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Abstract—This paper presents a tracking (estimation of the 
pose and size) of moving objects such as pedestrians, cars, 
motorcycles, and bicycles, using multiple mobile robots as 
sensor nodes. In this cooperative-tracking method, nearby 
sensor nodes share their tracking information, enabling the 
tracking of objects that are invisible or partially visible to an 
individual sensor node. The cooperative-tacking method can 
then make the tracking system more reliable than the 
conventional individual tracking method by a single robot. We 
previously presented a centralized architecture of cooperative 
tracking. Each sensor node detected moving objects in its own 
laser-scanned images captured by a single-layer laser scanner. 
It then sent measurement information related to the moving 
objects to a central server. The central server estimated the 
objects’ poses (positions and velocities) and sizes from the 
measurement information using Bayesian filter. However, such 
a centralized method might have poor dependability and 
impose a computational burden upon the central server. To 
address this problem, this paper presents hierarchical 
architecture of cooperative tracking. Each sensor node locally 
estimates the poses and sizes of moving objects and then sends 
these estimates to the central server, which then merges the 
pose and size estimates. Experimental results using two sensor 
nodes in outdoor environments show that the proposed 
hierarchical cooperative-tracking method provides slightly 
inferior tracking accuracy and has a smaller computational 
cost in the central server than a previous centralized method. 

Keywords—moving-object tracking; cooperative tracking; 
centralized and hierarchical methods; laser scanner; mobile 
robot. 

I.  INTRODUCTION 

This paper is an extended version of an earlier paper 
presented at the IARIA Conference on Intelligent Systems 
and Applications (INTELLI 2016) [1] in Barcelona. 
Throughout this paper, the term ‘tracking’ means the 
estimation of the pose (position and velocity) and size of a 
moving object. 

The tracking of multiple moving objects (such as people, 
cars, and bicycles) in environments is an important issue in 
the safe navigation of mobile robots and vehicles. The use 
of vision, radar or laser scanner (Lidar) in mobile robotics 
and vehicle automation has attracted considerable interest 
[2]–[8]. When compared with vision-based tracking, laser-
based tracking is insensitive to lighting conditions and 
requires less data processing time. Furthermore, due to its 
directionality, laser-based tracking provides better tracking 
accuracy than radar-based tracking. Therefore, in this paper, 
we focus on a tracking method for moving objects using 
laser scanners mounted on mobile robots and vehicles. 

Many studies have been conducted on multi-robot 
coordination and cooperation [9][10]. When multiple robots 
are located in the same vicinity, they can share their sensing 
data through a communication network system. Thus, the 
multi-robot team can be considered to be a multi-sensor 
system. Even if moving objects are located outside the 
sensing area of a robot or are occluded in crowded 
environments, they can be recognized using tracking data 
from other nearby robots. Hence, multi-robot system can 
improve the accuracy and reliability with which moving 
objects are tracked.  

 
 

 
 

Figure 1. Application of cooperative tracking to a vehicle automation field. 
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Such cooperative tracking using multiple robots and 
vehicles can also be applied to vehicle automation, including 
intelligent transportation systems (ITS) and systems for 
personal mobility devices, as shown in Fig. 1. Cooperative 
tracking enables the detection of moving objects in the blind-
spot of each vehicle and can be used to detect sudden 
changes in a crowded urban environment such as people 
appearing on roads or vehicles making unsafe lane changes. 
It can therefore prevent traffic accidents. 

In this paper, we present a hierarchical cooperative- 
tracking method for moving objects using multiple mobile 
robots as sensor nodes. The sensor nodes locally track 
moving objects and transmit the tracking information to a 
central server, which then merges the tracking information. 

For simplicity, in this paper, moving-object tracking 
using multiple mobile sensor nodes is referred to as 
‘cooperative tracking,’ whereas that by an individual robot 
in a team is referred to as ‘individual tracking.’  

The rest of the paper is organized as follows. Section II 
presents an overview of related work. Section III gives our 
experimental system. In Sections IV to VII, cooperative 
tracking method is discussed. In Section VIII, we describe 
experiments of moving-object tracking using two sensor 
nodes in outdoor environments. We will present our 
conclusions in Section IX. 

II. RELATED WORK 
We previously presented a cooperative people-tracking 

method in which multiple mobile robots and vehicles were 
used as mobile sensor nodes and equipped with laser 
scanners [11][12]. The covariance intersection method [13] 
was applied to operate the tracking system effectively in a 
decentralized manner without a central server. In 
cooperative people tracking, each person could be assumed 
to be a point due to their small size, and mass-point tracking 
(only pose estimation) was then performed. 

