International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

39

Distributed Situation Recognition in Industry 4.0

Mathias Mormul, Pascal Hirmer, Matthias Wieland, and Bernhard Mitschang

Institute of Parallel and Distributed Systems
University of Stuttgart, Universititsstr. 38, D-70569, Germany
email: firstname.lastname @ipvs.uni-stuttgart.de

Abstract—In recent years, advances in the Internet of Things
led to new approaches and applications, for example, in the
domains Smart Factories or Smart Cities. However, with the
advantages such applications bring, also new challenges arise.
One of these challenges is the recognition of situations, e.g.,
machine failures in Smart Factories. Especially in the domain of
industrial manufacturing, several requirements have to be met
in order to deliver a reliable and efficient situation recognition.
One of these requirements is distribution in order to achieve high
efficiency. In this article, we present a layered modeling approach
to enable distributed situation recognition. These layers include
the modeling, the deployment, and the execution of the situation
recognition. Furthermore, we enable tool support to decrease the
complexity for domain users.

Keywords—Industry 4.0; Edge Computing; Situation Recogni-
tion; Distribution Pattern.

I. INTRODUCTION

This article is a revised and extended version of the
SMART 2018 paper “Layered Modeling Approach for Dis-
tributed Situation Recognition in Smart Environments” [1].
The emerging paradigm Industry 4.0 (I4.0), describing the
digitization of the manufacturing industry, leads to the re-
alization of so-called Smart Factories [2]. In 14.0 and In-
ternet of Things in general, devices equipped with sensors
and actuators communicate with each other through uniform
network addressing schemes to reach common goals [3][4].
One of these goals is situation recognition, which enables
monitoring of 14.0 environments and, consequently, the timely
reaction to occurring situations. For example, the occurrence of
a machine failure in a Smart Factory, recognized by sensors
of the machine, could lead to an automated notification of
maintenance engineers.

Situations are recognized using context data that is usually
provided by sensor measurements. In current approaches, such
as the one we introduced in our previous work [5][6], situations
are recognized in a monolithic IT infrastructure in the cloud.
Consequently, involved context data needs to be shipped to
the processing infrastructure in order to recognize situations.
However, especially in domains where efficiency is of vital
importance, e.g., Smart Factories, this approach is not feasible.
In order to fulfill important requirements, such as low network
latency and fast response times, the situation recognition needs
to be conducted as close to the context data sources as possible
and, therefore, in a distributed manner. Processing data close
to the sources is commonly known as Edge Computing [7].

In this paper, we introduce an approach to enable a
distributed situation recognition. By doing so, we introduce so-
called distribution patterns. These patterns represent common
ways to distribute the recognition of situations, i.e., exclusively

in the edge, in on-premise or off-premise cloud infrastructures,
or based on a hybrid approach. We provide a layered approach
for modeling and executing the situation recognition based
on these distribution patterns. Our approach builds on a set
of requirements we derive from a use case scenario in the
manufacturing domain. We validate the approach by applying it
to our previous non-distributed situation recognition [5][6] that
is based on the modeling and execution of so-called Situation
Templates [8]. Furthermore, we introduce a modeling tool for
Situation Templates as well as an automated distribution of the
templates in the edge and backend cloud.

This article is a revised and extended version of the
SMART 2018 paper “Layered Modeling Approach for Dis-
tributed Situation Recognition in Smart Environments” [1]. In
addition to the previous paper, we describe how distributed
situation recognition can be realized from the modeling of the
situation using Situation Templates to the actual deployment.
This is done by the introduced tool-based modeling support
and the automated distribution of Situation Templates among
the edge and backend cloud.

The remainder of this paper is structured as follows:
Section II describes related work and foundational background.
In Section III, we introduce a motivating scenario, which is
used to derive requirements for our approach. In Section IV,
we present the main contribution of our paper. Section V
describes the process from modeling Situation Templates using
a tool-based modeling support to the automated distribution
of the situation recognition. Finally, Section VI concludes the
paper and gives an outlook to future work.

II. RELATED WORK AND BACKGROUND

In this section, we describe related work, as well as
foundational concepts of our previous work that are necessary
to comprehend our approach.

A. Related Work

In related work, approaches exist for distributed situation
recognition using ontologies, e.g., by Fang et al. [9]. These
approaches do not achieve the latency required in real-time
critical scenarios, such as Industry 4.0 [2], due to time-
consuming reasoning. The goal of our approach is to achieve
low latency for distributed situation recognition in the range
of milliseconds. Many approaches using ontologies are in the
range of seconds to minutes, even without distribution [10],
[11]. Using machine learning leads to similar limitations
regarding latency [12].

In the area of distributed Complex Event Processing (CEP),
Schilling et al. [13] aim at integrating different CEP systems

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

40

@ Situation object
(
Machine critical

SituationTemplate

Object
{abstract}

ObjectiD (string)
ObjectType (string)

Situation (string)

SensorType string)

URL (string)
Quality (int[0,100])

A

Location (string GeoJSON)

Name (string)
Description (string) rob. tID: M” M h X1
Timestamp (strng) || ; jectiD: illing_Machine_
L LIS} defines .
@Sltuatlon Model Cortert bject Occurred: true
Quality (int [0, 100]) — .
Timestamp: 1416489737
SituationTemplate (string)
i‘e*"““::l"% el Context: [materialSensor: 36,
Monitored (boolean) toolSensor: 71% |
Owners [string]
URL trng) Actistor Quality: 95%
State (string) Actions [string] _)

MezsuredAttributes (object)

Situation Node Situation

i)

Template N
Operation Node Situation |:> @ Situation Recognition (e.g., CEP)
Template
: N J
Modeling . P Y

Condition Node

Situation
expert

Context Node \[tool: 71%] [material: 36]

o

‘e

Transport

\'

| L=
‘ 17 o
Production

Context Data
Sources

Material

Machines

Figure 1. Previous approach for situation recognition [1]

using a common meta language. This allows to use different
CEP systems and integrate the results. This could be beneficial
for our distribution because we would not be limited to one
execution environment. However, in [13], the queries have to
be hand-written and distributed. This is difficult, especially
for domain experts, e.g., in Industry 4.0, who do not have the
necessary skillset. In our approach, we provide an abstraction
by Situation Templates that can be modeled using a graphical
user interface. Furthermore, the users are supported in splitting
up these template as well as in the distribution decision.

