
257

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Centralized System to Manage Digital Contents in Multiple Advertising Displays

Arménio Baptista, Alina Trifan, and António J. R. Neves
DETI/IEETA

University of Aveiro
3810-193 Aveiro, Portugal

{armenio, alina.trifan, an}@ua.pt

Abstract—Current technology makes possible to enhance the way
people experience advertising or general information notices,
through the use of digital displays. These devices can be connected
among them and centrally managed in order to individually
display different contents. This process, also known as digital
signage, is used nowadays in public spaces, transportation systems
and retail stores, just to name a few applications. In this
paper, we present a solution for a digital signage system, based
on a centralized agent, through which digital contents can be
managed and displayed on several autonomous stations. These
stations can be either static, such as monitors, or mobile, such
as autonomous robots, and they can be used in any type of
multimedia advertising. The core of the presented solution is a
web server, that stores the uploaded contents and exposes a web
dashboard for their management. Registered users can manage
and distribute the contents through the connected stations (or
agents). The only requirement is a network connection between
the server and the agents. The system was used with the aim of
automatizing the dissemination and advertising of local research
works and we present results of its use in the support of several
research events that took place within our academic campus.

Keywords–Digital signage; Advertising; Cloud-based Platform;
Digital Contents Management; Multimedia.

I. INTRODUCTION

This manuscript is an extended version of the original paper
presented at the 14th International Conference on Autonomic
and Autonomous Systems (ICAS 2018) [1]. This extended
version provides an overview about related systems, a deeper
presentation of the developed system and extended experi-
mental results. The main focus of this work is a solution for
controlling multimedia resources and displaying them using a
unique platform. This platform supports the management and
manipulation of the resources with the goal of producing a
final content to better fit the monitors associated to a specific
terminal of the system we propose. As such, our solution
allows the control, maintenance, composition and division of
the multimedia resources across the stations. It also takes into
account user permissions in order to control the access to
these resources for each user registered in the platform. In
order to handle the multimedia files uploaded by the users,
the solution proposes the use of the FFmpeg library [2], which
has compatibility with all major image and video formats and
codecs.

One of the keys to the success of the retail industry passes by
advertising to the general public, mainly by using marketing

strategies [3]. The technological evolution, more and more,
has an important role in the marketing and the advertising
of products [4]. Roggeveen et al. present experimental results
that show that sales in hypermarkets are enhanced when digital
displays are used [5].

This paper is structured into six sections, this Introduction
being the first of them. Section II presents related work, mostly
commercial solutions that can be compared with the proposed
solution. Section III overviews the architecture and the imple-
mentation details of the proposed system. In Section IV we
cover the methodology used to connect the digital displays,
or agents, to the web server. We present experimental results
in Section V and we assess the importance of this work and
discuss future work directions in Section VI.

II. RELATED WORK

Up until recently, most digital advertising systems relied on
a manual configuration to display multimedia contents. This
translated into a person moving to the locations of the phys-
ical displays and copy each content on them. Technological
advances allowed digital marketing companies to adopt new
and more advanced and appellative ways of advertising. Due
to this growth, several areas and terms emerged, such is the
case of the term digital signage, which is the one that better
describes current digital advertising systems.

The term digital signage is nowadays widely used and
can be defined as the remote management of digital display,
typically tied in with sales, advertising and marketing [6]. It
is usually implemented as a network of digital displays that
are centrally managed and individually addressable to display
digital contents, namely text, animations or video messages
for advertising, informing, entertaining and merchandising to
targeted audiences.

There are several systems and products supporting this
technology as we can see in most of the existent advertisement
displays presented in a wide area of scenarios, such as: airports,
food chains, outdoor sites, shopping malls, just to name a few
(Figure 1).

An extended search for the most relevant digital signage
systems revealed that these mostly come from companies
specialized in building these solutions as out of the box
products. Consequently, all of the encountered solutions are
closed and the implementation behind them is not made public.



258

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. A digital signage example in Times Square, New York.

1) Yodeck: Yodeck [7] is the most similar system compared
to our project (Figure 2). The Yodeck system consists on a
software solution to manage a series of monitors using only
one product: a Raspberry PI [8] called ”Yodeck Playbox“,
which brings a MicroSD card containing proprietary Yodeck
software. The user only needs to buy the Raspberry PI and
connect it to a monitor, create an account, upload the multi-
media contents to the platform and associate these contents to
a virtual monitor.

Their solution divides the contents into 4 categories:

• Media - contents uploaded to the system: image files,
video files, documents or web site addresses.

• Playlists - set of media with a predefined duration: an
image slideshow or a video.

• Widgets - small widgets that display useful info: Really
Simple Syndication (RSS) feed, a clock, etc.

• Shows - set of media, playlists and widgets that can be
associated to a virtual monitor (i.e. a Raspberry PI).

Figure 2. Illustration of the Yodeck digital signage solution [9].

