly detection. Thus we follow [4] to characterize
the unknown probabilities of generating a set of clusters by
simultaneous confidence intervals with a given confidence
level 1−α. Thereafter these intervals will be used to calculate
possibility distributions (degree of possibility) for each cluster.
This operation will have the ability to separate the different
classes into normal and abnormal sub spaces. It will be,
at the same time, necessary to have at hand the possibility
distributions for the data sample to recover a critical value of
the cluster possibility degree (which we will use to determine
the normal and abnormal clusters).

The organization of this paper is as follows. Section III
deals with the methodology we adopt in our anomaly detection
scheme. In Section IV, we validate our approach by showing
efficient results. Section V concludes the work and fix some
ideas for future study.

II. RELATED WORKS

In our knowledge, this work presents the first approach
that deals with possibility theory to build an anomaly detector
for communication networks. Generally, in the literature, the
proposed approaches are based on Bayesian inference i.e.,
probabilistic solutions. We have developed recently some tech-
niques for anomaly detection using statistical approaches. In
[23], the proposed method to detect anomalous events is based
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on gaussian mixture model (GMM) for clustering. Thereafter,
we proposed a hidden markov model (HMM) coupled with
the Viterbi algorithm to subdivide the space into two other
sub spaces: the first containing a few number of cluster data
corresponding to the abnormal sub space and the second one
containing the majority of the data and corresponding to the
normal space. However in that study, there is a great challenge
to calibrate properly the GMM since it is necessary to run
the model several times to achieve model convergence. The
same problem occurs when searching for the best parameters
of the HMM in order to learn about spacial and temporal
correlations between the GMM clusters, in order to classify
them into two or more states. In [27] the monitoring system
is also based on the coupling of a GMM and HMM and the
same problems arise. The searching of the best number of
the HMM parameters need a thorough calibration of several
models and the choice of the best model is based on the
transition matrix. One should have high probabilities in the
main diagonal of this matrix to decide the model selection.
However ”high probability” was not defined more suitably.
Our present work deal with these problems by proposing a
new scheme based on possibility theory to separate the GMM
clusters into two sub-spaces corresponding to the normal and
abnormal regions. Our model does not necessitate multiple
re-calibrations and the methodology to build a threshold to
separate the space into other sub spaces is more reliable. In
this work, we show the advantage to use the framework of
possibility theory which is more reliable to characterize the
probability of generating the clusters themselves, since we
do not know their real distributions. This operation have the
great advantage to mark a cluster as normal or abnormal. This
findings was not achieve in the previous studies.

III. NORMAL BEHAVIOR MODELING

An anomaly detector is generally built using a normal
behavior model. As network traffic is a dynamical signal, one
would like to build a dynamical normal behavior model. A
classical approach to model dynamical signal is using Linear
Time Invariant State-Space (LTISS) [17] model, representing
input-output multivariate data sequences, as shown in the
following difference equations:{

xt+1=Axt +But + wt

yt =Cxt +Dut + vt
(1)

In ( 1), the system state xt, the measurable output yt and
the input ut are multi-dimensional vectors of appropriate di-
mensions. The noise processes are assumed to be uncorrelated
zero-mean gaussian white-noise processes with covariance ma-
trices cov(wt) = Q and cov(vt) = R, respectively. The input
signal and the process noise are assumed to be statistically
independent.

A. How to build the Decision Variable ?

Calibrating a normal behavior model need to finding the
values (A,B,C,D) and (Q,R) that fit better a learning set
containing signals gathered over a period where, no anomalies

