
447

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Platform As A Service Development Cost & Security

Aspen Olmsted

College of Charleston

Department of Computer Science, Charleston, SC 29401

e-mail: olmsteda@cofc.edu

Abstract— In this paper, we investigate the problem of

development costs in Platform-as-a-Service (PaaS) cloud-based

systems. We develop a set of tools to analyze the size of code

executed to support features in the PaaS. In this research, we

specifically focus on stable, open source platforms to ensure as

much of an equivalent offering from each platform with a

distinction made between PaaS and Platform Infrastructure as

a Service (PIaaS). The focus of the paper is on the features both

functional and non-functional provided to the developer that is

not provided by traditional network operating systems. On the

functional side, we look at features provided by the platform to

assist the developer in programming tasks the software must do.

On the non-functional side, we look at security defenses the

platform provides to protect the end users data. Our study

demonstrates a savings cost of nearly thirteen million dollars to

develop the application services provided by a typical PaaS.

Keywords-PaaS; cloud computing; CRM

I. INTRODUCTION

In this work, we investigate the problem of estimating the
cost of developer services provided by a platform-as-a-service
(PaaS) cloud-based system. In traditional client-server
architectures, developers expend considerable effort
developing functionality that is not specific to the business
domain where the application will operate in. This work builds
on our earlier work on development effort estimation [1].

Cloud computing has traditionally been made up of three

broad categories of offerings:

• Software as a Service (SaaS) – This category

includes applications that run in a Web browser and

do not require any local software or hardware

besides a Web browser and an Internet connection.

Examples of software in this category include

Google Docs [2] and Microsoft Office 365 [3].

• Infrastructure as a Service (IaaS) – This category

includes virtualization software that allows an

operating system to be run in the cloud. Typically,

the user will pick a hardware configuration and

install an operating system into the virtual hardware

configuration. IaaS was designed to free the user

from the purchase of hardware and allow for easy

hardware upgrades. Examples of IaaS offerings are

Amazon EC2 [4] and Rackspace [5].

• Platform-as-a-Service (PaaS) – This category

includes pre-built components that a developer can

use when developing a cloud application. The goal

of PaaS is to allow the developer to focus on the

development of a solution for the business functions

rather than software functions that span many

application domains. A good example of PaaS is

force.com where the developer is provided many of

the essential parts of an application out of the box.

Over the years, software development has matured to

allow the developer to spend a larger percentage of their

development time on the business problem instead of the

infrastructure for the application. In the early days of

programming, each instruction the programmer wrote

matched an instruction in the hardware. The late 1980s and

90s were dominated by 3rd generation languages such as C,

PASCAL, and ADA where each instruction written by the

developer was compiled to many machine instructions. The

first decade and a half, of the 21st century, have been

dominated by bytecode compiled languages which have

runtime engines that execute the code on different hardware

platforms. The Java Runtime Engine (JRE) and the

Microsoft .NET Runtime Engine (.NET) are the most

dominant examples of the bytecode engines that free the

developer from thinking about the underlying hardware.

PaaS is the next evolution in freeing up the developers' times,

so they can focus on the problem they are trying to solve

instead of the technical plumbing required for the solution.

The organization of the paper is as follows. Section II

describes the related work and the limitations of current

methods. In Section III, we document typical services

provided. Section IV analyzes different PaaS providers and

the services they provide. Section V explores the alternative

costs to develop the individual services. We give a motivating

example in Section VI. In Section VII, we look at software

security defenses as provided by the different platforms. We

conclude and discuss future work in Section VIII.

II. RELATED WORK

The NIST (National Institute of Standards) definition of
"cloud computing" defines PaaS as “the capability provided
to the consumer [...] to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or
control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has
control over the deployed applications and possibly
configuration settings for the application-hosting
environment” [6]. In the same document, they define SaaS
and IaaS similarly to our definitions in the introduction.

Kolb and Wirtz [7] investigate ways to construct
applications for the cloud that are portable across different

448

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PaaS providers. Their work assumes lower level services
compared to the offerings than our work. We are less
interested in maintenance costs to move platforms as we are
in startup costs for greenfield Engineering. In software
engineering, greenfield engineering occurs when you are
starting from scratch or are re-engineering your product on a
different architectural paradigm in which you cannot port
your current code base.

Baliyan and Kumar [8] explore how services provided by
a PaaS provider affect the software development lifecycle
(SDLC). Again, in their work, they consider just a few
services. In our work, we think about many more services.
The larger perspective on service would have an even greater
impact on their work.

In our model of services, end users can create new objects,
new forms for data entry and new reports to display the data
in both detail and aggregate form as well as new dashboards.
Ng [9] looks at PaaS as a model for deploying end-user
programming through a model of Tasks. The programming
model provided by the platforms in our study has
demonstrated success in allowing end users to extend the
application.

Boehm, Clark, Horowitz, Westland, Madachy, and Selby
[10] developed an algorithm to estimate effort for a software
engineering project. The algorithm uses variables that
represent a programmer's experience and programming
expertise required in the project. For this study, we used the
“nominal” value for each variable to get an average cost.
Madachy [11] provides an online tool to calculate the effort
including maintenance over the life of the software.

