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Abstract—State-of-the-art fault detection methods are equipment Within the building sector, degraded or poorly-maintained

and domain specific and non-comprehensive. As a result, the equipment currently accounts for 15 to 30 % of energy

applicability of these methods in different domains is very  consumption in commercial buildings [4]. Approximately 50

limited and they can achieve significant levels of performace  to 67 9 of air conditioners (residential and commercial) are

Eﬁr:::mt%inklzgm?r?gi%eﬁtiwii d?mea”;oa“d th‘? ab'f“tyltto .rt';:m'c either improperly charged or have airflow issues [5] and [6].
9 9 urce of a faull With & 4.1ty heating, ventilating, air conditioning, and reéigtion

comprehensive knowledge of the system and its surroundings .
This paper presents a comprehensive semantic framework for (HVAC&R) systems contribute to 1.5 to 2.5 % of total

fault detection and diagnostics (FDD) in systems simulativand ~ commercial building consumption [7]. Much of this energy

control. Our proposed methodology entails of implementatin of ~ Usage could be prevented by utilizing automated condition-
the knowledge bases for FDD purposes through the utilizatio ~ based maintenance. During the last decade, considerable re

of ontologies and offers improved functionalities of suchystem  search has focused on the development of FDD methods for

through inference-based reasoning to derive knowledge abbthe HVAC&R systems. This work has been driven, in part, by the

irregularities in the operation. We exercise the proposed pproach historically less-than-optimal operation of many statéhe-

by working step by step through the setup and solution of a  grt HYAC systems. Yet, in spite of recent advances in bugdin

fault detection and diagnostics problem for a small-scale éating,  gimylation, automation and control (see the arrangement of

ventilating and air-conditioning (HVAC) system. ontologies, rules, reasoning and simulation software gufg
Keywords-Fault Detection and Diagnostics; Heating Ventilating 1), automatic methods for FDD of building systems remain

and Air-Conditioning (HVAC); Inference-Based, Knowledge Base, at a relatively immature stage of development. As a result,

Ontologies; Reasoning. we require more advanced FDD techniques that leverage

the untapped capabilities of building automation integglat

with methods in artificial intelligence and semantic moadgli

These interdisciplinary FDD systems can benefit from urtiiz
This paper is concerned with the development of ontol-knowledge repositories for storing automation/simulatiata

ogy and rule-based modeling abstractions, procedures, arand the inference-based reasoning techniques to obtain add

prototype software for automated fault detection and diagn tional higher information, such as sensors location, egeint

tic (FDD) analysis of condition-based maintenance in multi Service area.

domain systems (e.g., buildings, health monitoring, power

plants and aviation systems). The article builds upon ouB. Objectives and Scope

previous work [1]-[3] on behavior modeling and analysis of

engineering systems with semantic web technologies.

I. INTRODUCTION

This paper describes a framework for knowledge-based
fault detection and diagnostics in multi-domain systemigh w
a focus on applications to HVAC Systems. In a departure from
A. Problem Statement state-of-the-art developments in ontology engineeringictv
place a priority on the development and testing of ontolegie
alone, our objective is to create a modeling framework that
gupports: (1) concurrent data-driven development of domai
models, ontologies and rules, and (2) inference-base@meas
Hg for detection of faults and their causes. The proposed
ethod employs the Web Ontology Language (OWL) [8] and
ena API [9] for the development of semantic models (ontolo-
gies and rules) spanning the building, mechanical equipmen
sensor, fault detection and diagnostics (FDD), occupadt an
weather domains. Support for spatial reasoning amongemtit
8s provided at the meta-domain level.

Automated fault detection and diagnostic (FDD) tech-
nigues provide a means of detecting unwanted condition
(i.e., “faults”) in systems by recognizing deviations imake
time or recorded data values from expected values, and th
diagnosing the causes leading to the faults. Automated fau
detection and diagnostic (FDD) techniques provide mechaj
nisms for condition-based maintenance of engineeredragste
(e.g., buildings, health monitoring, power plants and tema
systems). Proper implementation of FDD can enable proecti
identification and remediation of faults before they becom
significantly deleterious to the safety, security, or effiay of
the operating system. The remainder of this paper proceeds as follows: Section

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/intelligent_systems/

394
Ontologies and Models FDD Rules and Reasoner
Classes ( FDD RU|GS‘ )
( Object Properties ) ( Reasoner )
( Datatype Properties ) - - - :
J Engineering Simulation
define - System Structure
Instances -] (BIM Models)

(Modelica Models)

( Property Value ):_ N {

System Behavior ]

Figure 1. Architecture of engineering simulations coneédb semantic models (ontologies and rules) reasonersdtir detection and diagnostic analysis
(Adapted from Delgoshaei, Austin and Pertzborn [2]).

Il describes related work in FDD. Section Ill contains a  Rule-based strategies are one example of qualitative model
brief introduction to the uses of the Semantic Web and itdbased FDD methods. Rules can be based on first principles or
enabling technologies. The proposed methodology is destri they can be inferred from historical experiments, but imeit
in Section IV. Sections V and VI cover: (1) the meta-domaincase they represent expert qualitative knowledge that nelypu
and domain-specific ontologies and rules, respectively, anquantitative representation could model. The first diaoos
(2) a step-by-step procedure for detection and analysis axpert systems for technical fault diagnosis were develope
system faults. Section VIl presents a case study problem that MIT by Scherer and White [10]. Since then, diagnostic
involves detection of faults in a simple building — proceskir systems have evolved from rule-based to model-based and
for reasoning across multiple domains are presented. l¥inal expert systems approaches. Semantic models offer a maans fo
the conclusions of this study and a discussion of next s&eps the representation of distributed and explicit knowledgd a
presented in Section VIII. provide ways through inference-based rules to derive witpli
knowledge. Berners-Lee and co-workers [11] points out to
the benefits of ontology usage for knowledge representation
II. RELATED WORK and utilizing high-level reasoning capabilities in the aamef
agent-based control solutions. Exploitation of semanicd
Recent advances in building automation technologies proentologies in the area of agent-based engineering systems
vide a means for sensing and collecting the data needed févas become one of the hot topics recently. The main reason
software applications to automatically detect and diagnosbehind this trend is the success and promotion of Semantic
faults in buildings. During the past few decades a varietyWeb technologies to enable languages that are both machine
of FDD techniques have been developed in different doand human processable. Semantic Web-based applicatioas ha
mains, including model-based, rule-based, knowledgedhas been developed in the areas of health care [12], biology, [13]
and simulation-based approaches. Katipamula and Brambld{4], and transportation [15]. In the area of fault detettio
summarizes FDD research for HVAC systems [4]. Their workand diagnostics, Batic [16] has developed an ontology<base
also describes different fundamental FDD methods under thfault detection and diagnosis systems and tested it on rairpo
two main categories of model-based and empirical (historyentologies to detect the high level irregularities in thegtion
based) approaches. The major difference is in the nature aff airport heating/cooling plants. Also, Schumann [17]Hig
the knowledge used to formulate the diagnostics. Modeddbas lights the potential impacts of artificial intelligence teiques
diagnostics evaluate residuals between actual systemuneeas such as ontologies on tackling the challenges in obtaining a
ments anda priori models (e.g., first principle models). Data- unified diagnosis framework. The benefit of this approach is
driven empirical strategies, on the other hand, do not requi that ontologies are an essential technology guaranteeitsy d
priori models. The models used in model-based methods caand information interoperability in heterogeneous andeota
be quantitative or qualitative. Quantitative models repré  rich environments [18] which is at heart of comprehensidtfa
the requisitea priori knowledge of the system in terms of detection and diagnostic methods.
mathematical equations, typically as explicit descripgiof the
physics underlying system components. Qualitative models 1. THE SEMANTIC WEB
conversely, combine concepts such as descriptive “statesy .
and “rule)s/” into statementspthat are axiologicarlJ instead of - Semariic Models
mathematical, expressing operational correctness oratdsi Semantic models consist of ontologies, graphs of indi-
ity through an axiology, a value system, appropriate to eackiduals (specific instances), and inference-based rulgbén
physical application. As a result, the building system afien  form of if <conditions> then <consequences>. Together,
can be continuously classified as being either faulty or nothese entities and mechanisms allow for the constructiah an
faulty. execution of domain-specific knowledge bases.
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Figure 2. Proposed architecture for: (1) concurrent dateed development of domain models, ontologies and ruled, (2) executable processing of events.