have happened. To calibrate these system quantities, we follow
the methodology described in [16], where subspace identifica-
tion algorithms are presented to be a valuable tool to identify
the state space parameters. Sub space algorithms have the
ability to provide accurate state space models for multivariate
linear systems and to retrieve system related matrices as sub
spaces of projected data matrices. This means that the Kalman
filter states can be recovered from the given input-output data.
The identification problem is essentially characterized by the
extraction of these matrices from input-output data, by using
QR factorization and Singular Value Decomposition (SVD).
In this work, we use the sub space identification algorithms
based on Multivariable Output-Error State Space (MOESP)
approach. The main idea for models based on MOESP method
is to reconstruct the past input-output and future input-output
data. The multi-dimensional output response Y and input U
are first transformed into block Hankel matrices. Then the
MOESP algorithm performs the compression of a compound
matrix using the input and output Hankel matrices, into a lower
triangular matrix by means of orthogonal transformations and
QR decomposition. Thereafter, the column space of specific
sub matrices of the resulting lower triangular factor approxi-
mates the column space of the extended observability matrix in
a convenient way. Thereafter PCA can be computed by means
of SVD technique and solution of a set of linear equations
can then be performed to find the deterministic components.
There is many raisons to use sub space model identification
methods (SMI) for state space parameter learning: i) when
correctly implemented, SMI algorithms are fast, despite the
fact that they use QR and SVD decomposition. They are
faster than classical identification methods, such as Prediction
Error Methods, because they are not iterative ii) numerical
robustness is guaranteed precisely due to the well-understood
algorithms obtained from numerical linear algebra iii) the
user will never be confronted with problems such as: lack of
(slow) convergence, numerical instability, local minima and
sensitivity of initial estimates iv) the reduced model can be
obtained directly from input-output data, without having to
compute first the high order model, one is always inclined to
obtain models with as low as an order as possible.

In subspace model identification approach, one key step is
the approximation of a structural subspace from spaces defined
by Hankel matrices, constructed from the input-output data.
For the LTISS system, the matrix pair {A,C} is assumed to
be observable, which implies that all modes in the system
can be observed in the output yt and can thus be identified;
this also implies that the rank of the extended observability
matrix is equal to N . The system {A, (BQ1/2)} is assumed
to be controllable i.e., the modes of the system {A,Q1/2} are
assumed to be stable. That structured subspace is the extended
observability matrix Γi (where i denotes the number of block
rows), which is defined as:

Γi =
[
C CA CA2 . . . CAi−1

]T (2)

From the LTISS, we can re-organize the data by the following
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algebraic relationships:

Yk,i,j = ΓiXk,j +HiUk,i,j + TiEk,i,j (3)

For simplicity, we can rewrite the above equation as:
Y = ΓiX +HiU + TiE.
In ( 3), Yk,i,j , Uk,i,j , and Ek,i,j are block Hankel matrices
with i block rows and j block columns of the form:

Yk,i,j =


yk yk+1 . . . yk+j−1

yk+1 yk+2 . . . yk+j

...
...

...
...

yk+i−1 yk+i . . . yk+j+i−2

 (4)

The user-defined subscript i should be large enough, i.e larger
than the order N of the system. The Hankel matrices Uk,i,j ,
and Ek,i,j are defined in the same way.
Hi and Ti are Toeplitz matrices defined as:

Hi =


D 0 . . . 0
CB D . . . 0

...
...

...
...

CAi−2B . . . CB D

 (5)

Ti =


I 0 . . . 0

CK I . . . 0
...

...
...

...
CAi−2K . . . CK I

 (6)

The state sequence matrix Xk,j is defined as:

Xk,j = [xk + xk+1 + xk+2 + . . .+ xk+j−1] (7)

In MOESP algorithm, one has to determine the extended
observability matrix by means of orthogonal projections on
sub spaces span by U columns. Thereafter, one can extract
the measurement matrix C by using the first block from the
extended observability matrix Γi, and the state matrix A is
obtained by using the following formulas:

Γ2:i+1 =
[
CA . . . CAi

]T
= ΓiA (8)

More precisely: A = Γ†
iΓ2:i+1, where (.)† denotes the

Moore-Penrose pseudo inverse matrix.
To find the observability matrix, one has to first split the

input-output data into distinct past and future input-output
sequences, and thereafter build a lower triangular matrix
by means of orthogonal transformations using the QR
factorization as follows:

U1,i,j

Ui+1,i,j

Y1,i,j

Yi+1,i,j

 =


R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44




QT
1

QT
1

QT
1

QT
1


(9)

This QR factorization is only valid for the case where the
input signal is a zero-mean white noise, as in our case. For
an arbitrary input signal, see [17] for an appropriate QR

factorization. Thereafter SVD is computed as:

[R42 R43] = Q̂sΣ̂sV̂
T
s + Q̂N Σ̂N V̂ T

N = ΓiX
∏⊥

UT (10)

where X
∏⊥

UT has full rank N and
∏⊥

UT denotes the orthog-
onal projections on the lines of the null space of U.

Γi is estimated from Q̂s, which has the N principal left
singular vectors corresponding to the most significant singular
values. After finding an approximation of the Toeplitz Hγ

matrix (see [17]), the matrices B and D are computed from
least-square solution of the following over determined system
[18]: [

R31 R42

] ∼= Hγ

[
R11 R22

]
(11)

After finding the above matrices by calibrating a predictive
model by means of PCA, the model described by equation
1 is re-used, and we perform Maximum Likelihood using a
Kalman filter, in order to build the decision variable using
the multi-dimensional innovation process obtained as output
of the Kalman filter. The one-dimensional decision variable
(DV) process is obtained by applying the formulas:

decisionvariable = e(t)TV e(t) (12)

where the matrix V (obtained as output of the Kalman
filter) is the inverse of the variance of the multi-dimensional
innovation process e(t), T denotes the transpose.

The Maximum Likelihood framework can be built by
running the predictor-corrector iterative algorithm using two
steps: prediction comes in the time update phase, and correc-
tion in the measurement update phase. Due to lack of space,
we do not put in the text the different equations related to
these two steps of the Kalman filter. The reader can find the
calibration in our previous works in [23][27] and in other
studies [11][12][21].

B. How to build to normal subspace ?

We aim in this paper to learn residuals (i.e.,, the innovation
process as output of the Kalman filter) for anomaly detection.
Generally, it is assumed that the Kalman residual is a zero
mean white gaussian noise. But it is often false to consider
this assertion as a whole property of this process. In place, we
are assuming that the real distribution of the innovation process
is a mixture of normal distributions. We can simply calibrate a
gaussian mixture model (GMM) [25], to organize the data in
few number of clusters (i.e gaussian components). Anomalies
might then appear is some of these gaussian components,
and if one can carefully extract the potentially ”abnormal”
clusters (the remaining being labelled as ”normal”), a basic
test should be applied to detect the anomalous events. We will
see in this work that, this aim can be achieved via the use
of possibility distributions. First, we will use the sophisticated
High Dimensional Data Clustering (HDDC) method presented
by Bouveyron and al. [26], which is robust to find the best
number of clusters and model parameters with low complexity.
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1) Clustering operation: Generally, measured observations
in communication networks are high dimensional. A popular
approach to perform unsupervised clustering is to use gaussian
mixture model (GMM), which rely on the assumption that
each class can be represented by a gaussian density. This
method supposes that observations {x1, . . . , xN} are indepen-
dent realizations of a random vector X ∈ Rp with density
:

f(x, θ) =
K∑

k=1

πkϕ(x;µk,Σk) (13)

where πk denotes the mixture proportion of the kth component
and ϕ is the gaussian density parametrized by the mean µk

