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Abstract -  The paper studies the actual task of developing and 

setting up the algorithms for multi-extreme objects search 

optimization. To solve such problems, the heuristic methods 

are effectively used, in particular applying the swarming 

particles method. The mathematical base for the modified 

swarming particles method, which is oriented to solve the 

multi-extreme search problems, is developed and described in 

detail. The modified algorithm is applied to the irregular 

multi-extreme "Epsilon" test functions, considered to be a very 

difficult test case. The functionality of developed software 

"EpsilonFunction", which is created to control the generation, 

editing and investigation of multidimensional multi-extreme 

test functions is described. Epsilon function is a multiplicative 

function developed by R. Neydorf, which has fundamental 

extremes, multidimensionality and isolation in the factor space, 

which makes possible to completely exclude the influence of the 

results. The use of these fundamentally new test functions 

made possible to show that such modified method of swarming 

particles is suitable for solving the rather complex multi-

extreme search problems. The developed software tool 

"EpsilonFunction" has a wide range of possibilities for 

developing and researching the test functions that are being 

created for other related applications. Epsilon-functions have 

found application in the method of "Cut-Glue" approximation 

of experimental data, which is at the researhing stage, but has 

already proved itself as an innovative and effective tool of data 

approximation. 

Keywords - search optimization; multi-extreme; method of 

swarming particles; test functions; irregularity; software. 

I.  INTRODUCTION 

Many modern technical and scientific problems are 
complex, as they need to solve optimization problems [1][2]. 
Today, most of the known search engine optimization 
methods are designed and used to find one optimum, which 
is often the global one. However, the goal is not always to 
find only the global optimal solution. In many cases, there 
are many suboptimal and close to the global optimal extreme 
solutions, which are quite acceptable. To study such 
problems and find solutions applying the Multi-Extreme 
(ME) optimization, subject-oriented methods, as well as 
tools for testing and evaluation, are required. 

When making decisions regarding ME, it is necessary to 
take into account that the deterministic search methods are 

usually very sensitive to their essential nonlinear continuum 
dependencies (in particular to discontinuity of their 
derivatives and variables). When searching the discrete 
quotient spaces, ME problems are often NP-complete [2]. In 
this regard, to solve complex (multidimensional and ME) 
optimization problems, more and more often various 
effective heuristic methods are applied. 

The most important advantages of the heuristic 
algorithms, over other types of optimization algorithms, are 
in analogies that generated them. They consider the 
adaptation processes found in living and inanimate nature. 
Methodologically, they are based on processes found in the 
knowledge areas as decision-making theory, fuzzy logic, 
neural networks, evolutionary-genetic mechanisms, fleece 
behavior, etc. These processes partially repeat and in many 
ways supplement each other [3][4]. The disadvantages of 
these methods are that they are not adaptable to analytical 
research and evaluation. 

Today, heuristic methods are used to solve problems of 
high computational complexity. One of the most promising 
representatives of such methods is the Method of Swarming 
Particles (MSP) [3]. However, the peculiarity of research and 
practical development of ME optimization algorithms are 
coming with their own complexity, cumbersomeness and 
significant development times, when a large number of 
extremes in the factor space of the related problem has to be 
solved. 

The impossibility of a theoretical study of qualitative 
properties and numerical settings of heuristic algorithms 
implies that their performance and efficiency are most often 
checked with so-called Test functions (TFs) [5][6]. When 
algorithms for investigating ME objects are in development, 
the selection of effective testing tools is the problem. It is 
well known that TFs have either one global extreme, or they 
have a regular character with respect to the location of 
extremes, and the magnitude of their amplitudes [7]-[11]. 
Thus, for a more effective testing, the irregular 
multidimensional ME functions are needed. 

The most famous and widely used ME optimization TFs 
are: Rosenbrock [8], Rastrigin [9], Himmelblau [10], De 
Jong [8], Griewank [8], Schwefel [8], etc. In addition, many 
papers describe other variants of TFs that generates ME 
functions [11]. They ensure a good verification of the ME 
optimization algorithms for the quality of the structural and 
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parametric setup for the study of the factor space. In this 
context, a structural evaluation means the determination of 
the number of extremes and their spatial arrangement 
(coordinates). The parametric estimation means the 
determination of the extremes magnitudes (taking into 
account their signs). 

