
68

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User-guided Graph Exploration:
A Framework for Algorithmic Complexity Reduction in Large Data Sets
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Abstract—Human exploration of large data sets becomes incre-
asingly difficult with growing amounts of data. For this purpose,
such data sets are often visualized as large graphs, depicting in-
formation and interrelations as interconnected vertices. A visual
representation of such large graphs (for example, social networks,
collaboration analyses or biological data sets) has to find a
trade-off between showing details in a magnified—or zoomed-
in—view and the overall graph structure. Showing these two
aspects at the same time results in a visual overload that is largely
inaccessible to human users. In this article, we augment previous
work and present a new approach to address this overload
by combining and extending graph-theoretic properties with
community detection algorithms. Our non-destructive approach
to reducing visual complexity while retaining core properties of
the given graph is user-guided and semi-automated. The results
yielded by applying our approach to large real-world network
data sets reveal a massive reduction of displayed vertices and
connections while keeping essential graph structures intact.

Keywords—Complexity reduction; graph visualisation; big data
exploration; graph metrics; community detection.

I. INTRODUCTION

Processing data sets is becoming increasingly easier. With
the rise of big data and powerful computing devices, the
collection and processing of large data sets has become a
common thing in both research and industry. This article ex-
tends beyond our previous work on reducing visual complexity
in graphs [1] with the introducing of our framework and an
extended evaluation.

Many fields profit from the capability to reveal new insights
and connections that can only be detected by analyzing large
amounts of collected data.

However, Moore’s Law [2] does not apply to the ability
of human users to understand and explore such big data
sets. Making large data sets accessible to human users is
difficult and becomes increasingly more difficult with ever-
growing data sets. Human-centric data analysis techniques
usually employ visualization of the data sets. Visualizing real-
world data sets as graphs quickly results in an inaccessible
chaos of large amounts of interconnected vertices due to the
large amount of information to be shown. See Figure 1 for
a visualization of a part of the Facebook social network [3].
In order to comprehend relations within such a graph, a user
needs to magnify the visualization a lot. This magnification
implies a loss of overview, so that a user might be able to

understand specific relations within a part of the graph, but
loses track of the overall structure.

Fig. 1: User relations in a social network (data taken from
Facebook).

This issue of simultaneous visualization of both details and
overall structure complicates the process of exploring data sets
when the intended outcome is unknown. This is a common
scenario for exploratory data analysis. As such explorative
scenarios often call for human creativity as the aim is to find
new insights, connections and cross-references that are not
yet algorithmically formalized. Pre-defined and well-specified
analyses can be processed automatically without human invol-
vement, and thus, without the need for visual representation.
However, exploratory data analysis usually does not allow
for automated pre-filtering of data sets to obtain a human-
centric, decluttered view on the data and the information to
be discovered.

The framework and methodology we present in this paper
combine and extend graph-theoretic properties with commu-
nity detection. The assumption is that concealing less impor-
tant vertices (and their connections) from a graph leads to
a compressed and easier-to-understand visual representation
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that still contains the information intended to be discovered.
The framework is designed to assist a user-guided iterative
process of data reduction. For every iteration step, the user
first selects a vertex as template, thereby defining a selection
criteria value (SCV). All other vertices are filtered depending
on their SCV in comparison with the selected SCV. Vertices
of lower importance are concealed while ones with equal or
higher importance are retained. This step can be combined
with community detection, which reduces clusters of similar
vertices to a single vertex, retaining the structure of the
graph, but not the data density. This semi-automated, non-
destructive approach to reduce visual complexity is assumed
to identify core insights to be yielded from the data while
side-information is hidden.

The proposed framework and methodology aim at impro-
ving human-lead analysis and understanding of huge data sets;
efficiency and scalability aspects in automated processing of
such data sets are not in the focus of this research.

Our results indicate a massive reduction of displayed verti-
ces and links between them in every iteration of our proposed
approach. Therefore, only one to three iterations effectively
reduce graphs as the one shown in Figure 1 to a representation
that is easy to comprehend for human users (see Figure 3 for
the results of just three iterations).

The article is structured as follows: in Section II, we
discuss relevant related work on complexity reduction in
graphs; in Section III, we discuss fundamental methodological
background information to our contribution by introducing the
graph-theoretic metrics and community detection mechanisms
incorporated in our framework. For every method, we discuss
why and how we assume it is beneficial to our goal of
removing unnecessary data. Section IV, the general approach
to apply community detection and SCVs to iteratively filter
vertices is presented. Our framework itself is presented in
Section V, discussing both the internal structure and the
visual user interface. Our assumptions and framework are
experimentally evaluated in Section VI, in which we describe
the simulation setup and discuss the obtained results in detail
for various data sets. We conclude with a summary and future
research directions in Section VII.

II. STATE OF THE ART

In this section, we discuss related work with respect to
the field of complexity reduction in graphs. Most of these
contributions are related to the field of human computer inte-
raction (HCI) and aim on making complex datasets accessible
to humans.

Kimelman et al. [4] proposed techniques like ghosting,
hiding and grouping of edges. The vertices and edges of the
graph were removed based on various techniques like weights
of edges, labels of vertices, etc., but these techniques were
concerned with dynamic graphs. Differently, Holten et al. [5]
reduced only the visual cluttering of edges by bundling them.

Fisheye techniques [6] [7] tend to concentrate only on the
interesting regions of the user. The zooming feature in such

techniques is only responsible for making a very small region
of a graph appear larger. They do not remove any vertices or
edges. So, the overall graph content remains the same. Fisheye
views that retain structure are introduced by Furnas [8]. Abello
et al. [9] introduced hierarchical clustering and depiction of a
tree-map in addition to a compound fisheye view technique but
never concentrated on reducing the overall size of a network.

Various approaches towards creating communities in large
graphs are presented in [10] [11] [12]. These techniques
provide a significant level of understanding of the kind of
vertices and their properties in large networks but never used
the same to reduce the overall content in a large network and
provide a simpler view.

