
A Reference Ontology for Collision Avoidance
Systems and Accountability Integrated with

DAIDALUS
David Martı́n-Lammerding

Department of Stats. Comput. Sci. Math
Public University of Navarre (UPNA)

Pamplona, Spain
email:david.martin@unavarra.es

José Javier Astrain
Department of Stats. Comput. Sci. Math

Public University of Navarre (UPNA)
Pamplona, Spain

email:josej.astrain@unavarra.es

Alberto Córdoba
Department of Stats. Comput. Sci. Math

Public University of Navarre (UPNA)
Pamplona, Spain

email:alberto.cordoba@unavarra.es

Abstract—Unmanned Aerial Systems (UASs) will be deployed
massively in urban areas to implement logistic and security
applications, with lower cost and more flexibility than manned
aircraft. An increasing number of UAS missions requires an
improvement of their safety by equipping UASs with Collision
Avoidance Systems (CASs). CAS implementations require data
from the UAS environment to identify conflicts and to perform
an avoidance maneuver if required. UAS generates heterogeneous
data from multiple sources, like the Flight Control Unit (FCU),
the Global Navigation Satellite System (GNSS), a radio receiver,
an onboard-camera, etc. However, each CAS implementation
represents, processes and stores conflict data in a different
way. Therefore, there is a lack of standards that simplify
their development and homologation. To solve this situation,
we present a reference knowledge model for any CAS for UAS
implemented as a novel application ontology, called Dronetology-
cas, and its integration with DAIDALUS, a CAS developed by
NASA. Dronetology-cas provides a unified semantic representa-
tion within an ontology-based triplet store designed to run in
a Single Board Computer (SBC). Its semantic model provides
advantages, such as interoperability between systems, machine-
processable data and the ability to infer new knowledge. It is
implemented using semantic web standards, which contribute to
simplify an operational safety audit. Additionally, we integrate
Dronetology-cas with DAIDALUS and verify it with two scenarios
where conflict data from external sources are considered to
improve UAS safety.

Index Terms—Semantic reasoning; ontology; DAIDALUS; UAS;
knowledge; conflicts; anti-collision; sensor; embedded; air traffic.

I. INTRODUCTION

The use of Unmanned Aerial Systems (UASs) improves
efficiency in logistics applications, infrastructure inspection,
emergency situations, etc. as it avoids pilot risk. However, their
flights are limited to certain areas of the airspace to avoid
encountering other aircrafts. Therefore, each UAS must be
equipped with new safety systems to fly safely in a shared
airspace, like Collision Avoidance Systems (CASs). CASs
detect aircraft, discover potential collision hazards and decide
maneuvers to avoid collisions that may change the flight plan
initially configured.

A massive use of UASs will imply an increasing collision
risk that involves ensuring accountability for all UASs mis-

sions. The accountability principle requires UAS operators
to take responsibility for what their UAS do in a mission
and how they comply with traffic management authorities.
UAS operators must have appropriate records to be able to
demonstrate their compliance. The accountability of an UAS
flight must be ensured because any incident or accident must
be able to be investigated by surveyors or authorities. In the
worst case, a collision may occur, which must be investigated
to determine the cause and to improve CAS.

In our previous work [1] published at SEMAPRO, we
present a novel ontology, Dronetology-cas, for CAS for UAS.
From those results, we develop an integration with a reference
CAS implementation, called DAIDALUS (Detect and AvoID
Alerting Logic for Unmanned Systems [2]), as it implements
the functional requirements specified in DO-365, the Minimum
Operational Performance Standards (MOPS) for UAS devel-
oped by RTCA (Radio Technical Commission for Aeronautics)
Special Committee 228 (SC-228). DAIDALUS avoidance does
not depend on communications with centralized systems, as
any delay in making a decision increases the risk of collision.
Our based knowledge application also requires to be executed
onboard to reduce communication latency. So, we deploy
Dronetology-cas in a Single Board Computer (SBC), suitable
for mounting on an UAS, to verify its capabilities of collision
avoidance, collision investigation and if response time is
reasonable. Dronetology-cas includes a Knowledge Base (KB),
which consists of triplets of data collected by onboard sensors,
external conflict data and inferred knowledge during the UAS
mission. Dronetology-cas uses software components to interact
with the CAS, onboard sensors and external data sources.

