International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

111

Modeling, Verification and Code Generation for
FPGA with Adaptive Petri Nets

Carl Mai, René Schone, Johannes Mey, Michael Jakob, Thomas Kiihn and Uwe ABmann

Technische Universitit Dresden
Dresden, Germany
Email: {carl.mai, rene.schoene, johannes.mey, michael.jakob, thomas.kuehn3, uwe.assmann} @tu-dresden.de

Abstract—Petri nets are a formalism used to model the behavior
of systems. Modeling systems with context dependent behavior
is more complex and no suitable model exists, which can be
used for formal verification, graphical modeling and program
synthesis. With our extension, “Adaptive Petri nets”, it is possible
to directly model adaptive systems while still being able to utilize
their expressiveness and existing model checking tools. In this
work, the utilization of Adaptive Petri nets in the context of
controller synthesis for Field Programmable Gate Arrays (FPGA)
is demonstrated. A full workflow from an Adaptive Petri net
Model to an FPGA will evaluate the system in its usability over
the three components modeling, verification and code generation.

Keywords—Petri nets; Reconfigurable Petri nets; Inhibitor Arcs;
Analysis, Exceptions, FPGA, VHDL, Code Generation

I. INTRODUCTION

With Adaptive Petri Nets (APN) a framework was devel-
oped, which allows to change the behavior of a Petri net at
runtime. Parts of the net can be enabled or disabled based on
the number of tokens in designated places. To integrate well
in the existing tool landscape of Petri nets, APN are built in
a way that they can be flattened in normal Petri nets. It was
proven in our work submitted for ADAPTIVE 2018 that each
APN can be flattened to a Petri net with inhibitor arcs [1].

In this work, we will show multiple ways to use APN to
model and synthesize a digital controller. By this, it is evaluated
how APN are utilized and integrated with existing tools.

The developed APN was designed with following goals in
mind:

1) Usability: the APN syntax should be easy to use and
should require a minimal learning effort.

2) Flattening: an APN should be flattened into an equivalent
Petri net with inhibitor arcs.

3) Small Overhead: flattening should not significantly in-
crease the net in size.

With usability as our first goal, we hope to avoid that APN
remain only a theoretical concept without practical use. For
this, we developed multiple representation methods to define an
APN (graphical, mathematical, composition based). Our second
goal, flattening, is supposed to allow the reuse of existing
Petri net tools. Flattening also improves the usability since
an existing Petri net based project can use APN just on top
without further modifications to their infrastructure. Having
small overhead as our goal, influences decisions of the defined
semantics, so a flattened APN does not explode in size and is

still usable. However, there is a trade-off between usability and
small overhead.

Developing a controller on an FPGA provides various chal-
lenges for a programmer. Due to its parallel and asynchronous
nature, most logical controllers require some synchronization
points. These synchronization points are used, e.g., to execute
routines consecutively [2] or wait for sensors and actuators [3].
While the most commonly used models for this are state
machines, they can handle only one state at a time. Therefore,
state machines cannot be used well in systems where the state
is dependent on multiple contexts [4], [5].

When modeling a system with reconfigurable behavior, e.g.,
reconfigurable manufacturing systems, the system not only has
to handle multiple contexts, but has to adapt its behavior to
contexts [6]. State machines and Petri nets fall short in this
kind of scenario, since modeling of context dependent behavior
cannot be directly expressed [7]. With Adaptive Petri nets
(APN) [1], we proposed a Petri net extension, which adds a
syntactic, semantic, and graphical extension to Petri nets to
support modeling self-adaptiveness.

The remainder of the paper is structured as follows.
In Section II, the related work is reviewed. It has three focus
points, the extension of Petri nets to support adaptivity and the
use of Petri nets for circuit synthesis as well as the intersection
of both. Section III is a background chapter and will contain the
formal background of Petri nets and introduces the concept of
APN. Next, in Section IV, our proposed workflow from APN
to circuit is described. In the end, in Section V, we will give an
example of a circuit controller, which is modeled, verified, and
then synthesized into a circuit with VHDL (Very High Speed
Integrated Circuit Hardware Description Language) according
to our workflow. Finally, an outlook and conclusion is given.

II. RELATED WORK

In this section, we will survey three types of related work.
The first type of related work, which we present here, covers
Petri nets with adaptive behavior changes. The other type of
related work covers the synthesis of Petri nets to circuits or
HDLs (Hardware Description Languages). And finally, we
survey the related work, which is a combination of the prior
types, i.e., Adaptive Petri nets synthesized to circuits or HDLs.

A. Petri nets with changing runtime behavior

While Petri nets themselves already express runtime behav-
ior, there is no construct to express changes in runtime behavior.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is possible to express changing runtime behavior directly
within Petri nets. However, this will model the adaptivity on
the same layer as the business logic, and complicates the final
designs because of an intermingling of concerns.

In the following, we review existing work concerning Petri
nets, which can change their behavior at runtime.

Object Petri nets [8] are Petri nets with special tokens.
A token can be a Petri net itself and therefore, nets can
be moved inside a main net. This type of net can be used
for modeling multiple agents, which move through a net
representing locations. The agents change their internal state
and have different interactions based on the location inside the
net. This approach extends the graphical notation of Petri nets.
Analysis of object Petri nets is possible with the model checker
Maude [9] and by conversion to Prolog. It was not shown that
object Petri nets can be flattened to standard Petri nets, though.

Reconfiguration with graph-based approaches is a topic of
Padberg’s group. They developed the tool ReConNet [10], [11]
to model and simulate reconfigurable Petri nets. A reconfigu-
ration is described as pattern matching and replacement that
are evaluated at runtime. This notation is generic and powerful,
but cannot be represented in the standard notation of Petri nets.
It was also not a goal to flatten them into standard Petri nets.
Verification is possible with Maude.

Another graph-based reconfiguration mechanism is net
rewriting systems (NRS) [12]. The reconfiguration happens
in terms of pattern matching and replacements with dynamic
composition. The expressive power was shown to be Turing
equivalent by implementation of a Turing machine. Additionally,
an algorithm for flattening to standard Petri nets was provided
for a subset of net rewriting systems called reconfigurable nets.
This subset constrains NRS to only those transformations, which
leave the number of places and transitions unchanged, i.e., only
the flow relation can be changed. Flattening increases the size
of transitions significantly, i.e., by the number of transitions
multiplied by the number of reconfigurations. With improved
net rewriting systems [13], the NRS were applied in logic
controllers. The improved version of NRS constrains the rewrite
rules to not invalidate important structural properties, such as
liveness, reversibility, and boundedness.

Self-modifying nets [14] were already introduced in 1978
to permit reconfiguration at runtime. Arcs between places and
transitions are annotated with a weight specifying the number
of tokens required inside the place until the transition becomes
enabled. To achieve reconfiguration, these weights are made
dynamic by linking them to a place. The number of the weight is
then determined by the number of tokens inside this referenced
place. This mechanism allows the enabling and disabling of arcs
and therefore, can change the control flow at runtime. However,
the authors state that reachability is not decidable [14].

Guan et al. [15] proposed a dynamic Petri net, which
creates new structures when firing transitions. To achieve this,
the net is divided in a control and a presentation net. In the
control net annotations on its nodes instruct the presentation
net for structural modifications. Verification and reducibility
were explicitly excluded by the authors.

A practical example was shown in Bukowiec et al. [16],
who modeled a dynamic Petri net, which could exchange
parts of the net are based on configuration signals. Defining
reconfigurable parts was done with a formalism of hierarchical

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

112

Petri nets. The dynamic parts of the nets were modeled with
subnets to generate code for a partially reconfigurable Field Pro-
grammable Gate Array (FPGA). Since this work was of more
practical nature, the reconfiguration and transformation were
not formalized. However, it was shown by Padberg et al. [10]
that this kind of net can be transformed into a representation,
which can be verified using Maude.