Sundararajan et al. [13] introduced rectangular partitioning
and Voronoi partitioning techniques. The former involved
partitioning the area of display into four quadrants while the
latter involved the partition area being closer to the concerned
vertex. This only reduces the distortion in the graphs.

Batagelj et al. [14] took a mathematical approach through
the usage of matrix. Large graphs were reduced to k-cores.
Later, the graphs are represented as an adjacency matrix or
a contextual matrix based on their size. But when the graphs
grows really large, managing the matrix becomes a enormous
task.

All before mentioned techniques reduce complexity based
on a global perspective, disregarding the current interests of
a user. Thus, these techniques may maintain and highlight
information that is not relevant the user’s current situation
while rejecting important information from the user’s slant.

III. METHODS

In this section we introduce our terminology and the various
graph-theoretic metrics we apply to measure the importance
of vertices within a graph. The reason hereby is to distinguish
important vertices that are relevant for the human observer
from those vertices that can be removed from the visualization.
Less important vertices are considered to be non-essential
for the visualization and, as such, can be removed from
the visualization without altering the general information the
graph explorer is looking for.

A. Terminology: Graph-based Data Representation

Most data sets can be represented by a Graph G = (V,E)
that is formed by a set of vertices vi ∈ V , which represents the
pieces of data. Relations and connections between these pieces
of data are represented by edges E ⊆ V ×V , i.e., connections
are represented by pairs of vertices (vx, vy). Considering
our exemplary application scenario of a social network, each
vertex represents a user and edges represent the connections
between users. Another example is the model of (research)
citations as citation graph where publications are represented
as vertices, and a citation is represented by a directed edge.



70

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A graph G can be directed or undirected. In a directed graph,
an edge ek can exist between a vertex vi and vj while the other
direction (el: vj to vi) may or may not exist, independent of
the existence of ek. In an undirected graph, the existence of
before-mentioned edge ek implies the existence of el. A social
network like Facebook applies undirected connections, thus, if
user Alice is connected to user Bob, Bob is also connected to
Alice (Alice and Bob are “friends”); in contrast to that, Twitter
applies directed connections. Thus, Alice may be connected to
Bob (Alice “follows” Bob), but Bob may not be connected to
Alice.

The number of connections of a vertex vi is noted as the
degree dvi of vi. In case of a directed graph, the degree of a
vertex has to be specified for outgoing connections: the out-
degree and for incoming connections: the in-degree.

A connection between any two vertices is called a path p.
A path between adjacent vertices has the length 1; yet, a path
may include intermediate vertices to connect them. A path p
is represented by an sequence of edges p = (e0, e1, ..., en).
The shortest path between two vertices is the path with least
edges.

B. Selection Criteria Values

Vertex selection is one of the fundamental steps in reducing
the complexity of a graph, i.e., it is the selection of an
appropriate subgraph. Selecting a set of vertices based on
specific parameters helps in creating a subgraph that retains the
inherent properties of the graph and reflects the user’s interests.
The vertices are identified based on selection criteria values.
An SCV acts as the basis of vertex selection in our framework.
For a vertex to be selected as part of a graph, its SCV must be
greater than the SCV of the user’s interest. Here, we express
the user’s interest by selecting a (start) vertex whose SCV is
compared with every other vertex in the graph.

The SCVs include graph-theoretic properties and centrality
measures but are not limited to just these presented measures.
We focus this paper on the usage of importance, connectivity,
and distance measures as these appeared most promising in our
literature research. The importance measures are PageRank
and Betweenness Centrality; the connectivity measures are
Clustering Coefficient and Degree Centrality; the distance
measure is Closeness Centrality. In the following sections, we
discuss every SCV to understand their significance to our idea
of reducing visual complexity.

1) Closeness Centrality: Closeness centrality determines
the closeness of vertices in a network, i.e., it determines
the distance of vertices in a graph. The vertices that have
high closeness centrality values are considered to be closer to
other vertices in the graph. For example, in a network where
information flows from one vertex to another, transmission of
information takes place quickly due to their high closeness
centrality values.

The rationale for using closeness centrality is as follows:
a set of vertices that are close to each other may form a
center of information within a graph. Close neighbors are
thereby thought to attribute to the general information that a
human user is looking for. Vertices that are far away from this
information center only contain auxiliary information and can
be omitted during graph exploration. Closeness is generally
attributed to the quickness in flow of information in the
network. The quicker the information arrives at or departs
from a vertex, the closer is the destination or the source vertex
respectively [15].

According to Freeman [16], closeness centrality of a vertex
is defined as:

”The sum of graph-theoretic distances from all other
vertices, where the distance from a vertex to another is

defined as the length of the shortest path from one to the
other.”

For example, in a social network scenario, this could mean
when an information is shared between two individuals, the
chances of such information propagating in the network is
higher with those who are immediate friends or neighbors.
For a given vertex pi, closeness centrality [17] is calculated
using (1), where |V | denotes the total number of vertices in
the graph, i and k are integers where i 6=k, d(pi, pK) denotes
the number of edges in the shortest path between pi and pk.

CC(pi) =
|V | − 1∑V

k=1 d(pi, pk)
(1)

2) Betweenness Centrality: Betweenness centrality depicts
influence or powerfulness of a vertex in a network. The
vertices that have high betweenness centrality values are highly
influential as they act as bridges or shortcuts for interactions
between several pairs of vertices or even information centers.
Vertices with low betweenness centrality are considered to be
less influential than others and can be removed from a graph
without changing the structure of its information flow.

According to Freeman [16], the betweenness centrality of a
vertex is defined as:

”The share of times that a vertex i needs a vertex k (whose
centrality is being measured) in order to reach a vertex j via

the shortest path.”

For example, in a social network scenario, where individuals
form friendships with individuals who in turn have a large
group of friends tend to have an influential clout due to their
connections with such individuals.

Betweenness centrality [17] can be calculated using (2),
where gjk denotes the total number of shortest paths between
pi and pk, and gjk(pi) denotes the number of shortest paths
containing pi.