and the covariance matrix Σk. The classical approach (the
well-know quadratic discriminant analysis-QDA) requires the
estimation of a very large number of parameter (proportional
to p2, the number of variables in the dataset), and therefore
faces to numerical problems in high dimensional spaces. In
addition, classical gaussian mixture models show a disap-
pointing behavior when the size of the training dataset is too
small compared to the number of parameters to estimate. To
avoid overfitting, it is necessary to find a balance between
the number of parameters to estimate and the generality of
the model. The HDDC acts in this way and the approach
assumes that high-dimensional data live around specific sub
spaces with a dimension lower than p. Bouveyron and al.
have introduced a new parametrization of the gaussian mix-
ture model which takes into account the specific sub space
around which each cluster is located and, therefore limits the
number of parameters to estimate. Many kind of models are
proposed and the estimation of the model’s parameters is done
via the Expectation-Maximization (EM) algorithm and, some
variants as Classification EM (CEM) for faster convergence
and Stochastic EM (SEM) to avoid initialization problem. The
intrinsic dimension of each cluster is determined automatically
with the scree test of Catell [20], where we search a break in
the curse corresponding to a local maxima. The best number of
clusters can be derived by means of the Bayesian information
criterion (BIC) [24]. When running the HDDC for a given
model r, some additional parameters are added that may
increase the likelihood. This operation can cause overfitting
which can be avoid by the BIC criterion which introduces a
penalty term for the number of parameters in the model. With
the set of estimated models, the one with the lower value of
BIC is preferred.

After finding K clusters for the multi-dimensional innova-
tion process (kalman residual), we applying the result to the
unidimensional decision variable built in (12), to put it into
K clusters. It is simple to achieve this, because the HDDC
gives the cluster labels (as a sequence of N mixing symbols
[1, 2, . . . ,K]). At the same time, the HDDC clustering phase
gives us a n×K matrix representing the posterior probabilities
tik that the observation i belongs to the cluster k, which can
be used to calculate the possibility distribution for the data
sample as defined in (17).

2) Possibility theory as a tool to build normal space:
Our aim here is to infer possibility distribution from data to
build the normal space. Dubois and Prade have built a pro-
cedure [1][2][3] which produces the most specific possibility
distribution among the ones dominating a given probability
distribution. In this paper, this method is generalized to the
case where the probabilities (of generating the clusters) are
unknown. We assume the above clusters have been generated
from an unknown probability distribution. It is proposed
to characterize the probabilities of generating the different
clusters by simultaneous confidence intervals with a given con-
fidence level 1−α. A procedure for constructing a possibility
distribution is described, insuring that the resulting possibility
distribution will dominate the true probability distribution in
at least 100(1− α) of the cases.
We will also use a procedure of computing possibilities for
data sample, in the case where we have at hand the probability
distributions of generating the data sample inside a cluster.
This second kind of possibility distribution helps to label a
cluster as normal or abnormal.

To build a possibility measure related to a cluster, we
consider the parameter vector p = (p1, p2, . . . , pK) of proba-
bilities characterizing the unknown probability distribution of
a random variable X on Ω = {ω1, . . . ., ωK}. Let nk denotes
the number of observations of cluster k in a sample of size N .
Then, the random vector n = (n1, . . . , nK) can be considered
as a multinomial distribution with parameter p. A confidence
region for p at level 1−α can be computed using simultaneous
confidence intervals as described in [4]. Such a confidence
region can be considered as a set of probability distributions.

A consistency principle between probability and possibility
was first stated by Zadeh [5] in an unformal way: ”what is
probable should be possible”. This requirement is translated
via the inequality:

P (A) ≤ Π(A) ∀A ⊆ Ω (14)

where P and Π are, respectively, a probability and a possibility
measure on a domain Ω = {ω1, . . . ., ωK}. In this case, Π
is said to dominate P . Transforming a probability measure
into a possibilistic one then amounts to choosing a possibility
measure in the set ℑ(P ) of possibility measures dominating
P . This should be done by adding a strong order preservation
constraint which ensures the preservation of the shape of the
distribution:

pi < pj ⇔ πi < πj ∀i, j ∈ {1, . . . ,K}, (15)

where pi = P ({ωi}) and πi = Π({ωi}), ∀i ∈ {1, . . . ,K}.
It is possible to search for the most specific possibility
distribution verifying (14) and (15) (a possibility distribution
π is more specific than π