Dynamic Feature Petri nets (DFPN) [17] support runtime
reconfiguration by annotating the Petri net elements with
propositional formulas. These elements are then enabled or
disabled based on the evaluation of these formulas at runtime.
The formulas contain boolean variables, which can be set
dynamically from transitions of the net or statically during
initialization. Their model extends the graphical notation with
textual annotations. It was shown that they can be flattened
to standard Petri nets [18]. Compared to Adaptive Petri nets,
this type of net is problem specific and has the limitation of
indirection by boolean formulas. A boolean formula cannot
express numbers easily, only by encoding them in multiple
boolean variables. In DFPN the net is modified by firing
transitions, while in Adaptive Petri nets the net is modified by
the number of tokens inside a place.

With Context-adaptive Petri nets [19], ontologies were
combined with Petri nets to model context dependent behavior
in Petri nets. These nets are included in an existing Petri net
editor. By this, context-adaptive Petri nets support modeling,
simulation and analysis. It is unclear whether this approach
would also work on larger nets, since it was not detailed how
the analysis is implemented. Additionally, the flattening of
these nets is not supported.

Hybrid Adaptive Petri nets [20] are a Petri net extension
coming from the field of biology. These nets extend non-
standard Petri nets with a special firing semantic. A transition
can fire discrete, which will consume and produce a single
token and then wait a specified delay for the next firing. In
continuous mode a transition will not have a delay. This Petri net
is adaptive by switching between those two modes. Compared
to our work this is out of scope since non-standard Petri nets
are used and adaptivity is restricted to transitions only.

There exist two surveys, which also summarized the related
work on this topic. In the work of Gomes et al. [21], the change
of behavior at runtime is classified as dynamic composition. It
is characterized as “rare”, arguing that it “radically changes
the Petri net semantics and complicates the available analysis
techniques”. A more thorough overview of the related work
can be found in Padberg et al. [7].

B. Circuit synthesis from Petri nets

Transforming Petri nets into circuits was already done in
the 1970s [22] only a few years after the concept of Petri nets
was published by Carl Adam Petri [23]. This already highlights
the strong relationship between Petri nets and circuit design.
The complete history, for Petri net synthesis into circuits, can
be read in [5].

A noticeable trend since the 1970s until today, is the more
abstract view on hardware. Especially with the introduction
of HDLs like VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language (VHDL) and Verilog, but also
with the wide availability of FPGA, the gap between theoretical
designs and practical implementations diminished. Furthermore,

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the supported net classes increased over time. While in the
beginning only basic net classes were supported, nowadays
exist synthesis algorithms for high level nets, too. It can be
observed that the interest in Petri nets as a design aid for
digital systems has increased [5]. This is attributed to two
reasons. Petri nets naturally capture the relations, concurrency
and conflicts of digital systems. Additionally, Petri nets are
very simple but expressive and formally founded [5, p.4]. The
development of FPGA can be seen as the main contributor in
this field. On one hand, it can be used to rapidly prototype and
test algorithms and technologies, on the other hand, it is an
easier to reach target for synthesized circuits. With this, the
technological stack for implementing new tools around Petri
net matured in the last decade much faster than before.

Several surveys were done in this field. A very early
overview was given by Agerwala in 1979, where it was
mentioned as part of a survey for practical Petri net applications
[24]. The survey focused on the synthesis algorithms by Dennis’
group in the 70s [22]. For Finite State Machine (FSM) an
in-depth survey was done by Moore and Gupta [25]. Not
only use-cases and approaches were surveyed, also Petri net
types and analysis methods. A more practical article on FSM
implementation in Verilog was written by [26]. In 1998, two
more surveys were published, the survey from Yakovlev and
Koelmans [4] and from Marranghello [5] concerning asyn-
chronous and synchronous synthesis of embedded controller,
respectively. After that only very small surveying was done, as
part of related work in [27], [28], [29], [30].

Petri net synthesis can be classified into three general
classes: type of implementation, type of encoding and type of
Petri net.

The separation between synchronous and asynchronous
implementation is the already the focus of two surveys from
1998 [5], [4]. The decision is largely dependent on the use-case.
The type of encoding is well elaborated in [5] and similarly
in [4]. There exist three different types. Direct encoding also
called one-hot encoding or isomorphic places encoding [31],
is the 1:1 mapping of Petri net places into a circuit element
(e.g., a flip-flop). This encoding guarantees a circuit and has the
shortest synthesis time, as there are no complex calculations
involved. A disadvantage is the higher number of flip-flops
required. To tackle the problem, logical encoding gives each
state or transition in a (sequential) Petri net a code and represent
this state in the circuit by complex logic. Depending on the
encoding, this is either named place-based or transition-based
encoding. The state-space explosion problem [32] might result
in a failed synthesis. To mitigate this problem, the net can
be partitioned in multiple subnets with macro nets [33] or by
using Binary Decision Diagrams (BDD) for a more efficient
representation [34]. The last encoding method is by building a
specialized hardware, which takes a Petri net and computes the
firing. This solution is the most space efficient for large nets
and allows the highest grade of reconfiguration. Disadvantages
are their higher initial effort and slower execution speed [27],
[35].

Overlooked in the previous taxonomies, the Petri net type
is also a distinctive characterization. Most implementation work
on safe Petri nets, some on k-bounded and some with colored
tokens. Additionally, often the non-deterministic feature of Petri
nets is not supported when synthesizing to circuits or needs
special care [36].

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

113

C. Circuit synthesis from Petri nets with changing runtime
behavior

While the synthesis of Petri nets into circuits is researched
for a long time, only in recent years the research focuses also
on Petri nets with changing runtime behavior. The first work,
looking at this topic is [16]. Here, a non-formal Petri net model,
which allows reconfiguration at runtime, is synthesized into
VHDL for a partial reconfigurable FPGA. Relatively similar
is [37], in which a state machine is synthesized for a partial
reconfigurable FPGA. Both approaches switch the runtime
behavior based on the context. The use-cases are based on an
industrial and smart home scenario, respectively.

Similar research is also performed outside of FPGA syn-
thesis. In [38] the ReConNet of Padberg et al. [10] is utilized
to synthesize a reconfigurable manufacturing system (RMS).
Here, a formal approach was used to model the system, verify
the Petri net properties and then synthesize the RMS.

III. PRELIMINARIES

This section defines the preliminaries, used in this work.
The mathematical notation of Petri nets is explained in this
section together with some properties, which can be verified
with model checking. The concept of Adaptive Petri nets is
explained together with an algorithm to flatten APN to Petri
nets with inhibitor arcs.

A. Petri net definitions

Definition 1: A Petri net [32] is a directed, bipartite graph
and can be defined as a tuple X = (P, T, F, W, My). The two
sets of nodes are P for places and 7' for transitions, where
PNT=0and PUT # (. F is a set of arcs, describing the
flow relation with F C (P xT)U(IT'x P). W:F - Nisa
weight function. My : P — N is the start marking.

Referencing an element of the tuple is done in dot notation:
for a Petri net 3, we reference the places P by >.P.

Definition 2: For an element =z € P U T,

ox = {y|(y,z) € F} and ze = {y|(x,y) € F}.

E.g., te with t € T refers to the set of places, which are
connected with an arc originating from ¢. We call those preset
and postset, respectively.

Definition 3: A marking is defined as a function

M:P —N.

A Petri net is a static model, in which only the marking
changes. M is the start marking. After firing a transition, the
marking changes.

Definition 4: A transition ¢ € T is enabled if all places
p € ot have a marking of at least W (p, t) tokens, where W (p, t)
is the weight for the arc between p and t.

Definition 5: Iff a transition ¢ is enabled, it can fire and
the marking of each p € te is incremented by W (¢, p) and the
marking of each p € et is decremented by W (p,t).