CB(pi) =
∑

i6=j 6=k∈V

gjk(pi)

gjk
(2)
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3) PageRank: PageRank [18] provides a rank to every
vertex in a graph. It extends the idea of computing citations
to a web page by ensuring that all rank values are normalized
based on the total number of links on a page instead of treating
all web pages equally.

A transition matrix is created based on the transfer of
importance from one to another. Initially, we apply a uni-
form distribution based on the initial grade structure. Then,
depending upon the incoming connections we re-calculate the
PageRank value [19].

A high number of incoming links is thought to indicate
high importance of the respective vertex. Transitive importance
is given by PageRank as those who have incoming links
from vertices with a high PageRank inherit this importance.
As such, vertices with low PageRank values are not closely
connected to those vertices, which contain the core information
in a graph. By only keeping the important vertices within
a graph, this core information is retained even if all other
vertices are hidden from the human user.

The most prominent example for PageRank application is
the world wide web network: a web page that is referenced in
many other web pages will have a high PageRank value. In
a social network scenario, individuals with higher PageRank
are generally highly powerful due to a lot of connections
whose betweenness centrality value is also high. The concept
of PageRank is closely related to the betweenness centrality as
it measures the importance by the number of vertices that are
(transitively) pointing towards another one; the transitive pro-
pagation of importance is, however, unique to the PageRank.

4) Degree Centrality: Degree centrality portrays the level
of connectivity of a vertex in a network. The vertices that
have high degree centrality values are more influential or
important. In difference to PageRank, degree centrality is
not inherited from connected vertices, but only measures a
degree of connectedness. Anyhow, similar to PageRank, highly
connected vertices are considered to be of higher importance
to retaining the information in a graph than vertices with only
few connections. The latter ones are hidden from the user by
our framework.

The degree centrality is computed as presented in (3) and
given by the number of adjacent neighbors.

CD(pi) = deg(pi) (3)

For example, in a social network, a vertex with a high
number of connections is powerful and highly visible when
compared to others [11].

5) Clustering Coefficient: As stated before for the centrality
metrics, we assume the existence of information centers within
graphs. Our framework is tailored towards identifying and

retaining these information centers while removing as many
less important vertices as possible from the graph.

The clustering coefficient gives an indication of clusters in
a network. The higher the clustering coefficient, the closer
a vertex is to a cluster, i.e., vertices with a high clustering
coefficient are parts of clusters. Vertices with a low clustering
coefficient are considered outliers with respect to information
centers and, therefore, can be removed from the graph without
a change to the information a user is looking for.

According to Zafarani et al. [20], the clustering coefficient
can be defined as shown in (4).

CC =
3× (Number of triangles)

Number of Connected Triples of V ertices
(4)

For example, in a social network, vertices with high clus-
tering coefficients have a desire to form close bonds or
friendships with their neighbors [21].

C. Community Detection Algorithms

Community detection allows to group vertices that share
similar properties. The properties vary depending on the type
of the used community detection algorithm (CDA). For exam-
ple, Louvain algorithm optimizes communities with respect to
maximizing their modularity while direct K-means community
detection optimizes on the spread of communities.

We use the found communities to reduce complexity in
larger steps, being able to remove larger portions of the graph
in the first few complexity reduction cycles. CDAs form one
of the core evaluation criteria in our implementation. The four
algorithms used in our framework are Hierarchical Clustering,
Original Louvain, Louvain with Multilevel Refinement, and
Direct Clustering. In the following sections, we will discuss
the CDAs that help us in understanding the way in which
various clusters are formed.

1) Hierarchical Clustering: The hierarchical clustering
method by Jain and Dubes [22] involves obtaining a series of
partitions that are nested by transforming a proximity matrix.
The proximity matrix represents the distance of the individual
vertices.

Based on this matrix, vertices are merged in an iterative
process. First, the two closest, trivial clusters of one vertex are
merged; after that, the next two closest clusters are merged. As
the algorithm is applied, a hierarchy of clusters is established.
Those clusters are usually visualized using a dendrogram, as
shown in Figure 2.

We utilize the complete-link clustering method in an ag-
glomerative (bottom up) setting in our implementation. One
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Fig. 2: Hierarchical Agglomerative Clustering visualized.

of the main advantages of this method is the avoidance of
chaining-effects. Also, the clusters are balanced and smaller
when applying this method.

2) Original Louvain: The original Louvain algorithm by
Blondel et al. [23] detects communities in two steps that are
repeated:

1) establishing communities by locally grouping vertices
such that the graph modularity [24] is maximized. For
the modularity maximization, vertices are moved bet-
ween communities [25].

2) replacing the communities with single vertices to reduce
the complexity of the graph.

These steps are repeated until no improvement of modularity
is achievable and a hierarchy of communities is established.

3) Louvain with Multilevel Refinement: Louvain with Mul-
tilevel Refinement algorithm was formulated and conceived
by Rotta et al. [26]. The algorithm is similar to the original
Louvain community detection, but the adds a refinement phase
at the end to the community detection algorithm. In this
refinement phase, the achieved clustering hierarchy of the
original Louvain method is visited in reverse order, i.e., from
the coarsest communities to the trivial communities.

This multilevel approach provides communities exhibiting
better modularity values at the cost of higher computation
effort.

4) Direct K-means: The direct K-means algorithm by Al-
sabti et al. [27] establishes k communities. For that, the
following steps are repeated until the algorithm converges to
its solution:

1) k vertices are selected at random and form the centers
of the k communities.

2) the remaining vertices are assigned to their closest
community.

3) for each community, it is evaluated, which vertex is the
actual center of the community by computing the mean
position.

4) the vertices that are closest to the mean position of their
respective community are selected as the center of their
community.

5) repeat from step 2)

IV. COMPLEXITY REDUCTION APPROACH

In this section, we present our iterative and human-centric
approach to reduce the data complexity in graphs using SCVs
and CDAs.

A. Subjectivity of Visual Complexity

Visual complexity is a subjective measure. Every user has
a different understanding of visual complexity of a data set,
depending on previous experience, expert knowledge, and
familiarity with the respective subject. Hence, the challenge
of visual complexity reduction cannot be solved with a “one
for all” approach.

