
14

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Hybrid Approach for Personalized and Optimized IaaS Services Selection

Hamdi Gabsi∗, Rim Drira†, Henda Hajjami Ben Ghezala‡

RIADI Laboratory. National School of Computer Sciences
University of Manouba,

la Manouba, Tunisia
Email: ∗hamdi.gabsi@ensi-uma.tn, †rim.drira@ensi-uma.tn, ‡henda.benghezala@ensi-uma.tn

Abstract—Cloud computing offers several service models
that change the way applications are developed and deployed.
In particular, Infrastructures as a Service (IaaS) has changed
application deployment as apart from cost savings, it removes
the confines of limited resources’ physical locations and enables
a faster time-to-market. Actually, a huge number of IaaS
providers and services is becoming available with different
configuration options including pricing policy, storage capacity,
and computing performance. This fact makes the selection of
the suitable IaaS provider and the appropriate service configu-
ration time consuming and requiring a high level of expertise.
For these reasons, we aim to assist beginner cloud users in
making educated decisions and optimized selection with regard
to their applications’ requirements, their preferences, and their
previous experiences. To do so, we propose a hybrid approach
merging both Multi-Criteria Decision Making Methods and
Recommender Systems for IaaS provider selection and services
configuration. Moreover, we propose a service consolidation
method to optimize the selection results by improving the
resources’ consumption and decreasing the total deployment
cost. Our solution is implemented in a framework called IaaS
Selection Assistant (ISA); its effectiveness is demonstrated
through evaluation experiments.

Keywords- IaaS services selection; Services Consolidation;
Cost Optimization; Recommender Systems; Multi-Criteria Deci-
sion Making.

I. INTRODUCTION

In this research paper, we propose a hybrid approach for
personalized and optimized IaaS services selection based on
our previous work [1].

The total market value for public cloud infrastructure
services, according to a report from the Analytical Research
Cognizance [2], is forecast to reach 775 million dollars
by 2019, up from 366 million dollars in 2015. One of
the greatest benefits of IaaS platforms is the elasticity
of a shared pool of configurable computing resources in
response to the user’s requirements. With the mature of
the IaaS landscape, providers vary notably in terms of the
services, features, and pricing models they offer. Due to this
diversity, selecting the appropriate IaaS provider becomes a
challenging task. In fact, each IaaS provider offers a wide
range of services, which must be appropriately selected and
correctly configured. This fact leaves users in the agony of
choice and leads to a steep documentation curve to compare

IaaS providers and their services. Thus, it is crucial to assist
cloud users during the selection process.

In this context, several works such as [3]-[4] have shown
an interest to address IaaS selection issue. However, these
works focused mainly on assisting IaaS services selection
based on functional application requirements and Quality
of Services (QoS), which we call application profile. Few
studies have highlighted the importance of involving the
user in the selection process by considering his preferences
and his previous experiences, which we call user profile.
Consequently, there is a need for a selection process centered
on both user and application profiles. Moreover, the lack
of a standardized framework for the representation of user
requirements and selection criteria makes it difficult to
compare and evaluate the relevance of IaaS service config-
urations offered by different providers. Thus, it is important
to define clearly relevant selection criteria that should be
taken into consideration to evaluate IaaS services and select
the most suitable services.

In our work, the selection process is defined as a two-
step strategy. The first step consists in detecting auto-
matically suitable IaaS provider meeting user requirements
and preferences. The second step consists in retrieving the
suitable IaaS service configuration (Virtual Machine (VM)
instance) given a specific application requirement. To do
so, we propose a hybrid approach based on Recommender
Systems (RS) and Multi-Criteria Decision Making Methods
(MCDM).

RS are programs, which provide relevant items (e.g.,
movies, music, books and products in general) to a given
user by predicting his/her interest in items based on his/her
profile and the ratings given by other similar profiles [5]-[6].
The first step of our approach is based on recommendation
techniques.

Once the suitable IaaS provider is chosen regarding the
user’s profile, the user needs to be assisted to handle
the services selection and configuration. For us, the cloud
services selection is a MCDM problem [7]-[8]. MCDM can
be defined as a process for identifying items that match the
goals and constraints of decision makers with a finite number
of decision criteria and alternatives [8]. In our work, we
consider IaaS Service selection as a MCDM problem since

15

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

users have to select a service amongst several candidates’
services with respect to different criteria. We study and
choose the adequate MCDM technique to assist IaaS services
selection.

After identifying suitable IaaS services, we aim to op-
timize the application deployment cost and improve the
IaaS services consumption. To do so, we propose a service
consolidation method using the knapsack algorithm [9].

Therefore, this work aims to assist and optimize IaaS
services selection by involving the user in the selection
process and by combining RS and MCDM techniques.

The contributions of this paper can be summarized as
follows:

• Defining a classification for relevant criteria that should
be used during the selection process. These criteria
consider both applications profiles including functional
and non-functional requirements and user’s profile in-
cluding personal preferences, previous experiences and
even lessons learned from experiences of other users.

• Presenting a new hybrid approach based on MCDM and
RS techniques for IaaS provider and services selection.

• Proposing a consolidation method to increase the se-
lected services consumption and optimize the applica-
tion deployment cost.

• Implementing this approach in a framework, which we
term ISA for IaaS providers and services selection.

The present work is a comprehensive extension to our
previous work [1]. We present three extensions to our initial
approach and demonstrate the improved framework ISA that
encompasses the enhancements of our IaaS service selection
process.

First, we generalize our approach to cover medium and
large application profiles, which cannot be satisfied by a
single IaaS service. We consider, in this context, a cloud
application as a set of deployment entities, each deploy-
ment entity presents a particular functional requirement
characterized by a specific configuration in terms of CPU,
storage, memory and networking capacity and defines sev-
eral non-functional requirements. In that respect, the user’s
application can be deployed on several VMs with different
configurations. Each VM will be assigned to a particular
deployment entity.

Second, handling medium and large applications requires
improvements of our proposed selection process in order to
reduce the search space and improve the overall response
time of our approach while maintaining high precision.
For this purpose, we propose a mapping strategy based on
the workload type of each deployment entity composing
the user’s application and the VM configuration families
proposed by IaaS providers.