2) Xarevision: Xarevision [10] is a leading company in
technologies for retail and operates the biggest in-store digital
network in Portugal, reaching over 40% of the active popula-
tion. It administers broad digital networks of centrally managed
displays and also creates differentiated interactive media, like
gesture recognition, georeferencing and individual addressing.

Their technologies are apply mainly in the retail industry
and they offer the following three products:

• Queue management - this product offers management
solutions to be applied in supermarkets. It can be found
in almost all big surfaces and it is used to optimize
waiting times and to increase the customer service.
Generally, it is composed of a ticket dispenser and a
customer calling screen.

• New media - includes features like gesture recognition,
georeferencing and individual addressing. Moreover, it
supports remote control and supervision of the dis-
tributed networks across the country.

• Digital signage and Corporate TV - last but not least, the
digital signage solution, which can be related to the work
we present in this manuscript. Their solution supports
the client from providing the installation of hardware
and network management, to supporting content creation
and update, as well as continuously monitoring technical
aspects during the system’s lifetime.

3) JCDecaux: JCDecaux [11] is probably the most rec-
ognized advertising company in the world in outdoor sites
(Figure 3). Despite there is no published information about
the development and implementation of their terminals, it is
interesting to refer it here because of the distributed advertising
system they possess.

Their main products are the billboards that can be found
mainly in bus stops and open public space or shopping centers.
Our solution was inspired by these digital billboards and we
aim to have a similar impact, with cheaper and open-source
elements.

Figure 3. JCDecaux billboard [12].

4) Enplug: Enplug [13] is a digital signage software com-
pany that provides contents advertising. It supports social
contents, like Youtube and Instagram feeds, RSS feeds, digital
menus, Google calendars, graphics and videos.

5) NoviSign: NoviSign [14] is a digital signage software
company with a cloud-based solution that supports Windows,
Android and Chrome OS players. It has an online control
dashboard, Studio, that allows the creation, edition and man-
agement of digital contents from any browser, as well as the
update of the screens in real time. It supports a variety of
widgets, like text, images, video, RSS, games, polls and social
widgets. Also, it can be integrated with a camera for face



259

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recognition, a Radio Frequency IDentification (RFID) reader
and barcode and sensors for triggering ads, events or slides.

6) Mvix: Mvix [15] offers digital signage systems with a
portable physical module, similar to a Raspberry PI, which
has a pre-loaded content management software capable of
communicating with a cloud-based server. It offers a web-
based software for creating, editing and updating digital sig-
nage templates. It includes content apps and widgets which
enable users to display High Definition videos and images,
live web pages, RSS feeds and media animations. This digital
signage solution supports playlist management, comprehensive
calendar-based scheduling and a multi-role user management.

7) ScreenCloud: ScreenCloud [16] is a digital signage so-
lution that can turn almost any screen into a display of
multimedia contents. It offers compatibility with a large variety
of devices, such as: Google Chromebit, Amazon Fire TV,
Google Chromebox, Android TV, Apple Mac Mini, Mi Box,
etc. The scheduling, management and upload of contents is
made using a web browser.

All the identified digital signage solutions were relevant
for the development of our proposal, since they allow us to
identify possible requirements and features to be included.
Nevertheless, the lack of scientific open publications on such
systems, together with the lack of architectural details of the
previously described solutions, makes it difficult to provide
straight-forward comparisons between the system we propose
and the commercial ones.

III. ARCHITECTURE

Our main goal was the design of a system capable to
store, manipulate and manage multimedia contents uploaded
by its users. This led to the identification of three major
agents involved: the web server, the control dashboard and
the monitors. The resulting architecture is presented in Figure
4.

This architecture allows the web server to control all the
monitors (using HTTP requests to communicate) and to expose
a web dashboard by means of which the users can manage
them. As the web server is the unique point of communication,
the synchronization of the updates made by the users and the
monitors is immediate.

A. Resources division

In order to split and organize the multimedia contents, or
resources, a solution of three components is proposed, as
presented in Figure 5:

• Contents: base element of the multimedia resources,
which can be: images, videos and presentation files
uploaded by the users.

• Timelines: set of Contents with a predefined sequence,
much similar to a video composed of different contents.
If the Content is an image, the user has to define the
duration of the image in the Timeline. If the Content is

Figure 4. Proposed system architecture. The web server was built based on
the Django [17] framework and is the central unit of the system. It exposes
a web dashboard through which multimedia contents can be uploaded and

managed. The server communicates with one or multiple terminals in order
to distribute these contents.

a presentation file, the user has to define the duration of
each slide or page of the presentation.

• Views: set of Timelines with a predefined sequence that
is associated to a physical terminal. This represents the
final product to be displayed on the monitor. The only
way for a View to be created is through a connection to
a terminal.

Figure 5. Resources composition. Individual contents can be joined into one
or more timelines, which will then be associated to one or multiple views,

or displays.

This division of resources gives users the freedom to create
and dispose multimedia contents into any chosen order. It also
allows them to reuse the Timelines in different Views without
the need of recreating them again.