To overcome this subjectivity challenge, we provide a
user-interactive round-based complexity reduction method that
allows to reduce the visual complexity in succeeding iterations
until the user is able to understand the data set well enough
to collect the desired information.

B. Start Vertex Selection

Selecting a start vertex is highly dependent on the analysis
goal of the user. Thus, prior knowledge beyond the scope of
this paper is required. However, this knowledge is available
to the user. That is why the proposed approach employs an
interactive start vertex selection, which (i) suits the analysis
goal as well as (ii) solves the issue of aquiring appropriate
prior knowledge. The interactive start vertex selection may
be implemented using a graphical repesentation of the overall
graph, in which a human user simply points and clicks on
the desired start vertex. Otherwise, explicitely naming or
describing the vertex by a set of properties or by a name is
possible as well.

The evaluation in section VI is non-interactive. Therefore,
a random start vertex is selected in every iteration. As the
evaluation is to analyse the effectiveness of visual complexity
reduction, selecting a “random” analysis goal seems reasona-
ble.

C. Visual Complexity Reduction

Our method to reduce the visual complexity is a two-step
process, which also allows to parallelize the computation to
reduce computation time. We give an algorithmic description
in Algorithm 1. In the first step, we apply a community
detection algorithm to group similar information. According to
lines 3-6 of Algorithm 1, we compute the disjoint communities
and proceed with each of them individually. At this point, we
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1: function REDUCEVISUALCOMPLEXITY(g, r, s, id,
typeg , calg)
g: Input graph
r: Number of iterations
s: Selection criteria
id: Start vertex (picked by user or at random)
typeg: Graph Type (directed or undirected)
calg: Community detection algorithm
greduced: Output graph with reduced complexity

2: greduced ← new Graph();
3: for i← 1 to r do

. loc: List of Communities
4: loc ← getCommunities(id, g, algo, g type)
5: for j ← 1 to sizeOf(loc) do
6: community ← loc.get(j)
7: for k ← 1 to sizeOf(community) do
8: vk ← community[k]
9: if getSCV(vk, s) > getSCV(id, s) then

. compute shortest path
10: sp ← getSP(vk, id)
11: addToReducedGraph(sp, greduced)

. break if applied w/ community detection
12: if loc > 0 then
13: break loop
14: end if
15: end if
16: end for
17: end for
18: i++
19: end for
20: return greduced
21: end function

Algorithm 1: Iterative Reduction of Visual Complexity.

can easily parallelize the computation, having the communities
being handled concurrently.

In the second step, we have to differentiate whether com-
munity detection was applied in the first place or not. If
community detection is not applied, we calculate the SCV
of each vertex and compare it with the SCV of the vertex
representing the user’s interest. When the SCV of the inspected
vertex is higher than a threshold, which is in our case the SCV
of the user’s interest, the vertex is retained in the reduced
graph. To preserve the relation and connection of the user’s
interest and inspected vertex, we retain not only the vertex but
also the vertices on the shortest path. In our social network
scenario, these vertices represent the chain of friends between
two subjects and, thus, may be relevant to the user.

If community detection was applied in the first place,
we only retain representatives of each community and hide
the remaining vertices of a community. This way, we can
easily achieve a massive complexity reduction in only a few
iterations. Yet, the user can select the representative of a

community as next interest, restarting the process from this
new perspective and gain new insights into the data set.

These two steps are then repeated until the user is able to
sufficiently comprehend the graph. Our algorithmic description
uses a predefined number of iterations, yet an application
would delegate this decision to the user, who might request
further iterations.

In Figure 3, we visualize the iterative complexity reduction
process. On the left-hand side, the original graph, which fed
into the visual complexity reduction mechanism, is visualized.
In three steps, visualized towards the right-hand side, we
reduce the visual complexity of the data set considering a
randomly chosen vertex to reflect an otherwise user-selected
interest. The user interest is marked by the green vertex with
the ID 12 in Figure 3. The original data set, labeled “Start”,
is the Facebook data set already presented in the introduction
in Figure 1.

D. Optional Application of CDAs

The application of CDAs is optional in our framework
and approach. If the user assumes the presence of “distinct”
communities or clusters, the application of CDAs helps to
preserve this structure.

Without application of CDAs, the SCVs focus on absolute
values that they compute and, therefore, they select the absolut
top vertices according to their graph metric. In combination
with CDAs, the representative vertices that are retained in each
iteration are selected from the different communities. Thus, a
higher diversity is achieved.

However, without inherent community structure in the
graph, the application of CDAs may be a) misleading and
b) a waste of computing resources.

V. FRAMEWORK

In this section, we describe design decisions and compo-
nents that are considered while developing the complexity re-
duction framework. The framework is released to the research
community on a public GitHub repository [28].

A. Internal Structure

Our framework for complexity reduction is based on the
graph analysis framework GraphStream [29], a framework by
researchers of the University of Le Havre and members of the
RI2C research team. GraphStream is extended by the CDAs
and the SCVs and a graphical user interface to enable human
users to explore complex data sets visually.
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Fig. 3: Complexity Reduction of Graph in Fig. 1 by applying Algorithm 1 (first three iterations shown).

1) GraphStream: GraphStream is a Java-based library for
modeling and analyzing dynamic graphs. For that, Grap-
hStream provides a graph model that enables vertices and
connections between them to appear and to disappear over
time. Static data sets and graphs can be modeled by ignoring
the dynamic capabilities of GraphStream.