III. PAAS SERVICES

With PaaS, the developer does not need to be concerned

with the operating system on which the specified platform

runs. For example, the platform will provide a service to save

a file, and the developer does not need to worry about what

operating system the platform is running. We group the

service offerings into two distinct categories:

A. Infrastructure Services

• Node Configuration – This service allows the end

user to modify configuration settings to allow the

system to scale to handle larger or smaller

workloads by adding or removing nodes, storage or

Central Processing Units (CPUs). This service

allows the implementation to start with minimal

hardware to save costs during start-up. Additional

resources can then be added as the application user

base grows without the need to re-engineer the

application.

• Load Balancing – This service allows the end user

to setup multiple systems to ensure uptime when

loads are higher, or network partitions occur. Each

system is an exact replica, and the load will be

distributed across the replicas. The application will

need to be designed properly for replication. The

system must also not store resources in a specific

replica as each request could be sent to a different

replica. Both persisted data and session state should

be stored in the database server.

• Logging – The logging service allows an audit log

to be enabled to help diagnose application and

platform issues. The service should allow the log to

be toggled on and off so that space is not wasted

when an audit is not needed. Ideally, there will be

different granularity of audits available, such as

errors, warnings, and information.

• Database – The database service allows the

application data to persist across executions of the

application. Traditionally, this has been a relational

database such as Oracle [12] or MySQL [13] but

may also be a NoSQL [14] database that is better at

distribution. The database service should provide:

create, read, update and delete (CRUD) services and

potentially transaction support.

• Scheduled Jobs – This service allows bulk

operations to be scheduled at specific and recurring

intervals. Example jobs include sending out bulk

emails, updating de-normalized database fields and

communicating with external systems. Often, this

service is delivered through a cronjob interface

where jobs can be scheduled down to the specific

second of each hour.

B. Application Services

• Authentication – The authentication service

provides a way to define users and allow

authentication in the application being developed.

Ideally, this would provide both the administrative

tool for creating users and groups along with the

user interface with which the end users interact to

authenticate themselves. The service should

provide multifactor authentication which

incorporates information the end user knows along

with someplace they are or something they have.

• Authorization – The authorization service provides

a way to define which users can see different data,

forms, and reports in the application. The

authorization service should provide an

administrative tool to assign access permission to

both users and groups to objects created in the

system. The objects should be both standard objects

and custom objects defined by the developer and

end users.

• Rule Engine – A rule engine allows for

customization of correctness rules at

implementation time. Business rules control

449

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

organization policies that may change often and

should not be coded in the software solution.

• Workflow – This service provides for several

discrete application steps to be sequenced together.

Often, a human interaction (approval) is part of the

workflow.

• Bulk Email – Bulk email allows for email marketing

with proper adherence to email spam rules [15].

Bulk email may be used for attracting or recruiting

new customers in addition to confirming

transactions with current customers.

• Importing – An importing feature allows the end

user to import new instances of objects into the

platform. Ideally, this would allow data from

several different data formats including Comma-

Separated Values (CSV) and Microsoft Excel

workbook. The tool should provide a validation step

so that imported data does not corrupt the current

database.

• Exporting – An exporting feature allows the end

user to dump instances of the objects into an external

file such as a comma-separated value (CSV) or

Microsoft Excel workbook. The tool should allow

a query by example (QBE) where novice users can

visually build export queries and see the results in

the application.

• Activity tracking – Activity tracking allows for

linking of phone calls, emails, meetings, and notes

to objects persisted by the application. Activities

may originate in an external system with an

interface to the new system that is being built. An

example could be a Web browser extension that

allows emails in a Web email application to be

linked to a related activity to an object in the new

system.

• Object Customization – Object customization

allows end users to add additional data to be

collected in the application without changing the

source code. Most enterprise systems require some

form of customization either through integration to

external systems or enhancements to specific

features in the current system. Object customization

allows the end user to make the changes without

needing the software to be modified at each

individual enterprise.

• New Object Creation – New object creation services

allow end users to define new objects to store data

that is collected in the application. Like with object

customization, new object creation can be used to

customize the software without changing the source

code. Often, the new objects need to relate to a

current object in the system. These related objects

should seamlessly be displayed in the user interface.

• Detail View – The detail view renders the object

details based on the configured layout. The detail

view also renders one-to-many related data. The

related data is often rendered in tabs.

• Edit View – The edit view renders an editable object

screen based on the configured layout. The edit view

is used to modify one specific object and potentially

related objects.

• Data Update – The data update service provides a

CRUD interface to a backend data store. The data

update service abstracts the vendor specifics of the

back-end data store services and allows business

rule hooks to fire on the CRUD operations.