Definition 6: 1If there exists a k € N for a p € P such that,
starting from My, every reachable marking M (p) < k, we
speak of p as k-bounded.

A bounded place never contains more than k tokens. If &k
equals 1, this place is called safe.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Inhibitor arcs

To model the negation inside Petri nets, e.g., "fire this
transition only when less than x tokens are inside this place",
inhibitor arcs can be used. With inhibitor arcs, the flow
relation of Petri nets is extended with an arc, which disables a
transition when the connected place has more than a specified
number of tokens in it. A Petri net with inhibitor arcs can
implement a Turing machine [39], while this is not possible with
standard Petri nets. Because of the change of expressiveness,
the available tools for model checking are reduced, for example,
the halting problem cannot be solved in general for Turing
complete languages.

Definition 7: An Inhibitor Petri net is a tuple ¥ =
(P, T, F,I,Wr,W, My). With the same defintions as previously
mentioned. Additionally this Petri net contains the set of
inhibitor arcs I : (P x T') and a weight W; : I — N

To simplify notation, we define the inhibiting set of a
transition ¢ as ot = {(p,t) € I'}.

Definition 8: A transition t is enabled;, iff all places
connected by an inhibitor arc are below the weight
M (p) < Wi(p,t) for all p € ot and the transition is enabled
as defined in Def. 4.

1) Flattening to a Petri net without inhibitor arcs: In general,
a Petri net with inhibitor arcs is Turing complete. When a
place with an inhibitor arc is bounded, the inhibitor arc can
be replaced with a semantic preserving structure without an
inhibitor arc [40].

C. Graphical notation

Places are drawn as circles: Q, their marking is drawn
as black dots (¢). Transitions are drawn as black rectangles
(horizontal or vertical) I The flow relation is drawn with
directed arcs between places and transitions —>. Inhibitor
arcs are only drawn from places to transitions and get a circle
head: —O.

D. Properties and analysis of Petri nets

Petri nets support various ways to verify its properties. The
most commonly used analysis techniques check for reachability,
boundedness, deadlocks and liveness [32]. With these properties,
it is possible to verify the correctness of the model according
to its specifications. In this section we will first describe these
properties and then two tools used for analysis.

The basis for most model checking techniques in Petri nets
is reachability. This technique answers the question, whether
there exists a firing sequence to get from a marking M; to
Ms. There exists also the sub-marking reachability, which
ignores the marking of some places [32]. Besides for Petri nets
with inhibitor arcs, the reachability is decidable but requires
exponential space and time [41].

Boundedness is used to determine, whether the marking of
a particular place is such that the number of tokens is always
lower than a k with £ € N (see Def. 6). Boundedness is very
important for synthesis of Petri nets to guarantee that no buffer
will overflow.

The property liveness refers to a Petri net, in which, starting
with any marking M), there exists a firing sequence such that
all transitions can be fired. This is a very strong property, which
can be checked on five different levels (LO-L4), where each
level adds some relaxation [32].

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

114

A deadlock in the context of Petri net refers to a marking,
in which no transition can fire [32].

For analyzing Petri nets, several tools exist. Here, shortly
two tools are explained. For low level analysis and espe-
cially for checking reachability, we chose LoLA (Low Level
Analyzer) [42], [43] as it is multiple times the winner in
the Petri net model checking contest in the category of
reachability [44]. To check for reachability, LoLA accepts
formulas in either temporal logic (either linear temporal logic
(LTL) or computation tree logic* (CTL*)). LoLA automatically
uses the fastest temporal logic for a given query, therefore, we
will draw no distinction here. LTL and CTL* both build on
top of the propositional calculus and extends it with temporal
quantors. Such quantors are X for next state, G for global state,
F for finally (e.g., a state will be reached in a finite number
of steps). One of the design goals of LoLA is to keep the
architecture relatively clean. That is why, only the basic type of
Petri nets with no inhibitor arcs or colored tokens is supported.

The second tool, regarded in this work is Tina [45]. This
tool is much more high level than LoLA. It comes bundled with
a graphical editor and simulator, it can convert many different
Petri net formats and has an interpreter, which can check for
most basic properties like liveness, deadlocks and boundedness.
However, the interpreter is much slower than LoLA.

E. Adaptive Petri nets

Adaptive Petri nets (APN) extend Petri nets with a concept
to change the behavior of the net at runtime. This is done
by defining one or more configuration points, which in turn
consist of a set of nodes, which are configured and a place
(configuration place) together with a marking, which enables
or disables the set of nodes. When the set of nodes is enabled,
the behavior of the Petri net is not changed. When the set of
nodes is disabled, no new tokens can be emitted from outside
into the set of nodes.

Following this informal description, the definition and
semantics is given here.

Definition 9: An APN is a tuple X = (P, T, F,W, My, C),
based on Petri nets of Def. 1, with C' = {c1, ¢a,...} as the set
of configuration points.

Definition 10: A configuration point is a tuple
¢ = (p,w, N, E) referencing the nodes of a containing
Petri net X.

e p € X.P, a place that we will call configuration place.
w: Z\ {0}, a weight

N C (3.PUX.T), the nodes that are configured

E C N the external nodes of the configured net, which
are reachable, even if the configured net is disabled

Definition 11: The set of external nodes (£ C) are
nodes of N which are connected to nodes outside of N. Usually
defined like this - but a custom definition is possible, too:
E=Nn{z|(zr cenUz cne)Vne ((P UT)\N)}

Definition 12: The set of internal nodes for a configuration
point is calculated by G = N \ E.

With these definitions, the structural part of APN is
described. — In the next definitions, the runtime semantics of
APN are described.

Definition 13: A configuration point ¢ € C is enabled,
iff (cw >0AM(ep)>cw)V (cw<0AM(cp) < |cwl|).

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

115

Algorithm 1 Flattening of an Adaptive Petri net

1: procedure FLATTEN((P, T, F,W, M, C,I))

2 for Vc € C do

3 for Vp e c EN P do

4: for Vi € peNec.G do

5: ConnectByArc((T,c,t, F,1,W))

6 end for

7 end for

8: for Vt e c.ENT do

9: if (teNc.N #£0)V (et Nc.E # () then
10: to < Duplicate(t, P,T,F,W,C, 1, W)
11: F<—F\((t2 XC.N)U(C.EXtQ))
12: ConnectByArc((T, ¢, t, F,W,I1,Wr))
13: ConnectByArc((L, ¢, ta, F,W, I, Wy))
14: end if
15: end for
16: C«+C \ {C}
17: end for

18: end procedure

With M being the marking function of Def. 3. As a shorthand,

the set of enabled configuration points is defined as C, C C.
An enabled APN is not changing the behavior of the Petri

net. A disabled APN stops the flow of tokens from E to N.

By this, the definition of fire Def. 5 must be modified as well
as the definition of enabling Def. 4. These modifications are
defined in Defs. 16 and 17, respectively.

Definition 14:
belongs to is defined by the function BY :
P(C) with BN (n) = {¢|c€ C An € c.N}.

e The set of configuration points a node
(PUT) —

e The set of configuration points, in which a node is external,

is defined by the function: B :
BE(n) = {c|c€C/\n€cE}

(PUT) — P(C) with

e The set of configuration points, in which a node is internal,

is defined by the function: B¢ : (P UT) — P(C) with
B%(n) ={clce C An € c.G}.

Definition 15: The configured postset and
configured preset of a transition t is defined
as te.=te\{plce (BF{t)\C.)ApEc.N} and
ot =ot\ {plc € (BE(t)\ C.) A p € c.E}, respectively.

Definition 16: Iff a transition ¢t with BF(t) # () is enabled,

it can fire, and the marking of each p € t e . is incremented
by W (t,p) and the marking of each p € e.t is decremented
by W(p,t). The fire semantics of all other transitions are
following Def. 5.