Ontologies An ontology is a formal and explicit representa- Individuals: Individuals are instances of ontology concepts,
tion of the concepts, referred to as “classes” (e.g., cgolin and their purpose is to represent the data in a domain, e.g.,
coil, valve), and their interrelationships in a domain. The

classes may have attributes that are stored as a simple datae Individuals: Valvel, Valvell, Ccoil, Hcoll

type properties” (e.g., coil setpoint). Support for senmant S )

relationships between classes is provided by object ptieger ~ ®  Storing individuals: jHcoil hasValve Valvell¢,

(e.g., a coil has as a valve). For the representation of dmnai

where there are many variations to be represented, but cor@ne common syntax for representing facts about a domain is
mon data properties among those variants, ontology lareguagthe triple structure<subject, predicate, objest

provide support for the organization of similar concept® in

hierarchies, and support for propagation of data and objeghference Rules Inference rules and their associated reason-
properties through hierarchies via inheritance mechami$ie  jng mechanisms provide a way derive new information based
may wish to state, for example, that a cooling coil is a typepn the existing data stored in the ontology in the form of: if

of the class coil. And the class coil is superclass of thesclas

copllng coil. The details of the c_Iasses, data propertied an Logical Rule:
object properties can be summarized as follows:
(?coil rdf:Type coil) (?coil setPoint ?sp)

° Classes Valve, Cooling Coil (?co!l coilTemperature ?cp) equal(?cp,?sp)
9 (?coil hasValve ?valve) -> (?valve isClosed true)

° Datatype properties coilTemperature (double), is- Stored individuals : <Hcoil hasValve Valvell>

Closed (Boolean), coilSetpoint(double) <Ccoil coilTemperature 35>
] <Ccoil coilSetpoint 35>
e Object Property: hasValve Inferred Knowledge: <Valvell isClosed true>
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takes existing facts and rule that covers the setpoint anftesource description framework), RDFS, OWL (web ontology
temperature of a coil to infer that a valve is closed. language) and SPARQL (support for query of RDF graphs).

A key benefit of semantic modeling frameworks is that theThe Jena rule-based inference subsystem is designed to allo

: range of inference engines or reasoners to be plugged into
ontologies and rules are human readable, yet they can also ggna Jena Rules is one such engine
compiled into code that is executable on machines. ' '

real world building environment

IV. METHODOLOGY

—— 1/ b | I
A. Architecture Framework | ¥~ 0 ¢ uL ===
In state-of-the-art development of semantic models, a com- ~ i ,iT_'

- [ -
1

mon strategy is to provide classes and data properties ffor &l -
possible configurations within a domain, as well as linkage t
related domains. For example, in the integrated modelricent
engineering ontologies (IMCE) developed at JPL (Jet Propul L
sion Laboratory) during the 2000-2010 era [19], [20], the I—S—e'ls,ors 1
electrical engineering ontology (i.e., electrical.owfjgorts the 11 \ Bl s i
mechanical engineering ontology (i.e., mechanical.oBtjth

o
©Q

1
1
}
1|
|
1
| Sensors

building data model |4g - - — _3°1S015

the electrical and mechanical engineering ontologies mnpo u
a multitude of foundation ontologies (e.g., analysis.awis- 4F ¢ : =
sion.owl, base.owl, project.owl, time.owl) and make extea

use of multiple inheritance mechanisms in the development [ external software]

of new classes. The result is ontologies containing more tha

two hundred classes, with some classes containing three or f call ¢

four dozen data and object properties. Notions of “simplici — :
in system design” through modularity of semantic modelg.(e. [ fact 1 ][ builtin function ][ fact 2 ] ----- [ fact 3 ]
bundling of ontologies and rules) do not seem to exist.

In a first step toward mitigating these complexities, we -
propose a semantic modeling framework (see Figure 2) that
supports: (1) concurrent data-driven development of domai
models, ontologies and rules, and (2) executable proagssin
of incoming faults. Instead of creating ontologies and then
developing a few rules for validation of model properties,
our goal is to put the development of data, ontologies and
rules on an equal footing. A key advantage of this approach Figure 3. Framework for forward chaining of facts and resolt builtin
is that it forces designers to provide semantic representat functions to new assertions (derived facts).
for data that are needed in decision making, and increases
the likelihood that data not needed for decision making will
be left out. Rules will be developed for verification of domai
properties and processing of faults through reasoning déath
sources, possibly from multiple domains. Implementatién o
the latter goal leads to semantic graphs that will dynaryical
adapt to the consequences of incoming data and events (e.
changing occupant locations and weather events) actingeon t
system.

add new assertion

derived fact 4 to semantic model

Jena Rules employs facts and assertions described in OWL
to infer additional facts from instance data and class d@scr
tions. As illustrated in Figure 3, it also provides suppat f
the development of builtin functions that can link to extdrn

oftware programs and streams of data sensed in the real.worl
or the implementation of the vision implied by Figure 2,
particularly support for spatial and temporal reasonirgg t
latter turns out to be crucially important because, by dé&fau

Our second strategy is to minimize the use of multiple in-OWL only provides builtin datatype support for numbers.(i.e
heritance in the specification of OWL ontologies and, indfea float and double), booleans (i.e., to represent true ane)falsd
explore opportunities for replacing inheritance relasioips  character strings (i.e., string). To combat the lack of supp
by object property relations. In order for the architeckurafor complex data types, such as those needed to represent
framework to be both scalable and adaptable to changingata for spatial and temporal reasoning, we adopt a strategy
external conditions, the ontologies will need to be modularof embedding the relevant data in character strings, aml the
and the rules will need to act both within a domain and acrossesigning builtin functions and external software that can
domains. parse the data into spatialtemporal models, and then make
the reasoning computations that are required.

