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Abstract— Large-scale data about learners’ behavior are being 
generated at high speed on various online learning platforms. 
Knowledge Tracing (KT) is a family of machine learning 
sequence models that use these data to identify the likelihood of 
future learning performance. KT models hold great potential 
for the online education industry by enabling the development 
of personalized adaptive learning systems.  This study provides 
an overview of five KT models from both a technical and an 
educational point of view. Each model is chosen based on the 
inclusion of at least one adaptive learning property. These are 
the recency effects of engagement with the learning resources, 
dynamic sequences of learning resources, inclusion of students’ 
differences, and learning resources dependencies. Furthermore, 
the study outlines for each model, the data representation, 
evaluation, and optimization component, together with their 
advantages and potential pitfalls. The aforementioned 
dimensions and the underlying model assumptions reveal 
potential strengths and weaknesses of each model with regard 
to a specific application. Based on the need for advanced 
analytical methods suited for large-scale data, we briefly review 
big data analytics along with KT learning algorithms’ 
scalability. Challenges and future research directions regarding 
learners’ performance prediction are outlined. The provided 
overview is intended to serve as a guide for researchers and 
system developers, linking the models to the learner’s 
knowledge acquisition process modeled over time. 

Keywords- adaptive learning; big data applications; deep 
learning models; knowledge tracing; predictive analytics; 
sequential machine learning. 

I. INTRODUCTION 
Big Data Analytics (BDA) is becoming increasingly 

important in the field of online education. Massive Open 
Online Courses (e.g., Coursera), Learning Management 
Systems (e.g., Moodle), social networks (e.g., LinkedIn 
Learning), online personalized learning platforms (e.g., 
Knewton), skill-based training platforms (e.g., Pluralsight), 
educational games (e.g., Quizlet), and mobile apps (e.g., 
Duolingo) are generating various types of temporal, dynamic 
and large-scale data about learner's behaviors during their 
knowledge acquisition process of a skill over time [1]–[3]. To 
illustrate this with an example, the 290 courses offered by 
MIT and Harvard in the first four years of edX produced 2.3 
billion logged events from 4.5 million learners. The emerging 
scientific fields of educational neuroscience [4] and smart-
Education [5][6] can provide new insights about how people 
acquire skills using these new big data sources in education. 

Artificial Intelligence (AI), Learning Analytics (LA), and 
Educational Data Mining (EDM) are three areas under 
development oriented towards the inclusion and exploration 
of big data analytics in education [2][7]–[9]. AI, LA, EDM, 
and big data technologies have been progressing rapidly, 
including developments towards the inclusion and 
exploration of BDA in education. Yet, specific advanced 
analytic methods suited for large, diverse, streaming, 
dynamic or temporal data are still being under development. 
EDM considers a wide variety of types of data, algorithms, 
and methods for modeling and analysis of student data, as 
categorized by [2][10][11]. A critical question in this area is 
whether complex learning algorithms or better data in terms 
of higher quality [12], well pre-processed, or bigger in size 
[8][13]–[15] is more important for achieving improved 
analysis results concerning either their predictive power or 
explainability.  

For the aforementioned reasons, the implementation of 
BDA in education is considered to be both a major challenge 
and an opportunity in education [2][3][7]–[11][13][16][17]. 
Table I illustrates the models used in EDM. task of 
Knowledge Tracing has been modeled via Neural Networks 
and Probabilistic Graphical supervised learning models. 

Knowledge Tracing (KT) is widely applied in adaptive 
learning systems, and to other modal sources of big data [11] 
such as online standardized tests, Massive Open Online 
Courses (MOOCs) data, and educational apps. KT is an EDM 
framework for modeling the acquisition of student 
knowledge over time, as the student is observed to interact 
with a series of learning activities. The objective of the model 
is to either infer the knowledge state, -which stands for the 
depth and robustness of the specific skill- or to predict the 
performance on all learning resources in the sequence that 
assess the skill acquisition process. 

KT can thus be considered as a sequence machine 
learning model that estimates a hidden state (i.e., the 
probability that a certain concept of knowledge is acquired) 
based on a sequence of noisy observations (i.e., the 
interaction-performance pairs on different learning resources 
on consecutive trials). The estimated probability is then 
considered a proxy for knowledge mastery that is leveraged 
in recommendation engines to dynamically adapt the learning 
resources or feedback returned to the learner.   

There are plenty of past similar review attempts regarding 
the modeling of knowledge acquisition: 
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i. algorithms [2][10][17] and empirical evidence-
based [7] EDM,  

ii. issues [8], applications [9], research methods 
[14], and learner models [11] concerning big 
data in knowledge acquisition process,  

iii. design principles [3], AI algorithms [16], learner 
models [50][51][34] for online, adaptive, 
intelligent learning systems,   

iv. evaluation metrics for measuring learner 
modeling quality [26][27], 

This study provides an overview of currently existing 
representations of KT models focused on prediction of 
learner performance. The educational and technical angles, 
inspired by the above list are then used as guides to select and 
analyze the modeling quality of the learner model. 

The literature distinguishes between the probabilistic and 
deep learning representations and both are widely used to 
represent complex, real-world phenomena in other domains 
apart from learning. The former is comprised by Hidden 
Markov Models and Dynamic Bayesian Networks, which 
model the knowledge of a learner as a local, binary, stochastic 
hidden state. The latter is constituted by deep Recurrent 
Neural Networks (RNN) models with Long Short-Term 
Memory (LSTM) and Neural Networks augmented with an 
external memory (MANN). In this representation, the 
learner’s understanding of a skillset is treated as a distributed, 
continuous hidden state in the LSTM and as an external 
memory (value) matrix in the MANN; both are updated in a 
non-linear, deterministic manner. This study is not focused 
on specific variants of one model, rather it considers all these 
different models for the representation of the evolution of 
learner knowledge. Furthermore, it is important to note that, 
although the challenges and advantages are usually hold for 
general applications in other domains, in this review we refer 
only to the task of knowledge acquisition. 

TABLE I.  MODELS FOR EDUCATIONAL DATA MINING  
Predictive Analytics Methodology  

Statistical & Machine Learning Computational Intelligence 
(CI) 

Machine Learning Models  
 Supervised 

 
Unsupervised 

 
Continuous 

Output  
- Decision Trees 

-Regression 
Analysis 

 

- K-Means 
- PCA 
- SVD 

 
Categorical 

Output  
- Decision Trees 

- Logistic 
Regression 

- Naïve Bayes 
 

- Association Rule 
Mining  

 

Neural Networks, Nearest Neighbors, SVM, Probabilistic 
Graphical Models, Anomaly Detection and Random Forest can be 
applied to both outputs and learning types. 
 
From an educational point of view, learner models should 

satisfy a set of properties [3][5][36][44][45] in order to work 

in an adaptive, intelligent, online learning system to improve 
knowledge acquisition. This study focuses on the following 
four:  

i. recent engagement of a learner with the learning 
activities,  

ii. dynamic sequences of learning activities,  
iii. inclusion of student’s differences, and 
iv. inclusion of the dependencies among skills that 

are instructed via activities.  
The first feature is highly predictive for modelling knowledge 
acquisition over time; the second is important for the 
decision-making part of the model prediction; the third is 
concerned with the application of personalized learning; and 
the forth is the content-related requirement for many 
hierarchical knowledge domains. Embarking from the 
baseline Bayesian model, and based on the desired principles 
listed above, we outline four of the model’s most recent 
extensions. These include the individualization of learning 
pace among students, the incorporation of the prerequisite 
relationships among multiple skills, and the continuous 
representation of the knowledge state. The latter enables all 
of the four aforementioned features to be partly estimated. 
There are other challenges [3][36] that are not discussed 
throughout the paper such as the management of optimal 
instructional types of learning resources, up-to-date 
predictions, and the lack of control over both the user 
experience and offline learning behavior. 

From a machine learning point of view [15][34], the 
assumptions in the different representations [19] and the 
potential pitfalls and advantages of optimization 
[28][29][30][31] and evaluation [26][27] methods are 
investigated. Each model faces different challenges regarding 
the estimation of parameters, overfitting issues, data sample 
efficiency, intensity of computational operations, and overall 
complexity. The general idea is that, by investigating these 
aspects, one can gain understanding why the considered 
models work the way they do, under which conditions one 
should be preferred against another, and in which cases can a 
model fail to accurately model knowledge acquisition. 
Furthermore, based on the fact that online education systems 
produce large-scale data, we also consider the scalability and 
computational speed of the algorithms implementation phase 
[5][8]. Specifically, we constrain this dimension via outlying 
the algorithms’ requirements on the following aspects [46]: 

i. size of training data set, 
ii. number of model parameters, and  
iii. level of domain-knowledge dependence. 
The review intends to serve as a guide of dynamic KT 

models for researchers and system developers; whose goal is 
to predict future learner’s performance based on historical 
achievement trajectories and develop adaptive learning 
experiences. It provides a structured comparison of different 
models and outlines their strengths and similarities 
concerning the KT task. The resulting fundament may serve 
as inspiration for the development of more sophisticated 
algorithms or ways of richer data collection. The 
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corresponding citations throughout the paper provide further 
guidance in implementing or extending a model for a specific 
data source or educational application. A shorter version of 
the review is available in [1]. 

This study proceeds as follows. Section II describes the 
representation component for the KT along with a brief 
introduction behind the probabilistic and deep learning 
sequential models. Section III introduces the baseline KT 
model and four extensions of it, after which the strengths, 
weaknesses, differences, and similarities are highlighted in 
Section IV. Section V discusses Item Response Theory 
(IRT), as it is the alternative family of models for predicting 
future performance. Section VI investigates the prospects and 
challenges for modeling knowledge acquisition over time, 
and Section VII provides with the conclusions.  

II. DATA REPRESENTATION FOR KNOWLEDGE TRACING 
Data representation refers to the choice of a mathematical 

structure that models the data, in this case, the hidden 
learner’s knowledge state while interacting with learning 
resources. It embodies assumptions required for the 
generalization to new examples [19]. Identifying a sufficient 
dataset and representation for addressing the prediction 
problem is not a trivial task. 