Definition 17: A transition t € T is enabled,, iff it is
enabled according to Def. 4 and the following condition holds
true {plp € ot Ap € c.E; Ye € (BE(t)\ Ce)} = 0.

For a disabled configuration point, the movement of tokens
from E to N is prohibited in Def. 17 for transitions in N. The

movement of tokens to places in IV is prohibited with Def. 16.

An APN can be flattened to a Petri net with inhibitor arcs [1].

Furthermore, it was shown that in some cases no inhibitor arcs
are created and that, with the algorithm of [40], an inhibitor arc
from a k-bounded places can be flattened to a Petri net without
inhibitor arcs. When the place is 1-bounded, the overhead is
minimal with just one additional place.

Algorithm 2 Helper method to enable or disable a transition
by a configuration place

1: procedure CONNECTBYARC((e, ¢, t, F, I, W, W7))
2: if ((cw>0)A(e=T))V((cw <0)A(e= 1)) then

3 if (c.p,t) € FV (t,c.p) € F then
4 if (¢,c.p) € F then

5: F+ FU{(cp,t)}

6: W{(e.p,t) < |cw|

7: W(t,c.p) < |cw| + W(ep,t)
8 end if

9: else

10: F + FU{(ep,t),(t,cp)}
11: W(ep,t) < |cw|

12: W (t,c.p) < |cw|

13: end if

14: else

15: if (c.p,t) € I then

16: if Wi(cp,t) > |c.w| then
17: Wi(e.p,t) < |caw]

18: end if

19: else

20: I+ TU{(ep,t)}

21: Wi(e.p,t) < |cw]

22: end if

23: end if

24: end procedure

Algorithm 3 Helper method to duplicate a transition

procedure DUPLICATE((¢t, P,T, F,W,C, 1, Wr))
: T<—TU{t2}Wltth¢(PUT)

I:
2

3 F < FU{(t2,p)lp € PA(t,p) € F}
4 F+« FU{(pta)lpe PA(p,t) € F}
s: I+ ITU{(pta)lp€ PA(p,t) €1}

6 W W U{(t2,p)lp € PA(t,p) € W}
7. W WU{(p,tz2)lp€ PA(p,t) €W}
8 Wi <—W[U{(p,t2)|p6 PA

: (pa t) S WI}
9: for Ve € C do

10: if t € c.N then

11: ¢.N < c¢.N U {t2}
12: end if

13: if t € c.FE then

14: c.E <+ cEU{t:}
15: end if

16: end for

17: end procedure

1) Multiple configuration points: When multiple configura-
tion points are configuring a set of nodes, the intersection of
internal nodes of these configuration points are only enabled,
when all configuration points are enabled. Therefore, the logical
operator and is represented with the combination of multiple
configuration points.

F. Scalability of the flattening approach

We argue that one of its strengths of Adaptive Petri nets is
the ability to flatten it and then utilize existing model checking
tools. This will only be possible, when the flattening itself will
not increase the state-space of the resulting net exponentially,
such that the model checking can not work in reasonable time

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for larger nets.

To clarify the three stages of flattening we perform, the
type of Petri net is marked in the sub-script of the set. Le,
places of an APN are denoted as P4py, places of a Petri net
with inhibitor arcs are denoted as P;,;, and places of a Petri
net without inhibitor arcs are denoted as P,/; ;. The same
syntax is also used for transitions.

The worst-case increase of places, when flattening from an
APN to a Petri net with inhibitor arcs is: |Papn| € o(|Pinnl)s

the number of places does not increase when flattening an APN.

When flattening a safe (1-bounded) Petri net with inhibitor
arcs, it is 2+ [Pin| € 0(|Py/¢—net|). Calculating the worst-case
increase for the number of transitions might be misleading, as
it hardly reflects reality since it will assume many overlapping
subnets: 2/¢1 . |Tapn| € o(|Tinn]). With each configuration
point the number of transitions can double. When flattening
a safe Petri net with inhibitor arcs, the amount of transitions
does not increase.

For model checking tools, the most critical criteria to solve
a net, is the size of the state-space. The state-space in turn is
heavily influenced by the number of places a net contains. For
a safe Petri net, the state space is in the worst case o(2/71).

With Adaptive Petri nets, the size of places does not

increase when flattening to a Petri net with inhibitor arcs.

Although, the size of transitions can increase exponentially to
the number of configuration points. For scalability, the most
limiting factor is the flattening of inhibitor arcs, which can result

in an exponential amount of additional places and transitions.

Since the semantics of the APN is just boolean (enabled or
disabled), users should be able to model the net in a way,
that all configuration places are 1-bounded. This will only add
one additional place per configuration place. From practical
experience, we never found the model checking as our limiting
factor.

1) Improvements to previously published work: After the
publication in [1], some improvements were found. To better
compare these works, we will list the changes here.

Internal nodes of C' were defined as I, which was ambiguous
to the set of inhibitor arcs. Now the symbol G is used.

The set of external nodes E' was previously set implicitly
with a formula. Now it is part of the definition of an APN.
This must be done to support commutativity in evaluation and
flattening, when combining multiple configuration points over
an intersecting subnet. This change can be especially noticed
in Algorithm 3 and Algorithm 2.

IV. WORKFLOW FROM ADAPTIVE PETRI NETS TO FPGA

Modeling a circuit with an FSM or Petri net has many
advantages, already described in Section II. We propose an
architecture, which generates valid VHDL code from an APN.
The whole workflow is depicted in Figure 1, described later in
this chapter, and finally evaluated with a practical example of
a coffee machine in Section V.

In Figure 1, the transformation chain is depicted. It can
be read from the left (input) to the right (output). Circles and
ovals depict artifacts, e.g., files, while arcs and rectangles are
transformations and computations.

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

116

A. Input: Petri net

The transformation chain is started with various inputs. The
only mandatory input is a Petri net, named Base PN. This Petri
net can already be an APN or contain inhibitor arcs. To help
with separation of concerns, a composition system can be used
to separate the configured nodes from the base net (we employ
name-based composition and net addition rules [46], [47]. For
this, a Composition Specification may be required to describe
how the multiple parts are combined. For the compositional
approach, the base net contains the core functionality, which is
enhanced by several features, named PN Feature. This concept
is similar to feature-oriented programming [48].

B. Input: Context net

The input context net is specified by the developer and used
to separate concerns. While it is not strictly necessary for APN,
we found that a separate handling of the configuration points
helps when designing the nets. On one hand, it is used for
separating the context information from the base net. On the
other hand, it can be constructed in a way to guarantee that
all places of this net are 1-bounded, simplifying the flattening
of inhibitor arcs.

For the context net, three options were investigated. First a
simple Petri net, which does not provide a lot of abstractions.
The second investigated model is the context Petri net [49].
Context Petri nets are first described by a domain specific
language (DSL), which is setting multiple contexts in relation-
ship to each other. A relationship can be exclusion, inclusion,
implication, etc. This DSL is then transformed in a Petri net,
which handles the activation and deactivation based on the
relationship. E.g., when a context is activated, which is in an
exclusion relationship with another context, the other context is
then deactivated. The third option is a modified state machine.
A state machine is defined as a 4-tuple STM = (Q, s, %, f).
With @ as a finite set of states, s as the starting state, . a finite
input alphabet and f : S x ¥ — S the state transition function.
For our use-case, we also add the set of contexts C' to the state
machine. Each state can have a subset of C' assigned to it. An
example can be seen in Figure 3. Such a state machine has the
advantage that it is very concise but still can be transformed
to a Petri net with little overhead by transforming all states
@ and events ¥ into places, all state transition functions f
into transitions connecting the input and output state-places
correspondingly and also adding the event-place as input.

C. Composition

Utilizing a composition system gives two advantages. It
enables us to use a context net in the first place. Furthermore,
it can be used to simplify the definition of configuration points,
when each composed net is interpreted as the set N, the
configured nodes, while the composed nodes are the external
nodes.