B. Working with Jena and Jena Rules

Our prototype software implementation makes extensivgs, pata-Driven Approach to Generation of Individuals in
use of Apache Jena and Jena Rules. Apache Jena [9] &mantic Graphs

an open source Java framework for building Semantic Web
and linked data applications. Jena provides APIs (apicat In the proposed framework semantic models are the com-
programming interfaces) for developing code that hand26 R position of ontologies, rules and data.
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Figure 4 illustrates a data-driven approach to the germrati visit a domain data model, and gather a complete description
of individuals in semantic graphs. of the two-dimensional geometry.

developed to evaluate the geometric relationship betwa@s p

Within Jena Rules, families of builtin functions can be
‘ << abstract >> ’

AbstractOntologyModel of spatial entities (e.g., to determine whether or not a fpisin
hosting visi contained within a polygon). Figure 6 shows, for example,
osting visitor . e : . .
Zrextend r the Jena Rule that identifies the room in which a sensor is
visit : placed. An English translation of the rule fragments is as
‘ Jena Semantic l;—---j ' Data Model ’ follows: If (?r) is a room with geometry (?rg) and string
Model . [ representation (?rjts), and (?s) is a sensor with geometry
' (?sg) and string representation (?sjts), then the builtiction
getPointinPolygon(?sjts,?rjts,?t) will determine if teensor
Zfload load %Ioad (point geometry) is inside the room (polygon geometry) and

return the result as a boolean (?t). If (?t) is true, then émsar
is inside the room and a new relationship (?s bld:isinRoom
. , . Lo . ?r) is created. A similar rule would be written to establikb t
Figure 4. Data-driven approach to generation of individual semantic . .
graphs. relationship between sensors and HVAC zones.

[ Jena Rules] [ Ontology J [ XML Data FiIeJ

First, data is imported into Java Object data models using VI. DOMAIN ONTOLOGIES ANDRULES

JAXB, the XML binding for Java. After the ontologies and  The domain-specific ontologies and rules are organized
semantic model creates instances of the relevant OWL ongyrrounding environment ontologies and rules. In Figures 7
tologies by visiting the data model and gathering informmti through 13 we use red rectangles with heavy dashed edges
on the individuals within a particular domain (e.g., buligi  to highlight the classes that participate in the rule chegki
sensor, occupant). Once the data has been transferred to th&q/or the case study problem presented in Section VII. For a
Jena Semantic Model and used to create an ontology instanGg&mplete description of the ontologies used in this study we
the rules are applied. refer the interested reader to Delgoshaei and Austin [23].

V. META-DOMAIN ONTOLOGIES AND RULES A. Engineering Ontologies and Rules

Meta-domain ontologies and rules have universal appli-
cation across domains, and include concepts such as tim&
space, physical units and currency. This study employsapat )
reasoning to determine the relationship of sensor and @ctap
to geometric entities such as rooms and building zones.

The engineering ontologies and rules cover four domains:
buildings, (2) mechanical equipment, (3) sensors, @d (
procedures for fault detection and diagnosis.

Building Ontology and Rules. The prototype building on-
tology and rules (see Figures 7 and 8) provide computational
support for the representation of two-dimensional floarga-
Spatial logic is concerned with regions and their connecometry, modeling relationships between elements of fl@orpl
tivity, allowing one to address issues of the form: what isgeometry and sensors, zones for HVAC control, and building
true, and where? Formal theories for reasoning with space elements such as doors, windows and walls. The latter are
points, lines, and regions — are covered by region connecteiodeled as subclasses of a component that has geometry
calculus [21]. A robust implementation of two-dimensional described by a JTS string.
spatial entities and associated reasoning proceduresuilpd
by the Java Topology Suite (JTS) [22].

A. Spatial Ontology and Rules

Connections to the mechanical equipment and occupancy
domains are achieved through data properties for the bgildi
. . N environment state; see, for example, hasRoomSetpoint and
Spatial Ontology and Rules for Spatial ReasoningFigure  jeoccupied. Object properties record the relationship of a
5 shows an abbreviated representation of our experimental i, o relevant HVAC zones and sensors. Windows have
spatial (geometry) ontology and associated data and objegle poolean data property isOpen to record whether or not a
properties. High-level classes — abstract concepts — ae pryarticular window is open. As we will soon in the case study

vided for entities that represent sin_g_ular geometry (6Ab-, problem, this parameter plays a pivotal role in diagnostiala
stractGeometry) and groups of entities (e.g., Abstract&eo yqis of the causes leading to a fault in mechanical equipment
etryCollection). Specific types of geometry (e.g,, Polygon

MultiPoint) are organized into a hierarchy similar to theala The prototype software implementation has one rule for
implementation in JTS. The high-level class AbstractGetoyne determining the spatial relationship among zones of thilbui
contains a Datatype property, hasGeometry, which stores iag. The rule systematically retrieves the JTS geometry of
string representation of the JTS geometry. For example, theach zone, verifies they are not equal, and then uses the
abbreviated string “POLYGON (( 0 0, 0 5, ... 0 0))” shows builtin function getPointinPolygon() to verify their ge@tnic

the format for pairs of (Xx,y) coordinates defining a two- relationship. As previously noted, these backend comioumst
dimensional polygon. This feature allows a semantic maalel t are handled by the Java Topology Suite software [22].
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[ | Zﬁ 5
MultiPoint MultiPolygon LineRing !

Figure 5. Abbreviated representation of spatial (geomeaintology and associated data and object properties.

Jena Rules

/I Rule to check if a sensor is inside a room ...

[ BuildingRule01: (?r rdf:type bld:Room) (?r bld:hasGeome try ?rg) (?rg geom:hasGeometry ?rjts)
(?s rdfitype sen:Sensor) (?s sen:hasGeometry ?sg) (?sg geo m:hasGeometry ?sjts)
getPointinPolygon(?sjts, ?rjts,?t)
equal(?t, "true""xs:boolean) -> (?s bld:isinRoom ?r)]

Figure 6. Rules to determine the rooms in which sensors hega placed.