GraphStream provides capabilities to visualize—and there-
fore, to layout—graph-based data sets and to calculate graph-
theoretic measures to analyze and understand graph-based
data sets; moreover, by using the dynamic capabilities of
GraphStream, we are able to alter the data sets to reduce their
visual complexity.

a) Data Handling: Users can load their specific data set
into the application. Today, the dataset should be structured
according to the dgs-format of GraphStream; in this format, a
graph and its dynamic changes are described according to time
steps (or clock ticks) and a number of changes (events) within
in these intervals—a static graph is described by skipping
the time step declaration such that every change (event) is
performed at the beginning. The format is as follows:

DGS004 ........................../ file format & version
<name> <#time steps> <#events>
st 0 ................................../ time step w/ id 0
an n1 .................../ add vertex n1 w/o parameter
an n2 x=1, y=3 / add vertex n2 w/ parameters x, y
cn n2 x=2, y=2 ....../ change parameters x, y of n2
dn n2 ................................../ delete vertex n2
ae n1 n2 ............../ add connection between n1 n2
ae n1 > n2 .........../ add connection from n1 to n2
ae n1 < n2 .........../ add connection from n2 to n1
ce e1 w=10 ..../ change parameter of connection e1
de e1 ............................./ delete connection e1

Providing a continuous flow of these events, for example,
using a network interface, dynamic changes of the data base
can visualized.

To enable the subsequent evaluation in this article, a reader
for simple adjacency lists (i.e., a list where each entry is a
tuple “n1 n2” representing a connection between vertices n1
and n2) is implemented.

More readers for different file formats can be added easily,
which is a necessity when considering the usage of our

framework in vastly different application scenarios. For that,
the user has to provide a file parser that generates the vertices
and connections between vertices according to their very own
specifications and semantic.

b) Layout and Visualization: The standard layout algo-
rithm in GraphStream is force-based, i.e., the layout algorithm
in GraphStream applies repelling forces to each vertex and
contracting forces to each connection. These forces ensure
that vertices are placed with distance to each other and, yet,
connected vertices are grouped.

Force-based visualization already supports human users in
understanding large and complex data sets by arranging the
graph according to its connection-structure and its clusters,
for example, the initial graph in Figure 3 reveals seven groups
of vertices. By this grouping, the distance between groups and
the placement and concentration of connections, a human user
is able to get first insights by taking his application knowledge
into account.

2) Control Flow: The internal control flow in the frame-
work is depicted in Figure 4. First, the user loads a data set
into the framework. Using the graphical user interface, the user
can then configure the complexity reduction by choosing a
selection criteria value and an (optional) community detection
algorithm. With the selection of their interest, the user passes
the control to the complexity reduction module, which is
composed of the community detection (using the CDAs) and
computation of the SCVs.

In the complexity reduction module, the optional communi-
ties are established and the representatives for each community
are computed; after that, the vertices are removed accordingly.
This step is then repeated until either of the following termi-
nation conditions is fulfilled:

• Iterations done: after n iterations, the complexity re-
duction step is completed and may be restarted by the
user.

• No change: if two subsequent graph representations are
equal, i.e., computing communities and selection criteria
values does not enable the removal of additional vertices,
the complexity reduction is completed. By selecting anot-
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her vertex as interest, the user may restart the complexity
reduction.

After completing the complexity reduction, the control is
passed back to the user interface where the reduced data set
is visualized to the user. From here, the user can refine their
interest and select another start vertex for another complexity
reduction.

UI

Community

Community Detection

Reduction

Selection Criteria

Restart/Next Iteration
Complexity Reduction

1

2

3

4a
4b

5

HC

OL

LM

DC

CC

CB

PR

CD

CC

ISCV

Fig. 4: Control Flow.

3) CDAs and SCVs as Modules: The CDAs and SCVs are
the core components of our framework. By their ranking of
vertices, CDAs and SCVs do also define, which properties of
vertices are distinguishing the vertices to preserve from the
ones to remove.

The actual properties defining the importance of vertices are
highly depending on the application scenario and use case, i.e.,
the type of information the user is looking for. For example:

“Reducing complexity in a social network when searching
‘influential people’ will look for dense communities and the
highly connected people in these communities.”

To account for this variability of required properties, the
implementation of CDAs and SCVs follows a modular struc-
ture that allows easy extension by researchers or users of the
framework.

The CDAs are encapsulated in their own class, the actual
implementation of the community detection algorithms is
based on the S-Space [30] repository of Jurgens and Stevens
from UCLA.

The SCVs are hidden behind the interface
ISelectionCriteria to provide their functionality
without enforcing a stronger coupling of different modules
with the core framework.

B. User Interface

The focus of the user interface is the visualization of the
graph. From this perspective, the user is able to explore their
data according to their application scenario. Figure 5 visualizes
the framework from a user’s perspective.

From the initial view, the user has the ability to load a
data set provided in the aforementioned dgs-format—or to
generate a synthetic network, for example a Barabàsi-Albert
network.

After visualizing the initial “root” graph, the user can select
the SCV fitting their requirements as well as the number of
iterations, and whether a community detection algorithm is to
be applied or not.

The reduced graphs of all iterations are visualized in a
“Graph Grid” tab such that the user is made aware of the
different stages of complexity reduction and the respective
implications.

VI. EVALUATION

In a simulation study, we evaluated the performance and
effectiveness of our proposed technique to reduce the visual
complexity of data sets. In the next section, we provide insights
into our experimental setup and details of our simulation study.
After that, we present and discuss our results for different
network classes.

A. Experimental Setup

In this section, we describe and discuss our selection of data
sets, followed by the description of our simulation setup.

a) Networks: To provide useful insights, we decided
to perform our simulation based on samples of real-world
networks. We imagine the usage of our technique in appli-
cations based on social networks (with respect to to social
ties), in (scientific) libraries (with respect to to co-authorship),
biological data (with respect to protein interactions), and com-
puter networks (with respect to to the logical interconnections)
as described in Table I. We restrict our simulation to the
largest connected component of the data set, as accounting
for importance and relationship of non-related information is
out of scope of this paper.

As the representative for a social network, we decided to
use a sample of Facebook’s social graph [3]. This data set (FB)
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Fig. 5: Framework after loading the initial Dataset. Complexity reduction mechanism can be configured visually.

TABLE I: Large Network data sets

Class data set Vertices Connections
Social Facebook (FB) 4,029 88,234
Library Arxiv gr-qc (CA) 4,158 13,428

Biological Vidal (VI) 3,133 6,726
Moreno (MO) 1,870 2,277

Computer p2p-Gnutella08 (P8) 6,301 20,777
p2p-Gnutella09 (P9) 8,114 26,013

consists of 4,029 vertices and 88,234 connections, representing
users of Facebook and their respective interconnections.