Third, we optimize our selection approach to take into
account the scenario where the proposed services (VMs)

may be not entirely used. We need to increase the IaaS
service consumption while maintaining or decreasing the
total application deployment cost. Therefore, we propose
a method for service consolidation using the knapsack
algorithm to reach this purpose.

The remainder of this paper is organized as follows:
Section II presents a motivating scenario. Section III sum-
marizes existing IaaS service selection techniques. Section
IV illustrates the proposed cloud services selection criteria.
Section V details our hybrid selection approach. Section VI
presents and evaluates the framework ISA. Section VII pro-
vides concluding remarks and outlines our ongoing works.

II. MOTIVATING SCENARIO

Let us suppose the following scenario where a recently
launched company named ”A” is planning to develop flex-
ible and innovative customer-centric services to attract new
customers and improve its efficiency. In order to provide
these services with high efficiency and low maintenance
cost, ”A” plans to use IaaS services, considering the fol-
lowing reasons:

• Cost reduction: The maintenance cost of dedicated
hardware, software, and related manpower in ”A” will
be highly reduced by using cloud services.

• Improvement in flexibility and scalability: IaaS services
enable ”A” to respond faster to changing market condi-
tions by dynamically scaling up and down on demand.

• Faster time to market: IaaS services enable ”A” to
expeditiously dispose its developed services to the
market.

To deploy its services, ”A” looks for IaaS services. However,
most of A’s engineers lack expertise in cloud services
field to be able to select easily and efficiently appropriate
IaaS provider and services. In today’s market, there are
many IaaS providers. Each provider offers several services
varying in QoS attributes with possibly different functional
configuration such as numbers of virtual cores and memory
size. In order to select appropriate IaaS services among a
growing number of available services, ”A” tries to compare
its applications profiles (functional & non functional require-
ments) to IaaS providers offers. To do so, the company needs
to peruse the content of each provider website and compare
service offerings to decide the most suitable IaaS service
with regard to its needs. This type of selection process can
be more complicated as the company’s requirements evolve
and diversify.

Therefore, automatic IaaS services selection becomes a
highly required necessity in order to entirely take advantages
of cloud computing services and improve the efficiency of
many companies.

16

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. RELATED WORK

Several studies have addressed the selection of IaaS
services. We present a classification of the recent research
approaches.

A. Recommender systems

RS can be defined as programs, which attempt to rec-
ommend suitable items to particular users by predicting a
user’s interest in items based on related information about
the users, the items and the interactions between them [5].
Generally, RS use data mining techniques to generate mean-
ingful suggestions taking into account user’s preferences.
Many different approaches using RS have been developed
to deal with the problem of cloud services selection.

Zhang et al. [10] have offered a cloud recommender
system for selecting IaaS services. Based on the user’s tech-
nical requirements, the system recommends suitable cloud
services. The matching between technical requirements and
cloud services features is based on a cloud ontology. The
proposed system uses a visual programming language (wid-
gets) to enable cloud service selection.

Zain et al. [6] propose an unsupervised machine learning
technique in order to discover cloud services. The authors
classify cloud services into different clusters based on their
QoS. The main focus of this study is to offer users the option
of choosing a cloud service based on their QoS requirements.

B. MCDM-based approaches for cloud service selection

The MCDM approach is defined as a process for spec-
ifying items that best fit the goals and constraints of de-
cision makers with a finite number of decision criteria
and alternatives [11]. Several MCDM methods are used
for cloud service selection such as the analytic hierarchy
process/analytic network process (AHP/ANP) [12], Multi-
Attribute Utility Theory (MAUT) [13], and Simple Additive
Weighting (SAW) [11].

Chung et al. [14] used the ANP for service selection. They
suggest a set of high level criteria for cloud service selection
and use a survey of CIO, CEO, and ICT experts to determine
the importance of each criterion.

Lee et al. [15] proposed a hybrid MCDM model focused
on IaaS service selection for firms’ users that are based
on balanced scorecard (BSC), fuzzy Delphi method (FDM)
and fuzzy AHP. BSC is used to prepare a list of decision
making factors. FDM is used to select the list of an impor-
tant decision-making factors based on the decision makers’
opinion (using a questionnaire) and FAHP is used to rank
and select the best cloud service. This work’s focus is on
the migration of the whole company ICT to cloud based on
a set of general cloud service features.

Zia et al. [8] propose a methodology for multi-criteria
cloud service selection based on cost and performance

criteria. The authors present this selection problem in a
generalized and abstract mathematical form. Table I illus-
trates the mathematical form. The service selection process
is fundamentally a comparison between the vector service
descriptor D against all rows of the decision matrix followed
by the selection of the services whose description vector best
matches with the user’s requirement vector.

TABLE I. PROBLEM FORMALIZATION [8]

Mathematical form Description
Services set S1, S2, ..., Sn A set of services

contains all the service offerings
from, which the user (decision
maker) will select the suitable
service with regard to his require-
ments. a service is to be selected
by the user (decision maker).

Performance criteria set C1, C2,..., Cn A set of values
where Ci represents a criterion
that may be a useful parameter
for service selection.

Performance measurement func-
tions set

To each criteria Ci there cor-
responds a unique function fi,
which when applied to a partic-
ular service, returns a value pi
that is an assessment of its per-
formance on a predefined scale.

Service descriptor (vector) A row vector Di that describes
a service Si, where each ele-
ment dj of Di represents the per-
formance or assessment of ser-
vice Si under criteria Cj . Perfor-
mance criteria must be normal-
ized to eliminate computational
problems resulting from dissim-
ilarity in measurement units. The
normalization procedure is used
to obtain dimensionless units that
are comparable.

Decision matrix The service descriptor vectors Di

can be combined to form the de-
cision matrix where each value is
the evaluation of the service si
against the criteria cj .

User requirement criteria vector A vector R where each value ri
is the user’s minimal requirement
against a criteria cj . These values
must be normalized as the vector
service descriptor.

User priority weights vector A vector W where each value wi

is the weight assigned by a user
to criteria. ci

Table II summarizes the most used approaches by iden-
tifying the approach’s input, the approach’s output and the
application areas.

The above-mentioned research studies did not fail to take
into consideration the application’s functional requirements.
However, they present two main shortcomings; (i) they
do not accommodate the user’ preferences in the decision
making and (ii) they handle every application deployment as
a new case without taking into account the results of similar
previous experiences.

