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Abstract—In mobile application development projects, large en-
terprises have to face special challenges. To meet these challenges
and to meet today’s high expectations on user centered design,
inter-project knowledge transfer of software artifacts becomes
an important aspect for large software development companies.
For supporting this kind of knowledge transfer, we propose
two approaches based on textual similarity of user stories for
a recommendation system: the first approach uses standard
information retrieval techniques whereas the second approach
uses a more recent approach from language modeling, namely
word embeddings. We also present a three-step evaluation of
these approaches, comprising of a data analysis, a survey and a
user study. The results tend to support the information retrieval
approach and not only show that user story similarity rated by
users and rated by such an algorithm is connected, but also
demonstrate a strong relation between user story similarity and
their usefulness for inter-project knowledge transfer. Besides,
our evaluation shows that using word embeddings showed worse
results than the established information retrieval approach in the
domain of large enterprise application development.

Keywords–Mobile Enterprise Applications; User Stories; Rec-
ommendation Systems; User Centered Design.

I. INTRODUCTION

In recent years, the user centered design approach has
become an integral part of software development, and also for
mobile application (app) development. Often, at the beginning
of an agile development process, requirements for an app are
analyzed and are written down in the form of user stories.
They are short requirement descriptions from the user’s point
of view. Based on these user stories, during the further de-
velopment process other software artifacts, such as documen-
tation, screen designs, or source code are created to support
the development process. Especially in large enterprises, the
reuse of these software artifacts can save time and resources,
since large software development companies are facing several
challenges: There are multiple development projects at the
same time, resulting in a large number of software artifacts.
Due to a lack of time, these artifacts are often not properly
documented in order to support a reuse of these materials
and if there is a documentation, the form and content are
not standardized. Furthermore, team members often do not
know if there is a project with similar requirements and which
coworker they can contact about a reuse of software artifacts.
In general, large software development companies deal with

lack of transparency in development projects, contact persons,
and software artifacts.

Saving time and resources through reuse is especially de-
sirable for organizations in the Mobile Enterprise Application
(MEA) market: due to digitalization trends, these enterprises
are developing many apps for various customers at the same
time. Nevertheless, quick time to market is important be-
cause of a rapidly changing mobile ecosystem. Additionally,
enterprises can only access a limited number of specialists
that should focus on demanding tasks and work on difficult
problems that have not been solved in the company already.
Given this background, in this paper we propose an approach
that supports the reuse of software artifacts in mobile app
development projects based on textual similarity of user sto-
ries. This paper is an extension of [1]. In a previous paper
on this problem, we showed that similar user stories can be
identified via classical methods of information retrieval [2].
In the following evaluation, we investigate how well these
methods work in a real world dataset and compare it to a
mor recent approach from the language modeling area, namely
word embeddings. We also evaluate how useful our approach
is for employees of a large software development company.
Therefore, Section II provides an overview on related work.
Section III introduces our approach. An evaluation is described
in Section IV and its results are presented in Section V. These
results are discussed afterwards in Section VI. Section VII
concludes this paper and gives an outlook on further research.

II. FOUNDATIONS AND RELATED WORK

Supporting reuse in the context of software development
can be facilitated in many ways. One of these ways is best
practice sharing, where good solutions for common problems
are exchanged within a community of mobile app developers
and designers. However, this requires a lot of work and time to
find common problems and respective solutions. Especially in
the context of MEA development, time is an important factor.
Therefore, supporting this process with automated approaches
seems to be promising. An automated approach in this area
is the use of recommendation systems [4]. Recommendation
systems recommend items to users based on item similarities
or preferences of similar users. This idea can be applied to
software engineering, where a system can recommend software
engineering artifacts to developers [5]. The goal of these
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recommendation systems is mainly to support the software de-
velopment process, especially focused on the implementation
phase and fixing bugs.