For composition, two systems were used. A rather pragmatic
approach, based on node fusion [50] via name-unification. All
nets that have to be composed are put into one large net. Then
all places with the same name are fused together, performing
an addition of their tokens and merging the input and output
arcs. Similarly, this is done for transitions. As a wildcard, the
“*#”_character can be used at the beginning or end of a string,
which then merges with all prefixes and suffixes of that string
depending on the position of this character.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The other utilized system is based on net additions [46].
Net additions consist of a DSL, in which the names of the
composed Petri nets are first listed, followed by a list of node
fusion sets. A node fusion set is either a set of places or a
set of transitions from any composed Petri net, referenced by
their name and with a new name. For example, the node fusion
set (a/b/c — d) is merging the nodes a, b and ¢ to a node
named d. We extended net additions, to specify a configuration

10
place together with the marking next to the name of a Petri net, 11
such that the Petri net becomes the set N of the configuration |2
point [47]. 14
15

. . . 16

D. Adaptive Petri net and flattening 17
.\ . . 18

After the composition step, an APN is the result. Either 9
because the base net was already an APN, or because the ;?

composition added configuration points to the net. The APN
is then flattened with the algorithm of [1] to a Petri net with
inhibitor arcs.

E. Model checking

To utilize existing model checking tools, the inhibitor
arcs can be flattened when the source node of this arc is
bounded [51]. Model checking can be performed on user-
provided rules (Model Check: custom with LTL/CTL* Formulas)
and with generic rules, like deadlock detection, unreachability,
unboundedness and invariants (Model Check: generic). These
generic checks can also be used, to Optimize the circuit model.
For example, to eliminate dead code or remove redundant places
from the invariant analysis. All model checking results can be
inspected by the developer to fix bugs and inconsistencies in
the modeled Petri nets (Check Results).

F. Circuit model

The flattened APN, a Petri net with inhibitor arcs, is
transformed in a Circuit Model. Our circuit model consists
of: connections, basic gates like AND and OR, as well as a
counter. Currently not implemented is the step from Adaptive
Petri nets to the circuit model. It is planned to use the dynamic
reconfiguration capabilities of FPGAs for this [16], [52].

Input

Flatten/ad.,

Adaptive PN

Composition _:
pecificatio 1
@ Transformation

LTL/CTL*

Automatic Transformation

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

117

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity place is

generic (max: integer := 1; def: integer := 0);

— I=Increment, D=Decrement, O=Out

port (I: in std_logic; D: in std_logic; O: out std_logic

; clk: in std_logic);

end place;
architecture dataflow of place is

signal memory: integer range 0 to max := def;
begin
process (clk)
begin
if rising_edge(clk) then
if D= "1" then memory <= memory — 1;
elsif I = 1’ then memory <= memory + 1;
end if;
end if;
end process;
O <= 1’ when memory > 0 else 07
end dataflow ;

Listing 1. VHDL of a place

Here, we use the following Petri net synthesis class:
(see Section II): synchronous, one-hot encoded, with k-bounded
places, I-bounded arcs, inhibitor arcs and without indeter-
ministic constructs. Most of these restrictions are purely for
pragmatic reasons, to keep the transformation to the circuit
model simple. In the future, it is planned to extend the synthesis
to asynchronous circuits and to support k-bounded arcs. The
most important transformations can be seen in Figure 2. The
transformation is modeled closely to [53]. Each place and each
transition gets a one-to-one mapping in the circuit. Inhibitor
arcs are represented with the logical not.

G. HDL-code generation

After the circuit model was optimized, an HDL (Hardware
Description Language) Model is generated. This model is
an abstract representation of the textual VHDL code. The
VHDL implementation of a place can be seen in Listing 1.
From this, two HDL files are generated. One implementation
file, which contains all the logic to run the Petri net and an
HDL Skeleton is generated, which the developer can use to

Output

HDL
Skeleton

PN with
Inhibitor Arcs

Circuit

Model HDL Model

Invariants

Formulas

. .. |[€— DeadPI
Flatten/inh. Optimize DeaZaTrana;(i)t?c?ns
PN without g"ﬁ;’i’,
Inhibitor Arcs -
generic
Model-
» Check: >
custom :

Figure 1. Transformation workflow. PN = Petri net. Ovals are artifacts, rectangles are processes.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

synthesis

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

118
. Increment P8
-{Increment P outl
Out —NOT - |Decrement
| —{Decrement —L H
AND
_{Increment P2 v
Out t2 In Increment P
L__Decrement = OR Out|--
AND - {Decrement

Figure 2. Petri net circuit synthesis with one-hot encoding

implement their functionality. The skeleton consists of the
Petri net implementation and an API, exposing all important
places and transitions. Unimportant nodes are those, which were
created automatically. Internally this is done by prefixing the
nodes with a special keyword. For implementation, transitions
can be used for influencing the Petri net execution by either
blocking or continuing the net-flow. Places can be used as
impulses for the VHDL program to trigger the execution or
directly power an actuator of the circuit, e.g., a place will start
a small engine or letting an LED light blink.

V. SYNTHESIZING AN ADAPTIVE PETRI NET TO AN FPGA
The general workflow, described in the previous section, will

be demonstrated with a realistic use-case of a coffee machine.

While the example is simple enough to understand, it also
demonstrates most aspects of the workflow to show how the
synthesis can be extended for more complex designs.

A. Use-case description: Coffee machine

The behavior of the coffee machine can be described in
two phases: a configuration phase, which awaits user-input
for the type of coffee they want and a running phase, where
the machine will prepare and dispense the coffee. During the
configuration phase, the configuration places are set. When the
configuration phase is finished by pressing the start button, the
runtime phase starts and executes the coffee machine adapted
to the configuration.

Regarding the workflow of Figure 1, the input consists of
a context net, a base Petri net and LTL/CTL* formulas. The
composition specification is done implicitly, by composing the
nodes with a unification of the names (nodes with the same
name are merged, while a * will match anything).

The coffee machine consists of 3 models: the Petri net
model, the context model, and the APN model. All three models
are created separately. The APN model and Petri net model
are only separated because of the current technical limitation
that APN cannot be represented within PNML. The separation
of the context model is not required but gives a nicer overall
architecture as described also in Section IV-B.

The coffee machine itself operates in two phases: (I)
beverage selection; (II) beverage dispensing. In Phase I, the
customer can select from 5 buttons: Coffee, Cappuccino, Milk,
Espresso, Start. Except for the start button, each selection will

fill the place with the same name as the button with one token.

This place is then used as the context configuration. Phase II can
be reached, when the customer presses the start button. In this
phase, the buttons are disabled and the machine starts dispensing
according to the previous selection. The internal processes of

the machine are controlled by the Petri net. Utilizing Adaptive
Petri nets, only those parts are activated which are defined by
the contexts. The Petri net can be seen in Figure 4.

B. Modeling

The beverage selection is done with a state machine, as it
can be used to represent the selection logic in a simplified and
extendable way. This state machine is modeled in our STN
(state transition net) notation. It consists of states (circles),
events (arcs) contexts (rectangles) and a start state. In Figure 3,
the state machine can be seen.

The state machine starts in the None state and will move
to the next state when the coffee or espresso event is triggered.
It will then move to the Coffee or Espresso state, respectively.
The state machine is converted into a Petri net with a simple
conversion algorithm, which converts STN states to Petri net
places prefixed with state_, events to places with the event_
prefix and STN contexts to Petri net places without a prefix.
Finally, all arcs between states are converted to a transition
with the previous state and event as input and the next state
as output. When transforming the example of Figure 3 into a
Petri net, it results in 20 transitions and 12 places.

The Petri net model can be read from different formats.
Notably PNML (Petri net Markup Language), which is a
standard most Petri net tools support.

