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Abstract—Taxis are an essential component of the transportation
system in most urban centers. The ability to optimize the
efficiency of routing represents an opportunity to increase revenue
for taxi drivers. Vacant taxis on the road waste fuel, represent
uncompensated time for the taxi driver and create unnecessary
carbon emissions while also generating additional traffic in the
city. In this paper, we utilize Markov Decision Processes to
optimize the revenue of taxi drivers through better routing. We
present a case study utilizing real-world New York City Taxi
data with several experimental evaluations of our model. We
achieve approximately 10% improvement in efficiency using data
from the month of January, representing the best scenario for
an arbitrary taxi driver in that particular period of time. These
results also provide a better understanding of how optimization
strategies may differ during different times of the day. In the
second half of the paper, we present a dynamic fleet management
model that can handle random load arrivals with multiple vehicles
in Manhattan in a period of 30 minutes. The fleet management
problem decomposes into a sequence of time-indexed min-cost
network flow subproblems that naturally yield integer solutions.
These two methods may have important implications in the field
of self-driving vehicles.

Keywords–New York taxi service; revenue optimization; optimal
routing; Markov decision processes; linear programming; min-cost
network flow problem.

I. INTRODUCTION

In New York City, there are over 485,000 passengers taking
taxis per day, equating to over 175 million trips per year [1],
[2]. Creating an efficient way to transport passengers through
the city is of utmost importance. Taxi drivers cannot control
a passenger’s destination but can make better decisions using
optimal routing. This consequently leads to a reduction in costs
and carbon emissions.

Previous studies have focused on developing recommenda-
tion systems for taxi drivers [3]–[8]. Several studies use the
GPS system to create recommendations for both the drivers
and the passengers to increase profit margins and reduce seek
times [5], [7]–[9]. Ge et al. [10] and Ziebart et al. [11] gather a
variety of information to generate a behavior model to improve
driving predictions. Ge et al. [3] and Tseng et al. [12] measure
the energy consumption before finding the next passenger.
Castro et al. [9], Altshuler et al. [13], Chawla et al. [14],
Huang et al. [15], and Qian et al. [16] learn knowledge from
taxi data for other types of recommendation scenarios such as
fast routing, ride-sharing, or fair recommendations.

Most of the papers above focus on optimizing measures
for the immediate next trip. Rong et al. [4] investigate how to
inform business strategies from the historical data to increase
revenues of the taxi drivers using Markov decision processes
(MDPs). Their research model uses historical data to estimate
the probability of finding a passenger and its location for
drop-off as the necessary parameters for the MDP model.
For each one-hour time slot, the model learns a different
set of parameters for the MDP from the data and finds the
optimal move for the vacant taxi to maximize the total revenue
in that time slot. At each state, the MDP model uses a
combination of location, time, current and previous actions.
The vacant taxi can travel to its neighboring locations and
cruise through the grid to seek for the next passenger. Using
dynamic programming to solve the MDP, the output of the
model recommends the best actions for the taxi driver to take
at each state.

Tseng et al. [12] examine the viability of electric taxis in
New York City by using MDPs. Due to the radius limitation of
electric taxis before each charge, they examine the profitability
of replacing conventionally fueled taxis with electric taxis. The
research model uses OpenStreetMap (OSM) to assign each
pick-up and drop-off into the nearest junctions. The advantage
of using OSM is that it is able to identify the number of
available taxis at the junction without extra calculations. The
research is concentrated on energy consumption; the actions
become infeasible if the electric vehicle runs out of energy.

Analysis of real taxi data shows that there are significant
differences in demand between certain periods of the day.
The aforementioned research has not taken the effect of this
demand variation into account. The contribution of our model
is that we extend the research by Rong et al. [4] in this
direction. We analyze the New York City Taxi data and study
the differences in optimal policy and revenue for the demand
between weekdays, weekends, day shifts, and night shifts.
From these observations, we can infer relevant policies for
taxi drivers based on the shift that they work in.

In addition to using Markov Decision Process on the New
York City data, in the second half of this paper, we introduce a
dynamic fleet management model to solve the vehicle coverage
problem. The contribution of our model is that we extend the
research by Topaloglu et al. [17] in this direction. Dynamic
resource allocation problems assign a set of resources to
determine tasks over a period of time. Such problems arise
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Figure 1. Rotated Manhattan with the total revenue for the NYC Taxi
by pick-up location in January 2013.