′
if π ≤ π

′
,∀i). The solution of this

problem exists, is unique and can be described as follows. One
can define a strict partial order P on Ω represented by a set of
compatible linear extensions Λ(P) = {lu, u = 1, L}. To each
possible linear order lu , one can associate a permutation σu

of the set {1, . . . ,K} such that:

σu(i) < σu(j) ⇔ (ωσu(i), ωσu(j)) ∈ lu, (16)
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The most specific possibility distribution, compatible with p =
(p1, p2, . . . , pK), can then be obtained by taking the maximum
over all possible permutations:

πi = max
u=1,L

∑
{j|σ−1

u (j)≤σ−1
u (i)}

pj (17)

The permutation σ is a bijection and the reverse transformation
σ−1 gives the rank of each pi in the list of the probabilities
sorted in the ascending order. The number of permutations L
depends on the duplicated pi in p. It is equal to 1 if there is
no duplicate pi, ∀i and for this case P is a strict linear order
on Ω.

In the case of searching possibilities for the data cluster
themselves, we do not know the probabilities p, and then we
aim to build confidence intervals for each of the cluster ci. In
interval estimation, a scalar population parameter is typically
estimated as a range of possible values, namely a confidence
interval, with a given confidence level 1− α.
To construct confidence intervals for multinomial proportions,
it is possible to find simultaneous confidence intervals with
a joint confidence level 1 − α. The method attempts to
find a confidence region Cn in the parameter space p =

(p1, . . . , pK) ∈ [0; 1]K |
K∑
i=1

pi = 1 as the Cartesian product

of K intervals[p−1 , p
+
1 ] . . . [p

−
K , p+K ] such that we can estimate

the coverage probability with:

P(p ∈ Cn) ≥ 1− α (18)

We can use the Goodman formulation in a series of deriva-
tions to solve the problem of constructing the simultaneous
confidence intervals [6]. Let

A = χ2(1− α/K, 1) +N (19)

where χ2(1−α/K, 1) denotes the quantile of order 1−α/K
of the chi-square distribution with one degree of freedom, and

N =

K∑
i=1

ni denotes the size of the sample. We have also the

following quantities:

Bi = χ2(1− α/K, 1) + 2ni, (20)

Ci =
n2
i

N
, (21)

∆i = B2
i − 4ACi. (22)

Finally, the bounds of the confidence intervals are defined as
follows:

[p−i , p
+
i ] =

[
Bi −∆

1
2
i

2A
,
Bi +∆

1
2
i

2A

]
(23)

It is now possible, based on these above interval-valued
probabilities, to compute the most possibility distributions of
the data inside a cluster, dominating any particular probability
measure. Let P denotes the partial order induced by the
intervals [pi] = [p−i , p

+
i ]:

(ωi, ωj) ∈ P ⇔ p+i < p−j (24)

As explained above, this partial order may be represented
by the set of its compatible linear extensions Λ(P) =
{lu, u = 1, L}, or equivalently, by the set of the corresponding
permutations{σu, u = 1, L}. Then for each possible permu-
tation σu associated to each linear order in Λ(P), and each
cluster ωi, we can solve the following linear program:

πσu
i = max

p1,...,pK

∑
{j|σ−1

u (j)≤σ−1
u (i)}

pj (25)

under the constraints:
K∑
i=1

pi = 1

p−k ≤ pk ≤ p+k ∀k ∈ {1, . . . ,K}
pσu(1) ≤ pσu(2) ≤ . . . ≤ pσu(K)

(26)

Then, we can take the distribution of the cluster ci dominating
all the distributions πσu :

πi = max
u=1,L

πσu
i ∀i ∈ {1, . . . ,K} (27)

Finally we propose to build a measure of possibility distri-
bution πnormal as a threshold, and then a cluster will be
considered as normal if its possibility distribution satisfies :

πi ≥ πnormal, (28)

Otherwise it is ranged in sub space potentially suspicious.
Our attention will be placed in this sub space for anomaly
detection. To find the possibility distribution πnormal, we
use the a posteriori probability of each gaussian component
(cluster) k [26]:

Pr(k|xt, θ) =
πkϕ(xt|µk,

∑
k)

K∑
n=1

πnϕ(xt|µn,
∑

n)

(29)

which gives us, for each data point xt the probability distribu-
tion p = (p1, p2, . . . , pK) (for each data point the constraints
K∑
i=1

pi = 1 is always obtained from (29)).