The coffee machine is modeled with the Petri net of Figure 4.
This net already integrates the state machine from Section IV-B
with the places event_*, state_None, Coffee, Espresso and Milk.
The net starts with a token inside place stopped, which allows
to trigger the transitions starting with req.. The *-sign matches
req.Coffee, req.Espresso and req.Milk. The net continues with
the transition ingredients, if no token is inside any event_*
place and no token in state_None. This is required, so that our
state machine is not in an intermediate state with unprocessed

[Espresso]

[Espresso][Milk]
reset et

milk Latte
Machiato

[Coflfee] [Coff;e] [&I:/Iilk]

Figure 3. State machine for the selection inside the coffee machine

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Statemachine
Interfaces

event_coffee | event_espressg

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

119

state_None

btn_* btn_Coffee btn_Espresso

btn_Milk

Configuration
Phase

Runtime
Phase

ing_coffee
ing_espresso grind_espressq
) 4
o

ingredients

grind_coffee

grind_done

state_None

foam

4'—> t_ing_no_milk

o

stop <
........................ y
disp_w200
disp_water

disp_w40

A v
dispend done
—>

L K

disp_milk

> disp_milk _|
disp_no_milk event_reset
Milk

O

Figure 4. Petri net for the coffee machine with 4 configuration points. C1={Coffee, 1, {ing_coffee, grind_coffee, disp_w200},{ingredients, grind_done,
disp_water, disp_water_done } Co={Espresso, 1, {ing_espresso, grind_espresso, disp_w40},{ingredients, grind_done, disp_water, disp_water_done}C3={Milk, 1,
{ing_milk, foam, disp_milk},{ingredients, ing_milk_done, disp_milk, disp_milk_done}C4={Milk, -1, {ing_no_milk, t_ing_no_milk, disp_no_milk},{ingredients,

ing_milk_done, disp_milk, disp_milk_done}

events and is also not in the None-state. After that, a token
is put into all following places, representing ingredients for
coffee, espresso and milk. The places and transitions will

converge into the dispend transition in the middle of the figure.
The ingredients will be later annotated with APN-structures.

Similarly the subnet between dispend and done dispenses water
and milk according to the specification and configured by the
APN-structures. The coffee making process is finishing with the
done-transition, which creates a token in event_reset to reset

the state machine on the None-state and a token inside Stopping.

The initial stopped state is reached, when the sfop-transition
fires, which only happens when a token is inside state_None.

C. Flattening

The resulting composed Adaptive Petri net consists of 35
transitions and 24 places with 4 configuration points. When
this net is then flattened to a Petri net with inhibitor arcs, the
size increases to 50 transitions and 24 places. The number of
transitions increases a lot, because the transition ingredients is
an incoming external node in four configuration points. This
requires to duplicate this transition 2* times. However, the
flattening algorithm is not yet optimizing the duplication. It
will not prune illegal configurations (e.g., espresso and coffee

can never be selected simultaneously).

When size is critical, the designer should watch out that
the incoming external nodes are not transitions like it is done
with the configuration points at the disp step (i.e., disp_water
and disp_milk). Here, no new transitions or places are added
to the net.

After the APN is flattened, it is a Petri net with inhibitor arcs.
This can be further flattened to remove all inhibitor arcs with
the algorithm of [40]. As prerequisite for flattening inhibitor
arcs, the place connected to the inhibitor arc must have a
known, finite bound. We know from all places that they are
1-bounded because they are the result of our state machine.
After flattening, the net contains 58 transitions and 32 places,
an increase of 8 transitions and 8 places.

D. Model checking

A flattened Petri net can be model checked. We utilize
Tina, which we chose because it has good support for PNML,
can convert it to other formats, has a graphical editor, and
checks the net for basic properties in a well readable format.
Additionally, we utilize LoLA (Low Level Analyzer), which is
winner in several model checking competitions and allows to
build complex LTL/CTL* formulas [43]. There are two kinds

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of checks performed: automatically generated and manual tests.

We will not describe all tests, but instead give two examples
of each category. For automatically generated tests, we classify
theses tests into those for user feedback and those for net
optimization. Checks for User feedback is testing the net for
reversibility, boundedness, and deadlock freeness. Those are
all checked by default in Tina. In LoLA, the deadlocks are
checked by EF DEADLOCK. Checks for optimizations are
searching for invariants. In LoLA such a check would look
like this: AG((A = 1 AND (B = 1)) OR (NOT(A = 1) AND
NOT(B = 1))) with A and B being places. The quantifier AG
modifies the temporal predicate that this formula is only true,
if all states within the state-graph of the net conform to this
rule.

The coffee machine net has 4 invariants, which are all
inside the state machine, e.g., Coffee State_Coffee OR
State_Coffee_Milk. With an invariant, not every place needs
to be represented with a memory, but can be represented with
a logical expression instead.

Besides the automatic formulas, the user can also specify
manually what is of interest to him, which requires domain
knowledge. In the following, two manually specified rules:

o LoLA rule: AGEF(Coffee = I AND Running = 1 AND
AF(Grind_Coffee = 1)) — when Coffee is selected, the
grind_coffee place is always selected afterwards.

e LoLA rule: AGEF(Coffee 1 AND Milk = 0 AND
Running = 1 AND NOT AF(Milk_Heating = 1)) — when
Coffee is selected, Milk is always deselected, place
Running contains a token, and we will not reach the
place Milk_Heating.

E. Generation of VHDL code

Based on the flattened Adaptive Petri net, the workflow
will also create a coarse circuit model. This circuit model is
generated with the transformation described in Figure 2. Here,
each place is transformed into a counter and each transition
in a logical AND. Currently, only synchronous circuits are
generated, but there exist implementations, which do not need
a clock and therefore, work asynchroneously. This coarse circuit
model is then optimized to minimize the number of connections
and gates. Furthermore, the optimization step receives input

from the model checker, to remove invariants and dead nodes.

From the coarse circuit model, an abstract representation of
the VHDL code is generated, which is transformed to actual
source code in a last step. The source code is divided in two
parts: an implementation part, which contains all the logic to
run the Petri net and a skeleton, which contains the interface
places and transitions as signal declarations. The skeleton can
be later utilized by the programmer to implement additional
logic. The resulting skeleton is 150 lines (3 lines for each
place and 2 lines for each transition). The resulting Petri net
implementation code has a length of 280 lines. Within the
skeleton, the engineer has write access to the setter of all
places, read access to the boolean output of all places, and
write access to all transitions, where a low-signal can stop the
transition from firing.

A small example of both files is given in Listing 2
and Listing 3, which consists of a single place connected
to a transition. While the implementation itself must not be
understood by the developer, it is still printed in a readable

O 001U B W —

O 001NN B W -

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

120

library IEEE;
use std.textio.all;
use IEEE.STD_LOGIC_1164.ALL;
entity main is
PORT (
— custom
btnL : in

ports go here (i.e. I/0)
std_logic; — button left
btnU : in std_logic; — button up
led : out std_logic_vector(0 to 15); — 16 leds
sw : in std_logic_vector(0 to 15); — 16 switches
clk : in std_logic;
)
end main;
architecture behavior of main is
signal clk :std_logic := "0’; — in
signal ps_ing_coffee :std_logic := "0°; — in
signal t_grind_coffee :std_logic = ’1°; — in
signal p_ing_coffee :std_logic; — out

begin

— instantiation of entities

testbench : entity work.testbench port map(clk
, ps_ing_coffee => ps_ing_coffee
, t_grind_coffee => t_grind_coffee
, p_ing_coffee => p_ing_coffee);

— connection of entities by their ports

— custom code here

t_start_transition <= ’1°
0’) else 07

t_reqd_Milk <= "1’
else ’07;