17

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. SELECTION APPROACHES

Domain Method Input Output Application Literature
Multi-criteria
decision-making
(MCDM)

SAW Subjective assessment of rel-
ative importance of criteria.

Evaluation value of
alternatives.

Applied when requiring low
decision accuracy.

[11][8][16]

Multi-criteria op-
timization

Matrix factorization Different types of data of
interest to users and repre-
sented by matrix .

QoS estimation and a
set of recommended
services.

Applied to a problem that in-
volves different types of data
and has missing entries.

[17][18]

Logic based
matching
approach

First-order logic Service description and user
requirements.

Matched services Applied to filter out un-
matched services to reduce
computation complexity.

[11][19]

Recommender
System

Collaborative filtering User’s profile Recommended items Applied to find personalized
recommendations according to
user’s profile.

[4][10][20]

To the best of our knowledge, no specific research study
has taken into account both the user’s profile and the
application’s requirements. Consequently, there is a need for
a structured selection process where clearly both selection
criteria are defined and used.

IV. CLOUD SERVICES SELECTION CRITERIA

Specifying clear selection criteria presents crucial impor-
tance in order to recommend the relevant IaaS services. Our
purpose is to clearly identify these criteria and take them into
account to personalize the selection process according to the
user’s profile and respond to his application requirements.
Thus, we classify selection criteria into three categories.
The first category is the application’s profile, which includes
functional and non- functional requirements. The second cat-
egory is the user’s profile, which represents user’s personal
preferences and previous experiences. The third category is
the previous experiences of other users with their ratings.
Figure 1 illustrates our proposed selection criteria.

Figure 1. Selection Criteria

As shown in Figure 1, the selection criteria are classified
as the following:

• Application’s profile: the application’s profile defines
the functional and non-functional application require-
ments.
In our context, we consider that a cloud application

is a set of deployment entities each deployment en-
tity has specific functional and non-functional require-
ments. We define the application profile as a set of
all deployment entities’ requirements. The functional
requirements contain the following specifications:

– Storage: represents storage needs in terms of mem-
ory space.

– Network: represents connection needs and network
usage.

– Compute: gathers calculation needs and the virtual
machine’s capacity.

Non-functional requirements include pricing models,
the quality of services (QoS) and the resources location.

– The pricing model: depends on the user’s estimated
budget. The pricing model can be evaluated per
hour or per month. Also, it can be on demand,
reserved or bidding.

– QoS: we focus on the response time and avail-
ability. The availability is the time ratio when the
service is functional to the total time it is required
or expected to function in.

– Resources location: The user can precise his near-
est resources location because it is important to
take into account the proximity when selecting
the cloud infrastructure services. According to
[19], during the interaction between the users
and servers, there is a strong inverse correlation
between network distance and bandwidth. Thus,
factoring the proximity into the selection of IaaS
services can significantly reduce the client’s re-
sponse time and increase the network bandwidth.

• User’s profile: it includes user’s favorite providers,
expertise level in cloud and previous experiences. A
favorite provider can be chosen based on previous
successful experiences using this provider. We take
this choice into consideration while identifying the
appropriate cloud provider meeting user’s requirements.
In our case, the user can specify one or multiple favorite
providers. The user’s expertise level can be: beginner,
intermediate or expert. The weight of a user’s previous

18

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

experience in our knowledge base increase with his
level of expertise and experience in order to enhance
our recommendations relevance. A previous experience
contains the selected IaaS provider, the deployed appli-
cation profile and a rating out of 5 presenting feedback
and an evaluation of this experience. We suppose that
evaluating ratings are trustworthy and objective.

• Previous users experiences: The more the knowledge
base of our recommender system is rich, the more
recommendations will be relevant. Therefore, previous
users experiences, which include the deployed appli-
cation’s profile, the selected IaaS provider and the
evaluating rating will improve the accuracy of our
recommendations.

Based on the selection criteria, more precisely the applica-
tion profile, we propose to optimize the search space. Indeed,
we suppose that each deployment entity is characterized by
a specific workload type. According to Singh et al. [21],
cloud workloads can be defined based on four main low-
level measurable metrics that when adjusted can affect the
workloads’ performance. These metrics are the CPU cores,
the memory size (RAM), the networking capacity and the
storage size, which present respectively the compute, the
network and the storage requirements.

We propose a mapping between the workload type of
the application deployment entities and the VM configura-
tion families proposed by the IaaS providers. The above-
mentioned metrics will be used as a high-level interface
that maps the workload type onto a set of candidate IaaS
services. Indeed, the workload type can be automatically
extracted based on the weight assigned to each metric, for
instance, computation-intensive workload is characterized
by a higher weight for the CPU metric. In the case that
the weights given by the users are equal or insignificantly
different, the workload type is defined as general. Thus,
workload types are easily identifiable. If we can manage
to map these workloads type onto specific categories of
IaaS services, then the service selection will become more
efficient by decreasing the search space and improving the
overall response time. For this purpose, our mapping strategy
is based on identifying IaaS service categories disposed by
cloud provider, then, establishing the relation between the
service categories and the workload type.

Cloud providers dispose IaaS services in different cate-
gories with various configurations in terms of CPU, storage,
memory and networking capacity. We conduct that most
cloud providers classify their services into the following
categories based on VM configurations: compute optimized,
memory optimized, storage optimized and general purpose.

These categories are identified to offer better perfor-
mance with respect to a specific workload types (such
as computation-intensive or memory-intensive). Thus, It is
obvious that the relation between the workload type and the

IaaS services configurations are based on the service cat-
egory. More precisely, the computation-intensive workload
type is mapped to IaaS services of the compute optimized
category, the memory-intensive workload type is mapped
to the memory optimized category, the storage-intensive
workload type is mapped to the storage optimized category,
and general workload type is mapped to general purpose
category.

V. HYBRID APPROACH FOR IAAS SERVICES SELECTION
BASED ON RS & MCDM

The selection of IaaS provider and services configuration
is a complex issue. To tackle this issue, we propose a two
steps selection process. The first step focuses on selecting
the IaaS provider based on RS approach, which is the
collaborative filtering. The purpose of this step is to reduce
the number of inappropriate IaaS provider, which may not
interest the user. The second step concerns the configuration
of services within the selected provider from the first step.
It’s based on the SAW algorithm, which is a MCDM method.
Our proposed approach shows how MCDM techniques and
RS are complementary in order to involve both technical and
personal aspects in the selection process.