Other approaches in distributed CEP, e.g., by Schultz-
Moller et al. [14], follow the concept of automatic query
rewriting. Here, CEP queries are split up using automated
rewriting and are distributed on different operators based on
a cost model, which is mostly based on CPU usage in the
different nodes. In our approach, we want to support the user
to select the desired distribution type. Since there are many
aspects, such as data protection or security, that play a role in
distributing the CEP queries correctly, this only can be known
by a responsible expert user.

Finally, approaches exist that enable a massive distribution
of sensors, e.g., by Laerhoven and Gellersen [15] in cloths,
to detect activities of the person wearing the cloth. This is
similar to detecting the situation in the edge cloud, but there
is no concept presented in [15] to integrate the activities with
other activities from different edge clouds or create a global
situation involving different locations.

B. Background

In this section, we describe our previous work. Our first
approach for situation recognition, this paper builds on, is
depicted in Figure 1. This approach is a result of the issues of
related work, as discussed in the previous section.

An important fundamental concept are Situation Templates,
introduced by Hiussermann et al. [8]. We adapted the Sit-

vation Templates in [6] to model and recognize situations.
Situation Templates (see Figure 1 on the buttom left) consist
of context, condition and operation nodes, which are used to
model specific situations. Context nodes describe the input for
the situation recognition, i.e., the context data, based on the
definition of Dey et al. [16]. Context nodes are connected to
condition nodes, which define the conditions for a situation
to be valid. Operation nodes combine condition and operation
nodes and represent the logical operators AND, OR, or XOR.
Operation nodes are used to aggregate all condition nodes of
the Situation Template into a single node, the situation node.

After modeling a Situation Template (Figure 1, Step 1), it is
transformed into an executable representation (not depicted),
which is realized using CEP or light-weight execution lan-
guages, such as Node-RED. The advantage of this transforma-
tion is that it provides a flexible means to recognize situations.
These transformations can be found in [17][18]. Consequently,
we are not limited to specific engines or data formats. Once
the transformation is done, the executable Situation Template
is handed over to the corresponding execution engine.

On execution (Figure 1, Step 2), context data originating
from the context sources is validated against the conditions
defined by the Situation Template, for example, through pattern
recognition in CEP. On each validation, we create a so-called
situation object [19], defining whether the situation occurred
and containing the involved context data (Figure 1, Step 3).
We created a Situation Model [19] (Figure 1, Step 4) to define
the attributes of those situation objects. This leads to a better
understanding of how context data led to the situation.

This previous approach for situation recognition works
well, however, there are still some limitations this paper aims
to solve. First, the current approach was built to monitor single
things (e.g., devices). However, as the complexity of nowadays
IT infrastructure rises, means need to be enabled to monitor
more than one thing using the introduced Situation Templates.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Merging of different departments Legend:
—— datainput
Supply Chain Situation Template
Situation
| Deployment Location
Production \\ Logistics
Production Line Transport
Situation Situation
Machine 1 Machine 2

Figure 2. Motivating scenario for distributed situation recognition [1]

Furthermore, currently, the Situation Templates are executed in
a monolithic manner because in former scenarios, distribution
was not necessary. In current approaches, e.g., involving 14.0,
however, this is necessary. Therefore, in this paper, we aim for
enhancing our approach in order to be more fitting to recent
scenarios.

ITI. SCENARIO AND REQUIREMENTS

In this section, we introduce a practical motivating scenario
from the 14.0 domain, which is used throughout the paper to
explain our approach. In the scenario, depicted in Figure 2,
a specific part of the supply chain of a production company
should be monitored. As depicted, there are several entities
involved: (i) production machines, assembling products based
on parts, and (ii) trucks, delivering the parts to be assembled.
The monitoring should detect critical situations that could
occur, for example, the failure of at least one of the machines,
or a delivery delay of parts, e.g., caused by issues with trucks
or with the supplier. Situations that could occur are: (i) Pro-
duction Line Situation, indicating that one of the production
machines is in an erroneous state, (ii) Transport Situation,
indicating a problem with the truck, and (iii) Supply Chain
Situation, indicating a problem with either the production line
or the truck.

When applying our previous approach, described in
Section II, to this scenario, new requirements arise that need
to be coped with. We divide these requirements into ones that
concern the modeling of Situation Templates and ones that
concern the execution of the situation recognition. We derived
eight requirements R; to Rg for this scenario.

Modeling Requirements
Three requirements focus on the modeling of the situation
recognition using Situation Templates.

e Ry - More powerful Situation Templates: With our
previous approach (cf. Section II-B), single machines
can be monitored in an efficient way as evaluated
in [6], which was sufficient for previous scenarios.
However, in recent scenarios involving Industry 4.0,
the requirements are increasing. In our motivating sce-
nario, it is important to model dependencies between
multiple entities within a single Situation Template,
e.g., to recognize the Production Line Situation.

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

41

e Ry - Low modeling complexity: In our previous
approach, modeling Situation Templates involving a
lot of context data has led to a cumbersome task and,
consequently, to a high complexity and error-prone
modeling. To cope with this issue, a new modeling
approach is required that enables the reutilization
of already existing Situation Templates to lower the
modeling complexity of new Situation Templates.

e R3 - Domain-independence: A consequence of the
issue described in Ry is domain-dependence. Large
Situation Templates usually consist of a wide range
of context data sources, e.g., Trucks or the Production
Line of our scenario. However, these context data
sources require domain experts of these specific areas.
Consequently, Situation Templates need to be modeled
by these experts together. This leads to high costs due
to the communication overhead. Hence, our goal is to
enable domain-independence for Situation Template
modeling.