An important field in this area is issue triage. This field
deals with supporting the management of bug reporting sys-
tems. This includes both recommending specific developers for
a given bug report, as well as detecting duplicate bugs. Usually,
standard information retrieval techniques or shallow machine
learning approaches are used [6]: An approach by Runeson et
al. [7] is based on information retrieval techniques and tries to
detect duplicates. Other approaches build on including other
information besides text, e.g., execution information [8]. In [9],
a framework for building recommendation systems for issue
triage is presented. This is done by linking both developers and
bug reports to software components. Besides using classical
information retrieval methods, more recent approaches use
deep learning-techniques like word embeddings [10]. While
this area also includes computing similarities between textual
descriptions in the area of software development, there are
some important differences: (1) bug reports are often written
from a very developer-centric perspective. (2) They usually
contain a lot of technical information like log output. (3) The
main goal of issue triage is not to support reuse, but to support
bug management tasks.

Another approach to improve the knowledge management
in software development projects is to document and store
project information in an accessible way, e.g., in architec-
tural knowledge management tools [11]. These approaches
have also been applied in industrial case studies and were
deemed fit for usage in an industry context: [12] evaluated
a semantic architectural knowledge management tool that is
based on existing data on software design patterns and their
application in software projects. However, if this kind of data
is not already available the overhead for documenting usage of
design patterns can be too high for an application in practice.
This is especially an issue for the fast-paced market of mobile
enterprise applications.

In the last decade, user stories as a user-centric representa-
tion of requirements were introduced [13]. A typical user story

is at most two sentences long and consists of a reference to a
certain type of user, a description of an activity this user wants
to do with the software and a reason why this will help the
user. As an attachment to the user story, acceptance criteria
add more detailed information to the user story. Only few
approaches exist to support software reuse in the context of
user stories: [14] proposes a recommendation system based
on user stories and evaluates this system on a project history.
However, it is not clear how helpful these recommendations
would be when actually working on a new project. In our pre-
vious work [2], we evaluated how well information-retrieval-
based approaches can distinguish between two types of user
stories and which aspects of the user story are important to it.

The established method for text representation in informa-
tion retrieval is the vector space model which dates back to the
1960s: each document is represented by a vector, where each
vector component represents how often a term occurs in the
document. This is often accompanied by weighting the terms
given their prevalence in the overall corpus. The similarity
between documents is computed by the cosine of the angles
of their vector representation. However, this approach has a
significant drawback: the semantic of terms can not be taken
into account: terms like ”pretty” and ”lovely” are treated as
completely unrelated terms, the same way as terms like ”driv-
ing” and ”universe”. To also represent the meaning of words
in search corpora, latent semantic indexing was introduced
(LSI) [15]. LSI is based on a singular value decomposition of
the term by document matrix, which is the matrix built from
all document vectors. While LSI can deal with the synonymy
problem in some cases, it still conceptualizes language at the
abstraction level of documents and can not determine meaning
on a lower level – terms used in similar documents will be
regarded as semantically similar by LSI, regardless of their
immediate context.

To overecome this issue, more recent approaches use word
embeddings, where an embedding should represent a term’s
context on the level of sentences. One of the most popular
embedding approaches, Word2Vec [3], is able to represent
semantic information based on an unsupervised learning pro-
cedure. This learning procedure is based on two models, Skip-

Figure 1. Continuous Bag of Words (CBOW) and Skip-Gram model [3]
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Figure 2. Principal component analysis of word embeddings for countries
and capitals [16]

Gram and Continuous Bag of Words (CBOW). Both models
are shallow neural network architectures depicted in Figure 1.
Given a context of a few words (words w(t− 2)− w(t+ 2))
CBOW predicts the word in the center (w(t)) using a weighted
sum and a hidden embedding layer. E.g., given ”The dog ran
very fast” as context, CBOW would try to predict the term
”ran”. The Skip-Gram model is built on the reverse task: given
a centroid word (”ran” in the previous example), this model
tries to predict the context. As a byproduct of learning these
models, entity-specific weight vectors are produced, which
capture some semantic relations. An example for these seman-
tic relations is shown in Figure 2. This figure shows selected
vectors for countries and capital cities. The semantic relation
”is capital of” can be observed through a shift operation in
the vector space. This property holds for other relations, too.
E.g., the vector from ”king” to ”queen” is very similar to
the vector from ”man” to ”woman”. To our knowledge, text
similarity based on word embeddings has not been used for
recommending similar user stories.