Figure 2 illustrates our proposed approach.

Figure 2. Hybrid approach for IaaS services selection

A. Recommender System

The first step aims to take into consideration the user’s
preferences, previous experiences and expertise level during
the selection process. In our approach, we use the collabora-
tive filtering algorithm also known as k-NN collaborative fil-
tering. This recommendation algorithm bases its predictions
on previous users experiences and their profiles. The main
assumption behind this method is that other users ratings can
be selected and aggregated so that a reasonable prediction
of the active user’s preferences is deduced.

To recommend the IaaS provider meeting the user’s
profile, first, we select the users profiles, which have the
same or higher expertise level than the active user ”A”. For
instance, if ”A” has the expertise level intermediate, then,
from our knowledge base, we select a first list named ”list
1” of users profiles, which are intermediate or expert and
their rated experiences.

19

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Second, among the high rated previous experiences of ”list
1”, we select those, which are based on the favorite providers
of ”A” in order to create a second list named ”list 2”.

Third, among these experiences, ”A” can refine ”list
2” by identifying experiences that have similar workload
types to his application’s profile workload. We obtain ”list
3”. Indeed, we aim by these three steps verifying if ”A”
favorite providers can be suitable for ”A” application profile.
Otherwise, we skip the second step to apply the third step
on ”list 1”.

Then, a rating R(A,fi) is calculated for each one of
candidate providers fi of list3. R(A,fi) is calculated as
below:

R(A,fi) =

∑n
j=1 w(A,j)(vj,fi − vj)∑n

j=1 |w(A,j)|

where n is the number of identified users’ profiles of ”list 3”,
w(A,j) is the similarity between the profile of ”A” and the
identified users profiles j of ”list 3”, vj,fi is the rate given by
the user j to the provider fi, vj is the rating’s average given
by the user j to the favorites providers of ”A”. We calculate
similarity between ”A” and the identified users using cosine
similarity.

w(A,j) =

∑n
k=1 vA,k ∗ vj,k√∑n

k=1 v
2
A,k

∑n
k=1 v

2
j,k

,

where the sum on k is the set of providers for which ”A”
and the selected users in” list 3” both assigned a rating, vj,k
is the rate given by the user j to the provider k.

Finally, we propose to ”A”, the set of providers sorted
according to the rate calculated, thus the active user can
select one provider.

B. Multi-Criteria Decision Making Selecting the Cloud In-
stances

Once the IaaS provider is selected, the second step
consists in determining the suitable IaaS service for each
deployment entity.

Several and conflicting criteria have to be taken into
account when making a service selection decision. No single
service exceeds all other services in all criteria but each
service may be better in terms of some of the criteria.
Since users have to decide which service to select amongst
several candidates services with respect to different criteria,
we consider IaaS Service selection as a MCDM problem.

Among MCDM methods, we use the SAW method also
known as weighted linear combination or scoring methods.
It is based on the weighted average of different criteria.

In our case, the number of service configuration compo-
nents such as CPU cores and memory size scale linearly

in most services configurations. Hence, a linear model is
suitable for this kind of problem. The basic assumption
being that there is a correlation of identity between real-
world cloud instance performance and the underlying low-
level specification of the hardware, which is specified on
the cloud providers websites. Hence, we want to map the
performance of the IaaS service to the right deployment
entity using a simple linear model. The purpose of using
SAW method in our approach is to respond exactly to the
application’s profile.

To do so, first, the user introduces functional requirements
for each deployment entity; compute requirements (e.g.,
virtual Central Processing Unit (vCPU)), memory require-
ments (e.g., RAM size) storage requirements (e.g., hard
drive’s size), network requirements (e.g., throughput and
bandwidth).

Second, for each specified requirement the user assignes
a particular weight presenting its importance.

Third, based on the weight assigned to each requirement
the workload type of the deployment entity is deducted and
a set of candidate services is identified. The user inserts the
QoS required (e.g., response time and availability) and the
pricing model.

To be able to apply the SAW algorithm, we need to for-
malize our decision problem. For that, we define a decision
matrix related to the user. In parallel an analogous decision
matrix is defined for the IaaS provider selected in the first
step. The decision matrix is a combination of service de-
scriptor vectors. Each service descriptor vector represents the
performance of a service under a particular criterion. These
criteria represent functional and non-functional requirements
for the user. Table III demonstrates an extract form of the
decision matrix related to Azure Microsoft [22].

TABLE III. EXTRACT OF DECISION MATRIX FOR MICROSOFT AZURE
(VIRTUAL MACHINE)

Service VCPU RAM Hard Drive’s size Cost
A0 1 0.75 GB 19 GB $0.02/h
A1 1 1.75 GB 224 GB $0.08/h
A2 2 3.5 GB 489 GB $0.16/h
A3 4 7 GB 999 GB $0.32/h
A4 8 14 GB 2039 GB $0.64/h
A5 2 14 GB 489 GB $0.35/h
A6 4 28 GB 999 GB $0.71/h

The SAW algorithm is based on the calculation of one
score to each alternative (an alternative in our case is an IaaS
service offered by the selected IaaS provider). According
to the following SAW formula, the alternative score is
calculated as (Ai)=

∑
wjvij , where wj is the alternative’s

weight i according to criterion j and vij its performance.
The alternative with the highest score will be suggested.
By applying this formula, the recommended IaaS service
will automatically be the most performing service, because

20

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

it has the highest performing values in the decision matrix
(highest number of vCPU, largest hard drive’s size, highest
cost, etc.). However, this does not entirely meet the user’s
requirements, because, he/she must not necessarily select
the most performing IaaS service, which will evidently have
the highest cost. Whereas, he/she should select the service,
which meets exactly his/her requirements in order to pay
the minimum possible cost. To solve this, we proceed as
follows:

• First, we create a decision matrix representing each
deployment entity’s functional and non-functional re-
quirements. Then, we determine for each service de-
scriptor vector, the absolute value of the difference
between its criteria performance and those of the ser-
vice descriptor vector related to the IaaS provider. In
this way, we will have significant values. In fact, low
criteria values mean that they accurately match the
user’s requirements.