Figure 2. Rotated Manhattan with the total revenue for the NYC Taxi by
drop-off location in January 2013.

in many fields such as dynamic fleet management [18], [19],
[20], product distribution [21], machine scheduling [22], and
personnel management [23]. In the second half of this paper,
we are confronted with this problem within the context of man-
aging NYC taxis to serve customers who request a ride. We
assume the total business time is equal to the sum of the total
occupancy time and the total seeking time. Fundamentally, if
we can satisfy as many customer ride requests and minimize
the seeking time, this would provide the maximum profit in
the overall system.

The deterministic version of this problem is the min-
cost integer problem. The linear and integer versions for the
min-cost “multi-commodity-flow” problem have been studied
extensively in [19] and [24].

The paper is structured as follows. In Section II, we do
data analysis on the New York Taxi dataset. This provides
input for our MDP, which is explained in Section III. We
assess the performance of the MDP in Section IV, where we
conduct numerical experiments. In section V, we introduce
dynamic resource allocation method to solve our min-cost
integer problem, and we assess the performance of the linear
program. Finally, the paper is concluded in Section VI and the
future discussion in Section VII.

II. DATASET

In our research, we selected to use New York City Taxi
data in 2013 provided by NYC Taxi & Limousine Commission
[2], which includes the encrypted taxi ID, encrypted medallion
and the exact GPS location. Due to privacy issues, the taxi
ID and medallion were omitted from the data since 2013. In
order to compare our model to each individual taxi, the taxi
ID and medallion were important. This is one of the reasons
we decided to use 2013 data.

From the data, we use 14,776,615 taxi rides collected in
New York City over a period of one month (January 2013) [2].
For illustrative purposes, we pick the month of January in this
paper, however, the model allows any month to be used as
input. From each ride record, we use the following fields: taxi
ID, pick-up time, pick-up longitude, pick-up latitude, drop-
off time, drop-off longitude, drop-off latitude, the number of
passengers per ride, average velocity, trip distance, traveling
time, and fare amount. We omit the records containing missing
or erroneous GPS coordinates. Records that represent rides
that started or ended outside Manhattan, as well as trip
durations longer than 1 hour and trip distances greater than
100 kilometers are omitted as well. Furthermore, we collect
the drivers who drive for six to nine hours consistently to
yield a clean dataset containing approximately 13.5 millions
taxi rides. We observe that most of the pick-up locations are
in the Manhattan area.

We concentrate on the island of Manhattan area in NY.
This area imposes a rectangular grid of avenues and streets.
However, the city’s avenues are not parallel to the true north
and south. For that reason, we tilted the map by 28.899 degrees
according to Petzold et al. [25]. This creates blocks with the
same grid system in most areas. We discretize the grid into
a 50 × 50 grid, making each block in the grid approximately
300 meters × 300 meters. The choice for a block size of 300
meters is based on the assumption that a taxi can traverse this
distance within 1 minute. Figure 1 shows the total revenue
for the taxis by the pick-up location with the rotated map.
Figure 2 indicates the total revenues of the drop-off location,
and it shows that Lower Manhattan, along with the airport are
the largest revenue generators and the drop-off location has
spread to the mid-Manhattan area and also Brooklyn area.

The state of a taxi can be described by two parameters:
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Table I. Revenue Efficiency Erev (in $/minute).

Weekday Weekday Weekend Weekend Overall
dayshift nightshift dayshift nightshift

Top 10% 0.59203 0.62408 0.60111 0.64646 0.60869
Mean 0.49985 0.52232 0.50252 0.54871 0.50565

Standard Deviation 0.07253 0.08011 0.07787 0.07799 0.08088
Bottom 10% 0.41028 0.42174 0.40426 0.44978 0.40572

Figure 3. Seeking time for the models.

the current location, which is an element of the set L =
{(1, 1), . . . , (50, 50)} grid and the current time, which comes
from the set T = {1, . . . , 60}. We will denote the system state
in our MDP model as s = (x, y, t), which we will elaborate
on in Section IV and in Section V.

III. METHODOLOGY FOR MARKOV DECISION PROCESS

A. Performance indicators
In this section, we present performance indicators of the

taxi drivers. This will be used in the MDP to optimize the
routing decision of each taxi driver. Hence, the performance
indicators will be dependent on the routing policy that is being
applied by the taxi drivers. To improve readability, we drop the
dependency on the policy in the notation and use it only in
cases where it benefits clarity.