The investigation of aviation incidents and accidents is
today recognized as a fundamentally important element of im-
proving safety. The International Civil Aviation Organization
(ICAO) releases Annex 13 [3] that requires various States
to establish and maintain an accident and incident database
to provide an effective analysis of information on actual or
potential safety deficiencies. UASs traffic management will
be probably inspired by actual commercial aviation recom-
mendations so similar requirements are expected. However,

60

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the increasing number of UASs and the autonomy required
for their operation forces process standardization and automa-
tion. Ontologies unify schemes for exchange of information
and provides access to stakeholders and provide a common
format for identifying actual or potential safety deficiencies.
Therefore, Dronetology-cas may be integrated with any CAS
typology, whose design factors are depicted in Figure 1.

There are external air-traffic data that can be used in colli-
sion avoidance. As an example, we consider data from Notice
To Airmen (NOTAM), provided by an aviation authority. It
alerts aircraft pilots of potential hazards along a flight route
or at a location that could affect the safety of the flight. We
insert NOTAM data in the KB during a simulated UAS flight,
when connectivity allows to download it from an external data
source, to consider conflicts that may not be detected with
onboard sensors.

ADS-B (Automatic Dependent Surveillance - Broadcast) [4]
is a surveillance system that replaces the information currently
obtained from radars. It allows to broadcast to other aircrafts
the position, obtained from a Global Navigation Satellite
System (GNSS), and other flight data. These signals are
received by ground or onboard aircraft receivers. UASs can
deploy an ADS-B transceiver as part of its integration into the
common airspace. Therefore, we also consider ADS-B data in
the KB during the simulation performed to improve situational
awareness and minimize collisions.

The rest of the paper is structured as follows. Section II
presents the state of the art of CAS and accountability systems,
Section III defines the problem statement and Section IV
describes our contribution. The ontology design is presented in
Section V. Section VI is devoted to the integration architecture.
Section VII formulates ontology Competency Questions (CQs)
and Section VIII summarizes experimental simulations results.
Section IX presents the conclusions and references end the
paper.

II. RELATED WORK

We review ontology applications, autonomous driving and
CAS implementations to identify different approaches. Among
them, autonomous driving applications shares some require-
ments with autonomous UAS and CAS. CAS for autonomous
driving requires an accurate localization of the car provided by
multiple sensors, as described in [6]. This can also be applied
to UASs localization, as in landing maneuvers that require
precision, using our proposed ontology-driven system, as it
can deal with any precision available. Therefore, a knowledge
layer, like we propose, allows to apply it easily to other
systems and vehicles.

Ontologies are commonly used to store knowledge in do-
mains related with UAS and CAS, like sensors and air traffic.
For the former, we review the Semantic Sensor Network
(SSN) [7] ontology that can be used to model UAS as sensors,
as it is one of the most widespread application of UAS is data
gathering. However, the SSN ontology lacks concepts to model
the UAS mission and the CAS, so an extension is required
which implies a larger ontology. A large ontology increases

memory consumption and we want to run the system in a SBC
with limited resources.

Regarding the air traffic domain, we review the propose
ontology[8] that applies semantic technologies to air traffic
in order to unify heterogeneous data from multiple sources.
The ontology implementation presented is performed cen-
tralized. However, our proposal is a decentralized ontology
implemented in a SBC mounted on each UAS to serve as a
knowledge base for the CAS.

Ontology performance is another issue that we review as we
want to improve CAS performance using a SBC with limited
computing resources. [9] presents a light-weight ontology for
embedded systems whose design reduces concepts, complexity
and query times, compared to the SSN ontology. It is intended
for the sensor domain and, therefore, it has limitations for
modeling a CAS for UAS, as we want to achieve a knowl-
edge repository to improve CAS performance. However, our
proposal also limits the number of classes and the relations
for just the necessary.