— 3 further transitions are bound

=> clk

when (btnC = ’1° and sw(14) =

when (btnL = 1’ and sw(14) = °0’)

to a button

led (1) <= (sw(l) and p_Milk_Heating) or (sw(0) and
p_Stopped) ;
led (0) <= (sw(l) and p_Preparing_milk_heating_out) or (
sw(0) and p_Stopping);
— 13 further places are bound to an LED + Switch
end ;

Listing 2. VHDL skeleton code for place ing_coffee connected to transition
grind_coffee

library IEEE;
use std.textio.all;
use IEEE.STD_LOGIC_1164 .ALL;
entity testbench is
PORT (
clk : in std_logic = '0’;
p_ing_coffee : out std_logic :
ps_ing_coffee : in std_logic : ;
t_grind_coffee : in std_logic := 1’)
end testbench;
architecture behavior of testbench
signal ing_coffeeir :std_logic;
signal ing_coffeeo2 :std_logic;
begin
ing_coffee : entity work.place generic map(l,
map(ps_ing_coffee, ing_coffeeir, ing_coffeeo2 ,

o
[N}

is

0) port
clk)

ing_coffeeir <= (ing_coffeeo2 and t_grind_coffee); —
grind_coffee
p_ing_coffee <= ing_coffeeo2;
end ;

Listing 3. VHDL (internal) implementation code for place ing_coffee
connected to transition grind_coffee

format. The skeleton must only be changed beginning on
Line 20 for runtime behavior.

Finally, in our test-setup we utilized Vivado-SDK-2016.2 to
synthesize the bitstream for the Basys3 Artix-7 FPGA, which
contains 33,280 logic cells in 5200 slices, with each slice
containing four 6-input LUTs and 8 flip-flops. With this setup,
the size-impact of the Petri net can be described as marginal,
as can be seen in Figure 5.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Utilization - Post-mplementation

LUTq 1%
FFq 1%
[Le] 494%
BUFG 9%

0 25 50 75 100
Utilization (%)

Figure 5. Resource utilization of the Petri net on a Basys 3 Artix-7 FPGA.
The high I/O usage is due to our test-setup. The only required I/O is a clock.

VI. CONCLUSION AND FUTURE WORK

In this article, we showed how Adaptive Petri nets can be
embedded in a workflow to synthesize Petri nets for context
adaptive circuits. Adaptive Petri nets support a Petri net devel-
oper with a new tool, which helps to express intentions more
directly and make context-awarenes a higher level language
construct of Petri nets. We claim that directly expressing the
adaptivity behavior of the net, allows developers to better
collaborate and communicate with each other. By maintaining
the ability to flatten these nets into standard Petri nets with
inhibitor arcs, existing tools and model checking solutions can
still be applied on this new class of nets. Because of the specific
structure of APN, inhibitor arcs can be removed in most cases
to extend the suitable tools and model checking capabilities
even further.

Compared to the initial paper on APN, the concept
was slightly improved to support commutative flattening of
multiple APN configurations. Further, this article proposed a
methodology of development for context adaptive FPGA-based
applications. The algorithm to flatten Adaptive Petri nets to
FPGA is extending the existing work of code generation from
Petri nets for FPGA, not only by supporting a new class of nets,
but also by supporting new kinds of composition operations
and supporting the usage of statemachines as input.

The workflow, for synthesizing Petri nets to FPGA, is
generic and allows an instantiation with several tools and
techniques. We showed how a coffee machine model can be
transformed. The coffee machine is context dependent on the
user input and changes its behavior based on the selection.
The transformation workflow utilizes model checking to verify
the correctness through automated checks, manual checks, and
to optimize the resulting circuit by eliminating dead places
and transitions as well as invariants. It was shown that the
resulting circuit is relatively small compared to the size of
modern FPGA.

While the coffee machine was utilized here as an illustrative
example, we already experimented with utilizing Adaptive Petri
nets for human-aware robotic control [54], [55] by implement-
ing the Haddadin automaton [56] as the controlling net for an
Adaptive Petri net. In the future, Adaptive Petri nets should
be directly synthesized on the FPGA, with partial dynamic
reconfiguration, which most modern FPGA support. We are
implementing further semantics for exception handling [54],
which allows to set and reset the tokens inside a configuration
point. Utilizing the similar runtime semantics of Adaptive Petri
nets and role oriented programming languages to model and
verify these languages [57].

ACKNOWLEDGMENT

We gratefully acknowledge support from the German Excel-
lence Initiative via the Cluster of Excellence “Center for advancing

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

121

Electronics Dresden” (cfAED).

This project has received funding from the Electronic Component
Systems for European Leadership Joint Undertaking under grant
agreement No 692480. This Joint Undertaking receives support
from the European Union’s Horizon 2020 research and innovation
programme and Germany, Netherlands, Spain, Austria, Belgium,
Slovakia.”

REFERENCES

[1] C. Mai, R. Schone, J. Mey, T. Kiihn, and U. ABmann, “Adaptive Petri
nets — a Petri net extension for reconfigurable structures,” in The Tenth
International Conference on Adaptive and Self-Adaptive Systems and
Applications (ADAPTIVE 2018). IARIA XPS Press, 2018, pp. 15-23.

[2] J. Deepakumara, H. M. Heys, and R. Venkatesan, “FPGA implemen-
tation of MDS5 hash algorithm,” in Canadian Conference on Electrical
and Computer Engineering 2001. Conference Proceedings (Cat. No.
01THS8555), vol. 2. IEEE, 2001, pp. 919-924.

[3] FE. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys (CSUR),
vol. 22, no. 4, 1990, pp. 299-319.

[4] A. V. Yakovlev and A. M. Koelmans, “Petri nets and digital hardware
design,” in Lectures on Petri Nets II: Applications. Springer, 1998, pp.
154-236.

[5] N. Marranghello, “Digital systems synthesis from Petri net descriptions,’
DAIMI Report Series, vol. 27, no. 530, 1998.

[6] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, 2009, p. 14.

[7]1 J. Padberg and L. Kahloul, “Overview of reconfigurable Petri nets,” in
Graph Transformation, Specifications, and Nets. Springer, 2018, pp.
201-222.

[8] R. Valk, “Object Petri nets,” in Lectures on Concurrency and Petri Nets,
ser. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
2003, pp. 819-848.

[9] S. Eker, J. Meseguer, and A. Sridharanarayanan, “The Maude LTL model
checker,” Electronic Notes in Theoretical Computer Science, vol. 71,
2004, pp. 162-187.

[10] J. Padberg and A. Schulz, “Model checking reconfigurable Petri nets
with Maude,” in Graph Transformation, ser. Lecture Notes in Computer
Science. Springer, 2016, pp. 54-70.

[11] J. Padberg, “Reconfigurable Petri nets with transition priorities and
inhibitor arcs,” in Graph Transformation. Springer, 2015, pp. 104-120.

[12] M. Llorens and J. Oliver, “Structural and dynamic changes in concurrent
systems: Reconfigurable Petri nets,” IEEE Transactions on Computers,
vol. 53, no. 9, 2004, pp. 1147-1158.

[13] J.Li, X. Dai, and Z. Meng, “Improved net rewriting systems-based rapid
reconfiguration of Petri net logic controllers,” in 31st Annual Conference
of IEEE Industrial Electronics Society IECON., 2005, pp. 2284-2289.

[14] R. Valk, “Self-modifying nets, a natural extension of Petri nets,” in
Automata, Languages and Programming. Springer, 1978, pp. 464-476.

[15] S.-U. Guan and S.-S. Lim, “Modeling adaptable multimedia and self-
modifying protocol execution,” Future Generation Computer Systems,
vol. 20, no. 1, 2004, pp. 123-143.

[16] A. Bukowiec and M. Doligalski, “Petri net dynamic partial reconfigu-
ration in FPGA,” in Computer Aided Systems Theory - EUROCAST,
ser. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
2013, pp. 436-443.