However, in the real world, several types of moving 
objects exist, such as people, cars, bicycles, and motorcycles. 
Therefore, we should design a cooperative-tracking system 
for these moving objects. In vehicle (car, motorcycle, and 
bicycle) tracking, we have to consider moving objects as 
rigid bodies and estimate both the poses and sizes to avoid 
collisions in a crowded environment. Tracking of a rigid 
body is known as extended-object tracking, and many 
related studies have been conducted [14]–[18]. However, to 
the best of our knowledge, cooperative tracking using 
multiple mobile sensor nodes covers only mass-point 
tracking under the assumption that the tracked object is 
small. It estimates only the object’s pose but does not 
estimate its size [19]–[25]. 

Therefore, we presented a laser-based cooperative-
tracking method for rigid bodies that estimates both poses 
and sizes of people and vehicles using multiple mobile 
sensor nodes [26]. In a crowded environment, a vehicle can 
be occluded or only rendered partially visible to each sensor 
node. To correctly estimate the size of the vehicle, the laser 
measurements captured by sensor nodes in the team have to 
be merged. Our previous cooperative-tracking method for  

 

Figure 2.  Overview of the mobile sensor nodes. 

 
 

rigid bodies applied a centralized architecture. Each sensor 
node detected laser measurements related to the moving 
objects in its sensing area and transmitted the measurement 
information to a central server, which then estimated the 
poses and sizes of the objects. Such a centralized 
architecture imposes a computational burden upon the 
central server. Furthermore, the architecture has a weakness 
against fault in the communication system between sensor 
nodes and the central server.  

To address this problem, in this paper, we present a 
hierarchical method for cooperative tracking through which 
the poses and sizes of moving objects are locally estimated 
by the sensor nodes. Furthermore, these estimates are then 
merged by a central server. We will treat both vehicles and 
people as rigid bodies. 

III. EXPERIMENTAL SYSTEM 
Fig. 2 shows the mobile-sensor node system used in our 

experiments. Each of the two sensor nodes has two 
independently driven wheels. A wheel encoder is attached to 
each drive wheel to measure its velocity. A yaw-rate gyro is 
attached to the chassis of each robot to sense the turning 
velocity. These internal sensors calculate the robot’s pose 
using dead reckoning. 

Each sensor node is equipped with a forward-looking 
laser scanner (SICK LMS100) to capture laser-scanned 
images that are represented by a sequence of distance 
samples in a horizontal plane with a field of view of 270°. 
The angular resolution of the laser scanner is 0.5°, and each 
scan image comprises 541 distance samples. Each sensor 
node is also equipped with RTK-GPS (Novatel ProPak-V3 
GPS). The sampling frequency of all sensors is 10 Hz. 

We use broadcast communication over a wireless local 
area network to exchange information between the central 
server and the sensor nodes. The model of the computers 
used in the sensor nodes and the central server is Iiyama 
15X7100-i7-VGB with a 2.8 GHz Intel core i7-4810MQ 
processor, and the operating system is Microsoft Windows 7 
Professional. 
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(a) Centralized method                                                                                             (b) Hierarchical method 
 

Figure 3.  System overview of cooperative tracking. 
 
 

IV.  OVERVIEW OF COOPERATIVE-TRACKING SYSTEM 
 In Section VIII, we will evaluate our hierarchical 
cooperative-tracking method through experiments by 
comparing it with our previous centralized method. To 
allow readers to better understand our cooperative-tracking 
method, we detail both the centralized and hierarchical 
methods of cooperative tracking. Figs. 3 (a) and (b) show a 
sequence of centralized and hierarchical cooperative-
tracking, respectively, using two sensor nodes and a central 
server. 

A. Centralized Method [26] 
 Each sensor node independently finds moving objects in 
its own laser-scanned image using an occupancy-grid 
method [27]. Laser measurements (positions) are mapped 
onto the grid map represented in the world coordinate frame 

w . The mapped measurements are classified into moving 
and static measurements using the occupancy-grid method. 
The moving measurements are considered to originate from 
moving objects, whereas the static measurements are 
considered to be from static objects. The sensor node 
uploads moving-measurement information to a central 
server. This information is detailed in Table I (a). 
 Moving measurements coming from the same moving 
object have similar positions, whereas those from different 
moving objects are significantly different. Thus, the central 
server clusters moving measurements sent from two sensor 
nodes by checking the gap between two adjacent 
measurements. Subsequently, the server estimates the poses 
and sizes of the moving objects using the methods to be 
presented in Sections V and VI. The estimated information 
is then fed back to the sensor nodes.  

The cell size of the grid map is set at 0.3 × 0.3 m in our 

experiments. To map the laser-scanned images onto the grid 
map, each sensor node accurately identifies its own position 
and orientation in w  based on dead reckoning and GPS 
information via an extended Kalman filter. Our moving 
measurement detection using the occupancy-grid method 
and self-localization using an extended Kalman filter are 
detailed in references [27] and [12], respectively. 