TABLE I. APPLICATION SERVICES BY PLATFORM

Service

S
al

es
fo

rc
e

Z
o

h
o

S
u

g
ar

C
R

M

S
u

it
eC

R
M

v
T

ig
er

H
er

o
k

u

Authentication ✓ ✓ ✓ ✓ ✓ ✓

Authorization ✓ ✓ ✓ ✓ ✓

Rule Engine ✓

✓

Workflow ✓ ✓ ✓ ✓ ✓

Bulk Email ✓ ✓ ✓ ✓ ✓

Activity tracking ✓ ✓ ✓ ✓ ✓

Object Audit ✓

✓ ✓ ✓

Importing ✓ ✓ ✓ ✓ ✓

Exporting ✓ ✓ ✓ ✓ ✓

Object Customization ✓ ✓ ✓ ✓ ✓

New Object Creation ✓ ✓ ✓ ✓ ✓

User Interface

Customization

✓ ✓ ✓ ✓ ✓

Multi-Select Fields ✓ ✓ ✓ ✓ ✓

Report Display ✓ ✓ ✓ ✓ ✓

Report Creation ✓ ✓ ✓ ✓ ✓

Dashboard Display ✓ ✓ ✓ ✓ ✓

Dashboard Creation ✓ ✓ ✓ ✓ ✓

Web-services ✓ ✓ ✓ ✓ ✓

Mobile Application ✓ ✓ ✓

✓

Partner Portal ✓

Customer Portal ✓

✓ ✓ ✓

Anonymous Sites ✓

✓

Price per user/month $25 $35 $65 N/A N/A N/A

450

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• User Interface Customization – The user interface

customization service allows for forms in the

application to be modified by the end users without

changing the source code. This is often required to

allow implementations to vary slightly by collecting

custom data.

• Multi-Select Fields – Multi-select fields are a way

to simplify end-user customizations. A multi-select

field represents an easy way to store a one-to-many

relationship of data without the need of adding new

objects. Multi-select fields also save on the number

of tuples stored in the system. Often, cloud

providers charge for data storage based on the

number of tuples [16].

• Report Display – The report display service allows

execution of pre-defined reporting queries. The

report display should prompt the user with

replaceable run-time parameters and be exportable

to PDF and spreadsheet formats. Ideally, there

would be a scheduling service through which the

report parameters would be based on the run date.

For example, a start date parameter should be

replaced based on an offset from the date the report

is run.

• Report Creation – The report writer service allows

both the developer and the end users to define

management information system (MIS) reports that

can be run and customized by the changing of run-

time parameters. Typically, this includes both

tabular reports that group rows of records with

aggregate calculations and cross-tab reports that

aggregate values based on the intersection of the

row and column.

• Dashboard Display – The dashboard display service

renders dashboard charts and allows them to be

refreshed automatically. The dashboard is a

graphical display of a metric the organization wants

to measure.

• Dashboard Creation – Dashboards allow both the

developer and the end users to define graphical

dashboards that allow visualization of data stored in

the application. Dashboards typically are bar or pie

charts and are updated several times an hour.

• Mobile Application – A mobile application allows

end users to perform CRUD operations on objects

stored in the application without the need of creating

custom mobile applications. Similar to the detail

and edit view services above, any object in the

system should be visible and editable.

• Partner Portal – A partner portal is a service to

provide pages, forms, reports and dashboards to

authenticated users with a lower training level.

Typically, these are users that use the application

infrequently compared to an employee.

• Customer Portal – A customer portal is a service to

provide custom pages and forms to authenticated

users with no training required. The service is

intended for customer self-service sites where the

customer can identify themselves and perform

transactions.

• Anonymous Sites – The anonymous site service

allows development of pages and forms to

unauthenticated users. This is typically the part of

an organizations website where customers do not

need to identify themselves.

IV. PLATFORM ANALYSIS

In this study, we analyze several PaaS providers including

Salesforce [17], Zoho CRM [18], SugarCRM [19],

SuiteCRM [20], vTiger [21] and Heroku [22]. We chose the

first five platforms because they each provide many of the

services we discussed in detail. The last platform was added

to show the difference between PaaS and PIaaS offerings.

Each of the first five PaaS offerings was developed as a

customer relationship management (CRM) system. The

CRM vertical market software space requires integration

with enterprise resource planning (ERP) systems. This

integration requirement led the CRM vendors to develop their

products as platforms instead of simply vertical market

products. TABLE II shows the distributed services offered by

each platform. Note the load balancing service is marked for

the three PHP [23] platforms since the state of the session is

stored in the database. Having the session state stored in the

database allows additional business tier servers to be added

to the configuration in the cloud. Though only Heroku has a

graphical user interface (GUI) to manage node configuration,

the PHP solutions can be hosted by an IaaS provider that

provides the feature. TABLE II shows the application services

offered by each platform. The final row shows a cost per user

TABLE II. DISTRIBUTED SERVICES BY PLATFORM

Service

S
al

es
fo

rc
e

Z
o

h
o

S
u

g
ar

C
R

M

S
u

it
eC

R
M

v
T

ig
er

H
er

o
k

u

Node

Configuration

✓

Load

Balancing

✓ ✓ ✓

Logging ✓

✓ ✓ ✓ ✓

Database ✓ ✓ ✓ ✓ ✓ ✓

Scheduled

Jobs

✓ ✓ ✓ ✓ ✓

451

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

if the PaaS provider is providing both the infrastructure and

application services.

V. EFFORT STUDY

To calculate the effort savings provided by the different

PaaS service providers, we calculated the source lines of code

(SLOC) in a stable platform release. For this study, we

choose to use the SuiteCRM [20] system as our model.