There are multiple CAS implementations for UAS, but
we only consider ACAS-Xu [10] and DAIDALUS [2], as
both CAS have their source code available and are two
reference CAS implementations. Both CASs require a specific
configuration for considering the same avoidance maneuvers
and conflict scenario. Given the same scenario, their output
formats are different as shown in [11]. A limitation of both
CASs is that they do not share a common conceptual model
that simplify the usage of knowledge, like the solution we
propose.

Multi-Task Learning is an approach for autonomous driving
applied to obtain more interpretable results from raw sensor
data, thanks to human-readable intermediary representation,
as presented in [12]. Our ontological approach can also be
considered an intermediate representation, but we also want to
facilitate its reusability in other systems, as one key feature of
our proposed solution is to improve interoperability. Therefore,
we consider that semantic technologies will achieve both
objectives.

The accountability of an UAS flight must be ensured be-
cause any incident or accident should be able to be investigated
by surveyors or authorities. There are systems similar to black
boxes for UAS [13]–[15]. They store the UAS’s route and the
CAS’s status. However, the decision-making process prior to a
maneuver is complex and its recording is not provided in these
systems, therefore, we improve the accountability of a CAS
recording decisions and maneuvers in the KB with a common
vocabulary that facilitates interoperability.

III. PROBLEM STATEMENT

The data required by a CAS depends on how the main
design factors are combined. The main concepts of CAS used
in the design of Dronetology-cas are described below.

A conflict between two UAS occurs when minimum sepa-
ration between them is lost. Figure 2 shows a conflict between
local UAS and remote UAS and the protection distance between
them, dp. A loss of separation does not always imply a future

61

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 1. CAS design factors. Based on [5].

collision, but it is a key safety indicator. A CAS deployed in an
UAS allows to maintain a minimum safe separation between
UASs. Once a conflict is detected, the onboard CAS deviates
the UAS to a safer path. The number of simultaneous conflicts
are denoted as NC. Time to collision ttc is the time required to
collide two UAS if both UASs continue at their current speed
and on the same path. Lower ttc values correspond to higher
risk of collision and it is considered to prioritize conflicts.
Very Low Level airspace (VLL) is the space below 500 ft,
measured Above Ground Level (AGL). It is the part of the
airspace intended for most of the new UAS applications and
it will concentrate the largest number of UAS conflicts.

CASs are based on different technologies that collect data
from the UAS environment using sensors and/or collabora-
tive elements based on radio receivers/transmitters. UAS can
deploy collaborative elements and non-collaborative sensors.
A collaborative element broadcast its position and bearing
within its coverage and receives from other aircrafts. ADS-
B is the most common standard applied in collaborative
systems. A non-collaborative sensor detects obstacles and con-
flicts without requiring other to implement the same system.
Technologies applied to non-collaborative systems are vision
cameras [16], LIDAR [17], SONAR [18], Radar [19], etc.
[20] presents a complete survey of the main technologies
applied to sensors for conflict detection.

Most CASs for UASs are distributed, so they run in a SBC
mounted on each UAS. However, the size of the UAS limits
the weight of the payload, which limits the type and power
of processor that can be used. Any software component used
in a distributed CAS implementation should be non-compute-
intensive to ensure a reasonable response time.

Fig. 2. Conflict between a local UAS (ownship) and a remote UAS.

IV. CONTRIBUTION

In this paper, we develop the integration of Dronetology-
cas with DAIDALUS and verify the integration with two
scenarios where knowledge provided by Dronetology-cas im-
proves DAIDALUS collision avoidance. We also describe
the ontology Dronetology-cas and its main characteristics.
Dronetology-cas improves DAIDALUS as it minimizes the
processing of unnecessary conflicts and increases the situa-
tional awareness of the UAS translating NOTAMs to conflicts.

Dronetology-cas provides key advantages over other repos-
itories or log storage implementations, as it is ontology based
and can be queried using SPARQL (SPARQL Protocol and
RDF, Resource Description Framework, Query Language).
Another Dronetology-cas key features that we verify with the
simulations performed are reasonable response time, modifia-
bility, ease of maintenance, built-in inference capabilities and
potential for reuse.