Thereafter, we can use (17) to calculate the corresponding
possibility distribution of each data point xt of the sample
x. We obtain a matrix πN

K of dimension K × N (remember
K is the number of clusters and N is the length of the data
sample x). We take the max for each column (each column
containing the possibility distribution for data point xt). Then
we obtain a second matrix πN

1 and finally we use (30) to derive
the threshold πnormal :

πnormal = max(πN
1 ) (30)

IV. MODEL EVALUATION

A. Experimental data: Abilene and SWITCH networks

In this work, we used a collection of data coming from the
Abilene network and SWITCH one. The Abilene backbone
has 11 Points of Presence(PoP) and spans the continental US.
The data from this network was collected from every PoP at
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the granularity of IP level flows. The Abilene backbone is
composed of Juniper routers whose traffic sampling feature
was enabled. Of all the packets entering a router, 1% are
sampled at random. Sampled packets are aggregated at the 5-
tuple IP-flow level and aggregated into intervals of 10 minute
bins. The raw IP flow level data is converted into a PoP-to-
PoP level matrix using the procedure described in [7]. Since
the Abilene backbone has 11 PoPs, this yields a traffic matrix
with 121 OD flows. Each traffic matrix element corresponds to
a single OD flow, however, for each OD flow we have a seven
week long time series depicting the evolution (in 10 minute
bin increments) of that flow over the measurement period. All
the OD flows have traversed 41 links. Synthetic anomalies are
injected into the OD flows by the methods described in [7],
and this resulted in 97 detected anomalies in the OD flows.
The anomalies injected in the Abilene data are small and
high synthetic volume anomalies. We used exactly the same
Abilene data as in [14]. So for a full understanding on how
the ground-truth is obtained (based on EWMA and Fourier
algorithms) , we refer the reader to [14].
The second collection of data we used for our experiments
is a set of three weeks of Netflow data coming from one of
the peering links of a medium-sized ISP (SWITCH, AS559).
Anomalies in the data were identified using available manual
labelling methods: visual inspection of time series and top-
n queries on the flow data. This resulted in 28 detected
anomalous events in UDP and 73 detected in TCP traffic. We
refer the reader to [8][22] for a full view of this data set.

B. Validation

To validate our approach, we first run the MOESP algo-
rithm in order to find the LTISS parameters and thereafter
we perform a Kalman filter to perform entropy reduction
and to retrieve the innovation process [23]. Thereafter the
unidimensional decision variable is built as explained in
Section III-A. As a second step, we calibrate a gaussian
mixture model, using the HDDC approach, for the purpose
of clustering the multivariate innovation process. The use of
gaussian mixture models seems to be relevant if we assume
that the innovation process is a mixture of normal distributions,
instead of a simple uncorrelated gaussian white noise. It
is important to note that the HDDC clustering operation is
done on the multidimensional innovation matrix and not on
the unidimensional decision vector, but we aim to clustering
this univariate process. The HDDC method gives as output a
single vector consisting of the unique sequence (class label)
of symbols (alphabet) making possible to know the length of
each cluster and the data belonging to it. We have used this
class label to do the clustering of the decision variable. To
validate our clustering model, we run the HDDC clustering
operation for a set of r components (r ∈ {2, . . . , 9}) and we
select the model with the lowest value of the BIC.

The first result is about the calibration of the GMM model.
In this unsupervised clustering technique, we adopt the follow-
ing method to find the best number of clusters. We consider 8
partitions with different number of clusters K ∈ {2, 3, . . . , 9}.