SuiteCRM is open source software, so we had access to the

source code developed to provide the platform.

SuiteCRM is written in the PHP programming language

using a MySQL database as its persistence layer. Using the

debugger extension xDebug [24], we are able to trace all lines

of code executed on the server when interacting with the

application. xDebug plugs into the server-side execution of

the code and creates a trace file with these lines of code. We

developed tooling to parse the trace file and store the data in

a MySQL database based on the function executed.

Due to the nature of Web application architectures, a

single round trip from the Web browser to the Web server

will often execute two distinct sets of functionalities. For

example, when a user enters their login credentials, the POST

to the server authenticates the user and then executes the code

to display the homepage of dashboards. Our tooling allows a

trace to add to or subtract from the functional cost. In the

earlier example, we trace the combined functionality and then

subtract the individual functionality of building the home

screen.

For the study, we wanted the cost for local application

software engineers in the Charleston, SC area. We recognize

the cost for software developers changes from region to

region but have an applied local example helps us present the

work. The Bureau of Labor Statics [25] estimated the average

cost for an application software engineer is $96,200/year.

Hadzima [26] estimates the cost of an employee’s benefits

and taxes at between 25% and 40% of base salary. On top of

the salary cost, the employer must pay for rent for an office

space, equipment, recruitment, training, etc. For our study,

we are estimating the hourly cost of $71.50 for an application

programmer’s time. In TABLE III, we show the estimated

cost to pay an application programmer in the Charleston, SC

area to redevelop the functionality provided by the service.

For the study, we choose a specific platform that provided us

with the source code so we could put a developer cost to the

different services provided by PAAS providers. We analyzed

SuiteCRM and looked at the source lines of code (SLOC).

SuiteCRM stores the service source code in module folders

on the file systems. We counted the executable lines of code

and compared to the executed lines of code from the trace.

Each trace represented a slightly higher number of lines of

code because of shared libraries. We felt it was not

appropriate to count all the shared lines of code per service,

but we also felt it was not appropriate to ignore them

completely. We decided to take the average between the two-

line counts. We plugged the average number into the

Constructive Cost Model (COCOMO) II formula [27] with

our local application programmer cost of $71.50 per hour.

The fifth column in TABLE III shows the cost per service

and the total cost of all services. We eliminated a few

services from the study as the source code was not available.

Note the table does not show the cost of the infrastructure

services. The infrastructure services can be provided by an

IaaS provider if the development is done to leverage the

services.

VI. MOTIVATING EXAMPLE

Imagine a software company wants to offer a new

software solution to medium-sized entertainment venues

such as local theaters, museum or minor league sporting

attractions. Typically, the development stakeholders hold a

tremendous amount of knowledge about the application

domain they want to develop a solution for, but may not have

either the knowledge or resources to develop the entire

application architecture to deploy their application to the

cloud. In fact, we would argue that they should hire

programmers that can focus development on the domain-

specific problems. In this example, the domain-specific

problems include selling tickets from a limited inventory.

The inventory may be assigned seats, general admission seats

TABLE III. COST PER SERVICES

Service SLOC Trace Average CoCoMoII

Authentication/

Authorization

1156 1437 1297 $ 590,131

Workflow 954 1146 1050 $ 467,789

Bulk Email 702 1054 878 $ 384,246

Activity tracking 1178 1302 1240 $ 561,674

Object Audit 656 873 765 $ 330,225

Importing 1654 1857 1756 $ 823,478

Exporting 945 1246 1096 $ 490,375

Object

Customization

2164 2874 2519 $ 1,224,557

New Object

Design

1474 1826 1650 $ 768,981

Detail View 291 464 378 $ 152,095

Edit View 1828 464 1146 $ 515,031

Data Updates 656 989 823 $ 357,860

User Interface

Customization

2073 2482 2278 $ 1,096,353

Multi-Select Fields 402 512 457 $ 187,395

Report Display 1912 2356 2134 $ 1,020,384

Report Creation 2957 3345 3151 $ 1,566,362

Dashboard Display 1342 1672 1507 $ 696,016

Dashboard

Creation

1874 2198 2036 $ 968,972

Web-services 986 1822 1404 $ 643,884

Total

 $ 12,845,808

452

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or some combination. There is also often a great deal of

Management Information Systems (MIS) reports that are

standard for the industry. These reports must be specified,

developed and tested by the development team along with the

software functionality for the data entry functions.

By leveraging a platform, the developers are able to spend

their programming energy focused on the domain specific

logic instead of application code that is standard across all

business applications. This will reduce the costs, risks and

the time to market.

VII. PLATFORM SECURITY

When a software application is built a set of functional

requirements and non-functional requirements are normally

created to help the developers to understand the expectations

of the software. The functional requirements specify what

the software must, and the non-functional requirements

specify what must be true for the lifecycle of the software and

the data created by the application. Most of our study to this

point has focused on the functional requirements. Non-

functional requirements tend to fall into three main

categories:

• Performance and Concurrency – Non-functional

requirements in this category specify how

quickly the software must respond or how many

simultaneous users the system must be able to

support. A great example of this type of non-

functional requirement is seen when looking at

the construction of the healthcare.gov website in

the United States [28]. The healthcare.gov

website was developed to allow citizens of the

United States to purchase individual health care

through an online exchange. The system had a

non-functional requirement of fifty thousand

concurrent patrons. During the first week of the

launch, the system was unusable because the

non-functional requirement was not sufficient

for the usage of two hundred and fifty thousand

users.