Execution Requirements

e R, - Low latency: In many domains, latency plays
a crucial role. Especially in Smart Factory environ-
ments, the industrial automation layer has strong re-
quirements regarding end-to-end latency up to 1 ms or
even lower [20]. Therefore, the execution of the situa-
tion recognition needs to adapt to those requirements,
so that critical situations like machine failures can be
recognized in a timely manner.

e Ry - Low network traffic: In modern scenarios,
large amounts of data are produced that need to be
stored and processed in order to recognize situa-
tions. For example, an autonomous car produces about
35 GB/hour of data [21]. In comparison, Budomo
et al. [22] conducted a drive test and recorded a
maximum and minimum upload speed of 30Mbps
(13.5 GB/hour) and 3.5Mbps (1.58 GB/hour), re-
spectively, using the current mobile communication
standard LTE-A. Therefore, transferring all data of an
autonomous car to the cloud is currently impossible.
Consequently, reducing the network traffic is an im-
portant issue when recognizing situations.

e R - Reduced costs: Costs are always an essential
factor when it comes to data processing. Operating
and maintaining an in-house IT infrastructure could
lead to high costs. In contrast, using the pay-as-you-go
approach of Cloud Computing, costs could be reduced.
Enabling the lowest possible costs when recognizing
situations is an important requirement for this paper.

e R; - Data security & privacy: Especially the pro-
cessing of company data needs to be secure and,
furthermore, privacy needs to be ensured. However,
especially when processing data in the Public Cloud,
companies need to trust the Cloud providers that
they provide the security they require. Alternatively,
companies can keep their data close, i.e., in a trusted
environment. Additionally, in many countries and
federations, data protection directives are in place
to guarantee the protection and privacy of personal
data that may not allow to send personal data to the
cloud [23].

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

e Rg - Cross-company situation recognition: Modern
products and their components are rarely built com-
pletely by one company. Therefore, most actual sce-
narios are very complex, involve multiple companies,
and require a cross-company situation recognition.
Our motivating scenario in Figure 2 can be regarded as
such an example, in which a manufacturing company
cooperates with a logistics company. For example, a
delayed delivery caused by a failure of the truck must
be communicated to the manufacturing company. Con-
sequently, our situation recognition approach needs to
enable a cross-company situation recognition.

IV. DISTRIBUTION OF SITUATION RECOGNITION

In our previous work, we already solved challenges re-
garding sensor registration and management [24], efficient
solutions for a situation recognition [18], and the management
of recognized situation [19]. Now, we concentrate on extending
our previous approach by introducing a distribution of the sit-
uation recognition to fulfill the above-mentioned requirements
R;1-Rg. For this, we first present (i) the modeling improve-
ments for our approach to support the distribution we aim
for. On this basis, we present (ii) the execution improvements
to enable the distribution based on three distribution patterns
including a decision support for each of those patterns.

The distributed situation recognition was implemented
based on the existing prototype of our previous work, intro-
duced in [18][19] by following adaptations: (i) the modeling
for Situation Templates was extended, (ii) the transformation
was enhanced to accept multiple things, and (iii) the com-
munication between the distributed locations is enabled by
messaging systems.

A. Modeling Improvements

In the following, we present the improvements regarding
the modeling of Situation Templates to fulfill the requirements
R1-R3. The extension of the Situation Templates, i.e. its
schema, comprises (i) the modeling of multiple things within
a single Situation Template, and (ii) a layered modeling by
reutilizing already modeled Situation Templates. These ex-
tensions are depicted in Figure 3. Requirement R; describes
the need for the modeling of more powerful situations, e.g.,
Production Line critical. However, a production line itself does
not contain any sensors but rather describes the coherence
and arrangement of multiple machines. Therefore, to model
a situation describing the production line, we need to model
all machines of the production line into a single Situation
Template. By extending the Situation Template Schema to
allow the modeling of multiple things, therefore, we fulfill
requirement Rj.

It is obvious that from a certain amount of things in a single
Situation Template and each thing having multiple sensors, the
complexity of modeling such a Situation Template is becoming
a problem. An excessive complexity restricts the usability of
our modeling approach, hence, the reduction of the modeling
complexity is required (cf. Rg). To cope with the increasing
complexity of Situation Templates, we introduce the layered
modeling approach. Instead of modeling everything within a
single Situation Template, we use situations as context input
for further situation recognition. Thereby, we implicitly reuse
already modeled Situation Templates. Furthermore, we divide

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

42

situations in two classes: local situations and global situations
whereby local situations are recognized at the edge and global
situations in the cloud. An equivalent modeling of the situation
Production Line critical using the layered modeling approach
is shown in Figure 3 (right side). Based on this comparison,
we show the benefits of this approach:

e Reusability: By using situations as input, we reutilize
existing Situation Templates. When modeling a global
situation, we only need to model the relation between
the already modeled local situations similar to putting
together building blocks. A further advantage is that
the local Situation Templates possibly were already
used and tested for correctness, which lowers the
error-proneness for modeling global situations.

e Reduce complexity: The reusability directly leads to
less complex Situation Templates, since the modeling
is based on the Divide and Conquer paradigm. By
using the layered modeling approach, we fulfill the
requirement Ry.

e Distribution: Since we do not have one single and
complex Situation Template, but instead, multiple
smaller ones, we already have a beneficial starting
point for the distribution of the situation recognition
as we can simply execute the different Situation Tem-
plates at different locations.

e Support for specific domains: Having multiple things
within a single Situation Template could lead to the
problem that knowledge from different domains is re-
quired. For example, our motivating scenario contains
three domains - manufacturing, logistics, and their
dependencies. Using the layered modeling approach,
different domains can model Situation Templates in-
dependently. Consequently, the requirement R3 is ful-
filled as well.

As a result, by introducing an extended Situation Template
Schema to enable the modeling of multiple things within a
single Situation Template and the layered modeling approach,
we fulfill all modeling requirements R;-Rs.