We calculate the total business time of each taxi driver per
shift. The total business time (denoted as Tbus) is equal to the
sum of the total occupancy time (Toccupy) and the total seeking
time (Tseek):

Tbus = Toccupy + Tseek. (1)

The total occupancy time Toccupy is the sum of all the trip
durations with passengers of a taxi per day. And the total
seeking time Tseek is the time between each trip. Figure 3
depicts the overall Tseek and the graphs in which we distinguish
between the weekday, weekend, day shift, and the night shift.
Based on the data, we assume 90% of the seeking times are
shorter than 20 minutes for the day shift and shorter than 25
minutes for the night shift. Therefore, we discount any seeking

time that is over 30 minutes as we assume those are the breaks
for the drivers.

Logically, the Tbus is approximately the same for each taxi
driver. To increase the revenue, the taxi drivers aim to have the
maximal Toccupy and the minimal Tseek. We define the revenue
efficiency Erev metric as the revenue earned divided by the
total taxi driver’s business time. This is expressed as follows:

Erev =
M

Tbus
=

M

Toccupy + Tseek
, (2)

where M denotes the total money earned by the taxi driver
during that period.

To illustrate the consistency of the taxi driver, we concen-
trate on the drivers who work between six hours to nine hours
during the month of January. From that data, we generate the
data of Pfind, Pdest, Tdrive, r (parameters of our MDP to be
described in the next section) of each model and identify the
top 10% and bottom 10% drivers in each model.

Table I indicates the revenue efficiency of the top 10% and
bottom 10% distinguished by weekday, weekend, day shift,
night shift, and the overall efficiency. Based on the table, there
is an approximate 20% difference between the performance of
the top 10% and bottom 10% drivers. The previous studies
that were mentioned above (see, e.g., [5], [9], [12], [14], [15])
attribute the difference between the performance by the top and
bottom 10% of drivers to the seeking time of the taxi drivers.
This warrants research to determine if our model can provide
a better solution for the taxi drivers for seeking passengers.

IV. MATHEMATICAL MODEL FOR THE MARKOV
DECISION PROCESS

In order to model the taxi service in New York City, we
adopt the framework of MDPs. This framework allows us to
deal with the uncertain demand over the different periods in
the grid, and to model them explicitly. The MDP is a stochastic
decision process with a set S of states and a set A of possible
actions that transition the states from one to another. Each
action will correspond to the process of the current state to
the new state with a probability transition function and a
reward function. The collection of optimal actions for each
state is called the policy, which maximizes the total reward
over several numbers of steps. The objective of our model is
to minimize the seeking time for the taxi to maximize the
expected revenues.

A. System States

The state for a taxi is described by its current location and
the current time. The details are explained as follows.

Location(x, y) ∈ L = {1, . . . , 50} × {1, . . . , 50}: the area
is divided into a grid of 50× 50 grid cells;
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Time t ∈ T = {1, . . . , 60}: we use minutes as the
interval of a time slot, and a total of 1 hour as
time horizon.

Each pick-up and drop-off location is assigned to a grid
cell. We remove the records that contain 1) incomplete data
information, 2) trip distance over 100 kilometers, 3) trip
durations over 60 minutes, 4) pick-up and drop-off locations
with the same coordinates, 5) pick-up and drop-off locations
outside the grid, and 6) shifts that are shorter than six hours
and longer than nine hours.

We denote the system state of our MDP model as s =
(x, y, t), and the collection of all admissible states is denoted
by S.

B. Actions
The admissible actions from a given state s have nine

possibilities to choose from. We use numbers 1, . . . , 9 to index
the directions. The actions are mapped to directions in which
the taxi moves as follows:

7 8 9
4 5 6
1 2 3

,

where, e.g., action 9 moves the taxi to the neighboring north-
east location and action 5 is the current location of the taxi.

C. Parameters of the MDP model
In this subsection, we state the parameters used in the rest

of MDP model.
The probability parameters are defined as:

• Pfind (x, y) describes the probability of successfully
picking up a passenger in grid cell (x, y). We can
calculate the probability of picking up a passenger in
the cell by dividing the number of successful pick-ups
in the cell nfind(x, y) by the total number of times this
cell is visited by a vacant taxi. The vacant taxi includes
the taxis that drop off passengers in grid cell (x, y),
denoted by ndrop-off(x, y), and also the taxis that are
seeking for passengers, denoted by nOSRM(x, y).
To locate the vacant taxi every minute during the
seeking trip, we use the API provided by Open Source
Routing Machine [26], to estimate the coordinates. We
use one-hour time slots between 12:00 to 13:00 for the
day shift model and 0:00 to 1:00 for the night shift
model. In our overall model, we took the average of
the day time and night time models to estimate the
number of vacant taxis at each grid during the month
of January in 2013. Thus,

Pfind =
nfind(x, y)

nfind(x, y) + ndrop-off(x, y) + nOSRM(x, y)
.