• Second, we calculate the score for each alternative
using SAW algorithm. Yet, to be able to do so, we
need to modify each criterion’s weight to get significant
results. Indeed, we have previously mentioned that a
low criterion’s value means that it may interest the user,
if this criterion has a high weight, the multiplication of
its weight by its value gives a low score. Therefore, this
alternative will be considered as unimportant, yet this is
not the case. To solve this problem we take the dual of
each weight, meaning that, the subtraction of 1 by the
weight’s value given by the user. Then we normalize
each weigh by dividing on the sum of the weights.
Thus, we ensure that the weight values are between 0
and 1 and the sum is always equal to 1. Consequently,
one low weight value indicates major importance of a
given criterion. Therefore, we can calculate the score
for each alternative using the SAW algorithm. The most
relevant alternative (IaaS service) will incontrovertibly
have the lowest score.

To illustrate this, we propose our personalized SAW
algorithm 1. We suppose that the user has introduced his/her
decision matrix UserMat[i][j] as well as the weights of
each criterion Weight[j]. In addition, we suppose that we
have the decision matrix ProvMat[i][j] containing IaaS
services offered by the IaaS provider. In the decision matrix
UserMat, UserMat[i][j] represents the IaaS service i
under the criterion j.

UserMat =

 u00 . . . u0n

...
. . .

...
un0 . . . unm

The personalized SAW algorithm gives as output, the index
i representing the adequate cloud service i in the decision
matrix.

Algorithm 1 Personalized SAW Algorithm

Require: Weight[i] 6= 0
Min = 0
for int i from 0 to n do

for int j from 0 to n do
Sub[i][j] = abs(ProvMat[i][j]− UserMat[i][j])

end for
end for
for int j from 0 to m do
DualWeight[j] = 1−Weight[j]
Normalize(DualWeight[j])

end for
for int i from 0 to n do
Score[i] = 0
for int j from 0 to m do
Score[i] = Score[i] + Sub[i][j] ∗DualWeight[j]

end for
end for
for int i from 0 to n do

if Score[i] < Min then
Min← Score[i]
Index← i

end if
end for
return i

C. Service consolidation

Identifying suitable IaaS services (i.e., VMs in our case)
for each deployment entity does not ensure that the VM will
be entirely used. In a typical scenario, the selected VM is
underutilized [23]. To increase the resource utilization, we
aim to integrate as many deployment entities as possible
to be assigned to each selected service, thus decreasing the
number of required services for application deployment. The
final configuration must support all the requirements of the
application and the preferences of the user with respect to
the service performance and price.

To do so, we proceed as follows; first, we start with
the largest service SL, which has the highest performance
in the list of proposed services. We use the price as an
indicator of service capacity. Second, we accommodate as
many deployment entities as possible in this service with
respect to its performance (i.e., the service performance
can respond to the added deployment entities). Third, we
upgrade the service by choosing the next higher performance
of the VM instance of the same family as the service SL,
then we consolidate more deployment entities in the service.
If the new service’s configuration (i.e., the upgraded service)
has an equal or lower price than the earlier configuration
of all consolidated services, the upgrade is positive and
acceptable. We continue the same process for the remaining
deployment entities of the application.

21

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To consolidate deployment entities in a service, we cast
consolidation into the optimization knapsack problem [9].
Indeed, the knapsack problem is a combinatorial optimiza-
tion problem. Given a set of items, each item has a weight
and a value, the knapsack problem consists in identifying
the number of each item to include in a collection so that
the total weight is less than or equal to a given limit and the
total value is as large as possible.

First, let us formalize the knapsack’s problem in our
context:

• The knapsack is the largest service, which is not
entirely used

• The items are the deployment entities
• The weight is the cost of each single service assigned

to a deployment entity

Second, to solve the knapsack problem and handle the
challenge of consolidating multiple deployment entities into
services, a greedy approximation algorithm [9] is used. The
greedy algorithm is an algorithmic paradigm that follows
the problem solving heuristic of making the locally optimal
choice at each stage with the intent of finding a global
optimum. It iteratively makes one greedy choice after an-
other, which reduce each given problem into a smaller one
and approximate a globally optimal solution in a reasonable
amount of time. In our case, the greedy choice consiste
in selecting in each iteration the largest deployment entity
among the non-integrated entities.

We detailed our consolidation approach in Algorithm 2.
Service consolidation has advantages and disadvantages.
Consolidating deployment entities can reduce the network
overhead and increases the application’s performance. How-
ever, service consolidation can cause several challenges
related to fault tolerance.

VI. ISA: A FRAMEWORK FOR IAAS SELECTION
ASSISTANT

We conduct a set of experiments to evaluate the effi-
ciency of our proposed approach. To do so, we develop
the framework ISA by extending our previous framework.
In our previous work [1], we suppose that the application
profile can be satisfied by just one VM. In this evaluation,
we assume that an application profile may require more than
one VM. The main purpose through this evaluation is, firstly,
to demonstrate that the idea of merging RS and MCDM
techniques in a structured approach based on two well
defined steps as explained in Section V, provides satisfactory
results for several application types (i.e., medium and large
applications). Secondly, we aim to validate that our approach
proves to be efficient rather than using RS and MCDM
techniques each independently.

The framework ISA has been designed to support dif-
ferent IaaS providers such as Amazon, Google and Azure

Algorithm 2 Services Consolidation Algorithm

Input: DT Set of application deployment entities
SD Set of single services assigned to each deployment
entity
Initial Application Price

Output: Updated deployment entities (After consolida-
tion)
Updated services (After consolidation)

Begin
Consolidation cost ← Initial Deployment cost
i, j ← 0
SL ← Sk, where Sk is the largest in SD)
Update (SD) : SD ← SD - {SL}
Update (DT) : DT ← DT - {Entityi} , where Entityi
is the deployment entity performed by the service SL

while (¬Empty(SD)) ∨(i ≤ nb services) do
while (¬Empty(DT)) ∨(j ≤ nb entities) do

Select the largest entity EntityL
if SL performance respond to EntityL then
Consolidate (EntityL, SL)
Update (SD)
Update (DT)

else
S′L ← Upgrade (SL)
Calculate New cost
if New cost ≤ Consolidation cost then
Consolidation cost← New cost
Consolidate (EntityL, S′L)
Update (SD)
Update (DT)

end if
end if
EntityL ← EntityL+1 {Next Largest entity ∈
DT}
j ← j + 1

end while
SL ← SL+1 {Next Largest service ∈ SD}
Update (SD)
Update (DT)
i← i+ 1

end while
return SD, DT

End

22

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Microsoft. It aims to guide users step by step in the selection
process and propose relevant services.