The disadvantage of most TFs is their regular and 
analytical character. The absence of no differentiable or 
poorly differentiable areas greatly facilitates the work on the 
algorithm, by evaluating the surface structure under 
investigation. The real search is made difficult due to the fact 
that their coordinates are usually close to each other. The 
presence of a noticeable surface curvature at a respective 
extreme distance facilitates its search. Therefore, the TF 
extreme should be as close as possible to the impulse form, 
as in such case its neighborhood is minimally curved. A 
sufficiently developed adaptive algorithm can easily identify 
the period of the extremes alternation. 

In Section II, the problem described in this paper is 
formulated. Section III contains a description of the 
Multiplicatively Allocating Function (MAF) and its 
characteristics. Section IV describes actual application of 
Epsilon-function. Section V illustrates the features of the 
developed special software (SW) for MAF building. Section 
VI describes the mathematical model (MM) of modified 
MSP for ME search. Section VII shows the result of 
experiments on the generated Epsilon TFs. Section VIII 
demonstrates the experimental results of MAF parameters 
influence optimization. Section IX contains the conclusion of 
the conducted research and future work. 

II. PROBLEM FORMULATION 

Following the above described issues, the goal of this 
paper is to develop and study the MSP modification, aiming 
to solve different ME search problems. For testing and 
setting a highly efficient solution to treat these problems, it is 
necessary to test the MSP on TFs, which are coming with 
disadvantages, as described in this paper introduction. To do 
this, it is necessary to implement algorithmically and 
programmatically the TF generator, which is theoretically 
presented in [5], and to conduct and process statistically 
representative experiments when setting up the modified 
MSP. In addition, the real implementation of developed TF 
and solve the ME searching problem by modified heuristic 
MSP is necessary to describe and demonstrate experiments 
result. 

III. SCALABLE MAF FOR EXTREME FORMING 

R. Neydorf et al. developed the general principles for 
constructing the universal irregular ME TFs, based on the 
application of MAF constructed to approximate problems 
[5]-[7]. 

MM of such MAF for N-dimensional ME TF, with a 
number of K extremes, has the form: 

 

 
1 1

( ) [ ( , , , )]
i

NK

k x k i ik ik ik

k i

E x a E x x x 
 

    (1) 

 

where: x– is an argument; αk – is a coefficient specifying 

the extreme value; ik  - are the edge steepness parameters. 

Figure 1 demonstrates the modeling of 3 ε-functions 
maxima in 2-dimensional space having different edge 
steepness of pulse fronts (2). 
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where: {xik, ∆xik, ik } – is the set of TF parameters; L

ikx  = xik 

- ∆xik, 
R

ikx  = xik + ∆xik – are the initial and final coordinates of 

extreme pulse for x argument; L

ik  and R

ik  – are the edge 

steepness parameters. 
 

 

 
Figure 1.  Demonstration of different steepness of pulse fronts of ε-

function extrema 

 

Variant A is impulse extreme ( ik =0.1), B is 

intermediate variant ( ik =0.5), C is shelving extreme 

( ik =1). The graphs are constructed from (1) and (2). 

IV. MAF APPLICATION 

In the case of the first developed technical devices, 
technological processes and installations, which are largely 
created on the basis of heuristic representations of designers, 
analytical modeling may be generally inaccessible or give 
very unsatisfactory accuracy, as it is determined by many 
difficult factors to be taken into account. In this case, it is 
expedient to build models on the basis of their 
experimentally removed characteristics. Often such 
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characteristics turn out to be essentially nonlinear. In many 
cases, when approximating the static characteristics, a 
piecewise approximation is sufficient. However, in dynamic 
models such a solution creates considerable difficulties in 
solving models, and with their mathematical transformations. 