B. Hierarchical Method  
 In the hierarchical method, each sensor node classifies 
the mapped laser measurements into moving and static  
 
 
TABLE I.  INFORMATION AND DATA VOLUME SENT FROM EACH SENSOR 
NODE TO CENTRAL SERVER 

 
(a) CENTRALIZED METHOD 

Information Data volume [bit] 
Time stamp 2 × 32 
Pose of sensor node (x, y, ) 3 × 32 
The number of moving objects (n) 32 
The number of moving measurements 
comprising each moving object (m) n × 32 

Coordinates of each moving measurement 
(x, y) n × m × 2 × 32 

Total (6 + n + 2nm) × 32 
 

(b) HIERARCHICAL METHOD 
Information Data volume [bit] 

Time stamp 2 × 32 
The number of tracked objects (n) 32 
Position and velocity estimate of each 
tracked object ),,,( yyxx  n × 4 × 32 

Heading of each tracked object ( ) 32 
Size (width and lenglth) of each tracked 
object (W, L) n × 2 × 32 

Total (4 + 6n) × 32 
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measurements using the occupancy-grid method and 
clusters moving measurements by checking the gap between 
two adjacent measurements. Subsequently, the sensor node 
locally estimates the poses and sizes of moving objects 
using the methods shown in Sections V and VI. This means 
individual tracking. The tracking information of the moving 
objects, which is detailed in Table I (b), is then uploaded to 
the central server. 

After receiving the information regarding the tracked 
objects from two sensor nodes, the central server merges the 
information using the method in Section VII to improve the 
tracking accuracy. The merged poses and sizes of the 
moving objects are then fed back to the sensor nodes. 

V. POSE AND SIZE ESTIMATION 
In the hierarchical cooperative-tracking method, the pose 

and size are locally estimated by sensor nodes, whereas, in 
the centralized method, they are estimated by a central 
server.  

We represent the shape of a moving object using a 
rectangle with width, W and length, L. We detail the size-
estimation method in Fig. 4, where red circles indicate laser 
measurements of the moving object (hereafter referred to as 
moving measurements), and green lines are the feature lines 
extracted from these measurements. The green dashed 
rectangle is the estimated rectangle, and the green star is the 
centroid of that rectangle. As shown in Fig. 4, an xvyv-
coordinate frame is defined, on which the yv-axis aligns with 
the heading (orange arrow) of a tracked object. From 
clustered moving measurements, we extract the width, Wmeas 
and length, Lmeas.  

When a moving object is perfectly visible, its size can be 
estimated from these moving measurements. In contrast, 
when it is partially occluded by other objects, its size cannot 
be accurately estimated. Therefore, the size of a partially 
visible object is estimated using the following equation [14]: 

)(
)(

)1()1()(

)1()1()(

tmeasLtt

tmeasWtt

LLGLL
WWGWW

               (1) 

where W and L are estimates of the width and length, 
respectively, and t and t-1 are time steps. G is the filter gain, 
given by t pG )1(1  [14], and p is a parameter. As the 
value of p increases, the reliabilities of the current 
measurements of Wmeas and Lmeas increase. We assume that a 
vehicle passes at 60 km/h in front of the sensor node. After 
the vehicle enters the surveillance area of the sensor node, 
we aim to estimate 99% of the size (p = 0.99) within 10 
scans (1 s) of the laser scanner. We can then determine G as 
follows: 

369.0)99.01(1
)99.01(1

10

t
G     

10for
10for

t
t              (2) 

For a perfectly visible object, we set the gain Gw (GL) as 
follows: if W(t-1) (L(t-1)) < Wmeas (Lmeas), then Gw (GL) =1, else 
Gw (GL) = 0. 

 
 

Figure 4.  Size estimation of a vehicle. 
 
 
The estimated size of the tracked object is used to 

classify the object as a person or a vehicle (i.e., car, 
motorcycle, and bicycle). If the estimated length or width is 
larger than 0.8 m, the object is determined to be a vehicle. If 
the size is less than 0.8 m, it is determined to be a person.  

We then define the centroid position (green star in Fig. 
4) of the rectangle estimated from (1) by ),( yx  in w .  
From the centroid position, the pose of the tracked object in 

w  is estimated using the Kalman filter [28] under the 
assumption that the object is moving at an almost constant 
velocity. The rate kinematics is given by: 

)1()1(

)1()1()(

0
2/0
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02/
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ttt
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           (3) 

where Tyyxx ),,,(x . Tyx ),(x  is an unknown 
acceleration (plant noise). (=0.1 s) is the sampling period 
of the laser scanner. 