B. Execution Improvements

The modeling improvements we presented in the last
section serve as the foundation for the distribution of the
situation recognition. As mentioned above, in our previous
approach, the situation recognition was executed centralized in
the cloud. Hence, all context data was sent to this cloud and
was used as input for the situation recognition. However, lately,
the term Edge Computing gains more and more attention. Shi
et al. [7] define the edge as “any computing and network
resources along the path between data sources and cloud data
centers”. Therefore, in our context, Edge Computing refers to
the processing of context data close to the data sources.

By introducing Edge Computing to our approach, a distri-
bution of the situation recognition to the cloud and the edge
can be performed. In the scenario of Figure 2, the distribution
of the situation recognition seems obvious. Using the layered
modeling approach, we can model the local situations Pro-
duction Line Situation and Transport Situation and the global
situation Supply Chain Situation. The situation recognition for
the local situation is executed at the edge, i.e., locally in the
factory or truck, respectively. The global situation is executed

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

-

Situation Node

Operation Node

Condition Node

43
Production Line critical Situation Global situation: Situation
Template Production Line critical Template

Ty

Context Node

[tool: 56%] [material:ZZ] [tool: 71%] [material:lZ]

[Status critical] [Status critical]

* -V

Thing / Local Situations Machinel

Multiple Things in one Situation Situation Template

Local situation:
Machine 2 critical

Local situation:
Machine 1 critical

Machine2

Situations act as context input

Figure 3. Modeling improvements for Situation Templates (legend see Figure 4) [1]

in the cloud and receives the local situations as input. However,
based on the execution requirements R4-Rg, this distribution
might not always be ideal.

Therefore, in the following, we present the execution
improvements resulting from the distribution of the situation
recognition. First, we present the concept of context stripping
and its benefits. Afterwards, we introduce three distribution
patterns and a decision support for choosing the most suitable
distribution pattern for a certain scenario.

1) Context Stripping: As presented in Section II-B, when a
situation recognition is executed, situation objects are created
that are defined by the Situation Model [19]. This situation
object contains all context data that were used for the eval-
uation of this specific situation. In [19], we approximated
the data volume of situation objects based on the amount
of used context data. The results showed that the appended
context data presents the majority of the data size of a situation
object. Now, when using the layered modeling approach, we
may use local situations that we recognized at the edge as
input for the recognition of global situations in the cloud.
That causes us to send all context data to the cloud again
within the situation object. However, based on the scenario,
we might not be interested in the context data of a situation
object but only if the local situation occurred or not, so we
can evaluate the global situation. Therefore, we introduce the
concept of context stripping. By using context stripping, the
context used for the situation recognition is not sent within
the situation object. It only contains the most vital data for a
further situation recognition in the cloud. Therefore, content-
wise, a local situation only contains a boolean value, which
describes if the local situation occurred or not and the required
meta data for further processing.

This leads to a trade-off the user has to make based on his
requirements. By using context stripping, the data size of a
situation object can be strongly reduced. However, the context
data that led to the evaluation of a specific situation object is
discarded after processing. In our first approach, we explicitly

wanted to store the context data within situation objects for
a detailed historization of situations. This historization, for
example, can be used afterwards for a root cause analysis of
detected situations based on the involved context data. We are
planning to conduct a performance evaluation regarding the
degree of context stripping to be used in specific scenarios.

2) Distribution Patterns: As mentioned above, the distribu-
tion of the situation recognition is dependent on the execution
requirements R4-Rg. Therefore, a general solution for the
distribution of the situation recognition is not possible. Instead,
we introduce three different distribution patterns, depicted
in Figure 4 based on the scenario shown in Figure 2. The
Type I distribution pattern describes our previous approach. All
context data, i.e., in this scenario, context data from a truck and
two machines, are sent to the cloud. The situation recognition
is executed in the cloud and all context data is available. In
contrast, the Type II pattern describes the execution of the
situation recognition at the edge, close to the data sources.
In this case, it is often impossible to gather all context data
from all sources, e.g., from the truck, since it is not part of the
local network of the factory, where the machines are located.
Therefore, only parts of the situation recognition may be
executed at the edge. The Type III pattern is a hybrid solution
based on both the Type I and Type II pattern and enables the
execution of situation recognition at the edge, which results in
local situations (i.e., Production Line and Transport) and the
execution of situation recognition in the cloud, where the local
situations are used to evaluate the global situation.

In the following, the different distribution patterns are
described in more detail with regard to the execution require-
ments R4-Rg. Each pattern comprises advantages for certain
use cases and might not fulfill every execution requirement.
Additionally, the presented distribution patterns are applicable
to the distribution of data processing in general.

Type-1: Cloud-only (Figure 4, left)
Despite many advantages of Edge Computing, the Type-
I distribution pattern still is a viable option. Introducing

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

44
Cloud Cloud Legend:
A .
Supply Chain Supply Chain i Context data input
Situation Situation TSituation flow
Production Transport \ Geographical distinction
Line Situation Situation . .
Iy A Situation Template
ala rEr— 1
Machine | i Deployment Location
Situation 1
r'y | 1
B i
1
I i Production Production Logistics
i i ! Egde Edge Edge
i i i Production Production Transport
i i ! Line Situation Line Situation Situation
1 1 A
N | N SO
! I ! Machine Machine Machine Machine : i
! ! i Situation Situation Situation Situation : 1
. E— i % 1 0 t : i
o= 1 1 1 : 1 : 1 : 1
oo~ | | | 'o=—o~
Type I: Cloud-only Type Il: Edge-only Type llI: Hybrid

Figure 4. Distribution patterns [1]

Edge Computing is no trivial task and comprises multiple
challenges [7]. Companies with low IT experience or no
IT department benefit from outsourcing IT infrastructure and
expertise to third-party cloud providers. This oftentimes is the
case for SMEs, which then can solely focus on their products
and the pay-as-you-go model provides a cost-effective and
scalable infrastructure. Type I has the following implications
regarding our requirements:

e R, - Low latency: Currently, when using an off-
premise cloud, the requirement of 1 ms is already
violated by the network latency itself. Therefore, re-
quirement 24 cannot be fulfilled.