A "Cut-Glue Approximation" (CGA) method for 
constructing mathematical models of essentially nonlinear 
dependencies, applicable to fragmented EDs, was proposed 
in [3][6] and in a number of intermediate publications. The 
algorithm for implementing the CGA method consists of two 
relatively separate stages: the preparatory - directed on the 
fragmentation of the initial array of experimental data and 
the mathematical description of the resulting experimental 
data fragments (locally-approximating functions) and the 
multiplicative-additive stage - realizing the construction of 
mathematical model based on the received locally-
approximating functions. Mathematically, this corresponds 
to cutting a single experimental data array into several 
fragments while preserving common boundaries. The 
boundaries are chosen from the condition of the required 
accuracy of the fragment description with the help of locally-
approximating functions. In fact, the CGA method is 
oriented at narrowing the domains of the definition of 
analytic functions that approximate each of the point subsets 
- fragments. Feedback effects of the results of the subsequent 
stages of the CGA algorithm on previous ones are of great 
importance for the optimization obtained by the final 
mathematical model, but in this paper they are not 
considered. The most significant stage of the CGA, 
connected directly with the construction of the mathematical 
model, which is carried out using two operations, is 
investigated. The first of them is multiplicative ("Cut the 
fragments"), provides the formation of so-called interval-
isolated functions (IIF), approximating the fragments within 
their boundaries. The IIF are formed by multiplying the 
locally-approximating functions by MAFs, the mathematical 
structure of, which provides interval isolation of the IIF 
while preserving its approximating properties within the 
fragment provided by the locally-approximating function. 
The second operation - the additive ("Glue the fragments"), 
makes the addition of IIF, multiplicatively approximating the 
fragments. The result of this additive operation is a smooth 
function that approximates the piecewise dependence with 
the required accuracy. 

CGA method is based on the multiplicative "cutting out" 
of well-approximated sections of the modeled dependence 
and the additive "gluing" them together into a single analytic 
function [12]. The MAF is used for "cutting out", which 
determines the analytical properties of the final expression. 
The latter is the main distinctive feature and advantage of the 
method. allows not only numerical, but also analytical 
transformations of the obtained model. 

"Cut the fragments" is a process in the CGA method that 
realizes the "cutting out" of a fragment that approximates 
some part of the experimental dependence on the boundaries 
of the selected fragment. Mathematically, this corresponds to 
cutting a single matrix of experimental data into several 
fragments while preserving common boundaries. The 
boundaries are determined by the condition for the accuracy 

of the description of the section by the approximating 
analytic function. To do this, we use MAF or so-called. the 
epsilon function of the steepness of the pulse fronts, which 
enter into the composition of the function, is ε. In previous 
works, the author gives the condition for the most effective 
variant of using this parameter. But such efficiency is 
conditioned only by the convenience of programming, and, 
as studies show, it is effective only if the boundaries of the 
fragment are approximated by a sufficiently accurate 
reproduction. 

"Glue the fragments" is a process in the CGA method, 
which provides a single analytic function, describing the 
investigated area of the object's characteristics. Combining 
the fragments, i.e. Their gluing after the operation Cut the 
fragments is carried out by algebraic summation. After a 
series of preliminary experiments, the authors found that 
varying the values of ε for different coordinates in a 
multidimensional space can improve the approximation 
result for the Glue the fragments procedure. 

However, to date, the effectiveness of the proposed 
solution of the approximation problem is theoretically 
justified and is practically confirmed only for one-
dimensional and two-dimensional dependencies [12]. B The 
possibility and prospects of applying the proposed approach 
for approximating the dependencies of arbitrary dimension 
are justified. This significantly expands the scope of the 
method and its significance in the relevant field of science 
and practice. 

Cut the fragments operation is described by the following 
general expression for the multiplicative transformation: 
 

 1, ( ) ( ) ( , , , )n

i i ik ik ik

n ni N f x x E x x x
i i

        (3) 

 

where: ( )f x
i i

 - the IIF of the i-th experimental data 

fragment; n – is the index of the factor dimension of the 
experimental data; N – is number of fragments and their IIFs; 

( )x
i i
  - i-th locally approximating function; 

n

iE  - 

multidimensional MAF for the i-th locally approximating 
function, whose dimension n is determined by the factor 
dimension of the experimental data. 