The measurement model related to the moving object is 
then: 

)()(

)()()(

0100
0001

tt

ttt

zx

zHxz
                     (4) 

where T
yx zz ),(z is the centroid position represented in wΣ . 

z  is the measurement noise.  
From (3), the pose x̂  of the object and its associated 

error covariance P can be predicted using the Kalman filter: 

T
t

T
ttt

ttt

GGQFFPP
xFx

)1()1()1/(

)1()1/( ˆˆ
             (5) 

where Q is the covariance of the plant noise x . 
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When the measurement z is obtained from the tracked 
object, the pose of the tracked object and its associated error 
covariance are updated using: 

)1/()()()1/()(

)1/()()()()1/()( )ˆ(ˆˆ
ttttttt

tttttttt

PHKPP
xHzKxx

              (6) 

where 1
)1/()()1/()( tt

T
tttt SHPK , and )1/( ttS  

)()()1/()( t
T

tttt RHPH . R is the covariance of the 
measurement noise z . 

In our experiment, the covariances of the plant and 
measurement noises in (3) and (4) are set at Q = diag (1.0 
m2/s4, 1.0 m2/s4) and R = diag (0.01 m2, 0.01 m2), 
respectively, through trial and error. 

In this paper, a moving object is assumed to move at an 
almost constant velocity, and it is tracked using the usual 
Kalman filter. If it moves with various different motions, 
such as moving at a constant speed, going or stopping 
suddenly, or turning suddenly, the use of multi-model-based 
tracking, such as an interacting-multiple-model estimator, 
can improve the tracking performance [29] [30]. 

To extract Wmeas and Lmeas from the moving 
measurements, the heading information of the tracked object 
is needed. As shown in Fig. 4, we extract two feature lines 
(green lines) from the moving measurements using the split-
and-merge method [31] and RANSAC [32] and determine 
the heading of the tracked object from the orientation of the 
feature lines. When the two feature lines cannot be extracted, 
we determine the heading from the velocity estimate of the 
object using arctan ( xy / ). 

VI. DATA ASSOCIATION 
To track objects in crowded environments, we apply 

data association (i.e., one-to-one or one-to-many matching 
of tracked objects and moving measurements). In the 
hierarchical cooperative-tracking method, data association is 
performed by sensor nodes, whereas in the centralized 
method, it is performed by a central server.  

As shown in Fig. 5, a validation region (black rectangle) 
is set around the predicted position (black circle) of a 
tracked object. The validation region is rectangular, and its 
length and width are 0.5 m longer than those of the object 
estimated at the previous time step (green dashed rectangle).  

 
 

 
 

Figure 5.  Moving measurements and data association. 
 

 
 

Figure 6.  Moving measurements, in which two people move near a car. 
 
 

   
 

Figure 7.  Data association for Fig. 6. 
 
 
We refer to the representative point of clustered moving 

measurements (red circles) as the representative 
measurement (light blue triangle). The position of the 
representative measurement is the mean position of 
clustered moving measurements. Representative 
measurements inside the validation region are assumed to 
originate from the tracked object and are used to update the 
pose of the tracked object using (6), whereas those outside 
the validation region are identified as false alarms and 
discarded.  

Figs. 6 and 7 illustrate an example of data association, in 
which two people move close to a car. In these figures, red 
circles indicate moving measurements, light blue triangles 
indicate representative measurements, and black circles 
indicate predicted positions of tracked objects. The right 
table in Fig. 7 shows the correspondence between tracked 
objects and representative measurements.  

As shown in Fig. 7, multiple representative 
measurements are often obtained inside a validation region, 
and multiple validation regions also overlap. To achieve 
reliable data association (i.e., matching of tracked objects 
and representative measurements), we introduce the 
following rules: 

1) Person: Because a person is small, he/she usually 
results in a representative measurement. Therefore, if a 
tracked object is assumed to be a person, one-to-one 
matching of a tracked person and a representative 
measurement is performed. 

2) Vehicle (car, motorcycle, and bicycle): Because a 
vehicle is large, as shown in Fig. 6, it often results in several 
representative measurements. Thus, if a tracked object is 
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assumed to be a vehicle, one-to-many matching of a tracked 
vehicle and representative measurements is performed. 

As shown in Fig. 6, on urban streets, people often move 
close to vehicles, whereas vehicles move far away from 
each other. Thus, when representative measurements of 
people exist in the validation region of a tracked vehicle, 
they might be matched to the tracked vehicle. To avoid this 
situation, we begin data association with people. 

We now detail our data association method from Fig. 7, 
in which the validation regions of a person (T3) and a car 
(T1) overlap. If tracked objects T2 and T3 are determined to 
be people from their estimated sizes (less than 0.8 m), the 
representative measurement M3 is matched with T2 and the 
representative measurement M4 nearest to T3 is matched 
with T3, both through one-to-one matching. Subsequently, 
if a tracked object T1 is determined to be a vehicle from the 
estimated size (larger than 0.8 m), the two representative 
measurements M1 and M2 in the validation region are 
matched with T1 through one-to-many matching. If 
validation regions of several people overlap, one-to-one 
matching is performed using the global nearest neighbor 
(GNN) method [12] [33]. 