• Pdest(x, y, x
′, y′) describes the probability of a pas-

senger traveling from grid cell (x, y) to the grid cell
(x′, y′). To estimate the destination probability for a
time slot, we calculate the number of trips between
each pair of source and destination locations in that
time slot and get a 50×50 matrix. The value is divided
by the sum of the entire number of trips of the grid
cells. Therefore, Pdest has the empirical probability

distribution of a passenger choosing destination loca-
tion (x′, y′) when he is picked up at location (x, y).

The time parameters are defined as:

• Tseek(a): The required time to travel from one location
to a neighboring location based on action a ∈ A.
We assume that the average speed of seeking trips
is approximately 300 meters per minute. Thus, a taxi
can traverse on cell when a = 2, 4, 5, 6, 8, and hence
Tseek(a) = 1 in this case. In case a = 1, 3, 7, 9,
then we set Tseek(a) equal to 2, due to the diagonal
movement.

• Tdrive (x, y, x
′, y′): The driving time from (x, y) to

(x′, y′). We can calculate the total driving time from
grid cell (x, y) to grid cell (x′, y′) and then divide
by the number of trips from grid cell (x, y) to grid
cell (x′, y′). We calculate Tdrive individually for all
models. From the calculation, there is approximately
+15.67% driving time difference between the day shift
model and the night shift model, and there is a +4.14%
difference between the weekend and the weekday.

• We assume there is no waiting time for passengers to
get in and out of the vehicle.

The reward is defined as:

• r(x, y, x′, y′): The expected reward from grid cell
(x, y) to grid cell (x′, y′). Similar to Tdrive, we cal-
culate the average fare of the number of trips between
each pair of source and destinations as the expected
fare. Note that due to this definition, the reward does
not depend on the action of the taxi driver. We calcu-
late r separately for all models. Similarly to Tdrive,
there is approximately a +6.21% reward difference
between the day shift model and the night shift model,
and there is a +1.21% difference between the weekend
and the weekday.

D. State transition function of the MDP model

The state transition function describes the probability that
one moves from state (x, y, t) after taking decision a moves
to state (x′, y′, t′). Assuming the current state is s = (x, y, t)
and action a is taken, there are two possible outcomes of the
transition:

1) The taxi successfully finds a passenger in grid (x, y)
within Tseek(a) minutes. The taxi with the passenger goes
to destination (x′, y′) with probability Pdest(x, y, x

′, y′).
The taxi arrives at location (x′, y′) with Tdrive(x, y, x

′, y′)
as the total time used to travel from (x, y) to (x′, y′).
The taxi driver receives r(x, y, x′, y′) as the expected
reward. Then the taxi will start seeking for a passenger
from grid cell (x′, y′). In this case, the new state becomes
s′ = (x′, y′, t+ Tseek(a) + Tdrive(x, y, x

′y′)).
2) The taxi does not find a passenger after Tseek(a) minutes

being in grid (x, y) with probability 1 − Pfind(x, y). The
taxi driver does not receive a reward and saves the driving
time Tdrive. The taxi driver starts to make the next action
at grid cell (x′, y′). Hence, the state of the taxi driver
becomes s′ = (x′, y′, t+ Tseek(a)).
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E. The objective function of the MDP model
The objective function of the MDP model is to maximize

the total expected rewards starting from an initial state. The
terminal states are the states with t = 60. No more actions
can be taken once the system reaches the terminal states. The
maximal expected reward for an action a in state s = (x, y, t)
is expressed as V (s, a) shown in (3).

V (s, a) = (1− Pfind(x, y))×

max
a′∈A

V (x, y, t+ Tseek(a), a
′)+∑

(x′,y′)∈L

Pfind(x, y)× Pdest(x, y, x
′, y′)×

[
r(x, y, x′, y′)+

max
a′∈A

V (x′, y′, t+ Tseek(a) + Tdrive(x, y, x
′, y′), a′)

]
.

(3)

The optimal policy π∗ is defined as:

π∗(s) = argmax {V (s, a)} , (4)

and the optimal value function is given by

V ∗(s) = V (s, π∗(s)). (5)

F. Markov Decision Process Solution
In order to solve the Markov decision problem to derive the

optimal policy, we employ dynamic programming to maximize
the expected rewards. The algorithm starts from time t = 60
and then traces backward to time t = 1. The algorithm is listed
in Algorithm 1.