In this paper, we expand our previous work to an evaluation
of how useful recommendations on a real-world software
engineering dataset are and what information needs to be
contained in these recommendations to make them actually
helpful. We also evaluate, how established methods for in-
formation retrieval compare to modern approaches like word
embeddings in relation to these aspects. This issue has not
been addressed by the approaches we mentioned in this section
and is required to make recommendations in the context of
user stories usable in practice. The only way to evaluate the
usefullness of recommendations is to conduct a survey with
practitioners from the industry.

III. RECOMMENDATION APPROACHES

Our general approach to supporting reuse is to use simi-
larity measures for documents to recommend textually similar
user stories to the story a participant in an app development-
project is currently working on. As similarity measures we
use established techniques from information retrieval as well
as a newer methods from the area of language modeling,
namely word embeddings. The information that is attached
to the recommended user stories (e.g., screen designs, textual

documents or source code) can then be used to support current
efforts. In this way, team members could reuse results from
different projects without previously knowing about these
projects.

A. Information Retrieval Methods
To find textually similar user stories based on established

information retrieval methods, a search based on the well-
known information retrieval approach Term Frequency-Inverse
Document Frequency (TF-IDF) and stop word removal is used.
Stop words are words that occur frequently in texts so that they
do not contain useful information. Examples for stop words
are ”I”, ”the”, ”a”, etc. These words are removed from the
user stories before processing the user stories with TF-IDF,
which represents texts as follows: Each document d (i.e., a
user story) is represented by a vector Wd, which contains an
entry for each term used in the dataset. Each vector component
Wd,t represents the importance of a term t for the document
d. This representation is computed by the frequency of a given
term in the document tfd,t multiplied by the inverse document
frequency log N

dft
, where N is the number of all documents

and dft is the number of occurrences for a given term in all
documents. This yields the following formula for a document’s
vector representation:

Wd,t = tfd,t ∗ log
N

dft

To compute the similarity between documents, the cosine
of the angle of two vectors is used. The naive approach
for similarities would be to compute the euclidian distance
between vectors, however, this would favour documents with
similar lengths.

Cosine similarities are then used to order texts regarding
their relative similarities. Thus, we do not use similarity scores
as an absolute value, but only to distinguish between more
and less similar documents. To find similar user stories to
one given user story, the similarity is computed according
to the described procedure. User stories are then ordered by
their similarity and the user story with the highest score is
considered the most similar.

B. Word embeddings
To find similar user stories based on word embeddings,

first, a word embedding is needed. Word embeddings are
usually trained on very large corpusses such as the Google
News dataset, which contains around six Billion tokens [3].
Even in large companies, creating a text corpus of that size
to learn embeddings is not realistic. Because this issue is not
unique to the domain of large companies, pretrained sets of
general purpose word embeddings are publically available on
the web [17].

However, these word embeddings need to be transformed
into a document embedding. This is usually done by averaging
the word embeddings for a document:

ed =
1

|d|
∑
t∈d

ew

where ed and ew are embeddings of word w and document
d and |d| is the length of d. To compute the similarity
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between documents, we use the same distance measure as for
comparing TF-IDF documents, namely the cosine distance. As
with TF-IDF, we can then order documents by their similarity
and thus find the most similar user stories to each story.

For implementing this process, we use spaCy [18], a freely
available language processing toolkit. The embeddings we use
are pre-trained on two corpuses: the TIGER and WikiNER
corpuses. The TIGER corpus [19] contains text from news-
paper articles from the ”Frankfurter Rundschau”, a german
newspaper. It consist of 50000 sentences containing 900000
tokens. WikiNER [20] is build upon Wikipedia articles from
several languages, the german part used in the spacy model
consists of 19.8 Million Sentences containing 208 Million
Tokens.

IV. EVALUATION

The aim of our evaluation is to assess the recommendation
approaches described in Section III regarding their suitability
in a real-world scenario. To do so, it is relevant to deepen the
understanding of the reuse process in order to get a complete
picture on the potential usefulness of a recommendation system
in large enterprises. Therefore, our evaluation answers the
following research questions:

1) Which kind of knowledge transfer is already being
practiced?