Since each GMM model is characterized by the mean, prior
and variance vectors, the best partition is simply the one with
the lowest variance vector. In our experiments, we have found
K = 3 clusters, both for the Abilene and the UDP traffic, and
K = 4 classes for the TCP traffic. The rest of the computations
accounts for the calculations of the possibility distributions
for the clusters and the data sample. In Table I we show the
degree of possibility and the sample size of each cluster. To
decide if a cluster in normal or not, we consider the results in
Table II showing the posterior probability distributions of the
data sample (given by equation (29)) easily obtained as output
of the HDDC clustering, and the corresponding possibility
distributions computed via equation (17), respectively for
the Abilene, TCP and UDP traffic. Table II shows clearly
that possibility distributions measures dominate probability
distributions. So with the framework of possibility theory,
we could reinforce methodology based on bayesian inference.
At this point, we can easily derive the critical possibility
distribution πnormal, calculated via (30), which is used to
determine the normal clusters. The table is truncated because
N ∈ {480; 1008}, and they show that there’s for each data
point (at time t) a cluster for which the possibility distribution
is equal to 1. Then we obtain πnormal = 1 if we apply
equation (30). Finally, a cluster i will be considered as normal
if its possibility distribution πS

i satisfies πi ≥ 1 as defined
in (28). Now, if one applies equation (27), he/she obtains
for the Abilene case, the vector {1.0000; 0.0595; 0.0465}
corresponding respectively to the possibility distribution of
generating the clusters #1, #2 and #3 in that order. Finally,
it becomes clear that, only the cluster #1 defines the normal
behavior and the remaining ones are in the abnormal domain.
The same reasoning performed on the SWITCH data, gives
that the clusters #1 and #3 define the normal space for the
TCP traffic, while the clusters #3 defines the normal behavior
for the UDP traffic. It is interesting to observe that the length
of clusters, belonging to the normal subspace, is always the
highest, and contains most of the data. This seams to be the
normal situation in anomaly detection, since anomalies might
be rare and might appear in some clusters with few data.
Finally to perform the detection issue, one has just to extract,
from the decision variable all the points corresponding to the
data belonging to the abnormal subspace (i.e., clusters labelled
as suspicious), and apply thresholding (a limit strictly superior
to zero) to identify and detect the anomalous events.

We have chosen in this work, as a criterion of performance,
to analyze the trade-off between the false positive rate (FPR)
and the detection rate (DR). The results are shown in the ROC
curves in Figure 1. Typically, the natural way to analyze a ROC
curve is to calculate the area under the curve. If the area is
high, it means that the DR is high (approaching 100%) and the
FPR low (approaching 0%). However, there are other possibles
interpretations of the ROC curve. For example, one can put the
x-axis in logarithmic form in order to find different points for
comparison of different curves. Then, from the results depicted
in Figure 1, we can see obviously that the technique based
possibility distribution performs best. On can extract reference
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TABLE I
POSSIBILITY DISTRIBUTIONS πS

i AND LENGTH OF EACH CLUSTER.

Abilene
cluster i 1 2 3 α

p−i 0.0424 0.9167 0.0018

0.05p+i 0.0777 0.9534 0.0137
πS
i 1.0000 0.0595 0.0465

Length cluster i 936 50 22
Switch UDP

cluster i 1 2 3 α

p−i 0.2960 0.0932 0.4746

0.05p+i 0.3993 0.1656 0.5830
πS
i 0.5254 0.1656 1.0000

Length cluster i 166 60 254
Switch TCP

cluster i 1 2 3 4 α

p−i 0.3058 0.0196 0.3337 0.1754

0.05p+i 0.4145 0.0631 0.4441 0.2693
πS
i 1.0000 0.0631 1.0000 0.3325

Length cluster i 172 17 186 105

TABLE II
PROBABILITIES DISTRIBUTIONS OF THE DATA SAMPLE (DECISION
VARIABLE) AND CORRESPONDING POSSIBILITY DISTRIBUTIONS,

(α = 0.05).