e Rs - Low network traffic: Since all context data
must be sent to the cloud first, network traffic cannot
be reduced. Requirement Rj5 is not fulfilled.

e Rg - Reduced costs: The calculation of costs is
always very use case specific. If a company already
outsourced its IT infrastructure to the cloud, then the
introduction of Edge Computing results in new costs
for hardware and IT staff. For scenarios, in which the
data amount is relatively small or irregular, the gained
advantages may not be worth the expenses. Therefore,
the Type-I pattern can fulfill requirement Rg.

e R; - Data security & privacy: Since all context data
is sent to the cloud, new security risks are introduced.
Furthermore, company policies might prohibit sending
sensitive or personal context data to the cloud. There-
fore, requirement R is not fulfilled.

e Rg - Cross company situation recognition: Since all
data is available in the cloud, companies can work to-
gether to execute a collaborative situation recognition.
Requirement Rg is fulfilled.

As shown, the Type-I pattern does not fulfill most require-
ments. Still, in non-critical scenarios where high latency is
acceptable, the network traffic is low or fluctuating and the data
is allowed to be sent to the cloud by the companies’ policies or
government regulations, the Type-I pattern is a sensible option.
Especially for SMEs, the cost model of a public cloud is very
attractive in comparison to self-managed data centers [25].

Type-1I: Edge-only (Figure 4, middle)

In comparison, the Type-II distribution pattern describes the
execution of the whole situation recognition at the edge. As
already mentioned, this is only possible if all context data is
available at the edge. Therefore, the situation recognition of lo-
cal situations is best-suited for an edge-only execution. Type II
has the following implications regarding our requirements:

e R, - Low latency: Yi et al. [26] show that latency
can be reduced by 82% by moving an application to
the edge of the network. As the situation recognition
is executed as close as possible to the data sources,
the requirement Ry is fulfilled. With an execution time
of 3ms for our situation recognition [18], the overall
latency is kept comparably low.

e Rs5 - Low network traffic: No context data is sent
to the cloud, therefore, network traffic stays low and
requirement Ry is fulfilled.

e Rg - Reduced costs: Floyer [27] presents a scenario of
a wind-farm to project potential costs savings by addi-
tionally using Edge Computing with Cloud Computing
instead of a cloud-only solution. An assumed 95%
reduction in network traffic results in a cost reduction
of about 64%, already including the on-site equipment
for Edge Computing. For a cost-effective usage of
Edge Computing, the data of the wind-farm had to be

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reduced by at least 30% at the edge in order to reduce
the costs for network traffic and thereby lower the
overall costs. However, continuous IT staff and man-
agement of the on-site equipment as well as security
measurements are not included. Therefore, again, costs
are strongly use case dependent. Introducing Edge
Computing does not increase the costs in general but
they depend on the amount of saved network traffic.
Therefore, requirement Rg can be fulfilled.

e R; - Data security & privacy: One of the main
concerns regarding the adoption of Cloud Computing
still is security, especially in companies with few expe-
rience with Cloud Computing. Security and privacy of
data is increased, since all context data and situations
remain at the edge, i.e., a local network controlled by
its company. Requirement Ry is fulfilled.

e Rg - Cross company situation recognition: In
general, the data sources of different companies are
geographically distributed and not in the same local
network. Therefore, a cross company situation recog-
nition is not possible. Requirement Rg is not fulfilled.

Most requirements are fulfilled. However, more complex
scenarios (cf. Figure 2) cannot be mapped to this pattern be-
cause of geographically distributed data sources. Therefore, the
Type-II distribution pattern is best suited for company-internal
situation recognition that fulfills critical requirements, such
as latency and security. Especially in mobile environments,
e.g., an autonomous truck, with high-volume data, the Type-II
pattern is a good option.

Type-I1I: Hybrid (Figure 4, right)

Neither a Type-I nor a Type-II distribution pattern presents
a viable option for our motivating scenario, since the truck
produces too much data for a cloud-only solution and the
geographical distribution of the data sources prevents an edge-
only solution. Therefore, in the Type-III distribution pattern,
the situation recognition is distributed to both the cloud and
the edge. This leads to the recognition of local situations at the
edge and global situations in the cloud and their advantages.

e R, - Low latency: The latency for local situations
is reduced as described in Type-II. However, global
situations are evaluated in the cloud and the latency
is as described in Type-I. Therefore, the requirement
R, is fulfilled only for local situations.

e Rs; - Low network traffic: As in Type-II, network
traffic can be saved by shifting the situation recog-
nition to the edge. The situation objects of the local
situations must be sent to the cloud for the evaluation
of global situations, thereby increasing network traffic.
However, by using context stripping, the data size
of situation objects can be massively reduced and
still enable further processing of global situations.
Therefore, requirement R5 is fulfilled.

e Rs - Reduced costs: The potential cost savings
correspond to the cost savings of Type-II. However, by
using context stripping for local situations, we reduce
network traffic and thereby costs and still enable a
situation recognition for complex scenarios. Therefore,
requirement Rg can be fulfilled.

e R; - Data security & privacy: Security and privacy
of local situations match the Type-II pattern. Again,

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

45

TABLE I. FULFILLMENT OF EXECUTION REQUIREMENTS BY THE
DISituation TemplateRIBUTION PATTERNS

Ry | Rs | Re | R7 | Rs
Type-I: Cloud-only X X) X v
Type-1I: Edge-only Ve v) v X
Type-1II: Hybrid v v) v v

when using context stripping for local situations, we
support complex scenarios and do not have to send
sensitive context data within situation objects to the
cloud. Therefore, R; is fulfilled.

e Rg - Cross-company situation recognition: As in the
Type-I distribution pattern, a collaborative situation
recognition is possible. However, a big advantage is
gained by using context stripping. Possibly sensitive
context data of each company remains at their respec-
tive edge. Only context-stripped local situations are
sent to the cloud for the collaborative evaluation of the
global situation. Therefore, requirement Ryg is fulfilled.