62

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



V. DRONETOLOGY-CAS: THE APPLICATION ONTOLOGY

Dronetology-cas is an application ontology derived from the
domain ontology Dronetology [21]. The domain of Dronetol-
ogy is UASs. Dronetology-cas formal specification is based
on the design factors of a CAS. Next, we review Dronetology
before describing Dronetology-cas.

A. Dronetology: The domain ontology

The purpose of Dronetology is to describe concepts that
define the components of any UAS, the missions it performs
and the environment that surrounds it. Its main applications are
the management of bill of materials, the improvement of flight
efficiency and autonomous decision making. Dronetology im-
ports external ontologies to avoid redefining concepts from
other domains, like SSN for onboard UAS sensors. Another
advantage of importing widespread ontologies is that available
data from other applications can be integrated easily.

Fig. 3. Methods used for projecting current encounter’s information. Based
on [5].

B. Dronetology-cas description

We derive the Dronetology-cas application ontology from
the Dronetology domain ontology adding concepts from the
CAS domain. Its design use abstract concepts that can be used
in any CAS integration. The ontology is accessible in [22].

Dronetology-cas allows auditing the CAS decision making
process, as the KB stores the planned flight plan, the CAS
status and the real flight path of the mission. Conflicts and
their temporal variations are detected by onboard sensors and
stored in the KB. Differences between planned and real flight
can be retrieved using SPARQL queries, as flight plan changes
usually are related to conflicts.

Knowledge is obtained from data collected from sensor
systems and collaborative elements, and stored in the KB.
Data sources are sensors, the Flight Control Unit (FCU) and
the GNSS. Inference improves the CAS decisions thanks to

knowledge derived from the data. Dronetology-cas has an
inference engine that generates new knowledge by applying
semantic rules to the KB. The rules are expressed in SPARQL
statements [23], [24]. Defined rules inference a conflict’s
attribute, an evasive trajectory method, a maneuver attribute,
etc.

A common feature of a CAS is that it usually runs in a loop
with an operation frequency in order to update the internal
representation of conflicts, the situation awareness and the
current maneuver. This is modeled in Dronetology-cas with
the concept of Iteration. Dronetology-cas stores CAS status,
UAS telemetry and conflicts for each Iteration to audit the
system. Data collected from sensors are also related to the
Iteration to provide a complete picture of the environment
and the CAS. Dronetology-cas simplifies the integration of
data from different sources. It integrates data from any sensor
system by defining generic classes, which are not directly
dependent on the technology and the implementation. These
classes are NoCollaborativeData and CollaborativeData and
both extend InputData.

Another common feature of a CAS is to estimate future
positions of conflicts, called a projection, in order to obtain
a maneuver that will avoid a future collision. As an example
of the above, Dronetology-cas allows to choose the method to
estimate the future position from multiple options available,
as depicted in Figure 3. If the conflict has been detected only
through a vision camera, the uncertainty about the heading
of the conflict is higher, so the most appropriate method of
estimating may be the Worst Case method. On the other hand,
if the conflict has been detected by a collaborative element,
the heading is known and there is less uncertainty. In this
case, the Straight Projection method is the most appropriate.
Both decisions can be derived easily using Dronetology-cas
with a rule that relates the conflict data source with the most
appropriate estimated method for the projection.

When the CAS decides a maneuver to avoid a collision,
Dronetology-cas stores every UAS position and groups them
with a individual of class Maneuver. Thus, Dronetology-cas
relates multiple specific-maneuvers concepts, like left-turn,
with a set of positions, which allows any combination of
trajectories, altitudes and speeds. Similarly, the dynamics of
conflicts in the 3D space are stored in Dronetology-cas as
different positions at different times. On the contrary, full
trajectory prediction made by the CAS are not stored in
Dronetology-cas as it is a highly variable data.

C. Dronetology-cas design

The CAS design factors, presented in previous section, are
used in the ontology design. Concepts defined in Dronetology-
cas are abstractly modeled to fulfill any CAS requirement and
simplify the integration. The relevant information that enables
making a CAS accountable is identified and annotated with
adequate ontology terms. Next, we review each design factor
and how Dronetology-cas implements each one.