A good representation is one that can express the 
available kind of knowledge [15], meaning that a reasonably-
sized learned representation can capture the structure of a 
huge number of possible input configurations. Other 
elements contributing to a good representation are outlined in 
[19]. A relevant point to note is that the choice of 
representation affects analytics that lie in distributed systems 
-a common case in BDA- in the sense of the data set 
decomposition into smaller components; so that analysis can 
be performed independently on each component. 

A. Learning Task  
Consider a learner interacting with an intelligent, adaptive 

learning platform with the purpose of acquiring a skill or a 
set of skills. In KT, two AI frameworks have been utilized to 
represent the available knowledge and disentangle the 
underlying explanatory factors of this process: the Bayesian 
(inspired by Bayesian probability theory and statistical 
inference) and the connectionist deep learning framework 
(inspired by neuroscience). Bayesian Knowledge Tracing 
(BKT) is the oldest -and still dominant- approach for 
modeling cognitive knowledge over time, while the deep 
learning approach to knowledge tracing, known as Deep 
Knowledge Tracing (DKT), is a more recently developed 
state-of-the-art model. Both AI approaches are used for 
modeling sequential data which implies that the data 
instances are not any more independent and hold a temporal 
pattern. The temporal pattern in KT is the dependency 
between learner’s time engagement within and between 
learning resources. 

Modeling knowledge acquisition with the objective to 
predict the next learner’s performance, in its general form can 

be seen as a supervised time-series learning problem. 
Suppose a data set D consisting of ordered sequences of 
length T, to be trajectories of exercise-performance 
observation pairs X = {(𝑥",$, 𝑦",$)… (𝑥",), 𝑦",*)} with 
𝑦",+ ∈ {0,1}	 from the 𝑚th student on trial 𝑡	 ∈ {1, . . , 𝑇}, and 
with 𝑥",+ to be a label of a subskill that instruct one or more 
of 𝑁	skills S = 	 {𝑆$, 𝑆:,… , 𝑆;}. The objective in the 
Bayesian approach is to estimate the probability applying a 
skill 𝑆$ correctly on an upcoming exercise. This is estimated 
based on the sequence of observed answers that tap 𝑆$, as 
determined by the concept map. Similarly, the objective of 
the deep learning approach -and of the logistic models 
described in Section V- is to predict the probability that the 
student will give a correct response 𝑦",+<$ = 1 on an 
upcoming exercise, which could belong in any subskill. 
Different from Bayesian methods, the exercises in deep 
learning models do not have the skill notation of each 
exercise, thereby S is a latent structure. 

Such a difference in computation is located in the logic 
behind generative and discriminative approaches of 
algorithms [20]. The former models the joint probability of 
both unobserved (target) 𝑦 and observed (input) 𝑥	random 
variables: 𝑃(𝑥, 𝑦)	developing thus a model of each 𝑦; while 
the latter estimates the probability distribution of unobserved 
variables 𝑦 conditioned on observed variables:	𝑃(𝑦|𝑥) 
developing thus a model of boundary between 𝑦; in case of 
deep learning models, this boundary is non-linear. Neural 
networks are discriminative models that map out a 
deterministic relation of 𝑦 as a function of 𝑥. Fig. 3 depicts 
this mapping of 𝑥 sequence vectors to 𝑦 sequence vectors. 

B. Domain-Knowledge Dependence 
Domain knowledge dependence refers to the amount of 

human involvement necessary to tailor the algorithm to the 
learning task, i.e., specify the prior knowledge built into the 
model before training [46]. An important distinction between 
the probabilistic and deep learning KT approaches is located 
in the existence of the concept map and the notion of a skill. 

The concept map or otherwise called expert model breaks 
down the subject matter to chunks of knowledge. It maps an 
exercise and/or exercises’ step to the related skill. Each skill 
is divided into a hierarchy of relatively fine-grained subskills, 
also known as Knowledge Components (KC), which need to 
be acquired by a learner. Skills, also referred as concepts or 
competencies, are abstract but intuitive notions of ideas that 
the exercise instructs and assesses.  

Each exercise may require one or more KCs so as to be 
solved; the latter case is known as multi-skill learning.  

To illustrate the granularity level of a KC with an 
example, ‘the location of Kyoto’ is a fine-grained KC while 
‘the names and locations of countries’ is a coarse-grained KC 
[34]. The granularity of KCs is a subject of experimental 
research. An example of a KC could be ‘declare a variable in 
a function definition’ which should be split into ‘single-
variable’ and ‘multivariable’ KCs if the data indicates such a 
split is warranted. 
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In the probabilistic KT, the sequences of 𝑋 are passed 
through the concept map that is assumed to be accurately 
labelled by experts. This ensures that students master 
prerequisite skills, before tackling higher level skills in the 
hierarchy [18]. It assumes that all the learning activities are 
of the same difficulty level, which implies that the 
observation of a student struggling on some resources is 
occurring because there are some subskill(s) that the student 
has yet to acquire. In the probabilistic KT with Hidden 
Markov Models, a different model is initiated for each new 
skill.  

Rather than constructing a separate model for each skill, 
the deep learning approach, as well as Dynamic Bayesian 
Networks (DBN), model all skills jointly. In contrast to deep 
learning models, a DBN demands a detailed concept map 
with the conditional relationships representing prerequisites 
among the KCs. The deep learning models just require 
exercise tags that denote the related KCs while the underlying 
skill and the related KCs belonging to the same skill are 
unknown. Examples of tags include the ‘Pythagorean 
theorem I’, ‘mode’, ‘mean’, and ‘slope’, which can be 
considered as coarse-grained KCs. 

The network of DKT is presented with the whole trial 
sequence of exercises for all the skills practiced. The 
sequences are passed through featurization; that is the 
distributed hidden units in the hidden layers that relate the 
input to the output sequences. This distributed featurization 
is the core of the generalizing principle and is used to induce 
features and hence discover the similarity and prerequisite 
relationships among exercises.  

The MANN model can also automatically discover the 
correlations among the KCs and cluster them based on the 
skill they instruct. It uses the inner product of the exercise tag 
with the embedding matrix that contains all KCs and passes 
it through the SoftMax activation function as described later 
in eq. (5α). Compared to DKT, which requires both a 
threshold to cluster the similar KC’s and the network to be 
represented with the whole trial sequence at once, this model 
directly assigns exercises to concepts.  

C. Probabilistic Sequence Models: statistical learning 
machines  
The problem of KT was firstly posed as a 1st order, 2-

state, 2-observation Hidden Markov Model (HMM) with a 
straightforward application of Bayesian inference. A DBN, 
also referred as Two-Timeslice Bayesian Network (BN), is 
employed to solve for a multi-skill learning task.  

HMMs and DBNs are generative models called 
Probabilistic Graphical Models (PGM). These are statistical 
learning models that embody assumptions about the data 
generation process by modeling conditional dependencies 
(i.e., interactions) between random variables. Formally, a 
PGM is a graph 𝐺 = (𝑋,𝐸), where:  

i. the random variables 𝑋 are represented as nodes in a 
graph, and  

ii. the conditional dependencies between 𝑋 are described 
by the edges 𝐸 (i.e., graph topology). 
A graph is a powerful representation that can model a variety 
of data types by simply changing the definitions of nodes and 
edges. However, inference and learning over graphs is 
considered a difficult task. DBN is a Directed Acyclic Graph 
(DAG); directed graphs are useful for expressing causal 
relationships between random variables [20]. 

HMM is used to model sequences of possible latent 
random variables 𝑋  that form a Markov process, in which 
the Markov property holds; that is, ‘the past is independent 
of the future given the present’ 𝑋+<$ ⊥
(𝑋+D$, 𝑋+D:,… , 𝑋$	)|𝑋+		. 𝑋 have arrows pointing to the 
observed variables 𝑌 which are conditionally independent to 
each other, given the input variables 𝑋. 

The interesting part of HMM is that 𝑋	have unobserved 
states ℎ, also referred to as hidden or latent states, which can 
store information for longer times in the sequence. The states 
ℎ  have their own internal dynamics, described by transitions 
between ℎ, which are stochastic and controlled by a matrix 𝐴. 
At each timestep, these can take only one of 𝑁 possible 
values. The outputs produced by an ℎ are stochastic and 
hidden, in the sense that there is no direct observation about 
which state produced an output, much like a student’s mental 
process. However, ℎ produce as observables the emission 
probabilities 𝛷 that govern the probability distribution of ℎ.  

The HMM model is characterized by its transition 
probability 𝐴, emission probability 𝛷 and prior distribution 
𝛱. The parameters that need to be evaluated and learned are 
𝜆	 = 	 {𝛱, 𝐴, 𝛷}, where 𝛱 is the initial latent variable 𝑥$, 
which is the only variable that does not depend on some other 
variable. Firstly, the evaluation problem is solved 𝑃(𝑌|	𝜆): 
the probability that the observations are generated by the 
parameters	𝜆	of	the	model,  where Y is a sequence of learning 
activities attempts Y = {𝑌+}, 𝑡	 ∈ {1, … , 𝑇}; and secondly the 
learning problem is being solved: how should 𝜆	be adjusted 
so as to maximize the 𝑃(	𝑌|	𝜆). In the probabilistic setting of 
KT,	𝑋 represents the entire single skill, ℎ represent the 
knowledge states, which are	2		standing for a mastered and 
for a not yet mastered, as shown in Fig. 1.  𝐴 indicates the 
learning or forgetting rate, i.e., the evolution of student’s 
knowledge state and 𝛷 includes the probability for a guessed 
or slipped answer. A detailed explanation of the HMM is 
provided by [23], [24]. 