Algorithm 1 Solving MDP using Dynamic Programming
Input: L,A, T, Pfind, Pdest, r, Tdrive, Tseek
Output: The best policy π∗

1: V is a |L| × |T | matrix; V ← 0
2: for t = |T | to 1 do
3: for all (x, y) ∈ L do . s = (x, y, t)
4: amax ← a that maximizes V (s, a)
5: π∗(s)← amax

6: V ∗(s)← V (s, amax)
7: return π∗

G. Case study
In this section, we present our case study on the New

York Taxi dataset. We evaluate the MDP for the expected
reward based on the dataset from January 2013. We assume
that the NYC taxis have two shifts per day and each shift is
a 12-hour period. We analyze the taxi’s expected reward in 1)
the day-time shift within six to nine hours of its operating
time, 5 am to 5 pm and 2) the night-time shift, 5 pm to
5 am and 3) the weekdays from Monday to Friday, and 4) the
weekend from Friday to Sunday. After filtering the data, we
have approximately 170,000, 205,000, 145,000, and 193,000
shifts, respectively, for the Weekday day-time shift, Weekday
night-time shift, Weekend day-time shift, and Weekend night-
time shift. Although the weekend has a fewer number of days
in January, the total number of shifts of the weekend night

Figure 4. Recommended movements by the MDP model.

time is almost the same as for the weekday night time. The
optimal policy is depicted in Figure 4. The figure presents the
optimal policy by the MDP model at the particular time and
location.

The results of the case study (see also Table II) shows that
in our model

• Pfind(x, y) is 0.52267 which is 27.39% better than the
bottom 10%, and it is 11.72% less effective than the
top 10% for the Weekday day-time model.

• For the weekday night-time model, Pfind(x, y) is
0.50915 which is 20.73% better than the bottom 10%.
It is 18.42% less effective than the top 10%.

• For the weekend day-time model, Pfind(x, y) is
0.51463 which is 27.30% better than the bottom 10%.
It is 14.39% less effective than top 10%.

• For the weekend nighttime model, Pfind(x, y) is
0.45475 which is almost the same as the bottom 10%
and it is 29.66% less effective than the top 10%.

• The overall model, Pfind(x, y) is 0.50030 which is
23.31% better than the bottom 10% and it is 17.81%
less effective than top 10%.

The results of the case study show that our model is
capable of reducing the time to find a passenger for a taxi
driver significantly. Consequently, the end result is that the
earnings of the taxi drivers increase. This benefit is expressed
as approximately a 10% improvement in efficiency.

V. PART B: LINEAR PROGRAMMING

After using the MDP to optimize the revenue of a taxi
service, the fundamental following question would be how
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Table II. Revenue Efficiency Erev (in $/minute).

Weekday Weekday Weekend Weekend Overall
dayshift nightshift dayshift nightshift

Top 10% 0.59203 0.62408 0.60111 0.64646 0.60869
Pfind(x, y) 0.52267 0.50915 0.51463 0.45475 0.50030

Bottom 10% 0.41028 0.42174 0.40426 0.44978 0.40572

many taxis are needed to satisfy all the demand? Part B of
this paper will address this question.

The deterministic version of the taxi routing problem
is by solving a max-profit integer “multi-commodity-flow”
problem for each time period. The linear and integer versions
of this problem have been studied extensively. This section
empirically investigates the effectiveness of this approximation
method when applied to resource allocation problems. These
problems tend to get large easily with the number of possible
states and resource types, and their multi-commodity nature
presenting an unwelcome dimension of complexity.

We formulate our dynamic resource allocation problem
using the language of Markov decision processes. We are
modeling the taxi service in New York City with a fleet of
taxis. At each decision epoch, a certain number of customers
requests a ride (demand), each requesting to be taken from a
certain location (x, y) to a destination (x′, y′). For notational
convenience, we denote (x, y) by i and denote (x′y′) by j. We
assume the customers call in at the last minute, and very little
information about the future requests is available in advance.
We are required to serve every customer demand. However,
if there are not enough vacant taxis within the same grid, the
unsatisfied customer demands are not served. To handle this,
we assume that the unsatisfied demands are lost, and we take
the profit from serving a higher revenue demand to be the
incremental profit from serving the demand with a taxi.

Our initial formulation assumes that all taxis take a single
time period and all customers have the same taxi preferences.
We also assume all the travel times take a single time period.
For notational convenience, we assume that demand at a certain
location can be served only by a taxi at the same location at the
same time. For the rest of the section, we adopt the terminology
that an empty taxi is “seeking”.