Mechanical Equipment Ontology and Rules.Figures 9 and a sensor relative to the environment in which it is embedded.
10 illustrate the concepts (i.e., ontology classes), pt@g®e These objectives are achieved with three classes: Sensor,
(i.e., data and object properties) and rules governing th&easurement, and the external class Geometry.

operation and identification of faults in mechanical system . .

equipment. In practice, datatype property values assmtiat _ SuPPOrt for modeling various types of sensor (e.g., temper-
with the various ontologies will be set from streams of &ture sensor, flow sensor, and CO2 sensor) is provided throug
data either performed by a simulation tool (e.g. Energy,PIusthe definition of specialized sensor classe§ that subckrsso®
Dymola, TRNSYS) [24]-[26], or perhaps from measurements N€ class Measurement ha; data properties to keep t.rack of f[h
taken in a real building, working in conjunction with BACnet current sensor value, the time, and the units associatdd wit
protocols [27] and a co-simulation middleware. the measurement.

: R , , Two sensor rules (see Figures 6 and 12) are supported:

The semantic graph shown in Figure 9 is quite broad1y 1o determine if a sensor reading is beyond the acceptable
covering concepts from chillers and fans to zones. The sco nge, (2) To determine the room in which the sensor is
of our investigation focuses on faults associated with@slv |5cated. The first rule uses the classes Sensor and Measireme

coils and air handling units. Basic rules (see Figure 10) argng associate properties. The second rule uses the classes
provides for: (1) controlling the flow in a valve, (2) deteming  gensor and Geometry.

if a valve is leaky, and (3) identifying situations where the

normal operational status of a valve is false. Thus, we are

able to determine that when a cooling coil valve is faultg th Fault Detection and Diagnostic Ontologies, Rules, and

associated air handling unit is also faulty. Procedures.The fault detection and diagnostic (FDD) ontol-
ogy (see Figure 13) captures the knowledge needed for: (1)
identifying that a fault exists, and (2) systematicallygtiasing

Sensor Ontology and Rules.Figure 11 shows the classes the fault to find the root causes. The main classes in this

and properties in our experimental sensor ontology. Out gogrocess are State, Fault, Hypothesis and Evidence. State is

is to provide computational support for modeling: (1) senso a high-level state representation that has data values, f@see

operation, including when a sensor reading might be outside example, the boolean properties hasExpectedValue and has-

acceptable working range, and (2) determining the locatfon CurrentValu — common to many types of state representation.
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hasComponant

hasGeometry

Sunclass of |
 Subclass of

boolean

Figure 7. Schematic of building ontology classes and ptager

Jena Rules

/I Rule to check if two zones intersect ...

metry ?rlg) (?rlg geom:hasGeometry ?rijts)
(?r2 rdfitype bld:Zone) (?r2 bld:hasGeometry ?r2g) (?r2g g eom:hasGeometry ?r2jts)
notEqual( ?rljts, ?r2jts ) getPointinPolygon( ?rljts, ?r2 jts, ?t)

equal(?t, "true""xs:boolean) -> (?rl bld:intersects ?r2 )]

[ BuildingRule02: (?rl1 rdf:itype bld:Zone) (?rl bld:hasGeo

Figure 8. Rule for Zone Intersect.
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Figure 9. Schematic of equipment ontology classes and piepe

Jena Rules
/I Close the valve when the coil temperature is the same as coi | setpoint.
[ EquipmentRule01: (?coil rdf:type eq:Coil) (?coil eq:has CoilSetpoint ?sp)
(?coil eq:hasCoilTemperature ?cp) equal(?sp,?cp) (?coil eg:hasValve ?valve) ->
(?valve eq:isShutOff “true""xs:boolean) print('valve i s shut’)]
/I If the valve is shut, the temperature of the air that passes through the coil

/I has to be the same. Otherwise, the valve is leaky

[ EquipmentRule02: (?hwv rdfitype eq:Valve) (?hwv eq:isSh utoff "true""xs:boolean)
(?c rdf:type eq:Coil)(?c eqg:hasValve ?hwv) (?c eq:Tad ?tl)
(?c eq:Tas ?t2) notEqual(?t2 ?t1) -> (?hwv eq:isLeaky "true ""xs:boolean)
(?hwv eqg:hasNormalOperationalStatus "false"™"xs:boole an) print(valve is Leaky’) ]

/I If the a valve fails, the AHU fails too ...

[ EquipmentRule03: (?hwv rdfitype eq:Valve) (?AHU eq:hasC oil ?¢) (?c eq:hasValve ?v)
(?v eqg:hasNormalOperationalStatus "false""xs:boolean ) >
printCAHUMalfunction’) (?AHU eq:hasNormalOperational Status “false""xs:boolean)]

Figure 10. Rules for establishing the operational statwssample operations of mechanical equipment.
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Subclass of

hasGeometry

hasMeasurement

fioat

Figure 11. Sensor ontology classes and properties.

Jena Rules

/I Simple rule to check if a sensor is broken ...

[ SensorRule01: (?s rdf:itype sen:Sensor) (?s sen:hasMeasu rement ?m) (?m sen:hasValue ?r)
isOutOfRange(?m ?t) -> (?s sen:isBroken ?t) ]

Figure 12. Rule for Zone Intersect.
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Figure 13. Fault detection and diagnostic ontology classes properties.

Jena Rules
/I General purpose rule for recording when a fault has occurr ed.
[FDDRule01: (?st rdf:type fdd:State) (?st fdd:hasCurrent Value ?csv)
(?st fdd:belongsToFault ?F) (?st fdd:hasExpectedValue ?e sv)
notEqual(?csc,?esv) -> (?F fdd:hasOccured “true™) prin t(*faultoccured’)]

Figure 14. Rule for detecting a faulty state.
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/I Determine romm in which an occupant is located.

[ OccupantRule01: (?r rdf:itype bld:Room) (?0 rdfitype occ:

(?0 occ:hasOccupantGeometry ?0g) (?0g geom:hasGeometry ?

Occupant)
ojts)

(?r bld:hasGeometry ?rg) (?rg geom:hasGeometry ?rjts)

getPointinPolygon(?ojts, ?rjts,?t) equal(?t,

/I When positive values of DTSIndex are greater than 0.3, an o

[ OccupantRule02: (?oc rdfitype occ:Occupant) (?oc occ:ha
(?0oc occ:hasDTSState ?dts)
(?oc occ:isComfortable "false""xs:boolean)
(?dts fdd:hasCurrentValue “false""xs:boolean)]

"true""x
(?r bld:hasOccupant ?0) print(?0,’OccupantisinRoom’,?r

-> print(?oc,’'isComfortable’

s:boolean) ->
2]

ccupant is not comfortable.

sDTSIndex ?v) greaterThan(?v,0.3)
"false"""xs:boolean)

Figure 16. Rule for occupants location and thermal comfort.