The first design factor considered in the design is the type
of onboard sensors. Dronetology-cas models every onboard

63

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 4. Dronetology-cas main classes

sensor as an abstract data source so it reduce classes and
simplifies the design, avoiding to define specific technologies
and attributes for each sensor system. Therefore, sensors are
classified between collaborative and non-collaborative.

Dronetology-cas stores conflict locations in every Iteration
(defined by the period of the CAS) in order to store data for en-
suring the system accountability. The ownship location is also
periodically stored in Dronetology-cas, distinguishing planned
location from locations derived from an evasive maneuvering
obtained from the CAS.

The Dronetology-cas design implements knowledge infer-
ence to improves the CAS response. For example, inference
can classify conflicts, aggregate data from multiple sensors
or dismiss a conflict. Inference from historical data are also
supported. For example, when a conflict‘s attribute are not
available, like speed, it can be inferred from the conflict past
locations. The method to calculate an evasive trajectory and
the associated maneuver depends on the CAS implementation.

Dronetology-cas has been designed considering the com-
putational limitations of SBC. Thus, memory usage has been
reduced by limiting the number of classes in the model and
avoiding importing auxiliary ontologies.

The main classes of Dronetology-cas are UAS, MissionEle-
ment, InputData, AntiCollisionSystem and Conflict. Figure 4
shows the main Dronetology-cas classes.

The class UAS describes unmanned aircraft including the
communication systems and the ground base. The class Con-
flict is a subclass of UAS so in our model only UAS can
be conflicts. MissionElement is a class that enclose all the
elements of a mission. The classes Waypoint and FlightPlan
derive from MissionElement.

The class InputData represents any data collected from a

sensor (non-collaborative), from a collaborative element (radio
receiver), from the GNSS or from the FCU. The concepts
NoColaborativeData and ColaborativeData are derived from
InputData to identify a conflict and its source type. The prop-
erty drone:detect is an object property that relates individuals
of NoColaborativeData or ColaborativeData with individuals
of class Conflict.

Some classes in Dronetology-cas have geographic data de-
fined as datatype properties. The latitude and longitude are rel-
ative to the World Geodetic System 1984 (WGS84) coordinate
system. The altitude is relative to Mean Sea-Level (MSL). To
improve interoperability, the Conflict class uses geo:wktLiteral
datatype with a WGS 84 geodetic latitude-longitude. This
allows Dronetology-cas to implement a geospatial web service
that could be reused and recombined to fulfill a user query
using a common standard.

The class AntiCollisionSystem groups elements of any CAS.
The classes State, Maneuver, NextIterationLocation and Itera-
tion are derived from it. The state of the CAS are represented
as instances of the class State with an attribute that codifies
it. A class Iteration instance relates all the knowledge stored
in the KB at an instant of time through the object-property
hasIteration.

The class Maneuver defines a set of locations of the UAS
when the CAS is active. CAS may calculate one or multi-
ple location alternatives for the UAS to avoid the collision,
stored as instances of the class NextIterationLocalUASLoca-
tion, grouped by an instance of the class Maneuver through
the object-property hasManeuver. In every iteration, at least
a new instance of NextIterationLocalUASLocation is stored in
the KB and sent to the FCU by the CAS.

Flight safety compliance are implemented in Dronetology-

64

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



cas defining attributes of the class Conflict to translate the
severity classification requirements defined in ESARR2 [25].

VI. SYSTEM ARCHITECTURE

Dronetology-cas integration with a CAS can be imple-
mented in two ways: repository-mode or knowledge-mode. The
repository-mode of Dronetology-cas is a data sink, intended
for flight telemetry storage. The knowledge-mode extends the
repository-mode adding a connector or an endpoint to provide
knowledge. Figure 5 shows the system architecture for each
integration mode.

Fig. 5. Dronetology-cas integration alternatives: (a) repository-mode (b)
knowledge-mode

Fig. 6. Dronetology-cas system architecture.

Fig. 7. Dronetology-cas knowledge-mode integration architecture detailed.

Dronetology-cas system architecture defines software com-
ponents that allow its integration with other UAS subsystems,
like a CAS, onboard sensor systems, the FCU and external data
sources. The components of the Dronetology-cas architecture

consists of an input data layer and a query layer, as shown
in Figure 6. The input layer, implemented for the repository-
mode, is a software layer that insert into the KB collected
sensor data, CAS status, GNSS locations, FCU telemetry and
safety information form external providers.