Moving objects appear in and disappear from the sensing 
area of the sensor node. They are also occluded by each 
other and other objects in an environment. To maintain 
reliable tracking under such conditions, we implement 
following tracking rules. 

1) Tracking initiation: If a representative measurement 
that is not matched with any tracked objects exists, it is 
assumed to either originate from a new object or to be an 
outlier. Therefore, we tentatively initiate tracking of the 
measurement with the Kalman filter. If the representative 
measurement remains visible in more than N1 scans, it is 
assumed to originate from a new object and tracking is 
continued. If the representative measurements disappear 
within N1 scans, it is assumed to be an outlier, and tentative 
tracking is terminated. 

Because the size of the new tracked object is unknown at 
the initial time (scan), a rectangular validation region cannot 
be used for data association. Instead, we use a circular 
validation region with a constant radius of 2 m at the initial 
scan, and when the tracked object is matched with a 
representative measurement at the next scan, we estimate 
the size and decide whether the object is a vehicle or a 
person. 

2) Tracking termination: When the tracked objects leave 
the sensing area of the sensor node or they meet occlusion, 
no representative measurements exist within their validation 
regions. If no measurements arise from the temporal 
occlusion, the measurements appear again. We thus predict 
the positions of the tracked objects using (5). If the 
representative measurements appear again within N2 scans, 
we proceed with the tracking. Otherwise, we terminate the 
tracking.  

In our experiments described in Section VIII, we set N1 
= 9 scans (0.9 s) and N2 = 30 scans (3 s) through trial and 
error.  

VII. MERGING OF POSE AND SIZE ESTIMATES BY A 
CENTRAL SERVER 
 In the hierarchical cooperative-tracking method, each 
sensor node transmits the information of the tracked objects, 
which is shown in Table I (b), to the central server. When 
the central server receives this information from sensor 
nodes, it combines all the information together. It also 
merges the size, position and velocity of the moving objects 
locally estimated by the sensor nodes.  

To combine the information, we apply data association 
(matching of tracking information). We present an example 
of our data association procedure in Figs. 8 and 9, in which 
two sensor nodes are tracking a car. In Fig. 8, red and blue 
rectangles indicate the sizes of the tracked objects #A (TA) 
and #B (TB), estimated by sensor nodes #1 and #2, 
respectively. Orange arrows indicate the headings of the 
objects.  

If two tracked objects originate from the same object, 
the position, velocity and heading estimated by both sensor 
nodes will have similar values. Furthermore, if the tracked 
object is a vehicle, the size estimated by both sensor nodes 
will be large. If it is a person, the estimated size will be 
small. Therefore, we set a validation region with a constant 
radius of 3 m around the TA position (red star in Fig. 8) and 
match TB with TA by applying the following rules:  

 
 

 
 
Figure 8.  Data association of tracking information related to tracked 
objects TA and TB. 
 
 

 
 

Figure 9.  Merging of tracking information. 
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Sensor node #1 

Vehicle #2 

Person #2 

                     

 

Sensor node #2 

Vehicle #1 

Person #1 

 
(a) Photo by camera #A                                                                                      (b) Photo by camera #B 

 
Figure 10.  Photo of the experimental environment. 

 
 
1) Same or different object: When the estimated position 

of TB (blue star) is located within the validation gate, and 
the differences in the velocity and heading estimates of TA 
and TB are less than D1 m/s, and D2°, respectively, the 
objects TA and TB are determined to originate from the 
same object. Otherwise, the objects TA and TB are 
determined to be different objects. 

2) Vehicle or person: When the width and/or length 
estimates of the matched objects TA and TB are larger than 
0.8 m, their objects are determined to originate from the 
same vehicle. When their width and length estimates are less 
than 0.8 m, the objects TA and TB are determined to 
originate from the same person.  
 When more than two tracked objects (e.g., TB and TC) 
are present in the validation region of TA, similar data 
association rules are applied. In our experiments described 
in Section VIII, we set D1 = 0.8 m/s and D2 = 15° through 
trial and error.  

After the two tracked objects TA and TB have been 
matched, the tracking information is merged. As shown in 
Fig. 9, we select the tracked object TB, which has a larger 
rectangle (blue rectangle) than TA (red rectangle), and 
define an xvyv-coordinate frame on which the yv-axis aligns 
with the heading of TB. Subsequently, a rectangle (the green 
dashed rectangle in Fig. 9) is then generated that encloses 
two rectangles of TA and TB using the position information 
of their vertices. We then estimate the size of the integrated 
object using (1) from the width and length of the new 
rectangle. 

From the centroid position (green star) of the new 
rectangle, the position and velocity of the integrated object 
is estimated using the Kalman filter ((5) and (6)) under the 
assumption that the object is moving at an almost constant 
velocity.  