260

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Permissions

A control policy was identified as a requirement in order to
protect the privacy of the multimedia contents among users.
This policy has to support the blocking or disabling of modi-
fications of resources that do not belong to a given logged-in
user. In order to restrict the improper access of the users to
multimedia resources, an authentication system with different
permission levels was implemented. The Django framework
provides a user authentication system, which facilitated the
implementation.

The permissions levels of the proposed system are illustrated
in Figure 6.

Figure 6. Users permissions.

The role based permissions contemplate two roles: admin-
istrator and regular user. The administrator has access and
control over any resource in the system. Moreover, she can
access a section of the dashboard that allows managing regular
users in terms of permissions and CRUD operations (Create,
Read, Update, Delete). The system has two types of user roles:

• Administrator: user responsible to manage the users
access to the dashboard and their permissions for each
resource. Additionally, the administrator can add, edit
and delete any resource, having no restrictions for her
actions.

• Regular User: user with permissions predefined by the
administrator and that can only access the resources
predefined by those permissions.

For regular users, we included a sub-level of permissions,
with two distinct facets: the resource and object levels. The
resource level refers to the different resources presented in
Section III-A. The object level refers to an object in particular,
a specific resource of the type Content, Timeline or View.
The administrator manages these permissions through the web
dashboard.

1) Resource level: The resource level has three different
types of permissions, associated to each of the contents type:
Contents, Timelines and Views. When creating a user, the
administrator fills in a form with basic information associated
to the user, as illustrated in Figure 7. Note that this form
has three checkbox fields, each one for a resource (Content,
Timeline and View). These checkboxes are the permissions at

the resource level of the user being created. These will define
which resources the user can create and edit.

Only the allowed resources will be displayed in the left
navigation bar of the interface of the corresponding user. That
is, a user with no permissions over Contents, will only have
view access of Timelines and Views the left navigation bar.

Figure 7. User creation web page.

2) Object level: The object level refers to which object from
the resources the user has access. By default, the user only has
access to the objects he has created. However, the administrator
can extended the access of a user to a certain object, based on
a Access Control List. This list of permissions is associated to
an object and contains the permissions of each user for that
given object.

In Figure 14, there is a padlock for each object of the table.
This padlock redirects to a page where the administrator edits
the permissions over the respective object, as in Figure 8. This
page lists all users with resource level permission over the
resource of the object, so the administrator can grant access
to that particular object.

Figure 8. Modification of object level permissions of a Content.

This permission is particularly useful if some resource needs
to be updated with contents that belong to a different user.

The users with Timelines and Views permissions can view
all the underlying resources in order to create a Timeline or
View, that is:

• To create a View, the user can use any of the underlying
Timelines.

• To create a Timeline, the user can use any of the
underlying Contents.

These blocking permissions allow, not only that users can be
associated to a specific task, but they also provide cooperation
among users in order to reach a final multimedia product. As
an example of specific tasks we can think of giving Con-
tent and Timeline permissions (Resource level) to a designer
responsible for providing multimedia contents. Alternatively,



261

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

View permissions can be granted to a user responsible for the
monitors inside of a specific building.

C. Files format support

One of the essential requirements of the system is the
capacity to upload, store and transform the files to be displayed
later. The compatibility of the system with the formats of the
files needed to be considered. This meant not only validating
the uploaded file, but also ensuring compatibility with the
library chosen to operate over these files.

We consider the upload of three types of files: image, video
and presentation files. Having studied the existent commercial
solutions, we understood that these types grant a large range
over the needs of the users. They enable the creation of
slideshows with predefined duration and they allow video
concatenation, which in the end leads to one final video
product.

1) Image formats support: For images, we opted for two of
the most used image formats, that are used at worldwide scale
and cover a wide range of contents:

• JPEG [18] (.jpeg) - JPEG is a lossy based image format,
but also supports lossless compression.

• PNG [19] (.png) - PNG is a lossless based image format.

2) Video formats support: For videos, the system supports
two video formats, both of them being multimedia container
formats that can contain both audio and video data:

• AVI [20] (.avi) - AVI is a multimedia container format
created by Microsoft.

• MP4 [21] (.mp4) - MP4 is also a multimedia container
and one of the most used video formats.

All the video codecs supported by FFmpeg can be used (ex.
H.264 [22], H.265 [23], just to name a few).

3) Presentation formats support: In the case of the presen-
tation formats, we decided to support PDF and PowerPoint
files (.ppt and .pptx extensions) due to their large usage. The
developed system supports files with multiple pages (or slides).
The upload of the files is made with the File Upload capability
of Django and saved in a media directory of the server.

D. Web server - control dashboard

The core of the presented solution is a web server that can
store the uploaded contents and exposes a web dashboard for
their management. During the following sections we present
the main processes that the web server executes and the
workflows it uses to reach the final product.