Abilene
time t 1 2 3 . . . 1007 1008

posterior probability distributions
cluster1 0.0353 0.9995 0.1582 . . . 0.3908 0.1805
cluster2 0.9647 0.0004 0.0001 . . . 0.0001 0.0001
cluster3 0.0000 0.0001 0.8417 . . . 0.6091 0.8194

possibility distributions
cluster1 0.0353 1.0000 0.1583 . . . 0.3909 0.1806
cluster2 1.0000 0.0005 0.0001 . . . 0.0001 0.0001
cluster3 0.0000 0.0001 1.0000 . . . 1.0000 1.0000

Switch TCP
time t 1 2 3 . . . 479 480

posterior probability distributions
cluster1 0.0000 0.0000 0.0008 . . . 0.0000 0.9566
cluster2 1.0000 1.0000 0.0000 . . . 0.0000 0.0001
cluster3 0.0000 0.0000 0.9991 . . . 0.0000 0.0039
cluster4 0.0000 0.0000 0.0000 . . . 1.0000 0.0394

possibility distributions
cluster1 0.0001 0.0000 0.0011 . . . 0.0001 1.0000
cluster2 1.0000 1.0000 0.0000 . . . 0.0002 0.0001
cluster3 0.0000 0.0003 1.0000 . . . 0.0001 0.0041
cluster4 0.0002 0.0001 0.0000 . . . 1.0000 0.0423

Switch UDP
time t 1 2 3 . . . 479 480

posterior probability distributions
cluster1 0.0000 0.0000 0.6989 . . . 0.0000 0.1707
cluster2 1.0000 1.0000 0.0000 . . . 0.0000 0.8041
cluster3 0.0000 0.0000 0.3011 . . . 1.0000 0.0251

possibility distributions
cluster1 0.0001 0.0001 1.0000 . . . 0.0002 0.2918
cluster2 1.0000 1.0000 0.0003 . . . 0.0001 1.0000
cluster3 0.0002 0.0000 0.5102 . . . 1.0000 0.0312

points for which the FPR decrease significantly for our new
scheme than for the other three techniques we had already
derived in our previous works [23][27][28]. The method shows
that we can achieve a DR of 100% with a FPR equal to 5%,
where the best method of the three others, namely the PCA-
Kalman method exhibits a FPR equal to 10%, for the Abilene
data. For the SWITCH data, the new approach can achieve a
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Fig. 1. ROC curve for the DR vs FPR. Top left graph for TCP, top right
graph for UDP and top down for Abilene data when α = 0.05.

probability of detection of 90% with a FPR of 2% against 7%,
for the PCA-Kalman methodology, for UDP traffic. The same
situation is observed for the TCP traffic.

V. CONCLUSION

In this work, we have shown the effectiveness and robust-
ness of combining probability distributions, and possibility dis-
tributions for the purpose of anomaly detection. The robustness
of the approach is achieved, in part, by the use of subspace
identification algorithms (via the aid of PCA) and Kalman
filtering technique, in order to build a unidimensional decision
variable from multidimensional data set. Moreover, the great
innovation in this paper is the use of possibility distributions
to find the normal behavioral model, (by means of simple
transformations from probability distributions) allowing us to
extract the anomaly space. Another benefit of the solution can
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be found in the simplicity of the all procedure and the low
complexity making easy to implement the algorithm. On the
other hand, we have performed a robust and efficient high
dimensional data clustering to build normal clusters with most
of the data, and abnormal ones containing a few number
of data where all anomalies lie. The experiments are done
on different real traffic, and the ROC curve has shown high
performance, compared to other techniques. It seems the main
drawback of this work comes from the fact that the final
decision process is based on applying manual thresholding.
This problem will thus limit the applicability of the solution
to dynamic and evolving systems. It will be of interest to
search for more convenient technique, to automatically and
dynamically adjust this threshold. We will try to address this
issue soon.
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