DBNs generalize the HMM models by including a 
collection 𝐼 of interacting input variables 𝑋 linked by 
directional edges.  The internal structure among 𝑋 and 𝐸, 
called as graph topology, is repeated in the exact same way 
at each time step. The parent node set of 𝑋 in 𝐺, denoted 
by 𝑝𝑎(𝑋) is the set of all nodes from which an edge points to 
node 𝑋 in 𝐺. These models hold the directed Markov 
property, which is 𝑋T ⊥ (	𝑛𝑜𝑛 −
𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠	(𝑋	T)	)|𝑝𝑎(𝑋T). In KT, 𝑝𝑎(𝑋) carry the 
meaning of a prerequisite relationship, the nodes 𝑋	indicate 
different KCs or skills and their realization 𝑥\	indicate the 
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knowledge state of a student for skill 𝑖 at a specific 𝑡. In KT, 
an observed variable is linked always to just one latent 
variable. 

The question now becomes how the evolution of a 
knowledge state is modelled in a DBN. The value of a 𝑥\ at 
time slice 𝑡 is calculated from not only the graph topology at 
𝑡, described above, but also from the previous value of 𝑥\ at 
time 𝑡 − 1. Thereby, a DBN links knowledge state variables 
to each other over adjacent time steps to indicate learning or 
forgetting rate, as shown in Fig. 2. 

In order to infer the probability distribution across the 
total number of hidden states ℎ, there is a marginalization of 
the latent variables 𝑥 over ℎ. This is equivalent to 
𝑃(𝑦, ℎ|	𝜃) = 	∏𝑝(𝑋|𝑝𝑎(𝑋)), denoting that the joint 
distribution of the observed 𝑌 and unobserved 𝐻 variables is 
given by the product over all of the variables, i.e., nodes 𝑋	of 
the graph conditioned on the 𝑝𝑎(𝑋), where 𝜃 includes 𝜆 
parameters together with the conditional edges of the graph 
topology. A detailed explanation of the computations in the 
DBN is provided by [20], [21]. 

D. Neural Network Sequence Models: computational 
intelligence learning machines 
Deep RNN with LSTM internal memory units and 

Memory-Augmented Neural Networks (MANNs) have only 
recently been employed to the KT task to solve for the binary 
(i.e., ℎ can take only one value), highly structured 
(assumptions about data generation) and memoryless (i.e., 
Markov processes) representation of the hidden knowledge 
state.  

RNN and MANN are a family of Artificial Neural 
Networks (ANN) that can take variable length of inputs and 
the hidden state acts as a memory able to capture the temporal 
structure among sequences. MANN uses an external memory 
matrix to encode the temporal information, while LSTM uses 
an internal hidden state vector. 

Deep learning, as it is primarily used, is a computational 
intelligence technique for classifying patterns (e.g. 
similarities found in data instances) to different targets 𝑦, 
based on large training data, using ANN with multiple layers 
[48].  

ANN is a discriminative model that relates the input units 
𝑥, which are amplified with weights 𝑤, to the output units 𝑦 
through a series of hidden layers: 𝑦 = 	𝑓$(𝑤cc⃗ $, 𝑓:(𝑤cc⃗ :, … ,
𝑓e(𝑤cc⃗ e, 𝑥))). Each hidden layer is comprised by hidden units, 
which are triggered to obtain a specific value by events found 
in 𝑥 and -in case of RNN- also patterns that are found in 
previously hidden states. This process of triggering is 
implemented by a non-linear activation function 𝑓 in the 
hidden layer.  

RNNs are layered ANNs that share the same parameters 
𝑤, through the activation function 𝑓. This property is 
illustrated in Fig. 3, with the formation of directed edges 
between hidden units. RNNs are powerful, as they combine 
the two following properties, not found in PGM’s:  

i. The distributed hidden state allows them to 
forget and store a lot of information about 
historical trajectories, such that they can predict 
efficiently. 

ii. The non-linear activation functions allow them 
to update the hidden state in complicated ways, 
which can yield high-level structures found in 
the data (if available).  

Instead of having a single hidden neural network layer (e.g., 
hyperbolic tangent) repeating at each step, LSTM is a type of 
hidden units that additionally includes Forget, Input, and 
Output gates repeating at each step. The interaction of the 
gates with each other is used to adjust the flow of information 
over time. The hidden state acts as a memory able to hold bits 
of information for longer periods of time and hence capable 
of learning complex functions from ‘remembering’ even 
longer sequences of data (i.e., long-term dependencies).  

MANN refers to the class of external-memory equipped 
networks rather than the inherent memory-based 
architectures, such as LSTM. It is a special kind of RNN and 
it is advantageous for  

i. rapid learning from sparse data,  
ii. its computational efficient storage capacity, and  
iii. meta-learning tasks (i.e., it does not only learn 

how to solve a specific task but it also captures 
information on the way the task itself is 
structured).  

Instead of a distributed hidden vector, MANNs have an 
external memory to model the hidden state. The external 
memory contains two parts, a memory matrix that stores the 
information and a controller that communicates with the 
environment and reads or writes to the memory allowing it to 
forget information. These operations also make use of non-
linear activation functions.  

 In Fig. 1, Fig. 2, Fig. 3, the blue circular nodes capture the 
hidden students’ knowledge state per skill, while the orange 
rectangles denote the exercise-performance observations 
associated with each skill. The nodes in the probabilistic 
models denote stochastic computations, whereas in the RNN 
indicate deterministic ones.  

III. DYNAMIC MODELS APPLIED IN KNOWLEDGE 
TRACING 

      The dynamic models applied in KT are described below.  
A.  Standard Bayesian KT: skill-specific discrete states 

The BKT model [18] includes four binary parameters that 
are defined in a skill-specific way. The model emits two 
performance-related parameters: 

 i. 𝑆-slip, the probability that a student will make an error 
when the skill has been acquired, and  

ii. 𝐺-guess, the probability that a student will guess 
correctly if the skill is not acquired;  

The model additionally distinguishes between two 
learning-related transition parameters: 
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i.𝑃(𝜃+D$) = 𝑃(𝜃f), the probability of knowing the skill a 
priori, and 
ii. 𝑃(𝑇)	represents the transition probability of learning 

after practicing a specific skill on learning activities.  
The knowledge acquired is estimated using equations (1a), 
(1b), (1c) and (1d) as illustrated below. The acquired 
knowledge 𝑃(𝜃+)	on trial t is updated according to (1c) with 
𝑃(𝑇) = 	𝑃(𝜃+<$ = 1|	𝜃+ = 0). The probability of a correct or 
incorrect attempt is computed using equation (1a) and (1b), 
respectively. Equation (1d) computes the probability of a 
student applying the skill correctly on an upcoming 
practicing activity. The equations are as follows: 

 
𝑃(𝜃+<$|𝑦+ = 1) = 	

𝑃(𝜃+) ∙ (1 − 𝑃(𝑆))
𝑃(𝜃+) ∗ i1 − 𝑃(𝑆)j + (1 − 𝑃(𝜃+)) ∙ (𝑃(𝐺))

											(1𝑎) 

𝑃(𝜃+<$|𝑦+ = 0) =	 l(mn)∙l(o)
l(mn)∙l(o)<($Dl(mn))∙($Dl(p))

																												 (1𝑏)            

𝑃(𝜃+<$) = 	𝑃(𝜃+<$|𝑦+) + i1 − 𝑃(𝜃+<$|𝑦+)j ∙ 𝑃(𝑇)																				(1𝑐)  

𝑃(𝐾𝐶+<$) = 	𝑃(𝜃+) ∙ i1 − 𝑃(𝑆)j + i1 − 𝑃(𝜃+)j ∙ 𝑃(𝐺)												(1𝑑)			
 

At each 𝑡, a student 𝑚 is practicing a step of a learning 
activity that taps a single skill 𝑆. The process of a student 
trying to acquire knowledge about  𝑆$	is illustrated in Fig. 1 
over one-time step. The learner state can be in one of the two 
states and can emit one observable. Given a series of 𝑦+,	and 
𝑡	for the student 𝑚	 and skill 𝑆$, the learning task is the 
likelihood maximization of the given data 𝑃(𝑦|	𝜆), where 
𝜆 = {𝑃(𝑆), 𝑃(𝐺), 𝑃(𝑇), 𝑃(𝜃+)}. This is done through Curve 
Fitting or Expectation Maximization and evaluated via Mean 
Absolute Error.  

The key idea of BKT is that it considers guessing and 
slipping in a probabilistic manner to infer the current state 
during the practicing process. Even though BKT updates the 
parameter estimates based on dynamic student responses, it 
assumes that all of the four parameters are the same for each 
student.  It follows that, the data of all students practicing a 
specific skill are used to fit the BKT parameters for that skill, 
without conditioning on certain student’s characteristics.  

B. Individualized BKT: student-specific states on learning 
rates 
Individualizing towards the learning rates 𝑃(𝑇) provides 

higher model accuracy and better parameters interpretability 
[23]. The Individualized BKT (IBKT) model [23] is 
developed by splitting the BKT parameters into two 
components (i) 𝜆t-the skill-specific, and (ii) 𝜆u-the student-
specific; and combining them by summing their logit 
function  𝑙(𝑝) =𝑙𝑜𝑔 x y

$Dy
z		, and using the sigmoid function 

	𝜎(𝑥) = $
($	<|}~	)

 to transform the values again to a probabilistic 
range. These two procedures are illustrated in (2a): 

 
																												𝜆 = 	𝜎 �𝑙 x𝜆t	z + 𝑙i𝜆u	j�							                   (2a) 

 

Finding the gradients of the parameters 𝜆 is done via forward 
and backward variables. Updating the gradients is possible 
using the chain rule, as illustrated in (2b) for the student-
specific component of the parameter 
 

																																	 ��
���

= 	 ��
��

��
���
	                                      (2b) 

 
where 𝐿	simply indicates the loss function. 

Fig. 1 depicts the structure for the HMM model of both 
BKT and IBKT. Although the underlying HMM model -and 
hence the process of a student practicing exercises- remains 
the same, the fitting process is different, i.e., 𝜆u  is learned for 
each student separately.  