1) Files upload and validation: When a file is uploaded
with the Django File Uploader, the web server saves the file
and initiates its validation. It starts by validating the extension
of the file among the supported ones. If the extension is
a valid one, the web server further validates the uploaded
file according to its format. Our main approaches for these
validations are:

• Image format - for image validation, the imghdr (Table I)
Python library is used.

• Video format - for video validation, the MoviePy [24]
library is used. It is a Python library with video pro-
cessing capabilities. It allows cuts, concatenations, title
insertions, video compositing, video processing and cre-
ation of custom effects.

• PDF format - for PDF validation, the PyPDF2 (Table I)
Python library is used.

• PPT format - for PPT validation, the catppt [25] Linux
command is used.

• PPTX format - for PPTX validation, the python-pptx
(Table I) Python library is used.

If the file is valid, the web server returns the acknowledge-
ment to the user. Otherwise, the file is deleted and an error
message is returned to the user.

2) PDF transformations: In order to create a video from a
PDF file and due to the requirements of FFmpeg library, which
works with image or video files, the web server converts every
slide of the PDF into an image file. These images are saved
in a directory on the server and all the names are saved in a
text file. FFmpeg reads the text file and creates the video with
the duration specified by the user for each slide. In the end,
all images are deleted and the video file is saved.

3) PowerPoint transformations: The conversion process of
PowerPoint files to video is an extension of the PDF trans-
formation. The PowerPoint file is converted to PDF with
the command line LibreOffice [35] converter. Then, the PDF
transformation is performed.

4) Timelines creation: The creation of a Timeline is quite
intuitive to the user. The process starts by accessing the
Timeline tab and clicking the Add button. To create a Timeline,
the user needs to input a name for the Timeline and to associate
Contents to it.

After the submission, the web server initiates the creation
of a preview of the Timeline. The preview has a predefined
400×300px video resolution and it will be available in the
edition form of the Timeline, once the process is completed.

5) Views creation: The process of creating a View is made
automatically with the connection of a Raspberry PI. This step
can be customized for different platforms but it is currently
optimized for Raspbian. The View will be displayed in the
dashboard with an empty name and with a false configured
flag, as in Figure 9. In other words, the View has to be
configured in order to display contents and to be distinguished
from others.

Figure 9. Dashboard Views web page with an unconfigured View.



262

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Most important Python libraries used in this work.

Python Library Description

imghdr [26] Determines the type of image contained in a file or byte stream. It is used to validate when a file with an image extension is uploaded (.jpeg or
.png).

PyPDF2 [27] Designed specially to operate over a PDF file. It is used to validate when a file with PDF extension is uploaded.
pdf2image [28] Reads a PDF file and converts it into a Python Imaging Library (PIL) object. It is used to convert the PDF files to image, to be later converted in

a slideshow video.
python-pptx [29] A handler for Microsoft PowerPoint files (.pptx), that allows to create and modify the presentations. However, in our solution, it is only used to

validate the uploaded files.
ffmpy [30] A command line wrapper to FFmpeg [2]. It uses the Python subprocess [31] module to execute the commands.
screeninfo [32] A module to fetch the location and the resolution of the physical screens connected. In our solution, it is used to fetch the resolution of the

screens connected to the Raspberry PI devices.
netifaces [33] A module to fetch all the interfaces connected to the local device. It is used to find a suitable MAC address of the Raspberry PI.
requests [34] A module designed to send HTTP requests. In our system, it is useful to send the HTTP GET and HTTP POST requests from the Raspberry PI

to the server.

Upon the configuration of a View, if it has any Timelines
associated, the server initiates the process to create the MP4
file associated to the View. This file is compressed using
the H.264 standard [22] and encoded with YUV420 at 25
frames per second. To better fit the resolution associated to
the monitor, all the Contents are adapted to this resolution.
That is, when a View is configured with Timelines associated,
the system goes through all the Contents associated to these
Timelines and makes the changes needed to fit the screen
resolution, Content by Content.

To create, manipulate and merge these files, we chose the
FFmpeg library since it has compatibility with all major video
and image formats. The FFmpeg library adapts the Contents
using mostly padding and resize transformations. When iterat-
ing over the frames of the Contents, the FFmpeg library resizes
the frames which have different sizes and applies padding to
keep the Contents aspect ratio. This process is explained in
detail in Section III-E.

E. Multimedia contents transformation

In Figure 10 the transformations of FFmpeg are illustrated.
The figure shows five frames of a Timeline with three Contents
(an image, a video and another image) with these resolutions:

• Image 1: 1000×665 px
• Video: 1280×720 px
• Image 2: 6000×1977 px

Before explaining the FFmpeg transformations to these 5
frames, it is important to refer 3 effects: letterboxing, pillar-
boxing and windowboxing [36]. Letterboxing consists in the
transformation of frames with widescreen aspect ratio (16:9) to
a standard-width video ratio (4:3) while preserving the frames
original aspect ratio. This transformation consists of a padding
transformation both on top and bottom of the frames. On the
contrary, the pillarboxing effect consists in the transformation
of a standard-width video format into a widescreen aspect ratio
by applying padding into the frames both on left and right.
Windowboxing consists of the combination of both effects:
letterboxing and pillarboxing. This is noticeable when the
frames of a video are centered in the screen with a padding

effect all around them. This happens when the resolution of the
screen is bigger than the frames and no resize transformation
is used.