] currentValue | hasStateName
State
j .
expectedValue .
' indicates
hasID
‘ Fault ’
j .
isViolated |
' has
] hasHypothesisID v
Hypothesis
T
j isVerified :
| supportedBy
|sVa||d v
Evidence ’
j hasEvidencelD

Figure 15. Flow chart for identification of faults and iddictition and
verification of hypotheses and supporting evidence.

Our experimental FDD ontology also supports DTSState,
subclass of State, designed to represent states assowiétted
dynamic thermal sensation (DTS).

are in conflict. Each fault has a hypothesis that needs to
be supported by evidence. The evaluation procedure works
backwards. Verification of the evidence is a prerequisite to
validating a hypothesis. In an implementation of the praced
data properties indicate whether or not a fault has beefieari
whether or not an hypothesis has been verified, and whether
or not supporting evidence is valid. This procedure is médo

by set of rules shown in Figure 14.

B. Surrounding Environment Ontologies and Rules

The surrounding environment ontologies and rules include
model support for the building occupants and weather phe-
nomena.

Occupant Ontology and Rules.While several studies [28],
[29] have recently identified the importance of including
inhabitants as an integral part of simulation and control of
energy systems and indoor environments, present-day pro-
cedures rely on predetermined occupancy schedules and/or
empirical estimates based on sensors. For fault detectidn a
diagnostic analysis of mechanical equipment in buildings,
solutions are complicated by the strong coupling of human
presence, comfort and behavior, to details of the building
state (e.g., whether or not a window is open) and surrounding
environment (e.g., what side of the building is in the sun).

Figure 16 takes a first step toward the development of
rules for modeling and evaluation of occupant location and
thermal comfort. The occupant ontology (see reference [23]
for details) expands upon the work of Mahdavi and Taheri
[30], and considers four subcategory problems: (1) loca(i®)
actions (e.g., open/close window) (3) attitudes (e.cerrttal
gensatlon) and (4) preferences in terms of temperature and
moisture of the air. Occupant location is modeled as point
geometry in the building.

Figure 15 is a flowchart for fault detection and the identi-Weather Ontology and Rules. Based upon the work of

fication and verification of relevant hypotheses and supuprt

Staroch [31], the weather ontology and rules cover concepts

evidence. The step-by-step procedure for detecting a faultuch as Weather Phenomenon, Weather Report, and Weather
and diagnosing its causes corresponds to a traversal throutate. The weather state is composed of different Weather
the classes State, Fault, Hypothesis and Evidence. A fault phenomenon class holds the physical attributes regartimg t
indicated when the current and expected values of a stat®eather such as the temperature, pressure, solar radiatith
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Figure 17. Plan view of two-room building architecture, sans, and building occupants.

and cloud. Weather data is obtained from current Weather Three rules are responsible for the operation and classifi-
[32], a free and open source API (application programmingation of faults in the mechanical equipment:

interface) that provides access to historical as well aseatir _ .

and future forecast weather data from an online server. A ®  Close the valve when the coil temperature is the same

Weather report can include data about the current weather as coil setpoint.

or a forecast, specified in terms of start time and duration. o |f the valve is shut, the temperature of the air that
For example, a medium range weather report has duration passes through the coil has to be the same. Otherwise,
of more than 3 hours, with a start time of less than 12 the valve is leaky

hours into the future. Weather rules use current temperatur ) )

values to identify a frosty and heat temperature conditibos e Ifthe a valve fails, the AHU fails too.

example, a Frost temperature condition occurs when obServes . easire to evaluate thermal comfort for the occupants
temperature is below 0 C. A Heat temperature condition aceur;

when observed temperature is above 30 C. Similar interval§ through computing the thermal sensation as a function of
P X 8nvironmental factors such as outdoor and indoor temperatu

of temperature range can be defined for cold, below ro0M hd some personal factors such as clothing levels. A dynamic

temperature (at least 10 C and less than 20 C), and so fort%odel to compute thermal sensation (DTS) index to was

introduced by Chen and co-workers [33]. According to thdrma
VII. CASE STUDY PROBLEM sensation scale suggested by ASHRAE [34], an acceptable
range for occupancy comfort is the intenjat0.3,0.3]. By
comparing the current and expected values in a DTS state, the
ules in Figure 14 will infer the existence of a faulty staad
then systematically examine the evidence associated aih e
g%épothesis to find a root cause.

To examine capabilities of the framework for knowledge-
based fault detection and diagnostic analysis, this gsectio
presents a case study test problem where faults in HVA
equipment are triggered by occupant discomfort in a condi
tioned space. The case study shows how heterogeneous d
and knowledge from a variety of sources and domains can be .
integrated into a single semantic graph, how ontologies anf Shapshot of Semantic Graph Model Assembly
rules can work together to detect the existence of a fault, Figure 18 shows a snapshot of the building, equipment,
and then diagnose the causes by systematically consideriRgnsor, weather, and FDD ontologies integrated together, a

hypotheses and the supporting evidence. populated with system data. The semantic graph model con-
tains instances of ontologies (individuals), relatiopstamong
A. Problem Description individuals (often spanning domains), and data valuescasso

. , i ated with various individuals.
Figure 17 is a plan view of the case study problem setup,

Consisting a small two-room bu||d|ng architecture, threa-s _From a fault detection and diagnostiCS Standpoint, the main
sors and three building occupants. Not shown is the mechianicPoints to note are as follows:

equipment responsible for conditioning the room tempeeatu
and achieving acceptable levels of occupant comfort. The
mechanical equipment consists of an air handling unit (AHU) e Room 1 has window, a temperature sensor (Sensor
The AHU has a coil (i.e., for heating and cooling). The water 001), and a carbon dioxide sensor (Sensor 002). HVAC
temperature that flows to the coil is managed by a valve. services are provided to Room 1 by air handling unit

Occupant 1 is located in Room 1.
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Figure 18. Snapshot of fully assembled semantic graph maddhel data values will be computed and filled by the rules.

TABLE . Instances of states, hypotheses, and evidencedtmtifying the cause for abnormal occupant thermal comfalte.