• Data Correctness Constraints – Non-functional

requirements in the data correctness constraint

category include all the traditional relational

database constraints including unique tuple

identifiers, foreign key relationships and

attribute domain values. A good example of this

type of constraint from our motivating example

above would be that every discounted ticket

must be linked to a valid customer.

• Security – Non-functional security requirements

tend to be less specific. We have briefly touched

on authentication and authorization in our work

above. Beyond those categories, almost every

software application has a non-stated non-

functional requirement that the software should

not allow a malicious user to use the software in

an unintended fashion.

Some of the service offerings compared in TABLE IV help

with the first category of non-functional requirements.

Specifically, the load balancing service is designed to allow

the implementers to add additional server nodes to scale up

the application to support more concurrent users.

For the broad category of non-functional requirement, we

called security; we want to think about several different

vulnerabilities and how a platform helps us to minimize or

eliminate that vulnerability. We will think about the

vulnerabilities in three categories:

• Injection Vulnerabilities – Injection

vulnerabilities include attacks where either the

malicious user can inject code into an

application's page, or the malicious user is able

to inject additional or altered database

commands into a current database query.

• Forgery vulnerabilities – Forgery vulnerabilities

allow an application to use the credentials the

current operating user to gain access to an

external resource.

• Redirection Vulnerabilities – Redirection

vulnerabilities allow a malicious user to modify

the URL that an application goes to after an

action. This modification will often allow the

malicious user to leverage the other two types of

vulnerabilities.

A. Platform Injection Attacks

There are two types of injection attacks that a platform

should protect an application from Cross-Site Scripting

(XSS) and SQL injection. Cloud-based applications

dynamically generate the user interface code (HTML,

JavaScript, and CSS) that is rendered in a web browser. This

is done through the cloud platform’s server-side

programming language. The application will read data from

the data store; parameters are passed in the request for the

page and session state information is used to decide what

code is placed into the user interface.

XSS is an injection vulnerability that exists when a

malicious user can insert unauthorized JavaScript, HTML or

other active content into an application’s user interface page.

When an operator views the page, the malicious code

executes and affects or attacks the operator. For example, a

malicious script can hijack the operator’s session, submit

unauthorized transactions as the operator, steal confidential

information or simply deface the user interface of the

application.

XSS attacks occur when operator input is reflected back

in the user interface of an application page. This vulnerability

stems from the poor separation between the code context and

the user data. This poor separation allows the user input to

be executed as code. There are three different types of XSS

attacks that vary in the method in which the malicious

payload is injected into the application and subsequently

processed by the application.

453

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Stored XSS – This type of XSS attack occurs

when the malicious input is permanently stored

in the clouds data store and the code is reflected

back to the user in a vulnerable application user

interface page. A simple example where this

type of attack often occurs in an application that

displays a directory listing that shows users on

the system. Any data stored in a user profile is

stored in the cloud database and reflected back

in the user interface listing.

• Reflected XSS – This type of XSS attack occurs

when the malicious input is sent to a server and

reflected back to the user on the response page.

With this type of attack, the malicious user needs

to convince the operator to click a hyperlink that

has the malicious input connected to the link as

a parameter. An example of a reflected XSS

attack would be a hyperlink with JavaScript code

in the parameter that attempts a Cross-Site

Request Forgery (CSRF) to the hosted

application.

• DOM-based XSS – This type of XSS attack

occurs when a malicious payload is executed as

a result of modifying the web page’s document

object model (DOM) in the operator’s browser.

The original application page is not modified,

but the client-side code executes in a different

way because of the changes in the DOM. In this

case, the attack is done client side completely

and not in the cloud. Many security techniques

cannot detect this type of attack if the malicious

input doesn’t reach the cloud.

The second category of injection attack the platform

should assist the developer in defending against is SQL

injection. With SQL injection, a dynamically built database

query is modified based on the input parameters of the

operator to either expose private data or modify current data.

Often, SQL injection attacks that modify data are a

combination of both injection attack categories. The data

being modified includes XSS code that will be rendered back

to future users of the application.

B. Platform Injection Defence

When the server-side programming code merges either

data from the database, a request parameter or a session

variable, it needs to escape the variable, so any malicious

code is no longer executable. There are three different types

of user interface code that are vulnerable to injection attacks:

• HTML – The HTML represents the structure of

the user interface page. This is the main area

where merge fields are inserted by the server-

side code.

• CSS – The CSS represents the style of the user

interface page. It is infrequent that merge fields

are inserted into the CSS, but it is possible and

often an overlooked vulnerability.

• JavaScript – The JavaScript represent the client-

side executable code. Again, it is infrequent that

merge fields are inserted into the JavaScript, but

it is also possible and also an overlooked

vulnerability.