Using FFmpeg with the arguments:

• ”scale“ and ”force original aspect ratio“

• ”pad“

makes it is possible to apply the intended transformations
to the frames.

The ”scale“ parameter allows to specify the scale
resolution to apply to the frames, while using the
”force original aspect ratio“ to maintain the original aspect
ratio of the images. This transformation will upscale the
frames, if the resolution of the screen is bigger than the frames,
and downscale, in the opposite situation. The ”pad“ parameter
applies padding to the frames after the scale transformation.
When the frames of the Contents have a different aspect ratio
than the one of the screen, the letterboxing and pillarboxing
are perceptible.

Back to Figure 10, the example uses FFmpeg to fit a monitor
with a 1366×768 resolution which has a 1.78:1 aspect ratio.
In Image 1 from Figure 10, as the resolution of the image
is smaller than the screen, FFmpeg resizes the frames using
an upscaling transformation to fit the screen. Although, as the
aspect ratio of the image (1.5:1) is smaller than the screen
(1.78:1), FFmpeg also applies a padding effect, resulting in a
pillarboxing effect.

In the Video from Figure 10, FFmpeg resizes the frames
using an upscaling transformation. In this case, the aspect ratio
of the frames (1.78:1) and the screen (1.78:1) are equal, so
FFmpeg doesn’t apply the padding effect and the frames fit
perfectly the screen.

Image 2 from Figure 10 is the opposite of Image 1. The
resolution of the frames is much bigger than the screen and
FFmpeg resizes the frames, but using a downscale transfor-
mation. As for the padding effect, the frames of the image
(3:1) have a much bigger aspect ratio than the screen (1.78:1),
so FFmpeg applies padding to the frames, resulting in a
letterboxing effect.



263

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Expansion of a Timeline with five frames from three Contents (Image 1 (fox), Video (tree frames) and Image 2 (mountain landscape)).

With these FFmpeg arguments, the result will never reach
a windowboxing effect, because the ”scale“ parameter will
always try to resize the frames to fit the screen and the
”pad“ parameter will compensate the difference between the
aspect ratios, either with letterboxing or pillarboxing effects.
Using the FFmpeg upscaling transformation over the frames
of the Contents may have influence in the final quality of the
frames if the resolution of the image is much smaller than the
screen, which forces the users to upload Contents with more
appropriate resolutions.

IV. AGENTS - MONITORS

The need to display the contents in the monitors and the
need to have a terminal capable to communicate with the
web server motivated our choice of a Raspberry PI as part of
the distributed system. This equipment has enough processing
capabilities to display the contents with a low need for space
area and low energy dependency. It also has a 802.11b/g/n/ac
networking interface to communicate over Wi-Fi in order to
download the contents from the web server.

To test the system, we used the Raspberry PI Model 3B+,
which needs a dedicated power plug to connect to the power
supply. Otherwise the Raspberry PI shuts down on boot. We
also tested the system using a Raspberry PI Model 3B and,
on the contrary of Model 3B+, it only needs a Micro-USB
connector as power supply (present in almost every Liquid
Crystal Display or different types of monitors).

A. Life cycle

Regarding the development of the Raspberry PI system,
the communication with the web server is made over HTTP
requests and, as most of the case studies were in the Eduroam
network (which does not allow peer-to-peer communication),
all the communication requests must come from the Raspberry
PI to the web server and not vice-versa. This led us to create
a life cycle of the system, using a Python script to control the
display and the communication. When the Raspberry PI starts,
the script runs on boot and goes through a series of steps in
order to register on the server (the first time it connects) and
download the video.

This life cycle, as illustrated in Figure 11, is divided into
four major states.

1) State 1 - send init info(): In this state, the script tries to
fetch the data to be sent to the web server, namely:

• MAC address - using the netifaces [33] Python library
this information allows the server to distinguish between
the different terminals, as the MAC address is a unique
identifier of each of the terminals. Moreover, it allows
the user to know which View is associated to a terminal.

• Screen resolution - using the screeninfo [32] Python
library, the resolution is used to adapt the Contents
associated to a given View to its screen resolution.

To fetch the MAC address, the script tries to fetch the
address associated to the Ethernet interface and if it fails, tries
to fetch the address associated to the the default wireless lan
interface (wlan0). If both cases fail, it tries to fetch the address
associated to another wireless interface present in the list of
interfaces.

To fetch the screen resolution, screeninfo [32] fetches the
size and location of every physical screen connected. The
script chooses the screen resolution of the default monitor. If
it fails, the script waits for a period of time and tries to fetch
it again when a monitor is successfully connected. After this,
it sends the information to the web server with a HTTP POST
Request. The server, when receiving this information, checks
if the MAC address already exists and returns the path in the
server to the video corresponding to that View.