For this evaluation, we have used Eclipse Modeling
Framework, Java Platform Enterprise Edition (JEE) and
Mahout eclipse framework [24]. We conduct experiments
on 20 real users (PhD students).

We define the experiments’ conditions as follows:

• Supported IaaS provider: Amazon, Google, Microsoft
Azure

• Number of users: 20
• Number of items (IaaS services): 45
• Active user’s profile:

– Favorite provider: Amazon
– Expertise level: Beginner
– Previous experiences: 0

• Active user’s application profile: It is defined in Ta-
ble IV

• The non-functional requirements are defined as follows:
– QoS: QoS is defined in Table IV
– Pricing model: Per hour
– Resource Location: US regions (e.g., US-West,

US-East, etc.)

According to the weights given by the user, we assign
for each deployment entity the appropriate workload type.
Table V illustrates the assigned workload types.

TABLE V. WORKLOAD MAPPING

Deployment Entities Workload Type
E1 General Purpose
E2 Storage Optimized
E3 General Purpose
E4 Compute Optimized

We define in Table VI the decision matrix ”ProvMat[][]”
used by the personalized SAW algorithm of our approach.
For the sake of brevity, we present in Table VI six con-
figuration models of Virtual Machines instances provided
by Amazon [25]. Each value in Table VI is verified and
identified from cloud provider’s official web site. We carry
out simulations and evaluations from two steps.

The first step consists on evaluating the effectiveness
of ISA using the recall (R), the precision (P), the Top-
k precision (Pk) and the R- precision (Pr) metrics. In
this context, the precision evaluates the capability of the
our framework to retrieve top-ranked IaaS services that
are most relevant to the user need, and it is defined to
be the percentage of the retrieved IaaS services that are
truly relevant to the users requirements. The recall evaluates
capability of the system to get all the relevant services. It is
defined as the percentage of the services that are relevant to
the user requirements.

Formally, we have;

P =
|SRel|
|SRet|

R =
|SRel|
|Rel|

Pk =
|SRel,k|

k
Pr = P|Rel| =

|SRel,Rel|
|Rel|

where Rel denotes the set of relevant IaaS services, SRet

is the set of retuned services, SRel is the set of of returned
relevant services and SRel,k is the set of relevant services
in the top k returned services. Among the above metrics,
Pr is considered to most precisely capture the precision
and ranking quality of the framework. We also plotted
the recall/precision curve (R-P curve). An ideal selection
framework has a horizontal curve with a high precision
value; an inappropriate framework has a horizontal curve
with a low precision value. The R-P curve is considered
by the (Information Retrieval) IR community as the most
informative graph showing the effectiveness of a selection
framework [26].

We evaluated the precision of the retrieved services for
each deployment entity, and report the average Top-2 and
Top-5 precision. To ensure the top-5 precision is meaningful,
we ensure that ISA returns a total of 20 services per appli-
cation profile. The Figure 3 illustrates the results. The top-2
and top-5 of ISA for the deployment entities E1, E2, E3
and E4 are respectively 98% for the Top-2 retrieved services
and 80%, 60%, 80%, 80% for the Top-5 retrieved services.
In order to interpret our results and illustrate the overall
performance of ISA, we plot the average R-P curves for
different applications profiles. As mentioned previously, a
good selection framework has a horizontal curve with a high
precision value. Typically, precision and recall are inversely
related, ie. as precision increases, recall falls and vice-versa.
A balance between these two needs to be achieved by a
selection framework. As illustrated by the Figure 4, for a
recall average equals to 0.68 we have 0.87 as precision
average value. In fact, as an example, for the active user’s
application profile defined in Table IV, ISA returns a total
of 20 services i.e., |SRet| = 20, for each deployment entity,
we have the following precision values; 18

20 ,
17
20 ,

17
20 ,

18
20 . We

obtain a precision average P = 0.87. As a recall value, we
have, for each deployment entity, 18

25 ,
17
26 ,

17
25 ,

18
26 , we obtain

a recall average R = 0.68.

It is worth pointing out that in some cases, depending
on particular requirements, a high precision at the cost of
recall or high recall with lower precision can be chosen.
Thus evaluating a selection framework must be related to the
purpose of the selection and the search process. In our case
a compromise between the recall and the precision values
is necessary. Therefore, we can announce that ISA provides
accurate results for IaaS services selection.

23

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. APPLICATIONS PROFILES

Application profile
Functional requirements QoS

Deployment
Entities

Compute Storage Network Response
time Availability

vCPU CPU
events/s RAM

Hard
drive’s

size
Bandwidth Throughput

E 1 Weights 0.25 0.3 0.25 0.2 0.5 0.5
E 1 Values 2 6< v ≤ 12 8 60 4 - v ≤ 900 90%
E 2 Weights 0.2 0.2 0.5 0.1 0.7 0.3
E 2 Values 2 10 400 2 42 ≤ 900 95%
E 3 Weights 0.25 0.25 0.25 0.25 0.5 0.5
E 3 Values 2 10 < v ≤ 20 8 30 6 - ≤ 900 95%
E 4 Weights 0.5 0.3 0.1 0.1 0.8 0.2
E 4 Values 16 50 < v ≤ 80 32 300 10 60 700 95%

TABLE VI. AMAZON DECISION MATRIX [25]

Model Family vCPU CPU
Cred-
its/hr

RAM
GB

Hard
drive
GB

Bandwidth
Gbit s−1

Throughput
Mbit s−1

Price h−1 Response time ms Availability

t2.nano General
purpose

1 3 0.5 30 - 4 $0.0058 63 99%

c5d.4xlarge Compute
optimized

16 81 32 400 5.5 435.7 $0.768 22 99%

m5a.large General
purpose

2 36 8 30 3.12 256 $0.086 53 99%

t2.large General
purpose

2 36 8 30 - 42 $0.0928 50 99%

i3.large Storage op-
timized

2 54 19.25 475 - 53.13 $0.156 42 99%

c5d.xlarge Compute
optimized

4 54 8 100 3.5 437.5 $0.192 31 99%

Figure 3. Top-k precision for retrieved services

The second step of our evaluation consist on comparing
our framework to classic RS based on CF technique. Al-
though the number of users and items is relatively small
compared to commercial RS, it proves to be sufficient for the
purpose of these experiments. For each deployment entity,
we present the predicted ratings for each deployment entity
described in Table IV.