Except reducing the latency for the evaluation of global sit-
uations, all requirements are fulfilled by this hybrid approach.
Especially the usage of context stripping presents multiple
advantages when transferring local situations to the cloud.
The Type-III distribution pattern is best-suited for complex
scenarios with multiple data sources that require a fast reaction
to local situations and a centralized situation recognition of
global situations without increasing the network traffic. Mul-
tiple companies can collaborate without sharing sensitive data
or infringing government regulation.

Table I summarizes the analysis of the different distribution
patterns. As shown, the Type-III hybrid approach fulfills all
execution requirements. However, the potential costs are very
use case specific and cannot be generalized (therefore, depicted
in brackets). Consequently, if the fulfillment of all execution
requirements is not mandatory, choosing a different pattern
might be more cost-effective.

V. FROM MODELING TO DEPLOYMENT

In this section, we describe how distributed situation recog-
nition can be realized from the modeling of the situation
using Situation Templates to the actual deployment in order
to recognize the modeled situation.

A. Tool-based modeling support

In Section I'V-A, we present the layered modeling approach,
resulting in modeling improvements to enable the reusability
and distribution of Situation Templates. However, especially
modeling complex Situation Templates is still a cumbersome
and error-prone task without any tool support. To prevent this,
we introduce the Situation Template Modeling Tool (STMT),
a graphical web-based tool to support users with the modeling
of Situation Templates. The previously introduced Situation
Template Schema ensures the validity of a Situation Template
and is integrated in the STMT to ensure the modeling of valid
Situation Templates. Figure 5 depicts the modeling of the
Situation Template Production Line critical. For illustration
purposes, in contrast to the previously introduced Situation
Template, one situation input was changed to a sensor input to

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

46

Production_Line_Critical
(Situation Node)

<situationNode id=,Situation1“ name=,,Production_Line_Critical“/>

<operationNode id=, Operation1“ name=, OR“>
<parent parentID=,,Situation1“/>
<type>or</type>

</operationNode>

OR

(Operation Node)

Tool_Condition
(Context Node)

<contextNode id=,Context1“ name=,Tool_Condition“>
<inputType>sensor</inputType>
<thingType>TypeA</thingType>
<measureName>% deterioration</measureName>
<opType>greaterThan</opType>
<value>90</value>
<parent parentlD=, Operation1“/>

</contextNode>

> 90 % deterioration

Sit::Machine_Critical
(Context Node)

<contextNode id=,Context2“ name=, Machine_Critical“>
<inputType>situation</inputType>
<situationlnput>Machine_Critical</situationlnput>
<negated>false</negated>
<parent parentlD=, Operation1/>

</contextNode>

Figure 5. Modeling a Situation Template with a situation as context input and corresponding XML snippets

Initiate Situation
Recognition

Select Situation

Template

Is context input
a sensor?

Select thing

Are there more
context inputs?

Distribute
Situation
Recognition

Figure 6. Flowchart for initializing the situation recognition

show the syntactical differences between a situation and a sen-
sor input. As depicted, a Situation Template has a tree structure
whereby the root node is the situation node. The only child of
a situation node must be an operation node and represents one
of the logical operators AND, OR or XOR. This operation node
combines multiple children, which are either context nodes or
additional operation nodes. The leaf nodes always constitute

context nodes, either sensor input (CPU_Load) or situations
(Sit::Machine_Critical). Furthermore, on a conceptual layer,
we divided the context nodes and condition nodes into separate
nodes. However, for more clarity, we combined both nodes into
a single one in the STMT.

On the right side of Figure 5, the corresponding XML
snippets of the nodes are shown. Situation nodes and all other
nodes contain an id and the name of the node. The id is used
for the internal linking of nodes within a Situation Template.
The name of the situation node is carried on as the name
of the resulting situation object. The operation node further
contains the element parent to enable the linking of nodes
using the id. The element rype describes the modeled logical
operator. As mentioned, context nodes can have either sensor
input or situations as input. This option is defined by the
element inputType. Using a sensor input, the next element
is thingType. Again, Situation Templates are generic and not
defined for a specific thing. Therefore, we define thing types,
i.e., a class of structurally identical things for which the same
Situation Template can be used, since the things possess the
same sensors. The condition that has to be met by the sensor
input is defined by the elements value, i.e., the threshold, and
opType, i.e., the operation type. The element measureName is
for visualization purposes only. In comparison, a context node
using situations as input constitutes the element situationlnput.
Since a situation is defined by a Situation Template, the value
of this element refers to the name of a Situation Template.
Using the element negated, we have the possibility to negate
the Boolean value of a situation object. Additionally, to support
the modeler, a database is connected to present possible thing
types as well as previously modeled Situation Templates.
Afterwards, Situation Templates can be stored in and loaded
from a Situation Template repository.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

47

Production Line

critical

Automatic splitting

\
Production Line
critical

()

[Machine critical

—/

[Machine critical]

Y4 N
[Machine critical | [Machine critical |

\.

Goy () || Gy (o)

[tool: 56%] [material:ZZ] [tool: 71%] [material:lZ]
~ ad AN ~

T %

\

J/

Figure 7. Automatic Splitting of Situation Templates

B. Initiating the Situation Recognition

With the STMT, it is possible to easily model complex
Situation Templates. In the following, we present the procedure
of initiating the situation recognition based on the modeled
Situation Template. Figure 6 depicts the flowchart starting
with the selection of a Situation Template. In our previous
work, only one thing per Situation Template was allowed,
therefore, the next step was the selection of a thing and
the process was finished. Now, multiple things as well as
situations can be used as input and the process must be changed
accordingly. We traverse all context nodes and check their
input type. If it is a sensor input, the corresponding thing
must be selected that provides the sensor input. After that,
the next context node is regarded. If the context node has
a situation as input, the corresponding Situation Template is
selected and the next context node of the former Situation
Template is regarded. This newly selected Situation Template
might contain situations as input as well, therefore, we pass
through a recursive process. The process is finished when
all things that are needed for the situation recognition are
selected. This process describes a clean start scenario whereby
no situation recognition is running and, therefore, the situation
recognition for all Situation Templates has to be initiated.