2) State 2 - get video(): The second state after fetching the
path to the corresponding video is responsible for downloading
the video from the web server with a HTTP GET request and
store it in the file system of the Raspberry PI. If it fails (if
the View was not configured yet or the server is down), the
terminal waits thirty seconds by default, and tries to download
it again. This loop is repeated until the video is successfully
downloaded.

3) State 3 - play video(): The third state is only responsible
to launch the process of the video player in order to play the
video on the monitor. To play the video, the OMX player is
used, which is a command line player specifically made for
the Raspberry PI GPU [37]. The player is launched with the
following command line flags:

• -g - used to generate the log file.

• -b - used to set background to color black.

• --no-osd - used to hide status information on the
screen.

• --loop - used to repeat the video indefinitely.



264

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. The different states of the monitor life cycle.

4) State 4 - check for changes(): The fourth and final state
is repeated infinitely and is responsible for polling the web
server, each sixty seconds by default, to check for any changes
in the View. If any changes are detected, the script jumps back
to State 2 to download the video and continue the cycle, as in
Figure 11. If at any moment the Internet connection is lost, it
continues to poll the server until a response is obtained. While
this happens, the previously downloaded video continues to be
played. This means that the video is always displayed, even
with no Internet connection, after a successful download.

In Figure 12, the terminal output of a Raspberry PI, from
the connection with the server until the video is successfully
downloaded, is presented. As this was just a test, the execution
of the program stops when the video is downloaded. In a
normal situation, the execution continues with State 4.

Figure 12. Raspberry PI terminal output. It is visible, from the output, that
the video was successfully downloaded.

B. Web server and Raspberry PI communication

The communication between the web server and the Rasp-
berry PI is made with HTTP GET and HTTP POST Requests
from the Raspberry PI to the web server. Since the system
was designed to be deployed in the Eduroam network and as
it does not allow peer-to-peer communication, all the requests
must come from the agents to the server.

The web server exposes three specific URL for the terminals
to make the requests:

• login/ - used to authenticate.

• monitor/new_monitor/ - used to register in the
system or/and fetch the URL from the corresponding
video.

• monitor/check_for_changes/ - used to check
for changes in the View.

Every request to the web server requires the terminal to
log into the system in order to get the Cross Site Request
Forgery (CSRF) token, provided by Django, to protect against
Cross Site Request Forgeries attacks. A CSRF hole is when a
malicious site can cause a visitor’s browser to make a request
to the server that causes a change on the server. This can
happen as the request comes with the user’s cookies [38].
According to the Django documentation this type of attack
occurs when a malicious website contains a link, a form button
or some JavaScript that is intended to perform some action on
your website, using the credentials of a logged-in user who
visits the malicious site in their browser [39].

The CSRF middleware and template tag of Django provides
automatic mechanisms to protect against this type of attacks.

V. RESULTS

The system presented in this paper is completely operational
and ready to manage the upload of multimedia contents and
display them. It implies the existence of a computer to host the
server (with proper image and video processing capabilities),
monitors to display the contents, single board to connect to
the monitor (Raspberry PI) and, of course, network connection
between the server and the terminals.

A. Dashboard

The dashboard was designed with emphasis on the require-
ments of Resources and Permissions in order to facilitate the
interaction of the users with the system. The dashboard gives
control over four main resources: Contents, Timelines, Views
and Users, having a navigation bar with these resources, as
illustrated in Figure 13.

As noticeable in Figure 13, the dashboard has a top navi-
gation bar, which has a dropdown button so the user can edit



265

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Dashboard home example.

her personal informations or logout. The left navigation bar
contains the four possible navigations. This left navigation bar
only shows the possible navigations to which the user has
access. Only the users with permissions over the resources
can access and control the respective resource. Only the
administrator can edit these permissions and have access to
the Users page.

When accessing a resource from the left navigation bar, one
of the pages presented in Figure 14 (except User) is displayed.
This page allows the visualization over the existing Contents,
Timelines or Views to which the user has access. It also allows
to create (except for Views as explained in Section III-D), edit
or delete a resource. If the user is an administrator she can edit
the permissions (object level) of the users to that resource.

Figure 14. Visualization of Contents, Timelines and Views.

The dashboard was built using three known technologies:
HTML, CSS and JavaScript. This triad allows to create inter-
faces using HTML for structure, CSS for styling and JavaScript
to control the flow of some elements.

When editing a resource, a form is displayed so the user can
edit the data associated to the resource. In the case of Contents,
the form contains two fields: the name of the Content and a file
upload button. However, when editing a Timeline or a View

(Figure 15), a table with the Contents or Timelines associated
to the resource, respectively, is displayed. This table allows the
addition of objects from the dropdown button. Moreover, the
objects from the table can be dragged and dropped into the
intended order. When editing a Timeline, the table also has a
duration input field for each image or presentation Content. By
filling in this field the user can specify the intended duration
for each image or slide that will be part of the Timeline. In
addition, a preview window displaying the video reproduced
from the last Timeline submission is available.