VIII. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Tracking by Two Mobile Sensor Nodes 
We evaluated our cooperative-tracking method by 

conducting an experiment in a parking environment, as 
shown in Fig. 10. Two mobile sensor nodes tracked a car 
(vehicle #1), a motorcycle (vehicle #2), and two pedestrians 
(persons #1 and #2). Fig. 11 shows the movement paths of  

 
Sensor node #2 

Sensor node #1 

Person #2 

Person #1 

Vehicle #1 

Vehicle #2 

Camera #A 

Camera #B 

 
Figure 11.  Movement paths of sensor nodes and moving objects. 

 
 
the sensor nodes (black dashed lines), vehicles #1 and #2 
(blue and green lines), and persons #1 and #2 (red and black 
lines). The moving speeds of the sensor nodes, car, 
motorcycle, and persons were approximately 1.5, 15, 20, 
and 6 km/h, respectively.  

Fig. 12 (a) shows the results of the position and size 
estimated using hierarchical cooperative tracking. We plot 
the estimated rectangles every 1 s (10 scans). Fig. 12 (b) 
shows the results of our previous centralized cooperative- 
tracking method. For comparison, individual tracking by 
each sensor node was also conducted. The tracking results 
for sensor nodes #1 and #2 are shown in Figs. 13 (a) and (b), 
respectively.  

The estimated sizes of the car (vehicle #1) using 
cooperative and individual tracking are shown in Figs. 14 
and 15, respectively. In these figures, red and blue lines 
indicate the estimated length and width, respectively. Two 
dashed lines indicate the true length and width of the car. 

In individual tracking (Figs. 13 and 15), each sensor 
node partially tracks moving objects because the objects 
leave the sensing area of the sensor nodes and are blocked 
by parked cars. In contrast, in cooperative tracking, they 
always track their moving objects (Figs. 12 and 14) because 
the two sensor nodes share tracking data. It is clear from 
these figures that cooperative tracking provides better 
tracking accuracy than individual tracking.  
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 (a) Hierarchical method 

 

 
(b) Centralized method 

 
Figure 12.  Estimated track and size of moving objects using cooperative 
tracking. 
 
 

As described in Section VI, when new moving objects 
appear in the sensing area of the sensor node, our tracker 
uses 9 scans (0.9 s) for the track initiation and begins to 
track the new objects from the 10th scan (1 s). In the 9 scans 
for the track initiation, vehicles #1 and #2 (car and 
motorcycle) have already moved over a long distance. This 
is the reason why the estimated tracks of vehicles #1 and #2 
in Figs. 12 and 13 are shorter than their true movement 
paths shown in Fig. 11. 

As shown in Fig. 14, the car (vehicle #1) size estimated 
using hierarchical and centralized cooperative-tracking 
methods are different. In the experiment, sensor node #2 
detected vehicle #1 after 3 scans and began to track it from 
the 13th scan, whereas sensor node #1 detected vehicle #1 
after 20 scans and began to track it from the 30th scan. In 
hierarchical cooperative tracking, each sensor node locally 
tracks the vehicle. The track initiation for vehicle #1 was 
executed in 3–13 scans by sensor node #2 and in 20–30 
scans by sensor node #1. Therefore, the server received 
tracking information from sensor node #1 at the 30th scan 
and merged the information together.  

On the other hand, with centralized cooperative tracking, 
the central server estimates the size based on the moving 
measurements sent from the sensor nodes. Therefore, the 
track initiation for vehicle #1 was executed in only 3–13 
scans by sensor node #2. When the server received the 
moving measurements from sensor node #1 at the 20th scan,  

 
(a) Sensor node #1 

 

 
(b) Sensor node #2 

 
Figure 13.  Estimated track and size of moving objects using individual 
tracking. 
 
 

  
(a) Hierarchical method                        (b) Centralized method 

 
Figure 14.  Estimated size of car (vehicle #1) using cooperative tracking. 

 
 

   
(a) Sensor node #1                                (b) Sensor node #2 

 
Figure 15.  Estimated size of car (vehicle #1) using individual tracking. 
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(a) Hierarchical method 

 

 
(b) Centralized method 

 
Figure 16.  Processing time of sensor nodes and central server. 

 
 

TABLE II.  PROCESSING TIME OF SENSOR NODES AND CENTRAL SERVER 
 

(a) HIERARCHICAL METHOD 
 Max. [ms] Min. [ms] Mean [ms] 

Central server 2.3 0.1 0.8 
Sensor node #1 47.9 36.8 41.7 
Sensor node #2 49.8 39.3 43.0 

 
(b) CENTRALIZED METHOD 

 Max. [ms] Min. [ms] Mean [ms] 
Central server 23.8 2.2 7.9 

Sensor node #1 41.5 36.1 38.2 
Sensor node #2 45.7 36.5 38.8 

 
 

it quickly merged the measurements with those from sensor 
node #2 and estimated the car size. As a result, compared to 
centralized cooperative tracking, hierarchical cooperative 
tracking causes a slight time lag when merging the 
information from both sensor nodes. This is why the car 
(vehicle #1) sizes estimated using hierarchical and 
centralized cooperative tracking are different. 