[17] R. Muschevici, D. Clarke, and J. Proenca, “Feature Petri nets,” in
Proceedings st International Workshop on Formal Methods in Software
Product Line Engineering (FMSPLE 2010), 2010.

[18] R. Muschevici, J. Proenca, and D. Clarke, “Feature nets: Behavioural

modelling of software product lines,” Software & Systems Modeling,
vol. 15, no. 4, 2016, pp. 1181-1206.

5

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

E. Serral, J. De Smedt, M. Snoeck, and J. Vanthienen, “Context-adaptive
Petri nets: Supporting adaptation for the execution context,” Expert
Systems with Applications, vol. 42, no. 23, 2015, pp. 9307 — 9317.

H. Yang, C. Lin, and Q. Li, “Hybrid simulation of biochemical
systems using hybrid adaptive Petri nets,” in Proceedings of the
Fourth International ICST Conference on Performance Evaluation
Methodologies and Tools. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2009, pp.
42:1-42:10.

L. Gomes and J. P. Barros, “Structuring and composability issues in
Petri nets modeling,” IEEE Transactions on Industrial Informatics, vol. 1,
no. 2, 2005, pp. 112-123.

S. S. Patil, “Coordination of asynchronous events,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1970.

C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation,
Universitdit Hamburg, 1962.

T. Agerwala, “Special feature: Putting Petri nets to work,” Computer,
vol. 12, no. 12, 1979, pp. 85-94.

K. Moore and S. Gupta, “Petri net models of flexible and automated
manufacturing systems: a survey,” International Journal of Production
Research, vol. 34, no. 11, 1996, pp. 3001-3035.

C. E. Cummings, “The fundamentals of efficient synthesizable finite
state machine design using nc-verilog and buildgates,” in Proceedings
of International Cadence Usergroup Conference, 2002, pp. 1-27.

S. Chevobbe, R. David, F. Blanc, T. Collette, and O. Sentieys, “Control
unit for parallel embedded system.” in ReCoSoC, 2006, pp. 168—-176.

N. Marranghello, “A dedicated reconfigurable architecture for imple-
menting Petri nets,” in M. Adamski (Ed.) Proceedings of the 2nd IFAC
International Workshop on Discrete Event Systems Design, 2004, pp.
189-193.

M. Adamski and M. Wegrzyn, “Petri nets mapping into reconfigurable
logic controllers,” Electronics and Telecommunications Quarterly, vol. 55,
2009, pp. 157-182.

J. Carmona, J. Cortadella, V. Khomenko, and A. Yakovlev, “Synthesis
of asynchronous hardware from Petri nets,” in Lectures on Concurrency
and Petri Nets. Springer, 2004, pp. 345-401.

1. Grobelna, “Control interpreted Petri nets-model checking and synthe-
sis,” in Petri Nets - Manufacturing and Computer Science, P. Pawlewski,
Ed. INTECH Open Access Publisher, 2012.

T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, no. 4, 1989, pp. 541-580.

T. Kozlowski, E. Dagless, J. Saul, M. Adamski, and J. Szajna,
“Parallel controller synthesis using Petri nets,” in Computers and Digital
Techniques, IEE Proceedings-, vol. 142. IET, 1995, pp. 263-271.

E. Pastor and J. Cortadella, “Efficient encoding schemes for symbolic
analysis of Petri nets,” in Proceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE *98. IEEE Computer Society,
1998, pp. 790-795.

S. Bulach, The design and realization of a custom Petri net based
programmable discrete event controller. Aachen : Shaker, 2002.

L. Gomes, “On conflict resolution in Petri nets models through model
structuring and composition,” in INDIN’05. 2005 3rd IEEE International
Conference on Industrial Informatics, 2005. IEEE, 2005, pp. 489—494.

R. Wigniewski, G. Bazydlo, L. Gomes, and A. Costa, “Dynamic partial
reconfiguration of concurrent control systems implemented in FPGA
devices,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4,
2017, pp. 1734-1741.

L. Kahloul, S. Bourekkache, and K. Djouani, “Designing reconfigurable
manufacturing systems using reconfigurable object Petri nets,” Interna-
tional Journal of Computer Integrated Manufacturing, vol. 29, no. 8,
2016, pp. 889-906.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

122

D. Zaitsev and Z. Li, “On simulating turing machines with inhibitor
Petri nets,” IEEJ Transactions on Electrical and Electronic Engineering,
2017, pp. 147-156.

N. Busi, “Analysis issues in Petri nets with inhibitor arcs,” Theoretical
Computer Science, vol. 275, no. 1, 2002-03-28, pp. 127-177.

R. Lipton, “The reachability problem requires exponential space.
department of computer science,” Research Report 62, Yale University,
Tech. Rep., 1976.

K. Schmidt, “LoLA a low level analyser,” in Application and Theory of
Petri Nets, ser. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2000, pp. 465-474.

K. Wolf, “Petri net model checking with LoLA 2, in International
Conference on Applications and Theory of Petri Nets and Concurrency.
Springer, 2018, pp. 351-362.

F. Kordon, H. Garavel, L. Hillah, E. Paviot-Adet, L. Jezequel, F. Hulin-
Hubard, E. G. Amparore, M. Beccuti, B. Berthomieu, H. Evrard, P. G.
Jensen, D. L. Botlan, T. Liebke, J. Meijer, J. Srba, Y. Thierry-Mieg,
J. van de Pol, and K. Wolf, “MCC’2017 - the seventh model checking
contest,” Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC), vol. XIII, 2018, pp. 181-209.

B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool TINA —
construction of abstract state spaces for Petri nets and time Petri nets,”
International Journal of Production Research, vol. 42, no. 14, 2004, pp.
2741-2756.

J. P. Barros and L. Gomes, “Net model composition and modification
by net operations: A pragmatic approach,” in 2nd IEEE International
Conference on Industrial Informatics, INDIN, 2004, pp. 309-314.

M. Volkmann, “Integration von adaptiven Petrinetzen in ein Petrinetz
Kompositions-system,” Bachelor’s thesis, Technische Universitiit Dres-
den, 2018.

C. Prehofer, “Feature-oriented programming: A fresh look at objects,”
in European Conference on Object-Oriented Programming. Springer,
1997, pp. 419-443.

N. Cardozo, J. Vallejos, S. Gonzdlez, K. Mens, and T. D’Hondt,
“Context Petri nets: Enabling consistent composition of context-dependent
behavior.” PNSE, vol. 12, 2012, pp. 156-170.

L. Gomes and J. P. Barros, “Structuring and composability issues in
Petri nets modeling,” IEEE Transactions on Industrial Informatics, vol. 1,
no. 2, 2005, pp. 112-123.

N. Busi and G. M. Pinna, “Synthesis of nets with inhibitor arcs,” in
CONCUR’97: Concurrency Theory. Springer, 1997, pp. 151-165.

M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfigu-
ration speed investigation and architectural design space exploration,”
in 2009 International Conference on Field Programmable Logic and
Applications. IEEE, 2009, pp. 498-502.

E. Soto and M. Pereira, “Implementing a Petri net specification in a
FPGA using VHDL,” in Design of embedded control systems. Springer,
2005, pp. 167-174.

M. Jakob, “Extending adaptive Petri nets with a concept for exception
handling,” Master thesis, Technische Universitidt Dresden, 2019.

H. Schole, “Modellierung von sensitivem roboterverhalten in szenarien
der mensch-roboter-interaktion auf basis von kollaborationszonen,”
Master thesis, Technische Universitit Dresden, 2019.

S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmiiller, A. Albu-Schiffer, and
G. Hirzinger, “Towards the robotic co-worker,” in Robotics Research.
Springer, 2011, pp. 261-282.

T. Kiihn, M. Leuthiuser, S. Gotz, C. Seidl, and U. ABmann, “A meta-
model family for role-based modeling and programming languages,” in

International Conference on Software Language Engineering. Springer,
2014, pp. 141-160.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