As the representatives for library-based and collaboration-
based data sets, we selected a co-authorship data set [3] that
reflects the research collaborations and co-authorships in the
Arxiv gr-qc (General Relativity and Quantum Cosmology)
area. This data set (CA) consists of 4,158 vertices and 13,428
connections in their largest connected component.

As the representatives of biological networks, we selected
the protein interaction networks vidal [31] and moreno [32].
These data sets reflect interactions of proteins on a molecular
level. The vidal data set (VI) consists of 3,133 vertices and
6,726 connections; the moreno data set (MO) consists of 1,870
vertices and 2,277 connections.

As the representative of computer networks, we selected
a sample of the Gnutella network [3] that reflects the inter-
connections of users in the Gnutella network. The sample
(P8) is sampled on August 8th, 2002 (p2p-Gnutella08) and
consists of 6,301 vertices and 20,777 connections. The second
sample (P9) is sampled one day later on August 09th, 2002

(p2p-Gnutella09) and consists of 8,114 vertices and 26,013
connections.

b) Simulation Setup: We perform a reduction of vi-
sual complexity on each of the aforementioned data sets
and calculate graph-theoretic properties that are also used as
SCVs, namely closeness centrality (CC), betweenness cen-
trality (CB), PageRank (PR), degree centrality (CD), and
clustering coefficient (CC).

We perform the complexity reduction on each of the data
sets with each pairwise combination of selection critera values
(SCV) and community detection algorithms (CDAs) been des-
cribed in Sections III-B and III-C and compare and interpret
the results represented by the statistical mean values and
number of removed vertices.

We need a user interest expressed as one “preselected” piece
of information from the data set to apply our technique to
reduce visual complexity. To account for this, we selected a
random vertex as user interest and repeat this whole process
15-times.

In Table II, we summarize the details of our simulation
study and used abbreviations.

B. Results

In this section, we present the results of our simulative study.
The results are structured according to the class of networks
as aforementioned. Detailed measurements are shown in Ta-
ble III.
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TABLE II: Simulation Details

Property Value(s)

SCV

Closeness Centrality (CC )
Betweenness Centrality (CB)
PageRank (PR)
Degree Centrality (CD)
Clustering Coefficient (CC)

CDA

Hierarchical Clustering (HC)
Direct Clustering (DC)
Original Louvain (OL)
Louvain w/ multilevel refinement (LM )

Repetitions 15
Iterations 3
User Interest V.getRandomVertex()

a) Social Networks: Social networks, here the FB data
set, exhibit a strongly connected core, the so-called rich club.
These vertices are connectors between various clusters. This
structural behavior leads to comparable short paths, i.e., the
closeness centrality is comparably high, and core vertices
exhibit a high betweenness and degree centrality. Moreover,
due to the “clustering” of vertices, the clustering coefficient is
also high (in the FB data set: 0.6055).

Our complexity reduction technique reduces up to 4,035
(99.9%) vertices in the three iterations. All combinations but
one of the SCV and CDA combinations preserve the core of
the data set, which is indicated by the high CB , CC , and
CD values. These indicate that the retained information is
representative for their clusters. The drop of PR and CC
indicate that the preserved structure roughly follows a star-
topology, which is also shown in Figure 3.

Using CC as only SCV leads to a different result where
different information is retained, yet, this is expected. The
core vertices have by definition a lower CC value and are,
thus, not likely to be above the threshold. These vertices are
connected to a multitude of different other vertices that are
forming their own, smaller clusters.

b) Library/Collaboration Data Set: A collaboration, or
library, data set yields a similar structure to a social network.
Collaborators establish clusters and an inner core of highly
influential people and publications. The gr-qc data set reveals
a high CC (0.5296) and a strongly connected core. While the
diameter of the data set suggests otherwise, the core of the data
set still shows a high connectivity and tendency towards short
paths. That is evident when comparing the diameter (17) and
the diameter when only 90% of vertices have to be connected
(0.9-percentile effective diameter: 7.6).

Our complexity reduction technique removes up to 4, 196
vertices in the three performed iterations. We can see that most
combinations of SCV and CDA perform similarly, producing
star-topology-like results retaining relevant information of the
core of the data set as indicated by higher CB and CD. The
drop of the CC supports the star-topology again.

However, using CC or CD as SCV produces different re-
sults. Using one of these properties as SCV retains information
revealing the significantly higher CC, CD, and PR and lower

CD values. Thus, retaining representatives of smaller but better
and tighter connected clusters.

c) Biological Data Set: Protein interaction networks
reveal a different structure, the spread between average and
maximum degree is between factor 23 and 30; this factor
is by a magnitude smaller than in the previously discussed
social networks. This drop in degree goes hand in hand with
increased diameter (13–19) and a massive decline in the CC
(0.035–0.055 compared to 0.6055 on the Facebook data set).

Our complexity reduction technique removes up to 3,125
(99.74%) vertices on the vidal protein interaction network
and up to 1,860 (99.47%) vertices on the moreno protein
interaction network. Our technique performs similarly on both
data sets, and produces star topologies regardless of the used
combination of SCV and CDA. Thus, the resulting CB is
comparably high, and the CC is very low < 0.0001. The CC
also drops to 0.01–0.0004 and endorses the star topology as the
remaining vertices are hardly forming local clusters. The PR
is similarly low. Yet, the CO-DC combination retains local
clusters, which is indicated by higher CC and CC values.

d) Computer Networks: Computer networks, in this case
the samples from the Gnutella network, are resembling either
AS-networks with social-like structures on a large scale or,
if consisting of only “a few” computers (compared to the
whole population), random networks. As the Gnutella network
were comprised of only a small subset of all Internet users,
the Gnutella sample is akin to a random network. Yet, the
degree distribution reveals on the base data set exponentially
distributed degrees. Nonetheless, the PageRanks reveal the
lack of a highly connected inner core; this core is essential
to a “social” network.