Glue the fragment operation is carried out by simple 
summation of all N IIFs (3): 
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MAF perform the "cutting out" operation from the i-th 

locally approximating function with minimal distortion of its 
fragment within the intervals specified for each coordinate of 
the quotient space of the arguments allocated to the 
experimental data by the fragment. For an exact 
multiplicative realization, this should be done by multiplying 
the internal locally approximating function data by one, and 
external ones by zero. Since it is impossible to do this in the 
framework of the postulated property of analyticity of the 
result of mathematical modeling, and, hence, the MAF, it is 
impossible to impose restrictions on the structure and 
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parameters of these allocating functions associated with 
permissible locally approximating function distortions 
approximating the fragments. Based on this, the MAF is 
endowed with important for the solved task of "cutting out", 
properties that have been partially investigated by R. Neidorf 
in previous works [12] and a number of other earlier ones. 
They identified the main characteristics of MAF, allowing it 
to perform CGA postulated properties with respect to the 
internal point data of the fragments. However, additional 
studies by CGA on optimizing the MAF adjustment 
parameters and showed the need for a more thorough study 
of MAF boundary properties that affect the curvature of the 
boundaries of the cutting functions [12], and, through them, 
the error in approximating the obtained mathematical models 
both at the internal boundaries of the fragments closure and 
external boundaries of the whole experimental data array. 

V. SOFTWARE IMPLEMENTATION OF Ε-GENERATOR 

The SW for TFs creation is developed with C# 
programming language. It is a MAF research tool. The SW is 
a desktop application with third-party library for 
visualization. This library is a part of the executable file to 
simplify its execution. 

The "Epsiolon Function" features are: 

 Russian and English interface languages; 

 Create / load / save / delete the test. The test is saved 
in the XML format. This feature allows user to use 
the resulting TF to effectively check the optimization 
algorithm within the third-party program without the 
use of additional technologies; 

 Multidimensionality; 

 Adding (editing) extremes in 2 modes: 1st - manual 
input and 2nd - pseudo-random generation of 
parameter values in the specified ranges; 

 Display and save the resulting TF equation in 
analytical form; 

 Validation of all input data; 

 Visualization of the TF graph with additional setting 
the cut-off points to display multidimensional TF. 2-
display modes: 2D and 3D graph. 

 

 
Figure 2.  Input extreme software screen 

 

Figure 2 illustrates the screen after creation/loading of 
test file. It is responsible for input main data – the extreme. 
The user can choose Dimension count and set up the extreme 
parameters. 

Next sub-screens are necessary for adding the extreme. A 
user can choose the type of new extrema. In Empty mode the 
extreme will not have any data, as shown in Figure 3. In 
Custom mode the extreme will obtain pseudo-random data, 
as shown in Figure 4. The user chooses low and high bounds 
of randomization. In addition, user can simplify a process 
and check the specific check boxes, if he need same values 
for more than one parameters. 

 

 
Figure 3.  Add new empty extrema(e) software screen 

 

 
Figure 4.  Add new pseudo-random extrema(e) software screen 

 
Figure 5 demonstrates the next screen. It shows the 2-D 

graph of MAF and bounds of visibility. Extreme information 
shown only for convenience of research analytical studies. 
Any MAF in software can be shown as 2-D function, if the 
user turns on only one of the "Displayed?" parameters. For 
3-D graph two of "Displayed?" parameters must be switched. 

Figure 6 illustrates the previous screen, but MAF and 
displayed function has 2 dimensions (3-D graph). On this 
screen the user can rotate and scale the graph using mouse 
and special controller on the bottom-right side of the 
window. 

Figures 7 and 8 illustrate the SW capabilities (on 2D and 
3D models). Figure 7 shows a user function with 50 maxima 
(equal in magnitude of amplitudes, increments and steepness 
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of pulse fronts) constructed by the SW. Figure 8 
demonstrates a generated function with 31 maxima (different 
amplitudes, increments and steepness of the pulse fronts). 

 

 
Figure 5.  Software screen for analytical function analysis (2-D variant) 

 

 
Figure 6.  Software screen for analytical function analysis (3-D variant) 

 

VI. MSP MM, MODIFIED FOR ME SEARCH 

The essence and grounds for using MSP in search 
optimization problems are well known [2][3]. The classical 
MSP algorithm imitates the real group behavioral insects, 
birds, fish, many protozoa, etc. However, ME of 
optimization object requires some specific algorithm 
properties. Therefore, the canonical MSP version has been 
significantly revised and modified by the authors [3][4]. The 
hybrid algorithm includes basic algorithm laws of 
mechanics, dynamics, gravitation and stochastic "blurring" 
of the method parameters, which used in swarm prototype. In 
particular, its modification has been developed for solving 
ME problems in multidimensional spaces. 