The defense for the XSS vulnerabilities in all three

contexts is to encode the merge field so that malicious code

is not executed. This follows the standard security mantra of

“trust no-one.” Do not trust parameters from the operator, do

not trust data from the data store and do not trust variables

from the session state. TABLE IV shows a comparison of the

XSS encoding defenses provided by the platforms analyzed

in our study. The first row of the table is for platforms that

will allow all HTML to be encoded automatically. This is

probably the best solution as it is not left to the programmer

to remember not to trust the users. Unfortunately, sometimes

the programmer needs to deal with the data directly, and

automatic encoding causes issues. The second row from

TABLE IV shows the platforms that allow the automatic

encoding to be turned off on individual forms. The last two

rows of TABLE IV show the programmatic functionality

provided by the platform to the programmer. Programmable

HTML encoding is a function in the library the developer

must call and use the sanitized results returned from the

function. Programmable JavaScript encoding is a function in

the library the developer must call whenever a merge field is

assigned to a JavaScript variable. This ensures that the

malicious user did not inject additional JavaScript after the

variable value.

The vulnerability with SQL injection stems from the

developer programmatically building up of a SQL command

by concatenating strings. The merge fields are typical values

inserted between single quotes in the string. The platform

defenses for the SQL injection attempt to sanitize the values

appended to the string command. TABLE V shows the SQL

injection defenses provided by the platforms in our study.

The first defense in the study allows the programmer to

encode the single quotes so that the merge field cannot turn a

single value into a second command. The second defense in

TABLE IV. XSS ENCODING DEFENCES BY PLATFORM

Encoding Defense

S
al

es
fo

rc
e

Z
o

h
o

S
u

g
ar

C
R

M

S
u

it
eC

R
M

v
T

ig
er

H
er

o
k

u

Automatic HTML ✓ ✓

Disable Automatic ✓

Programmable

HTML

✓

✓ ✓ ✓

Programmable

JavaScript

✓

454

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V is a method that allows the merge field to be bound

to a specific data type. This second method provides greater

flexibility and protection. The last two defenses included in

TABLE V stem from the legacy of the data store. If the data

store is a traditional relational database in the cloud, there are

vulnerabilities carried forward to the cloud. New solutions for

cloud applications can protect against these vulnerabilities.

Traditional relational databases allowed command execution

on the server through the database engine. At implementation

time, all databases could have this feature turned off, but the

“No Command Execution” defense means the cloud provider

removed this vulnerability. The final defense in TABLE V is

if the cloud provider only provides an object-relational

management (ORM) interface for data manipulation. This

protects the systems by not allowing SQL injection attacks to

modify the date.

C. Platform Redirection Vulnerabilities and Defence

Applications built in the cloud often follow a model-

view-controller (MVC) design pattern. MVC allows your

application to separate the user interface, the data that is

persisted in the data store and the flow control of the

application. We have already discussed security

vulnerabilities in the user interface and the data store. With

cloud architectures, an application’s controller will often base

the navigation in the application on a merge field from the

user's request, session state or a database value. As seen with

the user interface and database vulnerabilities, this can lead

to problems.

In the best-case scenario, a malicious user can use the

open redirect to open a page with a movie or cartoon on it. In

the worst case, the malicious user can open a page that has an

XSS or CSRF attack on it. There are three major defenses for

open redirect attacks:

• Hardcode the URL – This defense limits the

flexibility of the application by insisting that the

programmer hardcode every URL in the

controller.

• Local Only – This defense limits the flexibility

by only allowing redirects to the same host and

application.

• Whitelist – This defense requires the

organization to build a list of acceptable URLs

to redirect to.

Unfortunately, TABLE V shows the limited platform

support for these three defenses. Only the Zoho CRM has

any support, and it is because there is no programmatic access

on the server side. With the Zoho CRM, custom objects

follow the same flow for inserts, saves, deletes and

cancellation. This lack of support leaves the programmers to

implement the architecture strategy chosen for the product.

Platform providers could make this easier by implementing a

platform URL whitelist per application or by limiting the

location for the redirects to local URLs only.

D. Platform Forgery Vulnerabilities and Defence

Modern web browsers allow the end user to have many

tabs open in a single web-browser with cookies shared among

browser tabs. This leads to a vulnerability called CSRF. As

an example, imagine we have logged into a bank portal in one

tab of my web browser. Typically, a website will write a

cookie to identify the session on the server so future requests

from my web-browser will not need to authenticate myself.

If a malicious piece of code is running in another tab on the

same browser, it can send a request to the bank website using

the same cookie and gain access to my financial data. This

example tries to make it clear that malicious code can gain

access to data that should not be available to the malicious

user, and CSRF allows the malicious user access to do just

this. There are many less nefarious examples where the

CSRF is attacking the same application and gaining access to

or modifying data, not on the current user interface. Figure 1

shows a sequence diagram where malicious code gains access

to an application called yourapp.com. In the scenario, a valid

operator named Fred opens a web-browser tab to visit a

TABLE V. SQL INJECTION DEFENCES BY PLATFORM

Defense

S
al

es
fo

rc
e

Z
o

h
o

S
u

g
ar

C
R

M

S
u

it
eC

R
M

v
T

ig
er

H
er

o
k

u

Single Quote

Encoding

✓

✓ ✓ ✓

Bind Variables ✓ ✓

No Command

Execution

✓ ✓

✓

No Modifiable

Statements

✓

TABLE VI. REDIRECT DEFENCES BY PLATFORM

Defense

S
al

es
fo

rc
e

Z
o

h
o

S
u

g
ar

C
R

M

S
u

it
eC

R
M

v
T

ig
er

H
er

o
k

u

Hardcoded flow

✓

Local Only

Whitelist

Figure 1.CSRF Attack

455

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

website named alumni.com. Alumni.com has an XSS

injection where an image has a CSRF attack in the link for

the image. When Fred clicks on the image, the malicious

code uses his validated credentials on yourapp.com to gain

access to private data.