Our complexity reduction techniques removed up to 6,299
(99.97%) vertices on the P8 data set and up to 8,132 (99.85%)
vertices on the P9 data set. The consistently high CB shows
that some well-connected vertices are retained, but the retained
vertices are distant from each other, thus, resulting in very low
CC values; only PR used as SCV preserves closer vertices.
Using CC , CC, or PR as SCV results in retaining local
clusters in the results while the other SCVs do not keep
clusters in their reduced data sets – this is visible by the high
CC and PR values for these SCVs.

C. Destructive vs. Non-Destructive Complexity Reduction

The complexity reduction can be performed in two variati-
ons: a destructive and a non-destructive one.

First, the execution can be destructive by removing vertices
that are not matching the user’s interest, i.e., removing vertices
when their SCV is lower than the threshold and if they are
not selected to be a representative. During execution, the
data set will shrink and, thus, free memory and reduce the
computational complexity of the calculation of SCVs with
each performed complexity reduction iteration. However, the
user cannot revert the reduction process to earlier stages of
complexity reduction.
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TABLE III: Properties of Complexity-reduced Data Sets of Facebook, Collaboration, Gnutella, and the Protein Interaction
Networks.

Technique Mean Values
CB CC CC CD PR

FB

CC & DC 2211000 0.3457 0.00038 298.1 0.00215
CC & HC 2356000 0.3478 0.00033 311.9 0.00230
CC & OL 1925000 0.3425 0.00037 260.3 0.00191
CC & LM 1925000 0.3425 0.00037 260.3 0.00191
CB & DC 1453000 0.3327 0.00148 205.9 0.00163
CB & HC 1685000 0.3182 0.00604 219.5 0.00209
CB & OL 2112000 0.3397 0.00291 251 0.00197
CB & LM 2253000 0.3389 0.00356 262.5 0.0021
PR & DC 1520000 0.3308 0.00268 203.9 0.0017
PR & HC 1754000 0.3356 0.00208 223.5 0.00178
PR & OL 1588000 0.3332 0.00284 206.2 0.00163
PR & LM 1809000 0.3339 0.00336 232.6 0.00185
CD & DC 1539000 0.3304 0.0024 219.7 0.00175
CD & HC 1810000 0.3291 0.00492 236.4 0.002
CD & OL 1943000 0.3311 0.0063 236.2 0.00194
CD & LM 2100000 0.3356 0.00451 262.3 0.00211
CC & DC 70010 0.2638 0.07401 14.13 0.00013
CC & HC 79330 0.2639 0.08139 15.11 0.00014
CC & OL 30171 0.27314 2.42765 36.62 2.0282
CC & LM 83490 0.2641 0.08111 15.71 0.00015

CA

CC & DC 73470 0.00005 0.02978 16.36 0.00041
CC & HC 71590 0.00005 0.04217 8.94 0.00031
CC & OL 74020 0.00005 0.02445 17.66 0.00044
CC & LM 73470 0.00005 0.02978 16.36 0.00041
CB & DC 233900 0.00005 0.00592 16.95 0.00058
CB & HC 224500 0.00005 0.00579 16.47 0.00057
CB & OL 158000 0.00005 0.01006 14.12 0.00049
CB & LM 151600 0.00005 0.00884 13.93 0.00047
PR & DC 222000 0.00005 0.0015 20.85 0.00067
PR & HC 98330 0.00005 0.00811 14.92 0.00045
PR & OL 215300 0.00005 0.00445 19.91 0.00063
PR & LM 226500 0.00005 0.00266 20.64 0.00066
CD & DC 28418 4.44 1.57434 8.38 0.88412
CD & HC 28261 4.44 1.57331 8.37 0.88485
CD & OL 28370 4.44 1.57288 8.37 0.88744
CD & LM 97370 0.00004 0.00991 12.61 0.00039
CC & DC 22449 4.17 0.84129 4.83 2.43779
CC & HC 22449 4.17 0.84129 4.83 2.43779
CC & OL 21060 4.14 0.80191 4.63 2.58936
CC & LM 43790 0.00003 0.1903 7 0.0003

P8

CC & DC 38492 0.00023 1.42208 9.55 3.59775
CC & HC 39680 0.00023 0.00003 9.53 0
CC & OL 38492 0.00023 1.42208 9.55 3.59775
CC & LM 38666 0.00023 1.43795 9.54 3.59132
CB & DC 82970 0.00023 0 9.92 0
CB & HC 88810 0.00023 0.00003 9.72 0
CB & OL 162900 0.00023 0 9.84 0
CB & LM 137000 0.00023 0 9.83 0
PR & DC 20920 0.61077 0.58976 3.77 4.02269
PR & HC 20920 0.61077 0.58976 3.77 4.02269
PR & OL 18941 0.61688 0.57661 3.69 4.09170
PR & LM 21934 0.60621 0.59507 3.81 4.14545
CD & DC 119200 0.00023 0 12.68 0
CD & HC 122900 0.00023 0 12.55 0
CD & OL 47420 0.00023 0.00002 10.18 0
CD & LM 47420 0.00023 0.00002 10.18 0
CC & DC 46280 0.00393 2.44391 9.69 3.76677
CC & HC 46304 0.00393 2.44341 9.69 3.76735
CC & OL 46280 0.00393 2.44391 9.69 3.76677
CC & LM 46576 0.00388 2.43269 9.69 3.75996