As illustrated in Figures 5,6, 7, and 8 the highest predicted
ratings given by our approach to the deployment entities E1,
E2, E3 and E4 are, respectively, 0.8379, 0.8979, 0.9039,
0.9798. The recommended IaaS services are, respectively,
m5d.large i3.large, m5a.large and c5d.2xlarge. For clarity

Figure 4. R-P Curves of ISA

and visibility purposes, we did not display all instances’
predicted ratings of Tables III and VI.

The metrics used to evaluate our approach are the Root-
Mean Square Error (RMSE) and The Normalized Dis-
counted Cumulative Gain (NDCG).

The RMSE is a metric widely used to evaluate predicted
ratings [27]. It represents the sample standard deviation
of the differences between predicted values and expected
values. RMSE is the square root of the average of squared

24

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Predicted ratings for the deployment entity E1

Figure 6. Predicted ratings for the deployment entity E2

Figure 7. Predicted ratings for the deployment entity E3

errors.

RMSE =

√∑n
i=1(pA,i − p̂A,i)2

N

where p(A, i) is a predicted value by user ”A” for item i,
p̂A,i is the expected value of user ”A” for item i, and N is the
number of predicted values. In order to be able to calculate
RMSE values, we assume that users introduce their expected
rating values.

The Normalized Discounted Cumulative Gain (NDCG) is

Figure 8. Predicted ratings for the deployment entity E4

a measure of ranking quality. NDCG is defined as

NDCGN =
DCGN

IDCGN

where DCGN and IDCGN are the Discounted Cumulative
Gain (DCG) of top-N items of a predicted ranking and the
ideal ranking, respectively. DCGN is calculated by

DCGN =

N∑
i=1

2(reli) − 1

log2(i+ 1)

where reli is the value of the item at position i of a ranking
and IDCGN is calculated by

IDCGN =

REL∑
i=1

2(reli) − 1

log2(i+ 1)

where REL represents the list of relevant items (ratings
≥ 0.5). The value of NDCG is between 0 and 1. where a
larger value means a better ranking, and 1 implies the ideal
ranking.

We illustrate the result of comparing the CF technique to
our work in Table VII.

TABLE VII. RMSE & NDCG AVERAGE

Deployment Entities RS RS & MCDM
RMSE NDCG RMSE NDCG

E1 0.041 0.571 0.032 0.71
E2 0.052 0.43 0.034 0.81
E3 0.033 0.62 0.038 0.76
E4 0.045 0.65 0.031 0.79
Average 0.04275 0.567 0.033 0.767

When conducting the CF approach, we obtained respec-
tively 0.04275 and 0.567 as RMSE and NDCG average.
However, the RS & MCDM approach gave us 0.033 and
0.767 as RMSE and NDCG average as illustrated in Fig-
ure 9. So, in terms of RMSE (i.e., 0.04275 vs. 0.033), the
merging of MCDM & RS performs better than RS only.
In terms of NDCG (i.e., 0.567 vs. 0.767), RS & MCDM
present better result than the CF approach.

25

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. RMSE & NDCG Average

It is worth pointing that the use of CF algorithm only
conducts to calculate predicted ratings for all items in our
knowledge base, which can be time consuming. However,
by applying the step one of our approach we can reduce the
number of candidate services by providing only services re-
lated to the selected IaaS provider. In addition, the selection
of IaaS services using CF algorithm will be associated with
previous users experiences in our knowledge base. Although
we identify the most similar users, their application profiles
must be more or less different to the active user application
profile. Consequently, the predicted IaaS services are less
accurate. In conclusion, these experiments show that our
approach performs better than using RS only.

After identifying suitable IaaS services, we aim to opti-
mize the application deployment cost. To do so, we apply
our consolidation algorithm to integrate potential services.
It is worth pointing that the cost of the recommended
services is estimated to 2.123 $ per hour (0.113$+0.156$+
0.086$+1.768$). We consider the result of the consolidation
algorithm is acceptable if it provides a cost ≤ 1.123$.

As described in Section V, the first step of the consol-
idation algorithm is identifying the largest service recom-
mended by our framework, which is c5d.4xlarge. Second,
we verify if this service can perform the largest deployment
entities (E2) added to its assigned deployment entity (E4),
which is not the case (the performance evaluation is based on
parallel computing [28]). We continue applying the steps of
our Algorithm 2 to conclude that the deployment entities E1

and E3 can be consolidated and performed by the upgraded
service c5d.xlarge. The total cost for the application dropped
to 1.116$/h (compared to the nonconsolidated services).
Thus, we consider that the consolidation algorithm provides
acceptable results that optimized the application deployment
cost.

Following the process of service selection using our pro-
posed framework shows the feasibility and the effectiveness
of our approach in IaaS service selection.

VII. CONCLUSION

The motivation of our research stems from the need
to assist users in selecting appropriate cloud infrastructure
services. Although the market growth provides economic
benefits to the users due to increased competition between
IaaS providers, the lack of similarity with respect to how
IaaS services are described and priced by different providers
makes the decision on the best option challenging. The
decision also needs to consider the user’s preferences over
different features. To raise this challenge, we proposed a new
hybrid approach based on MCDM and RS techniques that
transform the IaaS services selection from an ad-hoc task
that involves manually reading the provider documentation
to a structured and guided process. By generalizing our
previous work [1], we take into consideration medium and
large application profiles, which cannot be fulfilled by a
single IaaS service. Thus, several services are recommended
to satisfy the user requirements. In order to to improve
the selected services’ utilization and optimize deployment
costs we introduce a consolidation method inspired from
the knapsack algorithm.

Although we believe that our approach leaves scope for
a range of enhancements, yet it provides suitable results.
The experimental evaluation conducted against typical RS
technique highlights the main benefits of the proposed
approach.

For our ongoing works, we are focusing on studying the
relation between the deployment entities of the user’s appli-
cation. In fact, the deployment of an application’s component
as independent deployment entities entails communications
between these entities. This communication may introduce
new networks requirements and add several constraints such
as data flow management.