In our experimental system, the model of the computers 
used in the sensor nodes and central server is Iiyama 
15X7100-i7-VGB with a 2.8 GHz Intel core i7-4810MQ 
processor, and the operating system used is Microsoft 
Windows 7 Professional. We examined the processing time 
of the sensor nodes and the central server in the experiment.  

The results for hierarchical and centralized cooperative 
tracking are shown in Fig.16 and Table II. In centralized 
cooperative tracking, the central server estimates the poses 
and sizes of moving objects based on the moving-object  

  
(a) Hierarchical method 

 

 
(b) Centralized method 

 
Figure 17.  Data volume sent to central server from sensor nodes. 

 
 
TABLE III.  DATA VOLUME SENT TO CENTRAL SERVER FROM SENSOR 
NODES 
 

(a) HIERARCHICAL METHOD 
 Max. [byte] Min. [byte] Mean [byte] 

Sensor node #1 204 24 30 
Sensor node #2 240 24 28 

 
(b) CENTRALIZED METHOD 

 Max. [byte] Min. [byte] Mean [byte] 
Sensor node #1 3628 104 477 
Sensor node #2 4952 136 540 

 
 

measurements sent from the sensor nodes. On the contrary, 
in hierarchical cooperative tracking, the sensor nodes 
estimate the poses and sizes of moving objects, and the 
central server merges their estimates. Therefore, compared 
with centralized cooperative tracking, hierarchical 
cooperative tracking reduces the computational burden on 
the central server. 

Fig. 17 and Table III show the data volume sent to the 
central server from the sensor nodes in the experiment. Fig. 
18 and Table IV also show the communication time required 
from the sensor nodes to the central server. In centralized 
cooperative tracking, sensor nodes upload the information 
shown in Table I (a), whereas in hierarchical cooperative 
tracking, sensor nodes upload the information shown in 
Table I (b), to the central server. It is clear from these 
figures and tables that the data volume and communication 
time for hierarchical cooperative tracking is less than that 
for centralized cooperative tracking. 
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(a) Hierarchical method 

 

 
(b) Centralized method 

 
Figure 18.  Communication time required from sensor nodes to central 
server. 

 
 

TABLE IV.  COMMUNICATION TIME FROM SENSOR NODES TO CENTRAL 
SERVER 
 

(a) HIERARCHICAL METHOD 
 Max. [ms] Min. [ms] Mean [ms] 

Sensor node #1 81.2 17.5 30.1 
Sensor node #2 77.9 17.2 28.1 

 
(b) CENTRALIZED METHOD 

 Max. [ms] Min. [ms] Mean [ms] 
Sensor node #1 175.9 17.7 33.8 
Sensor node #2 180.3 18.0 34.0 

 
 

B. Tracking by Two Static Sensor Nodes 
We evaluated the accuracy of the pose and size estimates 

when using our cooperative-tracking method. For this 
purpose, we used Zhao’s data set [34]. As shown in Fig. 19 
(a), two laser scanners (SICK LMS200) were set at the 
height of 0.4 m in an intersection environment, and laser 
measurements were captured every 26 ms. We assumed that 
their measurements were captured by two sensor nodes and 
evaluated the tracking performance. The experimental 
duration was 108 s (4154 scans). Fig. 19 (b) shows the 
tracking result at 770 scans, where the green rectangles 
indicate the estimated size, and the light blue lines indicate 
the estimated heading. Red and blue dots indicate the laser 
measurements captured by sensors #1 and #2, respectively. 

We examined the tracking performance for objects 
moving in the central area of the intersection (blue area in 
Fig. 20) where the sensing areas of the two sensor nodes 
overlapped.  

Tables V and VI show the performance of the pose and 
size estimates when using cooperative and individual 
tracking, respectively. ‘Actual objects’ in tables were 
identified from camera images. ‘Correct estimate of pose’ 
means that the tracking method could always maintain a 
correct pose estimate of objects moving in the central area 
of the intersection, whereas ‘incorrect estimate of pose’ 
means that they failed in estimating the position. As 
described in Section V, the estimated size of the tracked 
object is used to classify the object as a person or a vehicle 
(i.e., car, motorcycle, and bicycle). If the estimated size in 
length or width is larger than 0.8 m, the object is determined 
to be a vehicle. If it is less than 0.8 m, the object is 
determined to be a person. In Tables V and VI, ‘Correct  

 
 

 

 (a) Experimental environment 
 

 

(b) Tracking result 
 

Figure 19.  Photo of the experimental environment and tracking result after 
770 scans. 
 