Both the BKT and IBKT assume independent skills 
because thus they cannot deal with hierarchical structures. 
This assumption is restrictive, because it imposes that 
different skills cannot be related and, as a result, observing an 
outcome for one skill is not informative for the knowledge 
level of another skill. However, the expert model in 
educational domains is frequently hierarchical and should 
allow for multi-skill learning. DAG is the optimal data 
representation for describing the expert model in adaptive 
learning systems that incorporate parallel scalable 
architectures and BDA [3].  

C. Dynamic Bayesian Network: hierarchical, skill-specific, 
discrete states 

DBN is a DAG implemented for the KT task [21] to allow 
for the joint representation of dependencies among skills.  

On contrast to the previous models, at each timestep 𝑡, a 
student 𝑚 receives a quiz-like assessment that contains 
problem steps or exercises that belong to different skills. The 
structure of the Bayesian network is repeating itself at each 
time step 𝑡 with additional edges connecting the knowledge 
state on a skill at 𝑡 to 𝑡 + 1. This is the learning or forgetting 
rate, previously denoted as 𝐴 = {𝑇}. Same as in BKT and 
IBKT, once a certain threshold for a skill mastery is reached, 
the user can start practicing the less mastered skills. 

The enhancement of the model is based on the fact that it 
is possible to infer the knowledge state for a skill, say 𝑆�, 

 

 
Figure 1.  Baseline and Individualized Bayesian Knowledge 
Tracing represented as a Hidden Markov Model over one time 
step. In IBKT, the parameter {T} is learned seperately for each 
student. 
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even without having observed certain outcomes for that skill 
𝑦�. To illustrate that, consider the example model depicted in 
Fig. 2. It depicts that, the probability of skill 𝑆� being 
mastered at 𝑡: depends not only on the state of 𝑆� at the 
previous time-step 𝑡$, but also on the states of 𝑆$ and 𝑆: at 
𝑡:.  

The set of variables 𝑋 contains all skill nodes 𝑆 as well as 
all observation nodes 𝑌 of the model, while 𝐻 denotes the 
domain of the unobserved variables, i.e., exercises that have 
not yet been attempted by students and hence their 
corresponding binary skill variables 𝑆 are latent. Suppose that 
a student solves a learning activity associated with 𝑆:	at step 
𝑡:; then the hidden variables at 𝑡: will be ℎ" =
{𝑆$, 𝑆:, 𝑆�, 𝑦�, 𝑦$} while the observed variables will be 𝑦:. 
The objective is to estimate the parameters 𝜆 that maximize 
the likelihood of the joint probability 𝑝(𝑦", ℎ"|𝜆). The 
likelihood loss is reformulated using a log-linear model to 
obtain a linear combination of a lower dimensional 
representation of features 𝐹, as shown in (3): 

 

											𝐿(𝑤) =	�ln��𝑒𝑥𝑝(𝑤�𝜑(𝑦",ℎ") − ln(𝑍))
��

�
"

										 (3) 

 
where 𝜑:	 Y x H → 𝑅	�  denotes a mapping from the latent 
space H and the observed space Y to an 𝐹-dimensional 
feature vector.  𝑍 is a normalizing constant and 𝑤 denote the 
weights that can be directly linked to the parameters 𝜆.  

DBNs rely on an accurate graph topology and can handle 
only simple topologies.  Additionally, this model grapples 
with the limitations of the binary representation of student 
understanding, the lack of student differences, and the 
requirement for an even more detailed concept labeling and 
parameter constrain sets. RNNs have only recently tried to 

model student understanding in order to lessen or break the 
aforementioned assumptions.  

D. Deep Recurrent Neural Networks: continuous exercise-
specific states and discovery of exercise dependencies  

The complex representation in DKT is chosen based on 
the grounds that learning is a complex process [25] that 
should not rely only on simple parametric models as these 
models cannot capture enough of the complexity of interest, 
unless provided with the appropriate feature space [22].  

The continuous and high dimensional representation of 
the latent knowledge state ℎ+ in the hidden layer, learns the 
properties of sequences of the observed student interactions 
𝑥+ = {(𝑎",f, 𝑞",f)… (𝑎",), 𝑞",*)}, where 𝑎+  denotes the 
correctness of the response on a learning activity, which is 
denoted as 𝑞+. In the deep learning context 𝑞+	denotes the 
corresponding activity tag, which can be roughly considered 
as a KC label. 

DKT can discover exercise dependencies, i.e., 
prerequisites. Given that the knowledge state for a KC is 
represented as a hidden unit, the hidden-to-hidden 
connections encode the degree of overlapping between 
exercises. The researchers assign an influence metric 𝐽\� on 
each directed pair of exercises 𝑖,j  based on the correctness of 
the previous exercise 𝑖 in the pair. They computed the 
correctness conditional dependencies between exercises 
𝑦(𝑖)		, as shown in (4a): 

 

																																		𝐽\� = 	
𝑦(𝑗|𝑖)

∑ 𝑦(𝑗|𝑘)t
																																																	(4𝑎) 

 
where 𝑘 is a predetermined threshold used to cluster the 
exercises that instruct the same skill. The possible skill labels 
for the clusters are manually provided. 

DKT [25] exploits the utility of vanilla RNNLSTM 
whose fully and recurrent connections allow them to retain 
information of 𝑥+	for many time steps. The below equations 
describe the simple vanilla RNN and not the LSTM gates. 
Equation (4b) states that each hidden unit is activated via the 
hyperbolic tangent, which employs information on both the 
input	𝑥+	and on the previous activation ℎ+D$ ,  

 
														ℎ+ = 𝑡𝑎𝑛ℎ(𝑊��𝑥+ +	𝑊��ℎ+D$ + 𝑏�)																		(4𝑏)	 
 
where 𝑏�	is the bias term and 𝑊��,𝑊��	are the weights of 
units corresponding to the input and hidden layers. The non-
linear and deterministic output ℎ+ will be passed to the 
sigmoid function 𝜎 to give the probability of getting each of 
the 𝑇 learning activities correct 𝑦�+ = (𝑦f, . . , 𝑦))	in the 
students’ next interaction 𝑡 + 1, as shown in (4c): 
 
																													𝑦 + = 𝜎i𝑊¡�ℎ+ +	𝑏¡j																																(4𝑐)	
 
Finally, the loss for a single student will be the negative log-
likelihood, as shown in (4d): 

 

 
 

Figure 2.  Bayesian Knowledge Tracing represented as a Dynamic 
Bayesian Network unrolled over T time steps. The hierarchical 
relationships between the skills (grey lines) are incorporated to the 
estimation of the learning rate (arrow lines) between adjacent time 
steps. 
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																													𝐿 = 	�𝑙(𝑦�)𝛿(𝑞+<$), 𝑎+<$)			
+

																													 (4𝑑) 

 
where 𝑙 is the binary cross entropy −i𝑦𝑙𝑜𝑔(𝑦�)j + (1 −
𝑦)(1 − 𝑙𝑜𝑔	(𝑦�)), 𝛿 denotes the one hot encoding 
transformation of the input	ℎ+ = {𝑎+, 𝑞+}, which represents 
the categorical variables as binary vectors, and 𝑥+		is assigned 
to ℎ+	. Compressing sensing is a suitable preprocessing step 
for larger data sets. 

Fig. 3 depicts an example architecture of RNN, where 𝑋 
represents the entire sequence of exercises, which belong to 
multiple KCs, in the order the student receives them. After 
feeding 𝑋 to the network, each time the student answers an 
exercise, the model predicts what KCs they are able to solve 
on their next interaction.  

DKT requires large amounts of training data and it is 
prone to overfitting. Furthermore, it summarizes a student’s 
knowledge state of all KCs in one hidden state vector, which 
makes it difficult to trace how much a student has mastered a 
certain skill over time. Zhang et al. (2017) [47] proposed a 
parameterization of MANN to address these two issues.  

 

E. Memory Augmented Neural Networks: skill-specific 
states & discovery of exercise clusters  
In the KT learning task, at each timestamp a MANN 

model takes a discrete exercise tag 𝑞+, outputs the probability 
of response p(𝑟+ |𝑞+), and then updates the memory with the 
tuple (𝑞+,	𝑟+ ). The MANN is extended to utilize a key-value, 
rather than a single memory matrix [47] because the exercise 
tags and the responses have different data types. The key 
component 𝑀t, which is a static matrix, attends the latent 
skills underlying the exercises. The value matrix 𝑀+

¥ stores, 
forgets, and updates the student’s understanding of each skill 
ℎ	(skill state) via the read and write operations; and it changes 
over time.  

Hence, the so-called Dynamic Key Value Memory 
Network (DKVMN) traces the knowledge of a student by 
reading and writing to the value matrix using the correlation 
weight 𝑤+	, which is commonly annotated by experts in the 
probabilistic KT framework. This is computed by taking the 
SoftMax activation of the inner product of the input exercise 
𝑘+)	and the key matrix 𝑀t, as shown in (5α): 

 
 𝑤+(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	(𝑘+)𝑀t(𝑖))                          (5α) 

 
where 𝑖 indicates the memory slot and 𝑘+)	, arises after the 
multiplication of 𝑞+	with an embedding matrix so as to obtain 
a continuous embedding vector of the appropriate 
dimensionality size.  

At each timestamp 𝑡, the learner solves an exercise tagged 
with  𝑞+, the model finds that 𝑞+ requires the application of 
let’s say skill 𝑆1	and reads the corresponding skill state 	ℎ+D$o$

	 
from the read content 𝑟+	. This acts as a summary of the 
mastery level of the student for this exercise, as shown in 
(5b): 

 
															𝑟+ = 	∑ 𝑤+(𝑖)𝑀+

¥;
\¦$ (𝑖)                                  (5b) 

 
Then it predicts 𝑝+, which is the probability that the student 
will answer 𝑞+ correctly, as shown in (5c): 
 
 𝑝+ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊:

)𝑓+ + 𝑏:)                               (5c) 
 

 

Figure 3.  Deep Knowledge Tracing represented as a Recurrent 
Neural Network over 2 trials represented by the input 𝑥+ = (𝑎, 𝑞) and 
output 𝑦+  that denotes the probability of getting each of the 𝑞 correctly. 
The lines in the hidden layer represent the learning rate between 
adjacent hidden knowledge states (blue nodes). 