REFERENCES

[1] H. Gabsi, R. Drira, and H. H. B. Ghezala, “Person-
alized iaas services selection based on multi-criteria
decision making approach and recommender systems,”
International Conference on Internet and Web Appli-
cations and Services (ICIW 2018), IARIA, Barcelona,
Spain, pp. 5–12, 2018, ISBN: 978-1-61208-651-4
ISSN: 2308-3972.

[2] “Analytical Research Cognizance,” 2019, URL: http:
//www.arcognizance.com [accessed: 2019-01-23].

[3] M. Eisa, M. Younas, K. Basu, and H. Zhu, “Trends and
directions in cloud service selection,” IEEE Symposium
on Service-Oriented System Engineering, 2016, ISBN:
978-1-5090-2253-3.

[4] S. Soltani, K. Elgazzar, and P. Martin, “Quaram service
recommender: a platform for iaas service selection,”
International Conference on Utility and Cloud Com-
puting, pp. 422–425, 2016, ISBN: 978-1-4503-4616-0.

26

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] J. Lu, D. Wu, and G. Zhang, “Recommender system
application developments: A survey,” Decision Support
Systems, vol. 74, pp. 12–32, 2015.

[6] T. Zain, M. Aslam, M. Imran, and Martinez-Enriquez,
“Cloud service recommender system using clustering,”
Electrical Engineering, Computing Science and Auto-
matic Control (CCE), vol. 47, pp. 777–780, 2014.

[7] A. J. Ruby, B. W. Aisha, and C. P. Subash, “Compar-
ison of multi criteria decision making algorithms for
ranking cloud renderfarm services,” Indian Journal of
Science and Technology, vol. 9, p. 31, 2016.

[8] Z. Rehman, F. Hussain, and O. Hussain, “Towards
multi-criteria cloud service selection,” International
Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing, 2013, ISBN: 978-1-61284-
733-7.

[9] J. Lv, X. Wang, M. Huang, H. Cheng, and F. Li,
“Solving 0-1 knapsack problem by greedy degree
and expectation efficiency,” Applied Soft Computing,
vol. 41, pp. 94–103, 2016.

[10] M. Zhang, R. Ranjan, S. Nepal, M. Menzel, and
A. Haller, “A declarative recommender system for
cloud infrastructure services selection,” GECON, vol.
7714, pp. 102–113, 2012.

[11] L. Sun, H. Dong, F. Khadeer, Hussain, O. K. Hussain,
and E. Chang, “Cloud service selection: State-of-the-art
and future research directions,” Journal of Network and
Computer Applications, vol. 45, pp. 134–150, 2014.

[12] C. JatothG and U. Fiore, “Evaluating the efficiency
of cloud services using modified data envelopment
analysis and modified super-efficiency data envelop-
ment analysis,” Soft Computing, Springer-Verlag Berlin
Heidelberg, vol. 7221-7234, p. 21, 2017.

[13] F. Aqlan, A. Ahmed, O. Ashour, A. Shamsan, and
M. M. Hamasha, “An approach for rush order accep-
tance decisions using simulation and multi-attribute
utility theory,” European Journal of Industrial Engi-
neering,, 2017, ISSN: 1751-5254.

[14] C. B. Do and S. K. Kyu, “A cloud service selection
model based on analytic network process,” Indian J
Sci Technol, vol. 8, no. 18, 2016.

[15] ——, “A hybrid multi-criteria decision-making model
for a cloud service selection problem using bsc, fuzzy
delphi method and fuzzy ahp,” Indian J Sci Technol,
vol. 86, pp. 57–75, 2016.

[16] M. Whaiduzzaman, A. Gani, N. B. Anuar, M. Shiraz,
M. N. Haque, and I. T. Haque, “Cloud service selection
using multicriteria decision analysis,” The Scientific
World Journal, vol. 2014, p. 10, 2014.

[17] L. D. Ngan and R. Kanagasabai, “Owl-s based seman-
tic cloud service broker,” International conference on
web services (ICWS), pp. 560–567, 2013, ISBN: 978-
1-4673-2131-0.

[18] F. K. Hussain, Z. ur Rehman, and O. K. Hussain,

“Multi-criteria iaas service selection based on qos his-
tory,” International Conference on Advanced Informa-
tion Networking and Applications, 2014, ISSN: 1550-
445X.

[19] Z. Li, L. OBrien, H. Zhang, and R. Cai, “On the
conceptualization of performance evaluation of iaas
services,” IEEE Transactions on Services Computing,
vol. 7, pp. 628 – 641, 2014.

[20] Q. Yu, “Cloudrec: a framework for personalized service
recommendation in the cloud,” Knowledge and Infor-
mation Systems, vol. 43, pp. 417–443, 2014.

[21] S. Sukhpal and I. Chana, “A survey on resource
scheduling in cloud computing: Issues and challenges,”
Journal of grid computing, vol. 14, pp. 217–264, 2016.

[22] “Microsoft Azure,” 2019, URL: https://azure.microsoft.
com/en-us/pricing/details/cloud-services [accessed:
2019-02-28].

[23] S. Soltani, P. Martin, and K. Elgazzar, “A hybrid
approach to automatic iaas service selection,” Journal
of Cloud Computing: Advances, Systems and Applica-
tions, vol. 7, pp. 1–18, 2018.

[24] “Mahout Apache,” 2019, URL: http://mahout.apache.
org/ [accessed: 2019-02-28].

[25] “Amazon Instance Types,” 2019, URL: https://aws.
amazon.com/ec2/instance-types/?nc1=h ls [accessed:
2019-02-28].

[26] J. Davis and M. Goadrich, “The relationship between
precision-recall and roc curves,” International confer-
ence on Machine learning, pp. 233–240, 2006.

[27] Z. Zheng, X. Wu, Y. Zhang, M. R.lyu, and J. Wang,
“Qos ranking prediction for cloud services,” European
Journal of Industrial Engineering,, vol. 24, pp. 1213–
1222, 2013.

[28] X. Liu, C. Wang, B. B. Zhou, J. Chen, T. Yang, and
A. Y. Zomaya, “Priority-based consolidation of parallel
workloads in the cloud,” IEEE Transactions on parallel
and distributed systems, vol. 24, pp. 1874–1883, 2013.