2) Can an automated recommendation system be useful
for supporting knowledge transfer?

3) Is there a relation between user story similarity and
their usefulness?

4) How do information retrieval approaches compare to
more recent language modeling approaches in this
environment?

A. Methodology
To answer these research questions, we conducted an

evaluation comprising three steps: In the first step, we ana-
lyzed a dataset of user stories from a large German software
development company. In the second step, we distributed
a questionnaire covering questions about practices in inter-
project knowledge transfer in general. In the third step, we
invited participants to single sessions where they were asked to
solve tasks focusing on user stories in inter-project knowledge
transfer.

The number of participants in this study was limited to a
small number due to the testing requirements: all participants
had to come from the same company with a specific expertise
on the implementation of the user stories and as references
for the similarity comparison. Thus, the results are far from
representative and cannot be considered as an empirical val-
idation. However, the results of this prestudy can five some
critical and usable expert feedback on the potential usefulness
and applicability of our approach.

B. Dataset
To evaluate the usefulness of recommendations based on

user stories in the area of Mobile Enterprise Application
Development, we used a dataset of real-world user stories
out of nine app development projects provided by an industry
partner. The dataset contains 591 user stories, of which 355 are
long enough to contain meaningful information. User stories

were considered long enough when they were at least 80
characters long, which is roughly two times the length of only
the formal aspects of a user story description. This boundary
was set by investigating example user stories. A histogram of
story length (in characters) is shown in Figure 3. From the
distribution of story length and the standard deviation, we can
already conclude that the dataset is very heterogeneous, as
could be expected in a real-world dataset. The data is not only
heterogeneous regarding the textual length, but also regarding
their specifity and their degree of abstraction. For example,
some user stories describe fixing typos in data protection
regulation informations, while others describe a high level view
of a location-based service.
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Figure 3. Distribution of User Story Length

For each user story in the dataset, we computed the top
five most similar user stories according to TF-IDF, with cosine
similarity both for stories from different projects as well as
stories from the same project. Stories from the same project
shold overall be more similar than stories from different
projects, since user stories in one project can deal with
overlapping topics. E.g., there can be one story describing a
search function, one describing how the search can be accessed
and another story describing how search results should be
sorted and displayed. A histogram of cosine similarity values
between all user stories is shown in Figure 4. Stories in the
same project are given higher similarity values than stories
from different projects, which indicates that it is possible to
differentiate between projects using cosine similarities of TF-
IDF vectors.

We followed the same procedure for vectors generated by
the word embeddings procedure. Figure 5 shows a histogram
of cosine similarities between stories in the same project as
well as in different projects. When comparing Figure 4 and
Figure 5, one can observe that while for TF-IDF, the average
is close to zero, for embedding-based methods it is close to
1. This result can be expected from the nature of the vector
spaces: Whereas a TF-IDF vector space has many dimensions
and the vectors are relatively sparse, a word embedding space
contains only a few hundred dimensions with dense vectors.
Another notable difference is that embedding-based methods
show a smaller overall variance. In general, the distribu-
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Figure 4. Distribution of TF-IDF User Story Similarities

tion of cross- and inside-project similarity values are more
similar for embedding-based methods. This implies that the
TF-IDF-based approach might be better suited to distinguish
between projects. However, there is a difference between the
distributions for cross- and inside project similarities for the
embedding approach and the usefulness needs to be further
evaluated.
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Figure 5. Distribution of Embedding-Based User Story Similarities

To test the effect of combined similarity measures, we
repeated these experiments by simply adding the two similarity
measures. Results of this approach are shown in Figure 6. Note
that this combination of similarity measures has a domain of
[0,2]. However, just adding the two similarity measures leads
to more influence in the combined similarity measure for the
similarity with a higher standard deviation and mean. Hence,
with this unscaled version of the combined similarity measure,
the similarity is influenced mainly by the embedding-based
similarity.