C. Distributing to Edge and Cloud

In our extended approach, the Situation Templates are
modeled using the STMT and the deployment can be initiated
from the tool. The last step is the actual distribution to the
edge and cloud. To support the user as much as possible, the
distribution process can be divided into two steps: 1) automatic

splitting, and 2) module distribution, which are introduced in
the following.

1) Automatic Splitting: As shown in Figure 7, there are two
ways to model a Situation Template. On the left side of the
figure, the situation Production Line critical is modeled within
one Situation Template. On the right side, the same situation is
modeled by using the Layered Modeling Approach. By creat-
ing separate Situation Templates, we enable the distribution of
those Situation Templates to the edge and the cloud. However,
in simple scenarios like this one, the modeling on the left side
of Figure 7 might be faster, easier and more intuitive. Still,
to gain the advantages of a distributed situation recognition
even when the user models a single Situation Template, we
introduce Automatic Splitting. The splitting mechanism detects,
if possible, local situations (i.e., Machine critical in Figure 7;
left side) that can be extracted and splits the Situation Template
into smaller ones (Figure 7; right side). This method can only
be executed after the initialization, i.e., after selecting the
things for the Situation Template. Since Situation Templates
are modeled in a generic way, only then it is known, which
context input belongs to which thing and, therefore, if context
inputs originate from the same source, e.g., the same edge
node. A prerequisite is that each thing contains meta data about
its edge environment that is uniquely identifiable, e.g., by an
edgelD. As result, each context node can be assigned to the
same edge environment as the thing that acts as the context
input for this specific context node. Therefore, the context
node is annotated with the edgelD of the thing. The same
applies to the condition nodes (as mentioned in Section V-A,
in the implementation context nodes and condition nodes were
combined). At operation nodes, multiple context nodes are

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Production Line
critical

[Machme cr|t|caI Machme critical]

Module
Distribution

| Machine critical | | Machine critical |

& @ | e @

[tool: 56%] [materiaI:ZZ] [tool: 71%] [material: 12]
_ ad _ ad
l il E il E

Figure 8. Modular distribution of Situation Templates to edge and cloud

combined and their annotated edgelDs are compared. If they
coincide, the operation node is annotated with the edgelD.
Otherwise, the operation node cannot be distributed to a single
edge node, since the different context inputs originate from
different sources. This method is executed across all nodes of
the Situation Template, starting from all context inputs up to
the highest-level operation node. If the highest-level operation
node is annotated with an edgelD, the whole Situation Tem-
plate can be executed at the edge node. If only lower-level
operation nodes are annotated, the Situation Template is split
at this point and that operation node constitutes the highest
level operation node in the newly created Situation Template.

2) Module Distribution: The last and final step is the mod-
ule distribution. Now, we have different Situation Templates,
which can be distributed to the edge and the cloud. If the
nodes within the Situation Template are all annotated with
the same edgelD, that Situation Template will be distributed
to the corresponding edge environment. If no or multiple
edgelDs are present, the Situation Template is distributed
to the cloud. Each environment, edge or cloud, contains a
system for situation recognition (e.g., a CEP-based system,
like Esper [28] and a messaging middleware (e.g., a MQTT-
based system, like Mosquitto [29]). At runtime, machines
periodically send their data to the message broker running
at the edge node. Thereby, not only the situation recognition
system can access the data but different applications as well.
The situation recognition subscribes to the machine’s data and
its results, i.e., a situation object, are published to the message
broker again, so that applications at the edge can access the
situation objects directly. In parallel, all situation objects are
mirrored to the message broker in the cloud. Therefore, all

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

48

applications in the cloud can access the situation object as
well and, more importantly, the situation recognition system
in the cloud can use them as context inputs for the remaining
situation recognition, which as well publishes the resulting
situation objects to the message broker. In conclusion, this
approach guarantees a flexible and scalable architecture for
a distributed situation recognition using widely known and
utilized technologies, such as CEP and messaging.

VI. SUMMARY AND FUTURE WORK

In this paper, we present an approach for distributed
situation recognition. To support the distribution, we extend
the Situation Template Schema so that multiple things and
situations can be used for context input using a layered mod-
eling approach. Furthermore, we present the concept of context
stripping to reduce network traffic by removing the associated
context of situation objects. We examine three distribution pat-
terns based on execution requirements that are important for a
situation recognition in complex environments. In addition, we
describe how distributed situation recognition can be realized
from the modeling of the situation using Situation Templates
to the actual deployment. This is done by the introduced
tool-based modeling support and an automated distribution of
Situation Templates among the edge and backend cloud. This
article is a revised and extended version of the SMART 2018
paper “Layered Modeling Approach for Distributed Situation
Recognition in Smart Environments™ [1].

In future work, we intend to create a sophisticated
cost model, since choosing a suitable distribution pattern
is very use-case dependent. Additionally, the management
of the situation recognition after splitting, especially in
the distribution pattern Type III: Hybrid, can become very
complex and needs to be considered in future work. This
way, users can receive a more detailed decision support based
on their specific properties and requirements, which can lead
to a faster adoption of new technologies like Edge Computing.

Acknowledgment This work is partially funded by the
BMWi project IC4F (01MA17008G).

REFERENCES

[1] M. Mormul, P. Hirmer, M. Wieland, and B. Mitschang, “Layered
Modeling Approach for Distributed Situation Recognition in Smart
Environments,” in Tagungsband: SMART 2018, The Seventh Interna-
tional Conference on Smart Cities, Systems, Devices and Technologies.
Xpert Publishing Services, Juli 2018, Konferenz-Beitrag, pp. 47—
53. [Online]. Available: http://www?2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2018-28&engl=

[2] D. Lucke, C. Constantinescu, and E. Westkémper, Manufacturing Sys-
tems and Technologies for the New Frontier: The 41st CIRP Conference
on Manufacturing Systems May 26-28, 2008, Tokyo, Japan. London:
Springer London, 2008, ch. Smart Factory - A Step towards the Next
Generation of Manufacturing, pp. 115-118.