Class Individual Description
State DTSState 1 | The DTS index in betweefi-0.3, 0.3].
Fault TCFault 1 The DTS index lies outside the intervgt0.3, 0.3] when the aihandling unit is operating.
Evidence 1 | The CO2 sensor reading is above the normal range the andhinat ghe window is open.
Evidence Evidence 2 | The outdoor temperature is greater than room setpoint.
Evidence 3 | A sensor’s reading is outside the range that indicates theosés broken.
Evidence 4 | A component is AHU is malfunctioning that results in an alnak operation of AHU.
Hypothesis 1| Warm outside air is leaking into the room through an open wine> Supported by Evidence 1 and Evidence 2.
Hypothesis | Hypothesis 2| The serving air-handling unit has abnormal operation. Supported by Evidence 3.
Hypothesis 3| The room sensor that provides feed-back to AHU reachingaitget setpoint is broken> Supported by Evidence 4.
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Jena Rules
/I Evidence Rule 01: A window is open base on CO02 concentratio n in the room.
J s e
[ EvidenceRule01: (?cs rdf:itype sen:CO2Sensor) (?cs bld:i sInRoom ?room)
(?r bld:hasWindow ?w)(?cs bld:hasReading ?m) lessThan(?m ,600)
greaterThan(?m,400) (?e fdd:hasEvidencelD ?n) equal("1" “"xs:integer,?n) ->
(?w building:isOpen "true""xs:boolean) (?e fdd:isTrue " true""xs:boolean) ]
/I Evidence Rule 02: Outside temperature is warmer than the s etpoint.
J s e
[ EvidenceRule02: (?r rdf:itype bld:Room) (?r bld:hasSetpo int ?sp)
(?t rdf:itype we:Temperature) (?t we:hasTemperatureValue ?tv)
greaterThan(?tv,?sp) equal("2""xs:integer,?n) (?e rdf ‘type fdd:Evidence)
(?e fdd:hasEvidencelD ?n) -> (?e fdd:isTrue "true""xs:bo olean) ]

/I Evidence Rule 03: Temperature sensor in a room is broken.
J s e

[EvidenceRule03: (?ts rdfitype sen:TemperatureSensor) ( ?ts bld:isinRoom ?room)
(?ts bld:isBroken ?t) equal(?t, “true""xs:boolean) equa I("3""xs:integer,?n)
(?e rdf:itype fdd:Evidence)
(?e fdd:hasEvidencelD ?n ->(?e fdd:isTrue "true""xs:boo lean) ]

/I Evidence Rule 04: Malfunction is in the Air Handling Unit.
I s e

[EvidenceRule04: (?AHU rdf:itype eq:AHU) (?v eq:hasNormal OperationalStatus "false""xs:boolean)
equal(?t, "true""xs:boolean) equal("4""xs:integer,? n)
(?e rdf:itype fdd:Evidence)-> (?e fdd:isTrue "true""xs:b oolean) ]
/I FDD Rule 02: Indicate when thermal comfort in a conditione d room has expected value.
1
[FDDRule02: (?AHU rdf:itype eq:AHU)(?AHU eq:servesRoom ?r )(?r bld:hasOccupant ?oc)
(?0c occ:hasDTSState ?dts) (?AHU eq:status ?s)
equal(?s "Operating") -> print(Expected DTS’,?0c)(?dts fdd:hasExpectedValue "true""xs:boolean)]

Figure 19. Fault detection diagnostic rules for operatibra dieating coil and for checking evidence 3 and evidence 4.

AHU 001. AHU 001 has a coil (Coil 001); Coil 001 C. Test Problem Scenario and Hypothesis Evaluation Proce-
has a valve (Valve 001). dure

e The datatype property for AHUOO1 “normal Opera- The test problem scenario_assumes_ t_hat the numerical value
tion” is set to false. This setting is based on the systen?f occupant thermal comfort in a C(_)ndltloned room has fallen
data and the result of equipment rules 01 through outside the acceptable range. This is detected by FDD Rule 01
being triggered. With this scenario in place, any one of three hypothesegdcoul

potentially be true. To correctly identify the correct hytpesis,

e The setpoint temperature for Room 1 is 24 C, but thethe system requires to reason among the facts and identify th
current temperature reading for Sensor 001 is 57 C. evidence existing in different domains,

e OccupantRule02 sets the “isComfortable” datatype ® The outdoor temperature is higher than the setpoint

property for Occupantl to “false” as the result of a _(weather) and the window in the room is open (build-
DTSindex value of 4. ing, sensor, weather).
e  Occupant 1 has dynamic thermal sensation (DTS) state ® ' n€ air-handling unit is malfunctioning (mechanical
DTSState 1. DTSState 1 indicates a thermal comfort equipment),
fault (TCFaultl), which will be diagnosed by looking ¢  The room sensor providing feed-back to the air-
at three hypotheses and their supporting evidence. handling unit to reach its target setpoint is broken
(sensor).

e The relationship between Hypotheses 1 through 3 and

supporting evidence is shown along the bottom ofas a result, this task will require comprehensive reasonirey
Figure 18. Users may query the semantic graph to fingnyltiple domains and identifying the supporting evidence t
the correct hypotheses and valid supporting evidencahe most probable hypothesis. To achieve this, we used the
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proposed framework and implemented ontologies for weatheand that Occupantl has a DTSIndex of 4. A fault occurs when
building, occupant, sensor and equipment domains. The orthere is a discrepancy between the current and expecteesvalu
tologies are populated with data. However, in general thisd of comfort (see F7 and F9), as indicated by the values of
will be obtained from simulations or real buildings. current and expected values of DTSState.

D. Synthesis of Multi-domain Rules Fault Diagnostics: By systematically examining hypotheses
Ijjmd supporting evidence, the second pathway diagnoses the
reauses of a fault. For the scenario outlined in Figure 2@, thi
procedure is covered by rules 5 through 8:

Table | describes the instances for key concepts of FD
ontology as they apply to the test case problem, and explai
details of the individuals for FDD ontology. For the case
study problem, the chain of dependency relationships betwe

Rule 05: Use EquipmentRule0l1 (see Figure 10) to
hypotheses and supporting evidence is as follows: ¢ auip ( g )

determine if a valve is shut.
e Hypothesis 1 is that warm outside air is leaking into 4  Rule 06: Use EquipmentRule02 (see Figure 10) to

the room through an open window. Evaluation of this determine if the coil has failed.
hypothesis is supported by execution of two evidence _ _
rules, EvidenceRul01 and EvidenceRule02. e Rule 07: Use EquipmentRule03 (see Figure 10) to
) ) ) ) ) ) determine whether or not the air handling unit has
e Hypothesis 2 is that the serving air-handling unit has failed.
abnormal operation. Evaluation of this hypothesis is
supported execution of EvidenceRule03. e Rule 08: If EvidenceRule04 (see Figure 19) evaluates

. , to true then Hypothesis 3 is true.
e Hypothesis 3 states that the room sensor that provides

feedback to AHU reaching its target setpoint is broken.