To overcome this issue, we constructed a new similarity
measure that scales both similarities to the same mean of 0
and to the same standard deviation. In this way, both similarity
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Figure 6. Distribution of Combined Similarities, Unscaled

measures have an equal influence on the value of the combined
similarity measure. The similarity distribution of this combined
method is shown in Figure 7. This combined similarity mea-
sure is the variant with the least difference between means of
Cross- and Inside-Project similarities. Hence, the combined
method is the weakest method for distinguishing between
projects. The highes differences can be found between TF-IDF
scores.
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Figure 7. Distribution of Combined Similarities, Scaled

C. Survey
To get an overall overview of the requirements in user

story-centered reuse, we designed a questionnaire that com-
prised ten questions about inter-project knowledge transfer.
The questionnaire was online for 17 days and was distributed
among the employees of a large German software development
company. It was also used for recruitment of participants for
the user study. First, the participants had to specify their field
of activity. We then explained to them our approach for inter-
project knowledge transfer that underlay the questions, which
is the re-use of software artifacts and knowledge, such as user
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stories, screen designs, documentation or source code, during
development projects of mobile applications.

We asked the participants, how useful such a knowledge
transfer is and in which way and how regularly it is already
being practiced in their department. Further, they had to name
obstacles that occur with inter-project knowledge transfer.
Then, we asked them to rate the usefulness of particular
software artifacts in this context and they had to assess the
viability of such a knowledge transfer in their department.
They were asked to rate the usefulness of a software that
would support knowledge transfer. Lastly, the participants were
asked to rate the importance of additional information to
specific software artifacts on a five-point scale. Importance
may differ from usefulness in certain situations, since it is
used to prioritize between different potentially useful artifacts.

D. User Study
The user study was carried out in one-on-one sessions with

employees of a large German software development company.
Each session lasted 20 to 30 minutes. We selected three user
stories for which related user stories were known to be in
the dataset. We computed the most similar user stories with
both similarity approaches for each of these reference user
stories with varying levels of similarity: one user story that
the algorithm listed most similar, one that it listed as medium
similar, and one that it listed as less similar, which lead us to
three user story groups, one for each reference story.

Based on the reference user stories, the participants were
asked to solve three tasks. First, they had to rank the user
stories obtained by the algorithm regarding their similarity to
the reference user story from the most similar to the least
similar one. Then, they should rate the usefulness of each of
the similar user stories. To determine the usefulness of the
user stories, participants were told to estimate how much arti-
facts (e.g., source code, design documents or documentation)
produced during an implementation of a ranked user story
could contribute to the implementation of the corresponding
reference user story. Note that this is not included in similarity
aspects: user stories can cover a roughly similar topic, however,
different levels of abstraction, different user types or platforms
or technical aspects could make it impossible to actually reuse
the results of the implementation of a user story in a different
context. Such user stories would be considered similar by
users, but finding these stories would not actually support reuse
of artifacts related to one user story to another. Concluding the
session, they were asked to name additional information that
should be provided by the recommendation system in order to
support the implementation of the reference user story.

V. RESULTS

The questionnaire was answered by nine employees of
a large German Software development company. While nine
participants are not enough to allow a detailed statistical
analysis, this number is in general considered enough for
usability testing [21]. Eight participants specified their field
of expertise as conception, one as implementation.

All of the participants rated the knowledge transfer de-
scribed by us (that is, the re-use of software artifacts and
knowledge, such as user stories, screen designs, documenta-
tion or source code, during development projects of mobile
applications), using a five-point scale from 1 – not useful

Phone
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Repositories

One-on-one conversa�on
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0 1 2 3 4 5 6 7 8

Number of Respondents

Figure 8. Currently Used Types of Knowledge Transfer
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Lack of �me
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0 1 2 3 4 5 6 7 8 9

Number of Respondents

Figure 9. Existing Barriers for Knowledge Transfer

at all to 5 – very useful, as very useful or rather useful
(median=5; maximum=5; minimum=4). The currently used
types of knowledge transfer selected from a list of pre-made
options are shown in Figure 8. All of the participants stated
that they already practiced this kind of knowledge transfer,
seven via one-on-one conversations or group conversations,
four via e-mail, chats or by using knowledge bases, and
three via phone calls. On average, each person practices three
methods of knowledge transfer. Only one stated to practice it
on a regular basis, and eight practice it as needed. Obstacles
for knowledge transfer selected by participants from a list of
possible obstacles are shown in Figure 9. The most often
named obstacle was missing information about a contact
person (eight), followed by missing documentation of content
and materials and lack of time (six respondents each). The
participants described further obstacles as being unaware of
the existence of reusable materials, as well as not knowing
where to look for information regarding reusable artifacts.