Figure 15. Edition of a Timeline.

B. Final result

To test the system, we used a server at the University of
Aveiro to run the web server. This makes the server available
to all the terminals inside the university network (Eduroam),
making the system portable and usable in any department. The
access to the dashboard is also possible in any local with
Internet connection (using a Virtual Private Network). The
server has the HTTP Port (number 80) open in order to enable
requests from other hosts inside the Eduroam network.

The system was tested in two environments: Institute of
Electronics and Informatics Engineering of Aveiro (IEETA)
building and Students@DETI [40] event. Both environments
require the dissemination of multimedia contents. The follow-
ing sections explain the procedure and details about each one.

1) IEETA monitors: Since research promoting monitors
were placed across IEETA, the display of multimedia contents
was based on a USB flash drive to store the contents. This
would be manually connected to the monitor. Moreover, the
process of updating contents consisted in removing the USB
flash drive and manually updating them by transferring new
ones from a computer. The need to automatize and speed
up this process enabled the development of the solution we
propose.

In Figure 16, we can see a real Full HD monitor
(1920×1080 px of resolution and a 1.78:1 aspect ratio) with a
Raspberry PI single board connected to the developed system.
The final product, the video stream for that particular View is
displayed.

The building has three monitors distributed across its area.
We used the three monitors simultaneously. They were con-
nected to Raspberry PI and the following Contents were used.

• 7 PDFs with 15 seconds of display.



266

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Final result of a monitor in IEETA.

• 3 PowerPoint files with 5 seconds for each slide.
• 2 videos with MP4 format.

All of these Contents were composed in one Timeline,
resulting in a video with 1 hour and 51 minutes. The system
was updating automatically the video if any changes were
made. The only delays in this process come from the difference
between the time of creation of the video on the server and
the time of polling and the download time.

2) Students@DETI: Every year, the Electronics, Telematics
and Informatics Department of University of Aveiro hosts a
research events that promotes projects of lecturers and students
of the department. This year, we deployed our system in three
spots of the event in order to test and advertise it. The system
displayed multimedia contents uploaded by the organizers of
the event with contents relevant to the event, mainly PDF,
PowerPoint and video files.

Figure 17. Demonstration and exhibition of the system at Students@DETI,
using a vertical monitor.

Two of the three spots were using a projector to display
the multimedia contents into a wall, one at the entrance of
the event and the other one in a hall. These two spots were
displaying three PDF Contents with 15 seconds for each
slide converted to a Timeline. The third spot was a smaller

monitor in an exhibition room. The monitor was displaying
posters from the different students projects showcased at the
event. As the posters had a vertical orientation, we changed
the orientation of the Raspberry PI and the server made the
changes automatically to better fit the monitor. In Figure 17
the monitor was displaying a Timeline with 15 PDF posters
with 10 seconds for each one.

VI. CONCLUSION

This project evolved as a necessity that we have identified
within our local research community. We were motivated to
develop an affordable solution, based on open-source technolo-
gies in order to overcome the lack of open available solutions.
The main goal of this paper was to propose a solution to
manage multiple multimedia contents in order to display them
in multiple monitors. The system we have presented, as a
whole, is operational and fully functional within our research
unit. It manages the upload of multimedia contents and their
display. It implies the existence of a computer to host the server
(with proper image and video processing capability), monitors
to display the contents, single board elements to connect to
the monitor (like a Raspberry PI) and, of course, network
connection between the server and the terminals.

A global overview over the results highlights different
features that we intend to improve, as future work:

• The aspect of the dashboard that needs to be more
appealing and intuitive to the user. Moreover, it could
display for example, snapshots of the Contents.

• A more advanced Timeline editor in order to give the
user a greater control over the sequence of Contents.

• The capability to fetch information in real time about
the monitor in order to show the status in the dashboard.
Moreover, we envision making it possible to run certain
commands over the monitor (such as shut down or turn
on).

As the system evolves we intend to expand the supported
formats of Contents, including for example audio files. Another
interesting feature that we plan to develop is the support for the
interaction between the target audience and the system, either
by a physical contact or even by voice control. This interaction
would allow the user to pause and skip contents, for example.

ACKNOWLEDGMENT

This work was partially funded by FEDER (Programa
Operacional Factores de Competitividade - COMPETE), by
National Funds through the FCT - Foundation for Science and
Technology in the context of the project UID/CEC/00127/2013
and by the Integrated Programme of SR&TD ”SOCA“
(Ref. CENTRO-01-0145-FEDER-000010), co-funded by Cen-
tro 2020 program, Portugal 2020, European Union, through
the European Regional Development Fund.



267

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] A. Baptista, A. Trifan, and A. Neves, “Digital management of multiple
advertising displays,” in Proc. of 14th International Conference on
Autonomic and Autonomous Systems, ICAS 2018, 2018, pp. 36–41.