A. Parameters of the Linear Programming Model

In this subsection, we state the parameters used in the rest
of the model.

Location(i, j) ∈ L = {1, . . . , 10} × {1, . . . , 10}: the area
is divided into a grid of 10 × 10 grid cells; We
implement a smaller grid compared to the first part
of the paper in order to simplify the calculation
process.

Time t ∈ T = {1, . . . , 30}: we use minutes as the
interval of a time slot, and a total of 30 minutes
as time horizon.

• Di,j,t describes the number of demand that need to
be carried from grid cell i to grid cell j at time period
t.

• Si,j,t describe the number of empty taxis moving from
grid cell i to grid cell j at time period t from the
original dataset on January 15th, 2013.

• xl
i,j,t describes the number of loaded taxis moving

from grid cell i to grid cell j at time period t.
• xe

i,j,t describes the number of empty taxis moving
from grid cell i to grid cell j at time period t.

• cl
i,j describes the net reward from an occupied taxi

moving from grid cell i to grid cell j. We assume the
profit is the same at any period of time t.

• ce
i,j describes the cost of a vacant taxi moving empty

from grid cell i to grid cell j. We assume the cost is
the same at any period of time t. (Remark: In order
to simplify the model, the cost is half of the reward.)

• Ri,j,t describes the number of taxis in operation,
including empty taxis and loaded taxis at time period
t.

The deterministic version of the problem we are interested in
can be written as:

max
∑
t∈T

∑
i,j∈L

(−ce
i,jx

e
i,j,t + cl

i,jx
l
i,j,t) (6)

subject to ∑
j∈L

(xe
i,j,1 + xl

i,j,1) = Ri,1 i ∈ L,

−
∑
j∈L

(xe
j,i,t−1 + xl

j,i,t−1) +
∑
j∈L

(xe
i,j,t + xl

i,j,t) = 0

i ∈ L, t ∈ {2, . . . , 30},

xl
i,j,1 ≤ Di,j,t i, j ∈ L, t ∈ {1, . . . , 30},

xe
i,j,t, x

l
i,j,t ∈ Z+ i, j ∈ L, t ∈ {1, . . . , 30},

(7)

which is a special case of the min-cost integer multi-
commodity flow problem.

B. Case Study 2
Similarly to the case study of the MDP model, we evaluate

the linear programming approach based on the New York
Taxi dataset of 2013. We concentrate on January 15th, 2013
from 12:00 pm to 12:30 pm. In our deterministic case study
experiment, we formulate the problem as a max-profit integer
problem (6). From the dataset, we generate the data of Di,j,t

which is the number of demand from location i to location
j at time t. We also generate the data of Si,j,t which is the
number of empty taxi driving from location i to location j at
time t to seek for the next passenger(s).

From Table III, the average of the demand is approximately
505.47 per minute, and the standard deviation is approximately
21.64 per minute within Manhattan. This indicates a consistent
demand during this period. Due to all travel time, it lasted
1 minute in our model. Theoretically, we can assume approx-
imately over 500 vehicles should satisfy all the odd number
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Figure 5. Overall model with 1 to 20 vehicles per grid in 30 minutes.

minute requests, and another 500 vehicles should satisfy the
even number minute requests. To prove this theory, we ran
our linear programming model by increasing the number of
vehicles per grid at the initial minute at 12:00. We ran our
model from 1 vehicle per grid to 30 vehicles per grid. In
Figure 5, there is a clear indication of the difference between
100 vehicles to 1,200 vehicles. From this season, we further
examine the actual revenue, revenue, actual cost, cost, profit,
and lost revenue at each minute of the model with the number
of vehicles from 300, 600, 900, and 1,200.

In order to provide a better understanding for our result,
we calculate:

• Actual Revenue = cl
i,j ×Di,j,t

• Revenue = cl
i,j × x

∗,l
i,j,t

• Actual Cost = ce
i,j × Si,j,t

• Cost = ce
i,j × x

∗,e
i,j,t

• Actual Profit = Actual Revenue − Actual Cost

• Profit = Revenue − Cost

• Lost Revenue = cl
i,j × [Di,j,t − x*,l

i,j,t],

Table III. Demand and Seeking from 12:00 pm to 12:30 pm on January
15th, 2013.

Demand Seeking
Minimum 468 371
Average 505.47 429.97

Standard Deviation 21.64 27.85
Maximum 540 485

where x∗,ei,j,t and x∗,li,j,t are the optimal solutions for xe
i,j,t and

xl
i,j,t, respectively.