Supporting evidence is provided by the execution OfThe rule for determining whether or not the valve is shut
EvidenceRule04. takes input values from the Coil001 CoilSetpoint (44) and

CoilTemperature (44) (see F12 and F13), and checks to verify
Figure 19 presents the fault detection diagnostic rules forthat the coil has a valve. In our scenario, the rule output
(1) Operation of a heating coil, (2) Checking evidence 3 andF14) is true, indicating that Valve001 is shut, and hence in
evidence 4, and (3) Detecting when the thermal comfort in &Rule 06 normal operation evaluates to false. A simple check

conditioned room matches its expected value. to verify that the coil belongs to air handling unit AHU001
generates the conclusion that normal operation of the AHU is
E. Multi-domain Rule Evaluation false (see F19). Finally, input from the room occupancy test

d a test to verify that AHUOO1 is connected to Room1, leads

_ _ _ _ n
Figure 20 shows a snapshot of multi-domain evaluation an&) the conclusion Evidence 4 is supported and Hypothesis 3 is

forward chaining of rules. From an evaluation standpolm, t \4jiq  Finally, we note that except for the room occupancy
eight rules can be clustered into two pathways, the f'rStffOCU_information feeding into Rule 08, the fault detection and

ing on fault detection and the second focusing on diagnostigizanosis pathwavs operate independentl
investigation of probable causes, represented as hymsthesl ¢ P yS op P y

supporting evidence.
VIII. CONCLUSIONS ANDFUTURE WORK

Fault Detection: The first pathway identifies the existence of  We have proposed in this paper a knowledge-based frame-
a fault and is covered by rules 1 through 4: work for fault detection and diagnostics. The underlying
) . rocess closely mimics the “thinking process” that humans
e Rule 0.1' Use OccupantRuIte (see Figure 16) tdPollow in identifying and diagnosing the causes of a fault.
determine when an occupant is located in a room. Thus, the steps of gathering data for the participating dosna
e Rule 02: Use FDDRule02 (see Figure 19) to determingpopulating ontologies with individuals, and using rules to
the expected comfort of an occupant. detect and diagnose faults and their causes is easy for lsuman
, to understand and generally applicable to other domaigs, (e.
e Rule 03: Use OccupantRule02 (see Figure 16) t9yijging energy, automotive, health care) for FDD purposes
determine the current comfort of an occupant. Capabilities of the prototype implementation has been ademo
e Rule 04: Use OccupantRule02 (see Figure 16) tostrated by working step by step through the procedure of
compute when a fault has occurred. det?ctlng and diagnosing the source of faults in an HVAC
system.

determine in which room an occupant is located and whether Key advantages of this approach include: (1) it is decoupled
or not the current value of occupant comfort matches thdrom the system simulation, (2) it is comprehensive, and (3)
expected value of comfort. In the snapshot, activation dERu it is scalable. In fact, the process for expanding an apiina

01 determines that: Occupantl is located in Room1. A separato include new domains as they come along is very straight
execution would also determine that Occupant?2 is also éacat forward. The inference-based rules are guaranteed to citeck
in Room1. Activation of Rule 02 is based upon the output ofanytime a changed occurred in a an ontology resulting inteven
Rule 01, state data from the building domain, the relatignsh driven fault detection and diagnostic. Finally, inferesi@sed

of the air handling unit to Room1. In the snapshot trace, theules provide mechanisms in capturing chain effects thistex
output of Rule 02 states that DTSState for Occupantl is true the nature of system failure — for example, if a valve is not
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Building
Domain

Equipment
Domain

____________ .
Rule 05: Valve is shut.

Legend:
F1 = Room hasGeometry F8 = Occpantl hasDTSIndex 4 F15 = Coil001 Tas 62
F2 = Occupant hasGeometry F9 = DTSState currentValue false F16 = Coil001 Tad 57
F3 = Room1 has Occupantl F10 = DTSState indicates DTSFault F17 = Valve001 isShut normalOperation false
F4 = AHUOO1 serves Rooml F11 = Coil001 CoilSetpoint 44 F18 = AHUO0O01 hasCoil Coil001
F5 = AHUOO1 status operating F12 = Coil001 CoilTemperature 44 F19 = AHUOO01 normalOperation false
F6 = Occupantl hasState DTSState F13 = Coil001 hasValve Valve001 F20 = Evidencel isValid true
F7 = DTSState expectedValue true F14 = Valve001 isShut true

Figure 20. Snapshot of multi-domain evaluation and forwardining of rules.

operational, the evidence that AHU is not operating prgperl used to irregularities in building performance, which ardid
also holds true. cators of possible system faults. Moreover, we will invgete
strategies for taking control actions based on recogniaettst

In our prototype implementation, the small two-room bund-Iof the system.

ing model extracted data from a custom “system data mode
currently under development. We expect that a more mature
version of this ontology would extract semantic informatio
from instances of building information models (BIM) such as
the Industry Foundation Class (IFC). Future work will also ;
include deployment in real building systems. We anticipateféom the_NIS‘(I'sl\(/;;g?Edugte Student Measurement Science and
that the proposed methodology will be integrated into bangdd ngineering ( ) Program.

automation systems (BAS) and support investigations where

analytic built-in functions are implemented in the cormlfiti
part of inference-based rules. These functions will penfor
time-history analyses to identify a faulty state for theteys

We anticipate a trend where formal approaches to analysis ar

IX. ACKNOWLEDGMENT

The first author was supported by a fellowship award

REFERENCES
[1] P. Delgoshaei, M.A. Austin, and D. Veronica, “Semantiodéls and

Rule-based Reasoning for Fault Detection and Diagnosfigglica-
tions in Heating, Ventilating and Air Conditioning SystefriEhe Twelth

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/intelligent_systems/

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

International Conference on Systems (ICONS 2017), Aprie22017,
pp. 48-53.

P. Delgoshaei, M. A. Austin and A. Pertzborn, “A Semaritramework
for Modeling and Simulation of Cyber-Physical Systemstétnational
Journal On Advances in Systems and Measurements, vol. 73-4¢.
December 2014, pp. 223-238.

M.A. Austin, P. Delgoshaei and A. Nguyen, “Distributedystem
Behavior Modeling with Ontologies, Rules, and MessageiRgddech-
anisms,” Procedia Computer Science, vol. 44, 2015, pp. 3&+-2015
Conference on Systems Engineering Research. [Online]ilafwe:
http://www.sciencedirect.com/science/article/piB31050915002951

S. Katipamula and M. R. Brambley, “Review Atrticle: Metti®for Fault
Detection, Diagnostics, and Prognostics for Building 8ysA Review,
Part I,” HVAC&R Research, vol. 11, no. 1, 2005, pp. 3-25.