Technique Mean Values
CB CC CC CD PR

VI

CC & DC 57420 0.00009 0.00196 15.28 0.00107
CC & HC 57420 0.00009 0.00196 15.28 0.00107
CC & OL 58990 0.00009 0.00154 15.73 0.0011
CC & LM 54320 0.00009 0.00232 14.61 0.00102
CB & DC 61750 0.00009 0.00045 15.6 0.0011
CB & HC 58410 0.00009 0.00044 15.06 0.00106
CB & OL 57790 0.00009 0.00046 14.98 0.00106
CB & LM 56350 0.00009 0.00046 14.78 0.00104
PR & DC 62850 0.00009 0.00600 15.86 0.00112
PR & HC 138900 0.00009 0.00133 29.01 0.00203
PR & OL 49980 0.00009 0.00686 13.65 0.00097
PR & LM 85260 0.00006 0.01049 18.23 0.00136
CD & DC 31410 0.00009 0.02806 9.053 0.00064
CD & HC 156200 0.00009 0.00314 31.63 0.00221
CD & OL 83280 0.00007 0.04043 18.82 0.00136
CD & LM 111300 0.00007 0.04704 24.04 0.00172
CC & DC 23410 8.61693 1.67212 7.98 0.00318
CC & HC 30480 0.00008 0.1194 8.65 0.00063
CC & OL 23590 0.00009 0.07014 7.94 0.00057
CC & LM 24450 0.00009 0.08001 8.03 0.00058

MO

CC & DC 33615 0.00005 0.00681 6.31 0.00115
CC & HC 31886 0.00005 0.00596 6.16 0.00114
CC & OL 33467 0.00005 0.00668 6.33 0.00116
CC & LM 42355 0.00005 0.0124 7.32 0.00132
CB & DC 22275 0.00004 0.00152 4.99 0.00096
CB & HC 21245 0.00004 0.00153 4.91 0.00094
CB & OL 62989 0.00004 0.00306 9.87 0.00178
CB & LM 61556 0.00004 0.00312 9.7 0.00175
PR & DC 33375 0.00004 0.00595 6.67 0.00125
PR & HC 30472 0.00004 0.00604 6.34 0.0012
PR & OL 32441 0.00004 0.0062 6.51 0.00123
PR & LM 24884 0.00004 0.00618 5.70 0.00109
CD & DC 25683 0.00004 0.00277 5.82 0.00109
CD & HC 23793 0.00004 0.0028 5.64 0.00106
CD & OL 24978 0.00004 0.00284 5.80 0.00108
CD & LM 61071 0.00004 0.00376 10.53 0.00189
CC & DC 20061 0.00004 0.0867 5.28 0.00099
CC & HC 20061 0.00004 0.0867 5.28 0.00099
CC & OL 20503 0.00004 0.0857 5.33 0.001
CC & LM 21185 0.00004 0.0845 5.39 0.00101

P9

CC & DC 79094 0.00034 0.00133 10.14 0
CC & HC 79094 0.00034 0.00133 10.14 0
CC & OL 79094 0.00034 0.00133 10.14 0
CC & LM 79094 0.00034 0.00133 10.14 0
CB & DC 78569 0.00034 0.00001 9.73 0
CB & HC 115689 0.00034 0 9.93 0
CB & OL 249905 0.00034 0.00002 10.92 0
CB & LM 267735 0.00034 0.00003 11.08 0
PR & DC 28406 0.00014 0.0001 3.69 0
PR & HC 25826 0.00013 0.0001 3.60 0
PR & OL 50534 0.00017 0 4.68 0
PR & LM 46586 0.00016 0 4.60 0
CD & DC 145848 0.00034 0 13.17 0
CD & HC 145848 0.00034 0 13.17 0
CD & OL 163656 0.00034 0.00001 13.18 0
CD & LM 134312 0.00034 0 13.16 0
CC & DC 68933 0.00034 0.00188 9.96 0
CC & HC 68933 0.00034 0.00188 9.96 0
CC & OL 69376 0.00034 0.00179 9.94 0
CC & LM 71280 0.00034 0.00209 9.98 0

Second, the execution can be non-destructive by, e.g., con-
cealing “removed” vertices only without deleting them from
the actual graph. This variation allows moving back and forth
between different stages of complexity reduction. Moreover,
this also allows a user to adapt her interest, i.e., she can use
gained knowledge and re-run the visual complexity reduction
with a different focus/interest.

The main functionality of our proposed approach to visual
complexity reduction remains unaltered by this design decision

as it only affects the ability to move through the different
stages of complexity reduction and the visualization for the
human user.

Our proposed technique to reduce the visual complexity is
capable of removing the vast majority of information in just
a few iterations as we have shown before. In order to over-
come unwated loss of information during the process of data
reduction, our approach always allows the user to track back
and select different vertices as user interest. This, however, is
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infeasible for dynamic data sets, which can be adressed, for
example, by caching results from earlier iterations.

VII. CONCLUSION AND FUTURE WORK

The collection and processing of large data sets got common
with the rise of big data and powerful computing devices.
Human users are hardly able to keep up with the increasing
pace of collecting and accruing data. Accessing and—more
important—exploring as well as understanding these data sets
becomes difficult.

In this article, we present our framework that combines an
interactive, user-guided approach to the exploration of large
data sets with automated complexity reduction based on graph-
theoretic properties and community detection. This approach
reduces visual complexity in order to render visualizations of
data sets more usable for human users. The reduction of visual
complexity is achieved by removing parts of the data sets in a
semi-automated fashion: based on a user-selected information,
i.e., a selected vertex becomes a template for a high selection
criteria value (SCV), other vertexes with a lower SCV as well
as their connections are hidden from the data set. Thereby,
the complexity is reduced, which we assume to render the
visualization easier to comprehend. The computation of SCVs
is based on graph-theoretic properties like closeness and the
detection of communities within the data set.

The presented framework combines this automated compu-
tation and removal with interactive selection of a new template
vertex before each complexity reduction iteration.

Our simulation study has shown that our combination of
graph-theoretic properties, measuring the importance of data
in the data set, and community detection, grouping similar
data in the data set, is able to reduce the visual cluttering
of information efficiently. If performed in a non-destructive
setting, i.e., if discarded data is only concealed and not
removed from the data set, human users can shift their focus
when inspecting a data set to account for new insights gained
by the visual inspection of data sets. The complexity reduction
can then be performed again with a focus on new, shifted
interests.

Our proposed technique opens an additional direction of
research to support user-centric systems in rising exposure
to big data and accruing amounts of data. Future research
may include user studies to select the—per application field—
appropriate graph-theoretic properties in order to achieve an
appropriate visual complexity reduction.
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