[2] “FFmpeg official website.” https://www.ffmpeg.org/, accessed: 2018-
05-29.

[3] A. Di Rienzo, F. Garzotto, P. Cremonesi, C. Frà, and M. Valla,
“Towards a smart retail environment,” in Adjunct Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium
on Wearable Computers. ACM, 2015, pp. 779–782.

[4] N. I. Bruce, B. Murthi, and R. C. Rao, “A dynamic model for
digital advertising: The effects of creative format, message content,
and targeting on engagement,” Journal of Marketing Research, vol. 54,
no. 2, pp. 202–218, 2017.

[5] A. L. Roggeveen, J. Nordfält, and D. Grewal, “Do digital displays
enhance sales? role of retail format and message content,” Journal of
Retailing, vol. 92, no. 1, pp. 122–131, 2016.

[6] J. Schaeffler, Digital Signage: Software, Networks, Advertising, and
Displays: A Primer for Understanding the Business. Taylor & Francis,
2012. [Online]. Available: https://books.google.pt/books?id=9ZUrt7-
igxQC

[7] “Yodeck official website.” https://www.yodeck.com/, accessed: 2018-
05-30.

[8] “Raspberry PI official website.” https://www.raspberrypi.org/, accessed:
2018-05-22.

[9] “Yodeck digital signage solution.” https://www.yodeck.com/wp-
content/uploads/2015/12/yodeck-04-2.png, accessed: 2018-06-08.

[10] “Xarevision,” https://www.xarevision.pt/, accessed: 2018-07-30.
[11] “JCDecaux official website.” http://www.jcdecaux.com/, accessed:

2018-05-30.
[12] “JCDecaux billboard.” http://www.jcdecaux.com, accessed: 2018-05-

30.
[13] “Enplug,” https://www.enplug.com/, accessed: 2018-06-30.
[14] “NoviSign,” https://www.novisign.com/, accessed: 2018-06-30.
[15] “Mvix,” http://www.mvixusa.com/systems/, accessed: 2018-06-30.
[16] “ScreenCloud,” https://screen.cloud/, accessed: 2018-06-30.
[17] “Django official website.” https://djangoproject.com, accessed: 2018-

05-22.
[18] G. K. Wallace, “The jpeg still picture compression standard,” IEEE

transactions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[19] C. Wilbur, “Png: The definitive guide,” Journal of Computing in Higher
Education, vol. 12, no. 2, pp. 94–97, 2001.

[20] “Audio Video Interleave (AVI),” https://msdn.microsoft.com/en-
us/library/windows/desktop/dd318187(v=vs.85).aspx, accessed: 2018-
05-28.

[21] “MPEG-4,” https://mpeg.chiariglione.org/standards/mpeg-4, accessed:
2018-05-28.

[22] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h. 264/avc video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.

[23] V. Sze, M. Budagavi, and G. J. Sullivan, “High efficiency video coding
(hevc),” Integrated Circuit and Systems, Algorithms and Architectures.
Springer, vol. 39, p. 40, 2014.

[24] “MoviePy,” https://zulko.github.io/moviepy/, accessed: 2018-05-22.
[25] “catppt command,” https://linux.die.net/man/1/catppt, accessed: 2018-

07-01.
[26] “Python imghdr,” https://docs.python.org/3.4/librar/imghdr.html, ac-

cessed: 2018-05-28.
[27] “Python PyPDF2,” http://mstamy2.github.io/PyPDF2/, accessed: 2018-

05-28.

[28] “Python pdf2image,” https://github.com/Belval/pdf2image, accessed:
2018-05-29.

[29] “Python python-pptx,” https://github.com/scanny/python-pptx, accessed:
2018-05-29.

[30] “Python ffmpy,” https://github.com/Ch00k/ffmpy, accessed: 2018-05-
29.

[31] “Python subprocess,” https://docs.python.org/3/library/subprocess.html,
accessed: 2018-05-29.

[32] “Python screeninfo,” https://github.com/rr-/screeninfo, accessed: 2018-
05-29.

[33] “Python netifaces,” https://github.com/al45tair/netifaces, accessed:
2018-05-29.

[34] “Python requests,” https://github.com/requests/requests, accessed: 2018-
05-29.

[35] “LibreOffice,” https://www.libreoffice.org/, accessed: 2018-07-01.
[36] C. Poynton, Digital video and HD: Algorithms and Interfaces. Elsevier,

2012.
[37] “Omxplayer Github page.” https://github.com/popcornmix/omxplayer,

accessed: 2018-05-31.
[38] “Cross-site request forgery,” https://www.squarefree.com/securitytips/web-

developers.html, accessed: 2018-07-02.
[39] “Django’s Cross Site Request Forgery protection.”

https://docs.djangoproject.com/en/2.0/ref/csrf/, accessed: 2018-05-
31.

[40] “Students@DETI website.” http://studentsandteachersdeti.web.ua.pt/,
accessed: 2018-07-09.