MSP MM is constructed on the basic equations of 
kinematic motion of a material point for particle position and 
velocity: 
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  - is the acceleration caused by the 

bio-analog of particles gravitational attraction to the extreme 
point, Q ϵ {G, Li}, G - is the particle attraction to the global 
swarm extreme; Li - the best found position by particle for all 

time; 
Q
iD̂  - is the unit director vector towards the point of 

attraction; gQ - is the gravitational constant prototype; Q
im  - 

is the gravity center mass; Q
ir  - is the distance between 

particle position and diffuse position of the attraction target 
point; εQ - is a natural acceleration limiter that excludes the 

passage of any material point at ∆X<ε distance; ittvisV )( 


  

- is the viscosity friction; ittitttur VV )()( 


  - is the 

turbulent friction; μvis, μtur- are the coefficients of viscosity 
and turbulent friction, respectively. 

To take into account the MM stochastic behavioral 
components, the equation of parameters random fluctuation 
(distortion) is included: 

 

 ))5.0)1((21()(  rnd  (8) 

 
where: ε - is the nominal value of fluctuating parameter; φ - 
is the coefficient of parameter distortion, relative to the 
nominal value; rnd(1) - is the random float number in [0;1] 
range. This law applies to the following collective 
parameters of a swarm and particles: 

 Prototypes of gravitational constants - gQ; 

 Coefficients of viscosity and turbulent friction - μvis 
and μtur; 

 Dissipation coefficient - μdis. 

VII. MSP MODIFICATION FOR Ε TFS APPLICATION 

To study and adjust the ME modification of MSP, 3 
demonstration Epsilon TFs are generated using the "Epsilon 
Function" SW; see Figures 9(a), 9(b) and 9(c). In addition, to 
test the MSP modification, an appropriate "Modified MSP" 
SW was developed. For its development, the C # 
programming language was used. 

For all experiments, the same particle number (P) and 
iteration (I) settings were used, to obtain a more general 
picture of MSP operation on various generated functions. At 
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the same time, the dynamics parameters were settings 
dynamically, with respect to the region under consideration. 

Figures 9(d), 9(e) and 9(f) show Epsilon functions and 
localized MSP regions (red squares) and extremes (blue 
dots), which are found and evaluated. Each function has a 
specific feature that allows you to identify the positive 
aspects and disadvantages of the optimization algorithm 
being developed. 

Figures 9(a) and 9(d) show a TF with 5 minima and 3 
maxima. The complexity of the extremes search for a given 
function can be characterized as an average. The functions 
are steep near extremes and moderately canopies at the 
bases, and being located at a considerable distance from each 
other. However, the amplitude of the extremes is not high (-
1), and it is not easy to identify the whole set of extremes 
from the first pass. 

 

 

 
Figure 7.  Demonstration of different steepness of pulse fronts of ε-

function extrema 

 
Figures 9(c) and 9(f) show the Epsilon function, which 

has 8 minima and 8 maxima to identify and estimate the 
minima. The shape of this function is similar to the bends of 
"peaks" and "gorges", which can be smooth, but may have 
sharp cliffs. An additional complication in this function is the 
large difference in the extremes amplitudes. By localizing 

one of the extremes, the multi-agent system is not exploring 
the rest of the search space. However, this does not happen 
in the modified MSP. 

 

 

 
Figure 8.  Example of generated ME TF with impulses of different 

steepness 

 
Tables I-III show the experiments results of a successful 

search for the modified-MSP. These results were obtained 
from the basic MM motion of the swarm (preceding the MM 
clustering mechanism [13], which divided the search space 
into subspaces and found in each an extreme and, which was 
replaced by the dynamic clustering caused by the behavioral 
model of the swarm itself). This made it possible to 
approximate the MM method to the real prototype of the 
agent’s interaction (insects, birds, fish, etc.) in the swarm. 
The agents localize extreme areas, under the influence of 
attraction forces (not only global, but also local). The 
increase in the influence of local attraction is caused, in 
particular, by the introduction of a turbulent deceleration in 
the MM. The removal of the non-dynamic clustering 
mechanism from MM also enabled to exclude the "cluster" 
attraction of the swarm particles to the closest previously 
created clusters, which allowed the particles to behave in a 
more similar way to the real prototype. 
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 a) b) c) 

   
 d) e) f) 

Figure 9.  Generated TF graphs and MSP result on different scenes: a – I on 3D, b – II on 3D, c – III on 3D, d – I on 2D, e – II on 2D, f – III on 2D 

As a result, the minimum error of the obtained 
approximation in experiment 1 (see Table I), relative to the 
standard, was ~0.01%, average ~0.03%. MSP successfully 
isolated the extreme regions and obtained the described 
results due to the smooth motion of the particles to the 
extreme values found at the moment (based on (3)-(5)). This 
allowed the particles not to jump through the extremes. 