User ratings for usefulness of artifacts for Knowledge
transfer on a five-point scale are shown in Figure 10. Screen
designs were rated as most useful (median=5, maximum=5,
minimum=3), followed by documentation of the software
architecture (median=4, maximum=5, minimum=3). Ratings
for potential usefulness, implementability and importance are
shown in Figure 11. Regarding the viability of such a knowl-
edge transfer in their department and in relation to specific
software artifacts, the highest implementability was considered
for screen designs, followed by documentation of the software
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architecture and use case descriptions. Furthermore, the an-
swers revealed that most knowledge transfer that is already
practiced concerns screen designs (done by 4 participants),
documentation of the software architecture (2 participants) and
user stories (1 participant).

The participants rated a software solution for supporting
knowledge transfer on a five-point scale as rather useful
(median=4; maximum=5; minimum=1), with 6 participants
considering it rather useful or useful. Regarding the importance
of additional information, information on use case descriptions
were rated as most useful (median=4; maximum=5; mini-
mum=3). In general, any kind of additional information (e.g.,
source code, screen designs, architecture documentation) was
rated as ”rather important” for all kinds of software artifacts.

Of the eight participants of the user study, all were working
in conception respectively design. Results of the user study are
shown in Figures 12-15. Results of the first task show that the
participants ranked the user stories similar to the ranking of
the algorithm. Figure 12 shows the ranking of story similarity
to the reference story by the TF-IDF algorithm and the mean
ranking by the participants. The data shows that user story
similarity of the algorithm seems to resemble the perceived
user story similarity by humans: The three user stories ranked
as most similar by the algorithm also got the highest similarity
rankings by the participants. The user stories ranked as second
by the algorithm were partially ranked as more and partially
as less similar, but in general reflect the algorithmic ranking.
For stories that are not obviously the least or most similar,
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Figure 12. Ranking of user stories by TF-IDF and mean ranking by
participants.
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Figure 13. Ranking of user stories by Word-Embedding-Similarity and mean
ranking by participants.

this result was to be expected. Accordingly, the three least
similar user stories of the participants match those ranked by
the algorithm.

The results of the same experiment with the embedding
model are shown in Figure 13. While the stories rated as most
similar by the algorithm were also perceived as rather similar
by the users, some stories that where perceived as least similar
by the algorithm where rated as very similar by the algorithm.
This is especially the case in story group 1, where the story that
was perceived as most similar by the users was ranked as least
similar by the algorithm. The stories ranked as second most
similar by the algorithm are ranked least similar by the users.
Overall, there does not seem to be much agreement between
user- and algorithmic ratings when using the embedding-based
approach.

We also repeated this experiment with a combination of
TF-IDF and Embeddings we already used in Section IV-B.
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Figure 14. Ranking of user stories by Word-Embedding-Similarity combined
with TF-IDF-Similarity and mean ranking by participants.
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Figure 15. Mean estimated usefulness and mean ranking by participants per
user story.

We only used the version with un-weighted addition of the
combination, since this lead to slightly better results when
distinguishing between projects. From the graph we can see no
connection between algorithmic rank and average user scores.
In contrast to the similarity measure using only word embed-
ding similarities, where some connection between human and
algorithmic rank was visible, no connection can be found.

Further on, for each user story in the three user story
groups, we calculated the mean similarity ranking to the
reference story given by the participants and the mean useful-
ness rating, according to the rated usefulness of a computed
user story for the implementation of the reference story. As
Figure 15 shows, there are two groups of user stories that
are delineated from each other. The first group has higher
usefulness values (3.50 to 4.88) and higher similarity rankings
(1.00 to 1.75), while the second group has lower usefulness
values (1.63 to 2.25) and lower similarity rankings (2.38 to

3.00). However, the user story with the highest usefulness
(4,88) is ranked with medium similarity (1.75), while the two
user stories with the lowest usefulness (1.63 and 1.75) are
ranked as least similar.