The knowledge-mode architecture is detailed in Figure 7.
The query layer, implemented for the knowledge-mode, is a
SPARQL adapter that executes sentences and return values.
The query layer provides a knowledge base criteria to select
conflict detected or received by the onboard sensor. It adds
implicit knowledge inference and reasoning capabilities to
some CAS functions, such as conflict detection or new path
selection. It can be configured as a SPARQL endpoint if
HTTP interconnection is required for incident investigation,
as federated SPARQL may be convenient to access other
endpoints.

External conflict data sources relies on available connectiv-
ity to insert data in the KB. NOTAM providers and Ground
Surveillance Radars (GSRs) are examples of external data
sources.

Dronetology-cas is developed using the Web Ontology
Language (OWL) language [26]. The main languages used
to develop CAS (C, C++, Python) have implementations to
process RDF triplets [27] and ontologies in OWL format.

Dronetology-cas architecture requires multi-platform com-
patibility to run in different hardware. Different software
components are available to implement a semantic web stack,
and among them, we select Apache Jena as it is the most
common stack. Apache Jena is an open source Java framework
for building Semantic Web and Linked Data applications.
Additionally, its only dependencies are the Java Runtime
Enviroment (JRE) so it can be deployed in every SBC that
has a JRE implementation.

TABLE I
DRONETOLOGY-CAS COMPETENCY QUESTIONS

CQ1 How many conflicts are detected?
CQ2 Which UAS has the highest priority among the UAS in conflict?
CQ3 Which conflict has the shortest time to collision?
CQ4 Has the number of conflicts increased or decreased?
CQ5 How has been detected the conflict with a given UAS?
CQ6 How long it has taken to resolve a conflict?
CQ7 Has the distance flown been increased with respect to the flight plan?
CQ8 In which locations have there been conflicts?
CQ9 Where and when was the collision?
CQ10 How many UAS were in conflict before the collision?
CQ11 What UAS has it collided with?
CQ12 What maneuver was the UAS performing before the collision?

VII. COMPETENCY QUESTIONS

We define a set of Competency questions (CQs) to define
the knowledge that has to be entailed in Dronetology-cas.
These questions, listed in Table I, has been used to validate
Dronetology-cas. Some CQs are suitable for an UAS mission
audit process. Others can assist the CAS in a decision making
process, when Dronetology-cas is integrated in knowledge-
mode. There are CQs that are intended to find out how the
conflict has been resolved, e.g., CQ6, CQ7 and CQ8. Some

65

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



CQs help to find out what happened and how when a collision
happens, e.g., CQ9, CQ10, CQ11 and CQ12.

In a knowledge-mode integration, the CAS uses the results
of some CQs to make decisions. Continuing the previous
example, the CQ What type of conflict is X? allows the CAS
to select the most appropriate way of calculating the future
position of the conflict. Other CQs are intended for a security
audit of the CAS. An example of this is the CQ used to check
when and where a collision occurred.

VIII. SIMULATION

Dronetology-cas verification is performed using simulations
to asses its response time and its integration with DAIDALUS.
Testing CAS with live-fly field experiments are costly and
highly time consuming. Therefore, simulations are more con-
venient thank to their flexibility and easy of configuration.

The first simulation is a performance evaluation of the KB
of Dronetology-cas when queried with some selected CQs
translated to SPARQL sentences. We develop a simulated-CAS
that loads data in the KB during the simulation time to test
the effect of the growth of the number of triplets stored in the
KB and to measure the performance when executing SPARQL
queries.

The second simulation performed is a Dronetology-cas
knowledge-mode integration with DAIDALUS. A custom FCU
simulator is developed in Java 8 to generate UAS flight
positions (expressed in WGS-84 coordinates) from an initial
flight plan. Multiple UASs can be simulated by the FCU
simulator as it can generate positions of the ownship and the
conflicting UASs sharing a common time reference.