The minimum error of the obtained approximation in 
experiment 2 (see Table II), relative to the standard, turned 
out to be ~0.001%, mean ~0.01%. The parameter of the 
slope of the pulse fronts of a given Epsilon function for all 
extremes is 0.01, which implies the complexity in finding 
them. However, since the number of extremes is 20, the 
particles interact with each other and receive an additional 
opportunity to study the neighboring extremes. This effect is 
due to the fact that, when the particle is found close to a 
extreme, then, in the next step, it will get a large acceleration 
(see (5)), which will allow the particle to escape from this 
extreme attraction zone and visit the extreme region of the 
neighboring one. The minimum error of the approximation 
obtained in experiment 3 (see Table III), relative to the 
standard, was ~0.09%, average ~3%. 

The complexity of this experiment consists in mixing 
maxima and minima. This means that the particles will be 
located more often in positions that may be worse than their 

previous ones. However, the method is also effective in such 
a case. 
 

TABLE I.  I Ε TF STANDARD AND MSP RESULT 

Standard MSP 

x y f(x, y) x y f(x, y) 
70.5 60.5 -1 70.4811 60.4904 -0.9998 

30.5 90.5 -1 30.5206 90.5171 -0.9998 

60.5 80.5 -1 60.4901 80.5104 -0.9999 

80.5 40.5 -1 80.5486 40.5173 -0.9993 

40.5 70.5 -1 40.5158 70.4641 -0.9996 

 
The complexity of this experiment consists in mixing 

maxima and minima. This means that the particles will be 
located more often in positions that may be worse than their 
previous ones. However, the method is also effective in such 
a case. 

The attraction of particles to the global extreme allows 
improving the result of the whole swarm, even in a situation 
where the best position of the particle itself is not a local 
extreme (which forces the particle to swarm in the pseudo-
local area). With additional sub-optimization of the 
parameters of the swarm and particles, the error can be 
significantly reduced [3][4]. 

The problem of finding the set of MAF extrema is 
important in the CGA and at the moment there are no 
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unambiguous results on the benefits of searching and using 
only global MAF extremum. In one of CGA operation each 
MAF affects to distortion in neighboring fragments by 
varying measures. 

 
TABLE II.  II Ε TF STANDARD AND MSP RESULT 

Standard MSP 

x y f(x, y) x y f(x, y) 
6.4254 4.6182 0.4543 6.4253 4.6182 0.4543 

3.2322 4.4678 0.7859 3.2322 4.4698 0.7859 

9.7602 9.2187 0.6206 9.7505 9.2172 0.6206 

1.3463 6.6313 0.5903 1.3412 6.6291 0.5903 

3.9888 1.4936 0.4183 3.99 1.4981 0.4183 

… 

4.5307 5.4641 0.7796 4.5327 5.4604 0.7796 

2.1397 2.2475 0.5101 2.1423 2.2536 0.5101 

3.3574 1.6594 0.8659 3.3518 1.6565 0.8659 

0.9593 1.9634 0.9677 0.9597 1.9561 0.9677 

1.4741 1.2706 0.7321 1.473 1.2718 0.7321 

7.2637 3.8593 0.5123 7.2631 3.8621 0.5123 

 
TABLE III.  III Ε TF STANDARD AND MSP RESULT 

Standard MSP 

x y f(x, y) x y f(x, y) 
3.6721 8.491 -0.5598 3.6181 8.451 -0.5651 

5.3615 6.6256 -0.5653 5.343 6.6296 -0.5658 

0.7982 3.1601 -0.2936 0.7953 3.1288 -0.2901 

4.9938 1.1940 -0.4426 4.8912 1.1833 -0.455 

4.5671 2.7411 -0.2833 4.5894 2.6884 -0.2849 

2.025 4.5505 -0.5831 2.1631 4.6302 -0.6375 

2.6129 7.4111 -0.4821 2.769 7.3498 -0.5187 

7.0786 3.2646 -0.3418 7.1416 3.2602 -0.3451 

 
Finally, to demonstrate the implementation of MAF and 

modified under the search MSP in a more complex task an 
example of experimental data approximation is further 
described. 