VI. DISCUSSION

The results of the questionnaire show that, in general,
people appreciate knowledge transfer and that our approach
for it meets the users’ needs. This is also reflected in the
fact that seven of our participants already practice this kind
of knowledge transfer. Although, direct contact and personal
conversations are the preferred ways of doing so. Electronic
ways for contacting each other are rarely used. One reason for
that might be that electronic methods, such as emails, chats or
knowledge bases, do not meet the user needs for knowledge
transfer. Nevertheless, for all these methods the user needs to
know, which person can be contacted for further information
– our approach takes this important feature into account,
which was also the most often named obstacle for knowledge
transfer. The second obstacle is insufficient documentation –
this problem is also taken account of in our approach, since
it simplifies documentation by searching existing software
artifacts based on similarities. In general, the answers confirm
that our approach addresses the right issues and helps to
eliminate the obstacles for knowledge transfer that have been
named by the participants. The software tool proposed by us
was said to be most useful for screen design. This answer is
not unusual, since almost all participants of our questionnaire
work in design and conception. However, screen design is their
main field of activity and thus, we consider it positive that our
approach is rated as useful for this field. Further, the viability
was rated highest for screen designs. These results give some
evidence that our approach can create additional value in one
of the most important fields for knowledge transfer. All in all,
two thirds of the participants consider our approach useful or
very useful.

The results of the user study show that the user story
similarity of the TF-IDF algorithm seems to be connected to
the perceived human user story similarity. For the embedding-
based similarity algorithm this is not the case. The most likely
cause of embeddings not working in this case is that our dataset
contains a lot of words that are very specific to the domain of
mobile application development. Therefore, they do not have
a meaningful embedding or no embedding at all, since we
used embeddings theat were pretrained on a general purpose
dataset. However, these domain-specific words are often the
words that carry a lot of meaning, since they express concepts
that are highly relevant to a domain.

One mitigation for this issue would be retraining the word
embeddings on a set of documents from the domain. However,
given the small number of documents that use these words it
is unclear if this can work. Even if documents of a relevant
size were available, a significant amount of computing power
would be required to train these embeddings.

Another mitigation would be a manual clustering of these
domain specific important terms to capture their semantic
relations. These clusters could then be used to improve search
results for TF-IDF-based searches. However, finding these
clusters and maintaining them requires a significant amount
of manual work.
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A combination of TF-IDF and Word-Embedding-based
methods showed less connection between perceived similarity
and algorithmic similarity. The most likely cause for this is that
the disagreement between both similarity measures causes so
much noise, so that the overall performance is impacted. This
might be addressed by further tuning the wights of a combined
approach, but given the poor performance of general-purpose
embeddings for this use case, this does not seem like a very
promising approach.

Furthermore, user story similarity mostly coincides with
their usefulness. The data indicates that a low similarity implies
a low usefulness. However, the most similar stories are not
always the most useful ones, but to some extent a high
similarity seems to be connected to higher usefulness. This
confirms our assumption that similarity between user stories
and usefulness for the implementation of another user story are
not necessarily the same, since usefulness can be influenced
by several dimensions of similarity: two user stories can share
the same implementation technology, but not the same domain
or vice versa. Two user stories can share the same domain
and technology but one may use an outdated version of an
API or adhere to a human interface guideline that has become
obsolete. Hence, it is important to address these factors like
this when building a recommendation system in the area of
mobile enterprise application development.

VII. CONCLUSIONS AND FURTHER RESEARCH

In conclusion, the evaluation provided valuable findings,
so that our research questions can be answered as follows:

1) Which kind of knowledge transfer is already being
practiced?
Mainly, knowledge transfer takes place in personal
conversations between two people and groups. It is
not carried out on a regular basis, but as required. Our
results suggest that everyone does practice knowledge
transfer in one way or the other.

2) Can an automated recommendation system be useful
for supporting knowledge transfer?
Our results show that an automated recommendation
system is a useful tool for supporting knowledge
transfer, especially for screen designs.

3) Is there a relation between user story similarity and
their usefulness?
The results of our user study indicate that similarity
and usefulness are not necessarily the same, but
there is a relation between user story similarity and
their usefulness. Further, there also is a connection
between user story similarity rated by an algorithm
on the one hand and humans on the other hand.