 

 

Figure 4.  Deep Learning for Knowledge Tracing represented as a 
Dynamic Key Value Memory Network for one time step. The blue 
components denote the process of the correlation computation between 
the exercise and the underlying latent concepts, the purple components 
indicate the prediction process, and the green describe the update 
process that takes place after the students’ interaction. 
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where 𝑓+		is a vector that contains both the student’s mastery 
level and the exercises prior difficulty. It is calculated by a 
fully connected network as shown in (5d): 
 
 𝑓+ = 𝑡𝑎𝑛ℎ(𝑊$

)[𝑟+ , 𝑘+] + 𝑏$)	                             (5d)  
 
where T and 𝑏	 indicate the transpose operation and the biases 
vectors respectively. After the student response is given, the 
model updates the values of 	ℎ+D$o$

	. In this way, each time the 
student answers an exercise, the model not only predicts what 
exercises they are able to solve on their next interaction but 
also maintains a student’s mastery level of each skill. The 
DKVMN makes use of the one-hot encoding preprocessing 
step and the binary cross entropy loss function. In Fig. 4 [47], 
the read and write processes of the model are described as 
purple and green components, respectively. It is implied that, 
the inaccurate estimation of 𝑤+(𝑖) can lead to inaccurate 
predictions and updates. 

IV. COMPARISON & SUMMARIZATION OF THE MODELS 
Tables III, IV, V outline important aspects of the models 

described above. Three dimensions are used as a guide for 
summarizing the models. The first is the machine learning 
algorithms’ components [15], depicted in Table III, the 
second is the algorithmic scalability [46], illustrated in Table 
IV, and the third includes human learning related challenges 
faced by adaptive learning systems [36], described in Table 
V. 

A. Machine learning components 
The criterion of choosing the right algorithm is a 

combination of the efficiency of the available data along with 
the learning components of the algorithm; these are the 
representation, evaluation, and optimization [15].  In the 
below paragraphs, we briefly describe each of these 
components considering the KT task. The representation 
component has been already introduced in Section II. 

1) Evaluation of the predictions  
Model evaluation metrics analyze the performance of the 

model via the computation of training and the out-of-sample 
error; and are widely discussed in the context of machine 
learning applications including educational ones [26]–[28]. 
Even though, no experimental data are presented throughout 
the review, choosing for a metric is an open question in EDM 
including KT [27] for the assessment of the quality of the 
learner model. It depends highly on the intended use of the 
model and on whether absolute or relative predictions are 
important for this use. The metrics and their intended use are 
summarized in Table II based on findings from previous 
research [26]. This table can be used as a guide for assessing 
the quality of KT modeling concerning the evaluation metrics 
linked to it.  

In KT, the metrics used for probabilistic understanding of 
errors include the Mean Absolute Errors (MAE) and Root 
Mean Square Error (RMSE). The former is considered an 
insufficient metric because it is biased towards the majority 

of classes whereas the latter is a proper score [26]. From the 
perspective of model comparison, the important part is only 
the sum of squared errors and not the square root. Note that 
RMSE has demonstrated a high correlation to the log-
likelihood function and the ‘moment of knowledge 
acquisition’ [26], which is highly important for mastery 
learning applications.  

The RMSE without the squared error is sometimes 
referred to as the Brier Score and can give further insight to 
model behavior via decomposing it into three additive 
components. These are the following:  

i. reliability, which measures the difference between 
predicted and observed probabilities,  

ii. resolution, which captures the difference of the 
predictions from the base rate (proportion of positive classes), 
and  

iii. uncertainty, which quantifies the inherent uncertainty 
of events.  
An ideal model would, therefore, minimize the reliability 
term, while maximizing the resolution term. Assume that 𝑞t 
are the model’s predictions that they can take a set of different 
values	𝑐 or values from 𝑐	classes, 𝑛t	is the number of 
predictions that belong to the same category, and 𝑓t =
	∑ 𝑜\ 𝑛tª\,y«¦	¬­  is the frequency of observations. The Brier 
score is used by DBN whose formula is depicted in Table II.  

As opposed to the probabilistic understanding of errors, 
values of qualitative metrics, i.e., either the prediction is 
correct or incorrect (0-1 loss), depend on the choice of the 
classification threshold. In the reviewed models, only 
classification accuracy was employed to evaluate the number 
of correctly predicted successes and failures on exercises. 
This measure reflects the proportion of true positives (TP) 
and true negatives (TN) as proportion of the total number of 
predictions (N). However, accuracy is not a reliable metric 
when the targeted classes are imbalanced. Recall is then a 
better metric to use, as it reflects the proportion of relevant 
incidents predicted correctly by the algorithm over the 
number of total relevant incidents. Commonly, this measure 
is used together with precision in F1 score, which is a more 
reliable metric than accuracy. 

The Receiver Operating Characteristic (ROC) curve 
summarizes the qualitative error of the prediction model over 
all possible thresholds, so it summarizes performance even 
over those thresholds for which the algorithm would never be 
practically used. The predictions are considered relative to 
each other, and therefore the area under the ROC curve, 
called AUC, is better to be used as an additional metric for 
the evaluation of an algorithm’s ability to distinguish correct 
from incorrect performances on exercises. It is interesting to 
note that, when the overall AUC is computed by averaging 
the per-skill AUC, namely weighing all skills equally, then 
its value is going to be smaller than by weighing all trials 
equally. This effect roots in two situations: i) the model 
performs poorly on a skill with only a few observations, and 
ii) it predicts the relative accuracy of different skills [22]. 
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DKT and DKVMN employ the AUC on a per-trial basis 
instead of per-skill. Different from Bayesian methods, the 
deep learning models do not have the skill notation of each 
question and thus they cannot evaluate the results per skill.  

Overfitting is a common source of error in machine 
learning models. That is, the model memorizes the training 
data and cannot generalize to out-of-sample data. The more 
increasing the number of model parameters, the more the 
danger of overfitting, since there will be less data for each 
subset of parameters that have to be estimated. All the 
aforementioned models apart from the standard BKT, 
compute the errors on Cross Validation (CV) so as to lessen 
the issue of overfitting. The folds are selected such that the 
mean performance of students is approximately equal to all 
folds, a technique referred as student-stratification.  

 

TABLE II.  EVALUATION METRICS AND APPROPRIATE USES FOR 
KNOWLEDGE TRACING 

Metric EDM Uses 

Probabilistic 
Parameter Fitting  

& 
 Model Comparison 

MAE 1 𝑛ª � |𝑦\ − 𝑦�\|
e

\¦$
	

RMSE ®1 𝑛ª � (𝑦\ − 𝑦�\):
e

\¦$
	

Several Numbers 
Model Comparison  

&  
Behavior 

Brier Score 

 

1
𝑁	
�𝑛t	¯i𝑞t − 	𝑓t:j(𝑓t − 	𝑓:)° +

𝑓(1 − 𝑓)
t

		

 

Qualitative 
Evaluation  

of  
Classification Tasks 

Accuracy 
(TP+TN)/N	

	

Recall 
TP/(TP+FN)	

	

Ranking of 
examples 

Interpretability  
of   

Results 

AUC 
x-axis:	(FP+TN),	
y-axis:	Recall	

	
 

The predictive ability of learner models is mainly a mean 
for improving the behavior of educational systems and for 
getting insight into the learning process.  The automated 
evaluation metrics do not correlate with learning outcomes, 
namely, they cannot consider the fact that an adaptive 
learning system may not improve actual learning (e.g., 
decreasing learning curves). Therefore, frameworks oriented 
to adaptive learning systems should arise [27].  

2) Optimization, Identifiability and Degeneracy 
The optimization function derives the optimal values for 

the parameters of the objective function, which in KT is the 
log-likelihood function. Unlike in most other optimization 

problems, the function that generates the data and should be 
optimized is unknown and hence training error surrogates for 
the out-of-sample error [15]. The optimization of the log-
likelihood function is performed using Curve Fitting (CF), 
Expectation Maximization (EM), Constrained optimization, 
and Gradient Descent (GD) methods.  

Incremental optimization algorithms are suitable for 
large-scale data. GD on mini-batches is an incremental 
algorithm, which updates the weights using batches of data, 
and thus can avoid shallow local maxima. For instance, the 
IBKT model is built in an incremental manner by adding 𝜆u 
in batches and evaluating these additions on CV performance. 
It is also possible to improve the overall accuracy by 
incrementally updating the 𝜆t once a new group of students 
finishes a course or a course unit.  

In addition to the big data handling, GD allowed IBKT to 
introduce student-specific parameters to BKT, without 
expanding the structure of the underlying HMM model and 
thus without increasing the computational cost of fitting. 
Researchers computed the gradients of the log-likelihood 
function given individual student and skill data samples with 
respect to every parameter. On every odd run, gradients are 
aggregated across skills to update skill component of the 
parameters; whereas in every even run, the gradients are 
aggregated across students to update respective student 
components. This block-coordinate descent is performed 
until all parameter values stabilize up to a pre-defined 
tolerance criterion. 

In the procedure of training deep learning models, 
gradients tend to be unstable in the earlier layers as they either 
explode or vanish. Certain activations functions can cause 
this behavior. The exploding gradient problem refers to the 
large increase in the norm of the gradient, and hence it takes 
much time to converge to the parameters. To deal with the 
exploding problem, the DKVMN uses ‘norm clipping’ which 
is a function thresholding the values of the gradients before 
performing a gradient descent step; while DKT manually put 
thresholds to the values of the back-propagated gradients. 
The vanishing gradient, refers to the opposite behavior, when 
there is a small increase in the norm of the gradient, making 
it impossible for the model to learn from training data, i.e., 
find the correlation between temporally distant events. An 
interesting fact is that the LSTM model implemented by 
researchers in the DKVMN achieved better AUC than in the 
original paper of DKT. This could be probably because the 
DKVMN used ‘norm clipping’ and ‘early stopping’ instead 
of ‘dropout’ and manual thresholds to gradients.  