To set up the initial location of the vehicle, we spread
the same number of vehicles in each grid, i.e., 300 vehicles
indicate 3 vehicles in each grid over a 10× 10 grid. Due to
this initial condition, it will take a few minutes to relocate the
vehicles properly in the grid. The results are clearly indicated
in Figures 6, 7, 8, and 9. Figure 6 displays the total revenue
of all vehicles per minute. The revenue of the 1,200 vehicles
and 900 vehicles are similar to the actual revenue. With 300
vehicles in the grid, there are clearly not enough vehicles to
satisfy all the demand. Surprisingly, 600 vehicles were able to
receive similar revenue as the actual revenue. In Figure 7 the
total cost of empty vehicles moving from i to j per minute
is depicted. The dotted line shows the actual cost and our
model indicates a clear lower cost than the actual cost. Figure 8
shows the revenue that is lost due to being unable to satisfy
the demand. The 300 vehicles model is losing approximately
189.83 units per minute because it is unable to satisfy the
demand. The rest of the model shows that the lost revenue
is close to nothing. The most interesting observation is in
Figure 9. There is a clear indication that the 1,200, 900, and
600 vehicles model do better than the actual profit. Thus, the
vehicles move less overall to save on the cost and create bigger
profit than the original data. The 300 vehicles model is the only
model that makes less profit than the actual model.

VI. CONCLUSION

From the results of the case study in the MDP model,
we observe that the weekend night time raises interesting
discussion. It has a similar number of shifts as compared to
the weekday night-time model, but the revenue efficiency did
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not improve compared to the bottom 10% drivers. A possible
explanation might be that the experienced drivers would use
their experience to look for the best location to seek customers.
Consequently, the data may not have provided enough evidence
to improve the bottom 10% drivers. In our data analysis, we
found cases where there are pick-up and drop-off locations in
the Hudson River. We can assume that this is an error in the
GPS system. Similar to this issue, Pdest was estimated from
a small number of trips from one location to another. This
could sometimes result in a high probability, for instance, 1
of 3, would have created a 33% probability of going from
one location to another. Further research is needed to develop
methods to get a more accurate estimate.

In the second half of this paper, we use a linear program-
ming to model the taxi service and determine the optimal
policy to yield the best profit in the overall system. In Table IV,
the demand column describes the total number of demand per
minute and the seeking column describes the total number of
vacant vehicles driving to seek for the next passenger. From
Figure 6, we understand that the revenues are similar to 1,200
vehicles, 900 vehicles and 600 vehicles and it clearly shows
that the 300 vehicles model is not sufficient to satisfy the
demand and match the revenue of the actual data. To increase
the profit, it requires to decrease the cost. From Table IV, the
percentage difference of the profit is approximately +14.20%
for the 1,200 vehicles model and is +13.39% for the 900
vehicles model, and is 12.30% for the 600 vehicles model.
The percentage difference for the profit is −5.02% for the
300 vehicles model. Notice that the percentage difference was
calculated without the first minute of the model, because the
vehicles were distributed evenly in the model and it is not
matching the demand of the locations during that first minute.

From Table IV, the lost revenue brings in some interesting
observations. The lost revenue is defined as the revenue
multiplied by the overall demand minus the optimal load, i.e.,
= cl

i,j× [Di,j,t−x∗,li,j,t]. The average lost revenue is 1.48 units
per minute for the 1,200 vehicles model, 3.07 units per minute
for the 900 vehicles model, and 6.48 units per minute for the
600 vehicles model, and 189.83 units per minute for the 300
vehicles model. This clearly indicates that the 1,200 and 900
models creates a good result of not losing too many customers.
In our conclusion, the 600 vehicles model, the 900 vehicles
model, and the 1,200 vehicles model do not provide significant
differences in terms of profit, revenue, and lost revenue. If we
are focusing only on profit as our main priority, 600 vehicles
would be sufficient enough to generate the profit that is similar
to the 900 and 1,200 vehicles models. If we are focusing more
toward the customer satisfaction, the 1,200 vehicles model
would provide good profit and satisfy most of the customer
requests during this 30-minute period.