VIII. EXPERIMENTAL RESEARCH OF MAF PARAMETERS 

INFLUENCE ON THE APPROXIMATION QUALITY IN IIF GLUING 

PROCESS 

The initial data for pilot research were generated by the 
authors. As a result, the parameters of conditional 
experiment were chosen: the equation of local approximation 
functions in form of a 3-degree polynomial with two 
variables and the corresponding coefficients for them: 

 

 

2 2

0 1 2 11 12 22

3 2 2 3

111 112 122 222

( , )F x y b b x b y b x b xy b y

b x b x y b xy b y

      

   
 (9) 

 
where b0 = 200, b1 = 8, b2 = –12, b11 = 1.95, b12 = –0.18, b22 = 
1.72, b111 = 0.08, b112 = 0.023, b122 = –0.08, b222 = 0.1 and 
vector x of dimension 10, a vector y of dimension 8. 

Resulting matrix is divided into 4 adjacent areas 
(fragments) with generic boundaries. Figure 10 shows the 
initial experimental data. The rows correspond to the values 
from x vector, the columns correspond to the values from y 

vector. Figure 11 illustrates graphs of the source data in two 
variations. 

For each fragment, regression equations of 2-degree with 
the corresponding coefficients b are obtained (see Table IV). 

 

 
Figure 10.  Matrix of experimental data 

 

 

 
Figure 11.  Full and piecewise experimental data representation 
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In accordance with the formulation of the problem, (εxi, 
εyi) ∈ (0, 1], i ∈ {1,2,3,4} are selected for the experiments, 
number of iterations - 300, number of particles - 100. The 
rest parameters of MSP MM were set up under the task. The 
criterion for estimating and minimizing the errors of 
approximation of entire dependence and fragment in the 
preliminary analysis are the mean-square deviation (MSD) 
and the maximum error in absolute error matrix. Different 
estimates, which can be several resulting mathematical 
constructions obtained as a result of CGA. Firstly, these 
include the whole matrix of experimental data. Secondly, it 
applied without boundaries values. Third, the common faces 
of the “glued” fragments not including the border values of 
whole matrix (these elements are most affected on ε values). 
Fourth and fifth, separately considered common edges of 
“glued” fragments (vertical and horizontal). 

The agents of MSP search in 8-dimensional space. The 
results of experiments on two selected criteria and five 
allocated areas in the matrix of absolute errors are displayed 
in Table V. 

Total computing time of the algorithm spent on 
conducting experiments with 300 iterations is ~1.1 sec. 
Computing time of the algorithm spent on finding the 
extrema described in Table V on ~160 iterations is ~0.7 sec. 
As can be seen from Table V obtained values of MSD, Max, 
εx and εy are extremely dependent on the criterion under 
consideration and the selected range of values in absolute 
error matrix. 

The results shown in Table VI obtained by optimizing ε 
for each fragment in the pilot experiments and optimizing ε 
for all fragments in current studies. 

Total computing time of the algorithm spent on 
conducting experiments on 300 iterations is ~1.1 sec. The 
running time of the algorithm spent on finding the extrema 
described in Table VI on ~160 iterations is ~0.7 sec. As can 
be seen from Table VI, the obtained values of MSD, Max, εx 
and εy are extremely dependent on the criterion and selected 
range of values in the absolute error matrix too. 

Comparison of data showed following results: total 
computing time of the algorithm spent on conducting 
experiments on 300 iterations decreased by ~50%, MSD and 
maximum error in the absolute error matrix decreased by 
~17% and ~8.3%, respectively. 