In contrast to GD, EM takes longer to converge because 
even if it needs fewer evaluation steps, the computations are 
more difficult. In addition, due to the expectation step it does 
not directly maximize the likelihood of the learner’s 
observations [23].  

Constrained optimization is used in DBN [21] to ensure 
the interpretability of the constrained parameters and avoid 
the intractability issue, which can be caused by 
approximating the objective function. It obtains the joint 
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distribution as a product of the exponential terms, which 
translates to a weighted linear combination of feature vector 
entries in the exponent. This implies that the search of model 
parameters is done to a specific direction, in order to find the 
feature that is responsible for a prediction outcome. 

The probabilistic KT models are susceptible to the 
identifiability and model degeneracy issues [20][28]. An 
identifiable model is considered the one that converges to the 
true values of the parameters, given an infinite number of 
observations. Model degeneracy occurs when the same 
combination of model parameters fits the data equally well. 
Hence, the resulted model parameters can lead to paradoxical 
behavior [28][30]. An example of a paradoxical behavior is 
the probability that the student acquired the instructed 
knowledge after three correct answers in a row [29]. 
Appropriate initialization conditions of the models’ 
parameters and constrain values of the emission parameters, 
i.e., guess and slip, are used as techniques to resolve these 
two issues [18][28]–[31]. The identifiability and degeneracy 
are not relevant to deep learning frameworks, since they use 
approximation function and cannot pinpoint the input signal 
that lead to specific values for the model parameters. 

 

TABLE III.  COMPARISON OF KT MODELS: SUPERVISED 
MACHINE LEARNING COMPONENTS  

Model Extension Representation Optimization Evaluation 

BKT Baseline-  
Binary skill 
Knowledge State 

HMM Curve Fitting or 
Expectation 
Maximization 

MAE 

IBKT Learning Rate 
Personalization  
 

HMM Stochastic 
Gradient Descent 
on Minibatches 

RMSE 

DBN Multi-Skill, 
binary 
Knowledge State 
 

DBN  
 

Constrained 
Latent Structure 

RMSE, 
AUC,  
Brier Score 

DKT Continuous 
Knowledge 
State & 
Discovery of 
concept map 

RNN-LSTM Stochastic 
Gradient Descent 
on Minibatches 

AUC, 
Accuracy 

DKVMN Skill Knowledge 
State & 
Discovery of 
concept map 
 

Memory 
Augmented Neural 
Networks with 
Key-Value 
Matrices 

Stochastic 
Gradient Descent 
on Minibatches  
 

AUC, 
Accuracy 

 
DKT, IBKT and DKVMN are prone to overfitting and 

need large-scale training data to optimize the objective 
function. Compared to the DKT, DKVMN does not require 
such large-scale data for training and is less susceptible to 
overfitting. Stopping the training before the weights have 
converged (i.e., ‘early stopping’), and dropping out units 
(i.e., ‘dropout’) are methods that address the overfitting 
problem. Another issue present in DKT, is the alternation 
between mastered and not-yet-mastered state instead of the 
state transiting gradually over time [31], known as the 
waviness of the objective function. In addition to that, the 
model sometimes fails to reconstruct the input, which implies 
that even when a student performs well on a KC, the 
prediction of that KC’s mastery level decreases instead, and 

vice versa [31]. According to the current literature, potential 
paradoxical behaviors while fitting the DKVMN are not yet 
investigated.  

B. Scalability of the learning algorithms 
Online education platforms create large-scale and diverse 

learning behavior data. An important aspect of BDA is the 
algorithm’s ability to scale as new data or new features come 
into the model. In contrast to scaling towards the number of 
features, scaling towards the number of learners is an easier 
task that can be solved via using parallel infrastructures. In 
this study, we just scratch the surface of algorithmic 
scalability. Questions of large-scale data representation 
typically have much more complicated extensions in 
algorithmic, statistical, and implementation or systems 
aspects that are intertwined and need to be considered jointly.  

1) Computational & Statistical Efficiency 
Computational efficiency refers to the number of 

computations during training [46]. These include the 
numbers of the following: 

i. iterations of the optimization algorithm,  
ii. model parameters, and  
iii. resources (i.e., the number of hidden units).  

In Table IV, we note only the number of model parameters; 
this is not necessarily the most appropriate measure of model 
complexity. Nonlinear functions and large datasets increase 
the model complexity while offering flexibility in data fitting 
[20].  

Implementing the DKVMN and especially the DKT 
models demand high numbers of computational resources. 
Nowadays, there are many parallel and distributed computing 
infrastructures and there is active research on parallel 
algorithms that can be used to boost the efficiency of data-
intensive tasks. Parallel and scalable algorithms are often 
utilized for BDA. DKT, DKVMN, and IBKT models took the 
advantage of parallel computing infrastructures.  

Compared to HMM model, DBN is computationally more 
expensive due to its complex loopy hierarchical structure 
[21]. Comparing the two deep learning models, LSTM is 
computationally more expensive than MANN, based on the 
ability of the latter to not increase the number of parameters 
when there is increasing number of memory slots. In general, 
the probabilistic models are computationally more efficient 
than the deep learning models even in other domains apart 
from online skill acquisition.  

Statistical efficiency refers to the number of training 
examples required for good generalization performance. The 
volume of training data examples required to establish 
convergence, is depicted in Table IV as learnability 
requirements.  Learnability, which is part of statistical 
efficiency, appears to present a daunting challenge for deep 
learning. Regarding the probabilistic KT models, the 
inclusion of large-scale training data can prevent 
identifiability problems. It is also important to note that, the 
parameter estimates and the behavior of the probabilistic KT 
models should be researched in different prior cases	𝑃(𝜃f) 
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and in scalability cases in either the number of students or the 
increased number of interaction examples per student [30]. 

2) Domain-Knowledge Dependence 
In the educational domain, domain-knowledge or 

otherwise called human involvement is not only expensive to 
obtain, but there are also many differences in content 
representations beliefs among experts. The model is more 
flexible if it is less domain-dependent, implying that its 
performance is less prone to additional error. In contrast to 
the probabilistic models, the deep learning models are highly 
flexible. Beside deep learning models, DAG models can also 
learn the structure of the concept map as a network. However, 
the relationships between content are difficult to establish and 
to represent in the model, even given expert labels [36]. 

Adding or deleting pieces of modules or content in expert 
models is also an important scalability dimension related to 
the content representation. Rule-based algorithms fail to scale 
while flexible graph representations are much easier to scale. 
DAG models are considered the optimal representation of the 
relationships between concepts/skills (abstract but intuitive 
notions of ideas that the content teaches and assesses) and 
KCs/content units (pieces of content). A similar scalable 
graph ontology based on concepts and content units is used 
in Knewton, a well-known, online, adaptive learning tool. 

C. Adaptive Learning Properties 
There are many adaptive learning properties [36] and in 

this study the focus is placed on individualized learning rates 
[23], multi-skill learning [21], recency engagement, and skill 
discovery [25] [47].  

1) Student Differences: Prior Knowledge, Learning 
Rate & Recent Engagement 

Modeling parameters on an individual level results in 
significant changes regarding instructional or mastery 
decisions [45]. Researchers found that the inclusion of 
student-specific parameters has a significant positive effect 
on prediction accuracy and interpretability [23][24], as well 
as in dealing with overfitting [23]. Researchers [24] added 
Dirichlet priors for the initial mastery 𝜃+D$, while IBKT [23] 
extended their work and found that adding variables of 
learning rates 𝑃(𝑇) for individual learners, provides higher 
model accuracy. DKT and DKVMN allow for differences in 
learning ability of the student by conditioning on the average 
accuracy of recent learner’s performance across trials and 
skills. 

Learners’ data include temporal dependencies, namely, 
there is a correlation in time engagement within or across 
learning resources and student’s performance on activities, as 
described in Section II. Furthermore, recent performance is 
more predictive than past performance. DKT and DKVNM 
inherently are more sensitive to recent trials, allow for long-
term learning and can capture temporal dependencies.   

The probabilistic KT tends to predict practice 
performance over brief intervals where forgetting the 
acquired knowledge is almost irrelevant; though extensions 
of BKT towards this direction have been proposed. These 

include forgetting from one day to the next and not on a much 
shorter time scale [22]. DBN includes the forgetting property, 
but it would be more insightful if the model was compared 
with the equivalent BKT extension that includes forgetting. 

Beyond the student knowledge that is reviewed 
throughout the paper, there are some single-purpose KT 
models augmented with non-performance data such as meta-
cognitive [42], affect [43], and other student differences 
[44][45] apart from the learning rates that we reviewed.  

2) Skill Dependencies & Adaptive Instructional 
Policies 

The effect of sequencing learning resources is an 
important adaptive property of learning systems. Each skill 
has some degree of influence on the learning of other skills, 
especially in hierarchical domains of knowledge, such as 
algebra and physics. The paths through learning resources 
such as exercises, KCs, or abstract skill concepts taken by 
learners can influence their knowledge acquisition process. 