There are two main defenses against CSRF, and both of

the defenses require server-side validation of the request,

allowing an even stronger defense.

• Server Side CSFR Tokens – In this defense the

server generates a token per response. If the

token is not returned with the follow-up request,

then the request is considered a forgery and

rejected.

• Refer Check – A standard header in the HTTP

protocol is the REFER value. The refer value

gives the URL of the page where the current

request came from.

In Figure 2 we see a sequence diagram that modifies the

earlier scenario to include a server-side CSFR token. The

original request returns a token that needs to be included in

the follow-up request. Typically, this is a hidden form field,

so when the form has submitted the value of the tag is

included in the HTTP post. If the HTML form code is

returned by the server in one tab and the user toggles to

another tab to visit another website, this tab will not have

access to the one-time token.

TABLE VII shows the two types of CSRF defenses as

implemented by the different platforms. As we saw with the

open re-direct defenses, much more work can be done by the

PaaS providers to make it easier for the application

developers to focus on the business problem they are trying

to solve. None of the providers apply both protections which

would increase the protections for the applications with little

work on the developer.

E. Platform Clickjacking Vulnerabilities and Defence

Clickjacking is an application vulnerability used by

attackers to fool valid users into thinking that they are

interacting with one object while they are actually interacting

with a different object altogether. In a clickjacking-injected

user interface, the malicious user shows content to the user

while another form is on top of the content with a transparent

layer. When interacting with the clickjacking user interface,

the operators think they are clicking buttons corresponding to

the bottom layer, while in reality, they are interacting with

buttons on the hidden form on top. There are two common

attacks that utilize clickjacking:

• Cursorjacking – This attack tricks operators into

enabling the webcam and microphone on their

machine through the Flash runtime engine.

• Lifejacking – This attack involves sharing or liking

links on Facebook.

A common defense used to prevent clickjacking is called

frame-busting. Frame-busting code is included on every page

that stops a malicious user from loading your application in

an iFrame. If the code detects the page is loaded in a frame,

it will prevent the page from loading.

Another clickjacking defense is to use a relatively new

HTTP header called X-FRAME-OPTIONS. This header is

supported in all the latest web-browser version. The header

defends the page in a similar way to the frame-busting code.

The X-FRAME-OPTIONS header can be set to one of three

values:

• DENY – This value does not allow the page from

loading in a frame.

• SAMEORIGIN – This value allows the page to load

in a frame only if the origin is the same as the

content.

• ALLOW-FROM – This value allows the page to

load in a frame only from a specific URL.

TABLE VIII shows the clickjacking defenses by each of the

PaaS providers in our study. As we have seen with the past

few attack defenses, the service providers have a long way to

go to defend the platforms properly.

TABLE VII. CSRF DEFENCES BY PLATFORM

Defense

S
al

es
fo

rc
e

Z
o

h
o

S
u

g
ar

C
R

M

S
u

it
eC

R
M

v
T

ig
er

H
er

o
k

u

Server Side CSFR

Tokens

✓ ✓ ✓

Refer Check

Figure 2.CSRF Defense

TABLE VIII. CLICKJACKING DEFENCES BY PLATFORM

Defense

S
al

es
fo

rc
e

Z
o

h
o

S
u

g
ar

C
R

M

S
u

it
eC

R
M

v
T

ig
er

H
er

o
k

u

Frame-busting ✓

X-FRAME-

OPTION

✓

456

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. CONCLUSION

In this paper, we analyzed the programming effort

required to reproduce services provided by a cloud PaaS

provider. Our solution utilizes two methods to estimate the

number of lines of code required for a service: SLOC and an

execution trace. We utilize an average of the two methods to

apply the COCOMO II costing algorithm. Our study

demonstrates removing the need to develop the application

services provided by the PaaS providers leads to a cost

savings of nearly thirteen million dollars.

We also looked at non-functional services provided by the

platform. In some cases, the platforms provided significant

non-functional services; but in other cases, the platforms

could do a much better job of providing the necessary

protection.

In this research, we focused on application services

provided by a PaaS, and future work needs to study the

infrastructure services costs and the application development

knowledge required to leverage the provided distribution

services.

IX. ACKNOWLEDGEMENTS

We would also like to thank Kaitlyn Fulford who assisted

on the earlier work this research has built upon.

REFERENCES

[1] A. Olmsted, "Platform As A Service Effort Reduction," in

CLOUD COMPUTING 2017 : The Eighth International

Conference on Cloud Computing, GRIDs, and

Virtualization, Athens, Greece, 2017.