 
TABLE IV.  RESULTING COEFFICIENTS OF REGRESSION EQUATIONS 

b1 b2 b3 b4 

b0 -0.008 -0.904 0.3646 

b1 1.36 3.040 0.712 

b2 -11.82 -16.84856 -14.65208 

b11 196.6 199.966688 198.317312 

b12 5.6587 7.05072 8.70432 

b22 1.5256 1.6544 2.0116 

 

 
TABLE V.  MAF INFLUENCE OPTIMIZATION RESULT 

Values range in the 

absolute errors matrix 
Criteria MSD,% Max,% εx1 εy1 εx2 εy2 εx3 εy3 εx4 εy4 

All 
MSD 9,14 26,93 1*10-6 0,99 0,99 1*10-6 1*10-6 1*10-6 0,99 0,99 

Max 9,39 26,75 1*10-6 0,99 0,99 0,99 1*10-6 1*10-6 0,99 1*10-6 

All except boundaries 
MSD 5,62 26,87 1*10-6 0,99 0,7 0,44 1*10-6 8*10-6 0,99 0,74 

Max 5,77 26,75 1*10-6 0,99 0,99 0,99 1*10-6 1*10-6 0,99 1*10-6 

Fragments boundaries 
MSD 2,98 28,51 1*10-6 0,81 0,99 0,99 1*10-6 1*10-6 0,47 1*10-6 

Max 3,1 26,75 1*10-6 0,99 0,99 0,99 1*10-6 1*10-6 0,99 1*10-6 

Fragments boundaries 
horizontal 

MSD 3,65 29,16 0,99 0,99 0,99 0,99 1*10-6 1*10-6 0,99 1*10-6 

Max 3,71 26,77 1*10-6 0,99 0,99 0,99 1*10-6 1*10-6 0,99 1*10-6 

Fragments boundaries 
vertical 

MSD 0,39 35,49 1*10-6 0,99 0,996 1*10-6 0,25 0,99 0,99 1*10-6 

Max 1,06 26,75 1*10-6 0,99 0,99 0,99 1*10-6 1*10-6 0,99 1*10-6 

 
TABLE VI.  COMPARING OF MAF INFLUENCE OPTIMIZATION EXPERIMENTS 

 
 

Experiment 

Pilot Current Pilot Current 

Criteria MSD,% Max,% 

Values range in the 

absolute errors matrix 

All 
MSD 11,08 9,14 32,35 26,93 

Max 11,57 9,39 29,7 26,75 

All except boundaries 
MSD 7,65 5,62 31,42 26,87 

Max 7,88 5,77 29,71 26,75 

Fragments boundaries 
MSD 3,74 2,98 30,07 28,51 

Max 3,81 3,1 29,7 26,75 

Fragments boundaries horizontal 
MSD 4,32 3,65 30,07 29,16 

Max 4,36 3,71 29,7 26,77 

Fragments boundaries vertical 
MSD 0,54 0,39 33,49 35,49 

Max 0,9 1,06 29,7 26,75 
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IX. CONCLUSION AND FUTURE WORK 

The Epsilon Function SW developed in this paper has 
proven to be an effective tool for the generation of the 
irregular multi-dimensional ME TFs. The easy-to use and 
convenient interface to access the multi-functional SW 
allows the fast generation and qualitative research of TFs. 
The SW functions do not have an obvious regular and 
analytical character, like the set of the existing ME 
optimization TFs. 

Experiments carried out on TFs showed that the 
developed MSP modification allows to localizing the 
extreme areas of the nonstandard irregular ME Epsilon 
function, having the approximation error from ~0.001% to 
~3%. 

Experimentally obtained results allow the validation of 
the developed MSP modification, and prove to be an 
effective tool in searching the extremes of heterogeneous 
generated TFs. 

When optimizing ε for each fragment the MSD and 
maximum error in absolute error matrix of the solved 
examples decreased by ~17%, and ~8.3%, respectively, 
relative to the results of general optimization ε for the entire 
set of fragments obtained in pilot research. 

Our main research task is to create a modification of the 
heuristic method of swarming particles and use it during one 
of the stages of the author's Cut-Glue approximation for 
highly nonlinear dependencies. 

The development of this generator, in addition to the 
presented advantages is associated with the possibility of 
creating irregular multidimensional ME TFs on, which the 
MAF modification is processed. It helps to further 
investigate the properties of TFs, when applied in different 
domains, thus allowing more accurate picture and better 
results for the main study of the overall "Cut-Glue" 
approximations approach. 
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