 

TABLE IV.  COMPARISON OF KT MODELS: SCALABILITY  
 

Model Learnability 
requirementsi 

Efficiencyii Domain 
Knowledge 
Dependenceiii 

Limitations 

BKT  
 

↓↓↓ 
 

4 /skill, 
 

↑↑↑ 
↑ 

Prone to bias, 
independent 

skills 
assumption, 

local 
transitions 

between states 
 

IBKT  
 

↑↑ 
 

4 /skill + 
1 /student (a) 

 
↑↑ 

 
↑ 

Independent 
skills 

assumption, 
local 

transitions 
between states 

 
DBN  

 
↓ 
 

4 /skill + 
2n-1 for n 

skills 
 

↑↑  
↑↑ 

Hard-coded 
skill 

dependencies, 
complex,  

tractable only 
for simple 
models, 

local 
transitions 

between states 
 

DKT  
↑↑ 

 

 250K with 
200 hidden 
units & 50 
skills (b) 

↓↓ 

↓ 

Highly 
complex, 
prone to 

overfitting, 
not 

interpretable 
DKVM

N 
 

↑ 
 

130K with 
200 states & 

50 skills  
↓ ↓ 

Highly 
complex, 

not 
interpretable, 

local 
transitions 

between states 
 

i. the higher, the more complex the model, 
ii. the higher, the less complex the model, 
iii. the higher, the less flexible the model, 
a. only the learning rate is individualized, 

b. 4(input size+1) * output size + output size2. 

 
DKT and DKVMN can discover the inter-skill 

similarities and exercise prerequisites without requiring any 
domain knowledge apart from the exercise tags. A set of skill 
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labels are manually provided but the annotation part is done 
by the model. They can return the sequence of learning 
resources to a student that maximizes the expected 
knowledge state of that student. An interesting question is 
whether a sequence should contain exercises that belong to 
different skills or refer to one skill only. A trained DKT can 
be used in a Markov Decision Process for testing this scenario 
given a further time horizon (i.e., long-term learning). They 
found that presenting the exercises in an interleaved order of 
skills yields higher predicted knowledge after solving fewer 
problems, relative to presenting the exercises in a blocked 
order of the same skill.   

Currently, the deep learning models can capture the 
relationships among exercises within a skill. It is worth 
mentioning that although deep learning models suffer from 
the lack of hierarchical input data structures [48], recently 
there is a lot of research in the direction of graph based deep 
learning models able to address hierarchical structures [52]. 

BKT and IBKT assume that each skill is independent and 
thus cannot be directly used to infer adaptive instructional 
policies; since they cannot keep the absolute sequence of 
exercises, given that they are not implemented in a mastery-
learning way. A student’s raw trial sequence is parsed into 
skill-specific subsequences that preserve the relative ordering 
of exercises within a skill, but discard the ordering 
relationship of exercises across skills.  

TABLE V.  COMPARISON OF KT MODELS: ADAPTIVE HUMAN 
LEARNING COMPONENTS 

Model Inclusion of 
forgetting 
rate 

Inter-Skill 
Similarity & 
Instructional 
Policies 

Learner 
individual 
differences 

Multi-skill 
learning  

BKT 
✗ ✗ ✗ ✗ 

IBKT 
✗ ✗ ✓ ✗ 

DBN 
✓ 

✓ 

 
✗ ✓ 

DKT 
✓ ✓ ✓ ✗ 

DKVMN 
✓ ✓ ✓ ✗ 

 
On the other hand, DBN allows for modeling hierarchical 

skill-dependencies, given a detailed expert model and can 
yield meaningful instructional policies. It can be used to offer 
an adaptive number of exercises that need to be solved for 
skill mastery. This is a mastery learning setting where the 
effort (number of practice opportunities needed to pass a 
skill) and score (percentage of correct observations after 
having the skill passed) of a learner are optimized [27][45]. 
Though, DBN is computationally tractable only for the 
simplest topologies among skills since exact inference is 
exponential in the number of parents a node has. Given a 

large-scale dataset, approximate inference can be used to 
exchange accuracy with computational time.  

D. Comparison of KT models’ applications & performance  
All the models track at each time step the evolution of 

student knowledge state in real time for each skill separately 
[18][23], for a set of skills [21][47], or for a set of exercises 
[25][47]. This implies that, after a students’ interaction with 
an exercise, the models update the knowledge state of each 
student in a skill [18][23]  or skillset [21][25][47] way. To 
illustrate this with an example, let’s assume there are fifty 
exercises where “bivariate data frequencies”, “linear models 
of bivariate data”, “plotting the line of best fit”, “interpreting 
scatter plots”, and “scatter plot construction” correspond to 
distinct labels of five exercises. DKT and DKVMN take the 
past performance of students on the sequence of 50 exercises 
and the current performance of a student on an exercise, and 
it will predict the probability of getting each of the exercise 
correct in their next interaction. Both models will cluster 
these exercises in one cluster named ‘Scatter Plots’ which can 
be roughly considered as a single skill. Different from DKT, 
the advantage of DKVMN is that it is more powerful in 
storing past performance of a learner since it can maintain the 
knowledge state per skill instead of only per distinct exercise 
label.  

The three probabilistic models [18][21][23] cannot 
capture the relationships between the exercises. BKT and 
IBKT assume that, the labels provided in the example above 
correspond to different fine-grained skills, each one 
separately modelled.  Each time an answer is provided for an 
exercise, the model will give the probability of the level of 
skill acquisition at time 𝑡 given the probability of the level of 
skill acquisition on an exercise on the previous time step. 
Commonly, once a certain mastery level is reached, the 
learner can move to the next skill. Different from that, DBN 
will output a collection of probability distributions specifying 
the knowledge level for each skill or KC label. IBKT is the 
only model that individualizes toward learning rates of 
students. 

KT models are commonly applied in curriculum 
sequencing and mastery learning frameworks, both axes are 
useful for smart and adaptive learning environments 
[5][7][10]. The former is used to either return or recommend 
to a learner a dynamic, optimal sequence of learning 
resources, whereas the latter is used to estimate the point of 
time that a certain skill is acquired [18] and from that point, 
learners are considered able to handle more advanced 
concepts. The DKT and DKVMN are used for curriculum 
sequencing while the HMMs and DBN for mastery learning. 
However, this study [49] suggests that KT models are better 
suited for discovery of concept and exercises relations, 
already included in DKT and DKVMN, rather than mastery 
learning applications. Mastery learning applications are 
threshold-dependent since it is difficult to automatically 
define an optimal threshold value.  
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DKT and DKVMN are complex, flexible and non-
transparent models. DKT led to 25% increase in AUC when 
compared to the relatively simple BKT [25]. However, its 
success is attributed to its flexibility in capturing statistical 
regularities directly present in the inputs and outputs, instead 
of representation learning [22] which is the fundament 
advantage of deep learning models. When the performance of 
the DKT model and variations of BKT is compared [22], it is 
found that both models perform almost equally well. These 
variations allow for more flexibility in modeling statistical 
regularities that DKT has already the ability to explore 
because of the LSTM structure. DKT is presented with the 
whole trial sequence and thus it can discover aspects within 
interactions; whereas probabilistic models are given one 
student interaction at each time step. DKVMN performed 
better than the MANN baseline, DKT, BKT, and some BKT 
variations, as authors reported in [47].  

Deep learning models can be superior towards the 
probabilistic ones, only if they are fed with more complex 
input data instead of exercise-performance interactions. 
Thus, they can take the full advantage of featurization and 
learn the representation of knowledge acquisition. These 
models can work only in platforms with a relatively large 
number of students and interactions, while not requiring 
significant domain expertise. All models can perform better 
when a bigger number of students and interactions is 
available to train the algorithm. 

DBN led to significant improvements in prediction 
accuracy compared to BKT, and the logistic models of 
Additive Factor Model, and Performance Factor Analysis 
[21]. Researchers suggest that the performance differences 
between DBN and BKT, need to be investigated further. 
DBN is a highly structured and hierarchical model that can 
work well in hierarchical domains of the instructed concepts; 
and given the availability of accurate domain expertise for the 
detailed development of skills topology and complex 
constraint sets. It can infer a student’s mastery on skills even 
if there are not any observed interactions linked to these 
skills, given there are interactions on other related skills. 
They can perform well in mastery learning applications.  

IBKT also performed better compared to BKT and BKT 
variation of prior knowledge individualization [24]. IBKT is 
the only model that allows for wide variations among 
students.  

IBKT as well as DBN are single-purpose models [32]. 
Combining the benefits of skill hierarchies and accounting 
for student differences could introduce a more holistic model. 
However, probabilistic models use conditional probability 
tables to make inferences of a learners’ state, whose time and 
space complexity grows exponentially with the number of 
states and features. IBKT used logit functions to lessen this 
issue and incorporate user-specific features. An efficient 
framework allowing the integration of general features into 
KT via logistic models is introduced in [32]. 

Table VI outlines potential applications of each model in 
an adaptive learning platform and the effects that each model 
can infer. 

V. ITEM RESPONSE THEORY FOR PREDICTING FUTURE 
PERFORMANCE 

This review focuses on KT, thereby ignoring the only 
available alternative, which is Item Response Theory (IRT) 
[34][35]-[37]. Theoretically, IRT models differ from KT in 
that it focuses on summative tests in which no learning 
occurs, or on modeling very coarse-grained skills where the 
overall learning is slow [33]. This implies that IRT is a static 
model where student’s knowledge does not change over time. 
Technically, IRT uses logistic models, i.e., discriminative 
algorithms discussed in Section II and cross-sectional data 
where learners’ interactions directly estimate the ability 
parameter. An important advantage of logistic models that 
follows up is their ability to keep a linear algorithmic 
complexity while integrating a variety of features into the 
model; but this comes with the expense of the large-scale 
training data requirement. Hence, especially the more 
sophisticated IRT variants can be directly used for multi-skill 
learning and to account for variability in student a-priori 
abilities or guesses. 