[2] Google, "About Google Docs," 2017. [Online]. Available:

https://www.google.com/docs/about/. [Accessed 10 Feb.

2017].

[3] Microsoft, "Office products," 2017. [Online]. Available:

https://products.office.com/en-us/products. [Accessed 10

Feb. 2017].

[4] Amazon Web Services, Inc, "Amazon Elastic Compute

Cloud - Virtual Server Hosting," 2017. [Online]. Available:

https://aws.amazon.com/ec2/. [Accessed 10 Feb. 2017].

[5] Rackspace, "Rackspace.com - Rackspace® Managed

Cloud," 2017. [Online]. Available:

https://www.rackspace.com/. [Accessed 10 Feb. 2017].

[6] P. Mell and P. Grance, "The NIST Definition of Cloud," 09

2011. [Online]. Available:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpubli

cation800-145.pdf. [Accessed 07 Sep. 2016].

[7] S. Kolb and G. Wirtz, "Portability in Platform as a Service,"

in 2014 IEEE 8th International Symposium on Service

Oriented System Engineering, Oxford, United Kingdom,

2014.

[8] N. Baliyan and S. Kumar, "Towards Software Engineering

Paradigm for," in 2014 Seventh International Conference on

Contemporary Computing, Noida, India, 2014.

[9] J. Ng, "Extending the Cloud From an App Development

Platform into a Tasking Platform," in 2015 IEEE World

Congress on Services, New York, NY, 2015.

[10] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy

and R. Selby, "Cost models for future software life cycle

processes: COCOMO 2.0," Annals of Software Engineering,

vol. 1, no. 1, p. 57–94, 1995.

[11] M. Ray, "COCOMO II - Constructive Cost Model," 2016.

[Online]. Available:

http://csse.usc.edu/tools/COCOMOII.php. [Accessed 07

Sep. 2016].

[12] Oracle, "Oracle Database," 2017. [Online]. Available:

https://www.oracle.com/database/index.html. [Accessed 10

Feb. 2017].

[13] Oracle, "MySQL Database," 2017. [Online]. Available:

https://www.mysql.com/. [Accessed 10 Feb. 2017].

[14] Wikimedia Foundation, Inc, "NoSQL," 2017. [Online].

Available: https://en.wikipedia.org/wiki/NoSQL. [Accessed

10 Feb. 2017].

[15] Wikimedia Foundation, Inc, "Email spam," 2017. [Online].

Available: https://en.wikipedia.org/wiki/Email_spam.

[Accessed 10 Feb. 2017].

[16] A. Olmsted and G. Santhanakrishnan, "Cloud Data

Denormalization of Anonymous Transactions," in Cloud

Computing, Rome, Italy, 2016.

[17] Salesforce.com, inc, "Run your business better with Force.,"

2006. [Online]. Available:

http://www.salesforce.com/platform/products/force/?d=701

30000000f27V&internal=true. [Accessed 03 Feb. 2016].

[18] Zoho Corporation Pvt. Ltd, "Zoho CRM is ready," 2016.

[Online]. Available: https://www.zoho.com/crm. [Accessed

07 Sep. 2016].

[19] SugarCRM, "Discover a different kind of CRM," 2016.

[Online]. Available: http://www.sugarcrm.com/. [Accessed

07 Sep. 2016].

[20] SalesAgility, "SuiteCRM – CRM for the world," 2016.

[Online]. Available: https://suitecrm.com/. [Accessed 07

Sep. 2016].

[21] vTiger, "Grow sales, improve marketing ROI, and deliver

great customer service," 2016. [Online]. Available:

https://www.vtiger.com/. [Accessed 07 Sep. 2016].

[22] Salesforce, "Cloud Application Platform," 2016. [Online].

Available: https://www.heroku.com/. [Accessed 07 Feb.

2016].

[23] The PHP Group, "About PHP," 2017. [Online]. Available:

http://php.net/. [Accessed 10 Feb. 2017].

[24] D. Rethans, "Xdebug - Debugger and Profiler Tool for PHP,"

2016. [Online]. Available: www.xdebug.org. [Accessed 07

Sep. 2016].

[25] Bureau of Labor Statisics, "Occupational Employment

Statistics," 2016. [Online]. Available:

http://www.bls.gov/oes/current/oes_16700.htm. [Accessed

07 Sep. 2016].

[26] J. Hadzima, "How Much Does An Employee Cost?,"

[Online]. Available: http://web.mit.edu/e-

club/hadzima/how-much-does-an-employee-cost.html.

[Accessed 07 Sep. 2016].

457

International Journal on Advances in Intelligent Systems, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[27] R. Madachy, "COCOMO II - Constructive Cost Model,"

[Online]. Available:

http://csse.usc.edu/tools/COCOMOII.php. [Accessed 10

Feb. 2017].

[28] T. Mullaney, "Obama adviser: Demand overwhelmed

HealthCare.gov," The USA Today, 5 Oct 2013. [Online].

Available:

https://www.usatoday.com/story/news/nation/2013/10/05/h

ealth-care-website-repairs/2927597/. [Accessed 10 May

2017].