J. A. Siegel and C. P. Wray, “An Evaluation of Superheasédd Refrig-
erant Charge Diagnostics for Residential Cooling SystBisslissions,”
ASHRAE Transactions 108(1), 2002, p. 965.

W. Kim and J. E. Braun, “Impacts of refrigerant charge ancandi-
tioner and heat pump performance,” in Impacts of Refrigef@marge
on Air Conditioner and Heat Pump Performance, July 10-1920f{.
2433-2441.

M. Wiggins and J. Brodrick, “Emerging Technologies: HUAFault
Detection,” ASHRAE Journal, April 2012, pp. 78-80.

OWL:, “Web Ontology Language Overview, W3C Recommeiatat
from February, 2004. For details, see http://www.w3.0RyGwWI-
features/ (Accessed, April 2017).”

Apache Jena, “An Open Source Java Framework for build-
ing Semantic Web and Linked Data Applications, Accessibte a
https://jena.apache.org (Accessed on 12/12/16),” 2016.

W. T. Scherer and C. C. White, A Survey of Expert Systeros f
Equipment Maintenance and Diagnostics. Boston, MA: Serings,
1989, pp. 285-300.

T. Berners-Lee, J. Hendler and O. Lassila, “The Serahteb,”
Scientific American, May 2001, pp. 35-43.

T. Q. Dung and W. Kameyama, Ontology-based InformaEatraction
and Information Retrieval in Health Care Domain, ser. LextNotes
in Computer Science (including subseries Lecture Notes riifiéial
Intelligence and Lecture Notes in Bioinformatics), 20070l.v4654
LNCS, pp. 323-333.

C. Taswell, “DOORS to the Semantic Web and Grid with a FBR
for Biomedical Computing,” IEEE Trans Inf Technol Biomedlv12,
no. 2, 2008, pp. 191-204

P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. &er, D. Hull,
C. Goble, and L. Stein, Applying Semantic Web Services toirBio
formatics: Experiences Gained, Lessons Learnt. Berlindefieerg:
Springer Berlin Heidelberg, 2004, pp. 350-364.

D. Corsar, D. Milan, P. Edwards, and J. D. Nelson, Then$pert
Disruption Ontology. Lecture Notes in Computer Sciencd, 9867,
Springer, 2015, pp. 329-336.

M. Batic, N. Tomasevic and S. Vranes, “Ontology-basadIfDetection
and Diagnosis System Querying and Reasoning ExamplesCla |
DDM 2015 : 17th International Conference on Knowledge Digcy
and Data Mining, vol. 2, no. 1. International Science Indexustrial
and Manufacturing Engineering, 2015.

S. Schumann, J. Hayes, P. Pompey and O. Verscheureptatola Fault
Identification for Smart Buildings,” in 2011 AAAI Workshop/\(S-11-
07), 2011.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

409

M. Merdan, “Knowledge-based Multi-Agent ArchitecturApplied in
the Assembly Domain,” Ph.D. Dissertation, Vienna Uniugrsif Tech-
nology, 2009.

T. Bayer, D. Dvorak, S. Friedenthal, S. Jenkins, C. Lin
and S. Mandutianu, “Foundational Concepts for Building
System Models,” in SEWG MBSE Training Module 3, see

http://nen.nasa.gov/web/se/mbse/documents, Calforimstitute of

Technology, CA, USA, 2012.

D.A. Wagner, M.B. Bennett R. Karban, N. Rouquette, Skies and
M.o Ingham, “An Ontology for State Analysis: FormalizingettMap-
ping to SysML,” in Proceedings of 2012 IEEE Aerospace Casnifee,
Big Sky, Montana, March 2012.

D.A. Randell, Z. Cui, and A.G. Cohn, “A Spatial Logic feak on
Regions and Connectivity,” 1994, Division of Atrtificial kitigence,
School of Computer Studies, Leeds University.

Java Topology Suite (JTS). See http://www.vividsimos.com/jts/ (Ac-
cessed August 4, 2017).

P. Delgoshaei, and M.A. Austin, “Framework for KnowigdBased
Fault Detection and Diagnostics in Multi-Domain Systempplcation

to HVAC Systems,” Institute for Systems Research, Unitersi Mary-
land, College Park, MD 20742, USA, Tech. Rep. 2017-4, Novamb
2017.

D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. BuhY¥,J. Huang,
C.O. Pedersen, R.K. Strand, R.J. Liesen, D.E. Fisher, Mitte \&nd
J. Glazer, “EnergyPlus: Creating a New-Generation BujdiEnergy
Simulation Program,” Energy and Buildings, vol. 33, no. 802, pp.
319 — 331, Special Issu¢BUILDING } SIMULATION’99.

S.A. Klein, W.A. Beckman, et al., 1994, TRNSYS: A Tramsi Simula-
tion Program, Engineering Experiment Station Report 38kiitversity
of Wisconsin, Madison.

“TRNSYS: The Transient Energy System Simulation To&ee:
http://www.trnsys.com/ (Accessed September 8, 2017)1720

2004, BACnet: A Data Communication Protocol for Buildi Automa-
tion and Control Networks, ANSI/ASHRAE 135.

Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei and T. Wg
“Occupancy-Driven Energy Management for Smart Buildingtdkoa-
tion,” in Proceedings of the 2nd ACM Workshop on EmbeddedsBen
Systems for Energy-Efficiency in Building (BuildSys 201@urich,
Switzerland, November 3-5 2010, pp. 1-6.

J. Lu, T.Sookoor, V. Srinivasan, G. Gao, B. Holben, JanRovic, E.
Field and K. Whitehouse, “The Smart Thermostat: Using Oaoap
Sensors to Save Energy in Homes,” in Proceedings of the 8t AC
Conference on Embedded Networked Sensor Systems (Sen%§§ 20
Zurich, Switzerland, November 3-5 2010, pp. 211-224.

A. Mahdavi and M. Taheri, “An Ontology for Building Motaring,”
Journal of Building Performance Simulation, October 20416, 1-10.

P. Staroch, “A Weather Ontology for Predictive Contriol Smart
Homes,” 2013, M.S. Thesis in Software Engineering and iver
Computing, Vienna University of Technology.

Weather API. See https://openweathermap.org/apcédsed September
14, 2017).

X. Chen, and Q. Wang, and J. Srebric, “Occupant Feedbaskd
Model Predictive Control for Thermal Comfort and Energy i@yita-
tion: A Chamber Experimental Evaluation,” Applied Energg). 164,
2016, pp. 341 — 351.

2010, ASHRAE Standard 552010 Thermal Environmentahditions
for Human Occupancy, American Society of Heating, Refatjag and
Air-Conditioning Engineers.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