TABLE VI.  APPLICATIONS OF KT MODELS  
Model IBKT DBN DKT DKVMN 

Appli-
cation 

Individualized 
learning pace, 
 
 
 
Personalized 
feedback on 
progress 

Adaptive 
number of 
learning 
resources, 
 
Feedback on 
progress & 
effort 
minimization 
 

Adaptive order 
of educational 
activities, 
 
 
Feedback on 
exercises 
progress 
 
 

Adaptive 
order of 
educational 
activities, 
 
Feedback on 
concept & 
exercises 
progress 
 
 

Effects Student 
differences on 
learning rates 
 

Multi-skill 
learning  
 

Student’s 
differences on 
performance 
 
Discovery of 
exercise 
relationships  
  

Student’s 
differences on 
performance  
 
Discovery of 
exercise 
relationships  
 

 
The baseline IRT Rasch model, known as the One 

Parameter (1PL) IRT, assumes that the probability of a 
correct response is mathematical function of the difference 
between student knowledge on skill 𝜃  and an item difficulty 
𝛽, as depicted in (6). The responses to items are independent 
and occur at constant average rate. The items are considered 
conditionally independent to each other and  𝛽 is better 
estimated when there is a large amount of data to calibrate 
them.  

														𝑝\(𝑦 = 1|𝜃) = i1 + 𝑒𝑥 𝑝i−(𝜃 − 𝛽\)jj
D$

        (6) 
 
The most sophisticated of 1PL IRT descendants include 

the Additive Factor Model (AFM), which incorporates 
features of learning rates and skills, and its extension the 
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Performance Factor Analysis (PFA). The literature has 
already compared the models of PFA and BKT, both in 
theoretical [34] and in technical [35] terms (i.e., predictive 
accuracy and parameter plausibility). 

AFM is depicted in (7), where 𝑞t\ = 1 if item 𝑖 uses skill 
𝑘, and 0 otherwise, and 𝛾t and 𝑇t	denote the learning rate and 
the number of exercises the student has solved for skill 	𝑘, 
respectively. This model is better estimated when there is a 
large number of learning responses available for calibration.  

 
𝑝\(𝜃) = (1 +	exp	(−(𝜃 + ∑𝑞t\(𝛽t + 𝛾t ∙ 𝑇t))))	

D$	(7) 
 
The PFA model developed to differentiate correct from 

incorrect responses. It is highly predictive but not useful for 
adaptive environments in the sense that it cannot optimize the 
subset of items presented to students according to their 
historical performance [27]. The PFA is depicted in (8), 

 
𝑝\(𝜃) = 

(1 +	exp(−(𝜃 + ∑𝑞t\(𝛽t + 𝛾t ∙ 𝑆t + 𝜌t ∙ 𝐹t))))	
D$ (8) 

 
where 𝑆t and 𝐹t denote the number of correctly and 
incorrectly solved items for a student at skill	𝑘,	respectively. 
The fixed effects 𝛾t and 𝜌t, therefore, denote the learning 
rates associated with correct and incorrect responses, 
respectively.  

IRT models, which need to estimate simultaneously the 
entire interaction trajectory for each student with item 
parameters [37], or require large samples for calibration [33], 
are considered difficult to implement in an online 
environment; and together with KT are rarely evaluated with 
respect to real-time prediction performance [36].  

It is interesting that the equation (2a) of IBKT 
incorporates the intuition of IRT, when summing the logistic 
functions to incorporate skill and student-specific 
parameters. AFM and PFA models are found [21] to achieve 
high resolution in Brier Score when compared to DBN 
because they are directly fitting a curve over time while the 
AFM achieve bad reliability, most probably because it does 
not differentiate correct from incorrect answers. 

VI. PROSPECTS AND CHALLENGES 
The quality of a KT model is measured by its ability to 

predict learner performance. However, its key use is to 
recommend dynamic instructional policies like deciding 
sequences of learning resources, so as to guide learners 
towards achieving optimal learning outcomes in an efficient 
way. This raises five challenges and future directions.  

Firstly, in case of instruction recommendations, deep 
learning KT models should be transparent and inform the 
learner about the underlying intuition of the recommended 
decisions. This requirement is also present as a “right to 
explanation” in the General Data Protection Regularization 
law in European countries.  There is research oriented to 
explainable AI, such as the usage of a knowledge graph as 

reasoning evidence for the predictions of deep learning 
models [52] or the development of frameworks for 
interpretable machine learning models [53]. Both are still in 
early stages and commonly oriented to other domains than 
that of education.  

Because of the importance of generalizing to new 
examples, which depends both on the right representation 
model and the sufficiency of data, it is useful to briefly 
approach KT from a data-centric side. In general, modeling 
knowledge acquisition is a complex task as human learning 
is grounded in the complexity of both the human brain and 
knowledge organization. From a social science perspective, 
learning is influenced by complex interactions, including 
affect [38], motivation [39][40], and even social identity [41].  
Though, the data used as input for the described KT models 
are not complex; since predicting student knowledge with the 
mere observation of correct versus incorrect responses to 
learning activities provides weak evidence. As educational 
apps and smart learning environments increase in popularity, 
it may be possible to collect valuable, diverse and vast 
amounts of student learning data, able to capture the reality 
of learning; and hence create opportunities, as well as new 
challenges, in the utilization of the deeper insights of each 
learner’s knowledge acquisition trajectory.  

Therefore, the second future direction concerns the 
inclusion of data beyond student performances. These could 
be conventional patterns like hint usage, exercise skipping 
[54], exercise difficulty perception [55], response times, 
involvement in discussion forums, leverage of personalized 
or social comparison feedback [56], or sensory patterns of 
facial expression, body temperature, eye movement, and 
body language. A shift to deep learning modeling will offer 
superior results only given data more behavioral and 
complex. It is worthy also to note that, until now, most of KT 
models model hint usage and exercise skipping as an 
incorrect answer, which is mathematically convenient but 
loses information about learners’ behavior.  

Another example of rich data could be the inclusion of 
learners’ input such as their diagnosis of their prior 
knowledge about the instructed topic or their learning 
intention for topic acquisition.  Such features can be included 
as a prior to the Bayesian or as an additional input to the 
network. This is important for adaptive learning systems, 
which face difficulties on making accurate inferences and 
sensible recommendations, when little data about the student 
is available (i.e., cold-start problem in recommendation 
systems) or for learners who were previously inactive for a 
long time [36]. Obviously, such a task is not trivial and raises 
other questions such as what kind of questions should be 
asked so as to both not overwhelm the learner and at the same 
time gather the maximum amount of information regarding 
their level of knowledge.  

Both probabilistic and deep learning models are not easily 
scalable to include richer student and skill-specific features 
due to ‘the curse of dimensionality’. Large-scale datasets are 
necessary for alleviating this issue. Scalable frameworks and 
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incremental, parallel algorithms are open research topics in 
the field of AI.  

Thirdly, open issues remain the automatic setting of 
adaptive thresholds in mastery learning and the definition of 
optimality in dynamic learning paths which are conditioned 
on continuous learning behaviors.  

The fourth future direction is related to the evaluation 
metrics of learner models, which should be more directed at 
measuring performance with respect to the learning 
outcomes. Frameworks and metrics specifically oriented to 
adaptive learning purposes should thus arise. Another related 
challenge is that none of these models have been evaluated 
on online recommendation tasks. 

The fifth future direction is concerned with the expert 
model that describes the content relationships. The Bayesian 
models depend on accurate domain knowledge but defining 
content relationship and designing exercises is not only hard 
to accomplish, due to their high hierarchy and diversity, but 
also subject to human opinions across the globe. Deep 
learning models do not need domain experts but this may also 
be considered as an extreme in the educational domain. 
Hence, the utilization of knowledge graphs, crowdsourcing, 
or semi-supervised techniques that learn the topology of the 
content could possibly be considered as safer paths than the 
either highly structured or abstract representation of skills.  

VII. CONCLUSIONS 
Modeling learner’s skill acquisition and predicting future 

performance is an integral part of online adaptive learning 
systems that drive personalized instruction. Knowledge 
Tracing has the capability to infer a student’s dynamic 
knowledge state as the learner interacts with a sequence of 
learning activities. In this review, we described the 
probabilistic and deep learning AI approaches that are used 
to model the evolution of knowledge acquisition. We outline 
their technical and educational requirements, advantages, and 
limitations with respect to adaptive human learning, 
supervised sequential machine learning, and algorithmic 
scalability.  

The deep learning approach models a continuous 
learner’s state for multiple skills and can explicitly induce 
temporal aspects related to adaptive learning without being 
knowledge-domain dependent. Predictions and learning 
recommendations can be enhanced by including more 
complex data. The usage of frameworks towards AI 
explainability is also a beneficial step.  The incorporation of 
regularization techniques can help in overfitting issues and 
inconsistent predictions. 

Equivalent features in the probabilistic models are the 
incorporation of more flexible content representations and 
justified assumptions about the knowledge state dynamics. A 
Bayesian approach models a binary state either for one or 
multiple skills and is highly domain-knowledge dependent, 
especially in the latter case. Optimization algorithms in the 
Bayesian models are susceptible to local optima and multiple 
global optima, where proper parameter initialization and 

constraints have shown to alleviate these issues. Importantly, 
the performance of probabilistic models depends highly on 
the setting of a good prior probability.  

Specifically, the IBKT and DBN are single-purpose 
models; The IBKT can be used to infer individualized 
learning paces while the DBN can be used for multi skill 
learning. The latter is tractable only for simple skill 
topologies. Approximation inference can improve the 
running time of the algorithm where justified constraint sets 
should be defined to ensure the interpretability and accurate 
estimates of parameters.  

The DBN together with the DKT and the DKVMN can be 
used for adaptive instructional policies. The DKT is the most 
complex and together with the DKVMN are the only models 
that are non-transparent and that can discover inter-skill 
similarities. The IBKT, DKT, and DKVMN models require a 
relatively larger amount of training data than the BKT and 
DBN models.  

An open issue regarding all models is the leverage of rich, 
general features and their corresponding algorithmic 
scalability. Furthermore, the choice of evaluation metric 
should be chosen based on the intended use of the model that 
adheres to the ultimate purpose of improving learning 
experiences. Lastly, to the best of our knowledge, there is a 
research gap on whether KT models are better for the offline 
discovery of exercises and skills relationships rather than the 
online decision-making part of mastery learning or 
instructional policies. 
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