VII. FUTURE DISCUSSION

As for future discussion, the demand that we harvested
from the data is the demand that was satisfied that particular
minute of January 15th, 2013 between 12:00 pm to 12:30 pm.
This is the only demand that was satisfied by the yellow taxi.
We could include all the demand that was satisfied by Uber
or other vehicle services to see if all the yellow taxis can
satisfy all the demand at that particular minute. Furthermore,
this linear model was generated by equally distributing the
vehicles into the grid and not based on the demand. Therefore,

the first two minutes of the model should be ignored. In our
future model, we can address this by a different constraint.
Another future improvement is the grid size of the model. Our
Manhattan grid for the linear programming model is 10× 10 to
keep the model simple. Each grid is approximately 1,500m ×
1,500m versus 300m × 300m which was used in the MDP
model. 1,500m is a significantly large size for a grid cell
compared to 300m. This creates a significant difference in
terms of the demand. We consider no demand if the pick-
up and drop-off our at the same grid and we assume that there
is no seeking period by the vehicle in the same grid. This
would decrease the demand and seeking route significantly. In
the future model, we would like to expand to 50 × 50 with a
60-minute time period, which is 2, 500 × 2, 500 × 60 = 375
millions data points on one dimension. We must take good
care in the set up of the constraints of this model. We can also
implement the travel time in the future model that would bring
more realistic features to our model. Lastly, having stochastic
demand would provide an even more realistic model, especially
when traffic accidents occur in real time.
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Figure 6. Revenue with the different sizes of the vehicles inventory in 30 minutes.
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Figure 7. Cost with the different sizes of the vehicles inventory in 30 minutes.
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Table IV. Table of Demand, Seeking, Profit and Lost Revenue.

Percentage Difference of the Profit Lost Revenue= Cl × (D −Optimall)
Minute Demand Seeking Actual 1200 900 600 300 1200 900 600 300

Di,j,t Si,j,t Profit Vehicles Vehicles Vehicles Vehicles Vehicles Vehicles Vehicles Vehicles
1 488 477 759 -70.71% -97.94% -217.61% -386.10% 301 375 491 666
2 479 485 697 17.36% 17.06% 10.47% 6.86% 0 9 11 152
3 517 478 801.5 15.75% 12.35% 7.27% -1.19% 1 15 30 193
4 478 439 755 16.25% 12.71% 12.48% -1.60% 0 0 0 168
5 468 434 768.5 15.10% 13.07% 11.87% 1.04% 3 4 4 163
6 492 452 781.5 16.28% 15.19% 16.66% -3.05% 3 4 6 200
7 493 471 765.5 17.63% 17.03% 17.14% 1.17% 5 5 13 176
8 473 436 741.5 5.38% 9.63% 9.99% 0.47% 1 1 5 146
9 507 438 835.5 13.09% 14.28% 13.82% -4.84% 0 0 0 186
10 512 421 791.5 16.73% 15.61% 15.93% -4.99% 0 0 2 189
11 505 436 792.5 16.87% 16.60% 16.13% -2.69% 0 0 0 181
12 540 426 894 13.31% 11.79% 11.99% -9.67% 0 0 12 245
13 494 436 818.5 15.03% 14.82% 12.97% -3.80% 0 0 5 180
14 536 416 880.5 14.63% 14.09% 13.06% -9.58% 1 1 6 223
15 529 400 930 11.31% 11.17% 8.64% -12.21% 0 0 5 233
16 532 418 879.5 12.77% 12.27% 9.68% -9.97% 0 0 5 226
17 536 410 883 15.71% 14.15% 13.61% -9.68% 0 0 8 235
18 518 461 844.5 13.78% 11.60% 11.97% -5.98% 0 0 5 214
19 519 437 775 16.02% 15.09% 12.52% -6.12% 0 0 0 201
20 506 404 811.5 13.98% 12.80% 12.04% -7.68% 0 0 0 193
21 514 467 778.5 18.11% 17.15% 14.75% -5.21% 0 0 0 192
22 518 434 841.5 14.90% 13.36% 12.32% -7.71% 0 0 1 193
23 506 421 801.5 14.31% 10.58% 13.77% -7.51% 0 4 0 197
24 519 411 836 11.87% 11.76% 9.62% -9.66% 0 3 3 203
25 483 410 786.5 13.29% 13.29% 12.01% -2.32% 0 0 5 160
26 495 386 885 11.00% 11.20% 10.54% -8.91% 0 0 0 186
27 537 409 833 13.18% 12.07% 11.80% -9.17% 1 4 2 193
28 519 408 814 11.25% 11.41% 8.47% -7.92% 16 18 28 188
29 481 407 824.5 12.45% 11.65% 10.79% -3.20% 9 18 29 161
30 470 371 784.5 14.37% 14.37% 14.37% -0.45% 3 3 3 128

Average* 505.47 429.97 813.02 14.20% 13.39% 12.30% -5.02% 1.48 3.07 6.48 189.83
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