4) How do information retrieval approaches compare to
more recent language modeling approaches in this
environment?
On our dataset, established information retrieval ap-
proaches performed better than an embedding-based
language modeling approach. The likely cause of this
is the domain-specific vocabulary in this area.

As a next step, another iteration of the evaluation could be
made in different companies, in order to receive results that are
applicable in several contexts of work. Also, more approaches
for computing similar user stories could be evaluated: A

comparative study of textual similarity approaches such as
word movers distance [22] or taking metadata into account,
would provide valuable insights.
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mendation system for user stories in mobile enterprise application de-
velopment,” International Journal On Advances in Intelligent Systems,
vol. 10, no. 1 and 2, 2017, pp. 40–47.

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[4] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation
systems for software engineering,” IEEE Software, vol. 27, no. 4, 2010,
pp. 80–86.

[5] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat:
A project memory for software development,” IEEE Trans. Softw.
Eng., vol. 31, no. 6, Jun. 2005, pp. 446–465. [Online]. Available:
https://doi.org/10.1109/TSE.2005.71

[6] A. Goyal and N. Sardana, “Machine learning or information retrieval
techniques for bug triaging: Which is better?” e-Informatica Software
Engineering Journal, vol. 11, no. 1, 2017, pp. 117–141.

[7] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of dupli-
cate defect reports using natural language processing,” Proceedings -
International Conference on Software Engineering, 2007, pp. 499–508.

[8] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An Approach to
Detecting Duplicate Bug Reports using Natural Language and Execu-
tion Information,” Proceedings of the 30th international conference on
Software engineering, 2008, pp. 461–470.

[9] J. Anvik and G. C. Murphy, “Reducing the Effort of Bug Report
Triage: Recommenders for Development-Oriented Decisions,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 20, no. 3, 2011, pp. 10:1–10:35.

[10] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring
the effectiveness of deep learning for bug triaging,” arXiv preprint
arXiv:1801.01275, 2018.

[11] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years
of software architecture knowledge management: Practice and future,”
Journal of Systems and Software, vol. 116, 2016, pp. 191–205.

[12] M. Sabou et al., “Exploring enterprise knowledge graphs: A use
case in software engineering,” in European Semantic Web Conference.
Springer, 2018, pp. 560–575.

[13] M. Cohn, User Stories Applied: For Agile Software Development.
Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 2004.

[14] H. Pirzadeh, A. D. S. Oliveira, and S. Shanian, “ReUse : A Rec-
ommendation System for Implementing User Stories,” in International
Conference on Software Engineering Advances, 2016, pp. 149–153.

[15] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, 1990, pp.
391–407.



69

International Journal on Advances in Intelligent Systems, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/intelligent_systems/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., 2013, pp. 3111–3119. [Online].
Available: http://papers.nips.cc/paper/5021-distributed-representations-
of-words-and-phrases-and-their-compositionality

[17] T. Mikolov, “Google code: Word2vec,”
https://code.google.com/archive/p/word2vec/, [retrieved: February
2019], 2013.

[18] Explosion AI, “spaCy – Industrial-Strength Natural Language Process-
ing,” spacy.io, [retrieved: February 2019], 2019.

[19] S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra, E. König,
W. Lezius, C. Rohrer, G. Smith, and H. Uszkoreit, “Tiger: Linguistic
interpretation of a german corpus,” Research on language and compu-
tation, vol. 2, no. 4, 2004, pp. 597–620.

[20] J. Nothman, N. Ringland, W. Radford, T. Murphy, and J. R. Curran,
“Learning multilingual named entity recognition from Wikipedia,”
Artificial Intelligence, vol. 194, 2012, pp. 151–175. [Online]. Available:
http:/dx.doi.org10.1016/j.artint.2012.03.006

[21] J. Nielsen, “How many test users in a usability study?”
https://www.nngroup.com/articles/how-many-test-users/, website.
[retrieved: February, 2019], 2012.

[22] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word
embeddings to document distances,” in International Conference on
Machine Learning, 2015, pp. 957–966.