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, 2010, pp. 2787 — 2805.

[4] J.S.He, S.Ji, and P. O. Bobbie, “Internet of things (iot)-based learning
framework to facilitate stem undergraduate education,” in Proceedings
of the SouthEast Conference. ACM, 2017, pp. 88-94.

[5] M. Wieland, H. Schwarz, U. Breitenbiicher, and F. Leymann, “To-
wards situation-aware adaptive workflows: SitOPT — A general purpose
situation-aware workflow management system,” in Pervasive Computing
and Communication Workshops (PerCom Workshops). IEEE, 2015,
pp. 32-37.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/intelligent_systems/

[6]

[8]

[9]

[10]

[11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbiicher,
S. G. Sdez, and F. Leymann, “Situation recognition and handling
based on executing situation templates and situation-aware workflows,”
Computing, 10 2016, pp. 1-19.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, 2016,
pp. 637-646.

K. Héussermann, C. Hubig, P. Levi, F. Leymann, O. Simoneit,
M. Wieland, and O. Zweigle, “Understanding and designing situation-
aware mobile and ubiquitous computing systems,” in Proc. of intern.
Conf. on Mobile, Ubiquitous and Pervasive Computing. Citeseer, 2010,
pp. 329-339.

Q. Fang, Y. Zhao, G. Yang, and W. Zheng, Scalable Distributed
Ontology Reasoning Using DHT-Based Partitioning. ~Springer Berlin
Heidelberg, 2008, pp. 91-105.

X. Wang, D. Q. Zhang, T. Gu, and H. Pung, “Ontology based context
modeling and reasoning using OWL,” in Pervasive Computing and
Communications Workshops, 2004. Proceedings of the Second IEEE
Annual Conference on, 2004.

W. Dargie, J. Mendez, C. Mobius, K. Rybina, V. Thost, A.-Y. Turhan
et al., “Situation recognition for service management systems using
OWL 2 reasoners,” in Pervasive Computing and Communications Work-
shops (PERCOM Workshops), 2013 IEEE International Conference on.
IEEE, 2013, pp. 31-36.

J. Attard, S. Scerri, I. Rivera, and S. Handschuh, “Ontology-based
situation recognition for context-aware systems,” in Proceedings of the
9th International Conference on Semantic Systems. ACM, 2013, pp.
113-120.

B. Schilling, B. Koldehofe, U. Pletat, and K. Rothermel, “Distributed
heterogeneous event processing: Enhancing scalability and interoper-
ability of cep in an industrial context,” in Proceedings of the Fourth
ACM International Conference on Distributed Event-Based Systems.
ACM, 2010, pp. 150-159.

N. P. Schultz-Mgller, M. Migliavacca, and P. Pietzuch, “Distributed
complex event processing with query rewriting,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’09. New York, NY, USA: ACM, 2009, pp. 4:1-
4:12. [Online]. Available: http://doi.acm.org/10.1145/1619258.1619264

K. V. Laerhoven and H. W. Gellersen, “Spine versus porcupine: a study
in distributed wearable activity recognition,” in Eighth International
Symposium on Wearable Computers, vol. 1, Oct 2004, pp. 142-149.

A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, 2001, pp. 4-7.

P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbiicher,
and F. Leymann, “SitRS - A Situation Recognition Service based on
Modeling and Executing Situation Templates,” in Proceedings of the
9th Symposium and Summer School On Service-Oriented Computing,
2015, Konferenz-Beitrag, pp. 113-127.

A. C. Franco da Silva, P. Hirmer, M. Wieland, and B. Mitschang,
“SitRS XT-Towards Near Real Time Situation Recognition,” Journal
of Information and Data Management, 2016.

M. Mormul, P. Hirmer, M. Wieland, and B. Mitschang, “Situation model
as interface between situation recognition and situation-aware appli-
cations,” Computer Science - Research and Development, November
2016, pp. 1-12.

O. N. Yilmaz, Y.-P. E. Wang, N. A. Johansson, N. Brahmi, S. A.
Ashraf, and J. Sachs, “Analysis of ultra-reliable and low-latency 5g
communication for a factory automation use case,” in Communication
Workshop (ICCW), 2015 IEEE International Conference on. IEEE,
2015, pp. 1190-1195.

O. Moll, A. Zalewski, S. Pillai, S. Madden, M. Stonebraker, and
V. Gadepally, “Exploring big volume sensor data with vroom,” Pro-
ceedings of the VLDB Endowment, vol. 10, no. 12, 2017.

J. Budomo, I. Ahmad, D. Habibi, and E. Dines, “4g Ite-a systems at
vehicular speeds: Performance evaluation,” in Information Networking
(ICOIN), 2017 International Conference on. IEEE, 2017, pp. 321-326.

E. Directive, “95/46/ec of the european parliament and of the council
of 24 october 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data,”
Official Journal of the EC, vol. 23, no. 6, 1995.

[24]

[25]

[26]

[27]

[28]

[29]

49

P. Hirmer, M. Wieland, U. Breitenbiicher, and B. Mitschang, “Auto-
mated Sensor Registration, Binding and Sensor Data Provisioning,” in
CAIiSE Forum, 2016.

S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud
computingthe business perspective,” Decision support systems, vol. 51,
no. 1, 2011, pp. 176-189.

S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and appli-
cations,” in Hot Topics in Web Systems and Technologies (HotWeb),
2015 Third IEEE Workshop on. IEEE, 2015, pp. 73-78.

D. Floyer, “The vital role of edge computing in the internet of things,”
Oct. 2015. [Online]. Available: https://wikibon.com/the-vital-role-of-
edge-computing-in-the-internet-of-things/

“Complex event processing streaming analytics.” [Online]. Available:
http://www.espertech.com/

“Eclipse mosquitto an open source mqtt broker.” [Online]. Available:
https://mosquitto.org/

All links were last followed on May 21, 2019.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