 

 
 

Figure 20.  Overlapping sensing areas of two sensor nodes. 
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TABLE V.  THE NUMBER OF OBJECTS WHOSE POSE (OR SIZE) ARE 
ESTIMATED CORRECTLY AND INCORRECTLY USING COOPERATIVE 
TRACKING 
 

(a) HIERARCHICAL METHOD 

  Correct estimate of 
pose (size) 

Incorrect estimate 
of pose (size) 

 Person 2 (2) 2 (0) 
Actual object Bicycle 20 (20) 3 (0) 
 Car 30 (30) 7 (0) 

 
(b) CENTRALIZED METHOD 

  Correct estimate of 
pose (size) 

Incorrect estimate 
of pose (size) 

 Person 2 (2) 2 (0) 
Actual object Bicycle 23 (21) 0 (2) 

 Car 31 (31) 6 (0) 
 
 

TABLE VI.  THE NUMBER OF OBJECTS WHOSE POSE (OR SIZE) ARE 
ESTIMATED CORRECTLY AND INCORRECTLY USING INDIVIDUAL TRACKING  
 

(a) SENSOR NODE #1 

  Correct estimate of 
pose (size) 

Incorrect estimate of 
pose (size) 

 Person 2 (2) 2 (0) 
Actual object Bicycle 18 (14) 5 (4) 

 Car 26 (26) 11 (0) 
 

(b) SENSOR NODE #2 

  
Correct estimate of 

pose (size) 
Incorrect estimate of 

pose (size) 

Actual object 
Person 2 (2) 2 (0) 
Bicycle 18 (17) 5 (1) 

Car 22 (22) 15 (0) 
 
 

 
 

Figure 21.  Movement paths of cars. 
 

 
estimate of size’ means that the tracking method could 
always maintain a correct classification of objects moving in 
the central area of the intersection, whereas ‘Incorrect 
estimate of size’ means that they failed in the classification. 

It is clear from these tables that cooperative tracking 
provides better tracking accuracy than individual tracking. 
The performance of the pose and size estimates when using 
hierarchical cooperative tracking is slightly inferior to that 
of the centralized method. The pose estimation of cars using 
cooperative and individual tracking deteriorates when 
compared with people and bicycles. When cars moved along 
the paths shown by the dashed lines in Fig. 21, sensor nodes 

captured laser measurements related only to the right side of 
each car. In addition, they only partially captured laser 
measurements of cars due to occlusions. These cause 
incorrect pose estimation of cars.   

IX. CONCLUSION AND FUTURE WORK 
This paper presented a laser-based cooperative-tracking 

method for moving objects (vehicles and people) using 
multiple mobile sensor nodes located in the vicinity of the 
objects. In cooperative tracking, nearby sensor nodes share 
the tracking information. Hence, they enable the constant 
tracking of objects that may be invisible or partially visible 
to an individual sensor node. 

We treated people and vehicles as rigid bodies and 
estimated both the poses and sizes of the objects. In a 
crowded environment, a vehicle can be occluded or 
rendered partially visible to each sensor node. To correctly 
estimate the vehicle’s size, the laser measurements captured 
by sensor nodes have to be merged well. Therefore, we 
presented hierarchical cooperative-tracking method. Each 
sensor node obtained measurements related to the moving 
objects (moving measurements) and locally estimated the 
poses and sizes of the moving objects from the moving 
measurements using a Bayesian filter. It then sent these 
estimates to the central server, which then merged the pose 
and size estimates.  

The performance of the hierarchical cooperative-
tracking method was evaluated from two experimental 
results in outdoor environments by comparing it with a 
previous centralized method. The hierarchical method 
provided slightly inferior tracking accuracy than the 
centralized method. However, it had a smaller data volume 
sent to the central server from sensor nodes and a smaller 
computational cost in the central server than the centralized 
method. Therefore, the hierarchical method makes the 
tracking system scalable and robust. 

In this paper, single-layer laser scanners were applied to 
sense the surrounding environment using mobile sensor 
nodes. Multilayer laser scanners can also capture height 
information from objects, and thus enable more accurate 
recognition of the surrounding environment than single-
layer laser scanners. Current research is directed to the 
design of cooperative tracking by multiple sensor nodes 
equipped with multilayer laser scanners. To achieve 
cooperative tracking, the sensor nodes should always 
identify their own poses with a high degree of accuracy in a 
world coordinate frame. In this paper, we applied 
localization methods using dead reckoning and RTK-GPS. 
However, in city-canyon environments, the performance of 
localization using GPS deteriorates due to GPS multipath 
errors, diffraction problems and so on. To address this 
problem, we will embed a cooperative-localization method 
into our tracking system. 
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