We consider for the simulations the well known SBC
Raspberry Pi 3 Model B+ (Pi3) [28], as it is shipped in large
numbers and it has a huge user base. Its processor is a 1.2
GHz 64-bit quad core ARM Cortex-A53. The operative system
installed to perform the simulations is the Raspberry Pi OS 32
bits. The FCU simulator runs in an external desktop computer
that is connected with the Pi3 through a network connection.

A. Performance evaluation

Dronetology-cas performance is tested in both modes,
repository-mode and knowledge-mode. The performance eval-
uation is executed using the simulated-CAS that loads the KB
dynamically with data from conflicts and queries the KB using
CQs translated to SPARQL sentences.

The most generic CQs have been selected to measure
response times and memory footprint, as they are the most
likely to be used in any integration mode. CQ1 and CQ3
are necessary for any auditing process to review conflicts
and their status. CQ5 and CQ6 provide knowledge that the
CAS can use to modify its response to conflicts. One hundred
repetitions of each case were performed to calculate the mean
and the standard deviation. The results obtained from the
response times and memory footprint are shown in Table II.
CQs considered are translated to SPARQL, available in [29].

Response time and memory footprint are measured with
different number of triplets stored in the KB. Memory footprint

has been measured using the Java 8 API. The number of
triplets with conflicts and CAS data grows as the UAS flies.
Therefore, the flight duration determines the number of triplets
stored in the KB. In our tests, we have simulated up to 10000
triplets that corresponds to 15 minutes of flight by inserting
an average of 10 triplets per second.

The response time affects the CAS depending on the
integration type chosen. In repository-mode, there are no
strict response time requirements as it is not required a short
response time. However, in knowledge-mode, the response
time delays the CAS decisions. For our purpose, a suitable
response time should allow to take a decision with the most
recent data, before new data is available, that is, the response
time should be below the refreshing rate of incoming data.
Each sensor system has its refreshing rate ranging from 1 Hz of
ADS-B until 20 Hz of a vision camera [30]. The response time
of CQ5 and CQ6 obtained complies with the previous criteria
as long as the number of triplets are below approximately 1000
triplets.

Figure 8 shows that Dronetology-cas response time in-
creases when the number of triplets increases. Memory con-
sumption grows as the UAS flies as well. That is, the duration
of the UAS flight increases the response time. The worst
response time is at the end of a flight. This result is due
to our limited implementation of the software components
that instantiates and queries the KB. An option to scale up
is to have two instances of Dronetology-cas model, each
with a different purpose, one instance for the repository-mode
and the other for the knowledge-mode. The instance for the
repository-mode should store all triplets, but the instance for
the knowledge-mode should keep only recent triplets needed
for the inference process.

B. Dronetology-cas knowledge-mode integration with
DAIDALUS

DAIDALUS is a reference implementation of the algorithm
for the Phase 1 Minimum Operational Performance Standards
(MOPS) for Detect and Avoid (DAA). It is available a proto-
type implementations written in Java. It serves as a reference
of a MOPS-compliant DAA algorithm so we select it to verify
Dronetology-cas knowledge-mode integration.

Dronetology-cas integration with DAIDALUS v2.0.2b is
developed in Java, using a knowledge layer that provides data
location from the ownship and the remote conflicting aircraft
to DAIDALUS.

The integrated system is simulated using the FCU simulator
to generate the ownship location and other conflicting aircrafts
when necessary. The simulation is a continuous execution
that inserts locations in the KB while flying a defined flight
plan. In each iteration, Dronetology-cas provides DAIDALUS
the current position of the conflicting-UAS and the ownship.
DAIDALUS calculates a response in form of a new location
for the ownship that it is inserted in the KB. The simulations
performed are autonomous flights where the ownship follows
the corrective guidance provided by DAIDALUS without pilot
interaction.

66

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II
RESPONSE TIME (IN MILLISECONDS) AND MEMORY FOOTPRINT (IN KILOBYTES) OF repository-mode AND knowledge-mode IMPLEMENTED IN APACHE

JENA RUNNING IN A PI3.

Repository-mode Knowledge-mode
CQ1 CQ3 CQ5 CQ6

No Response time Memory footprint Response time Memory footprint Response time Memory footprint Response time Memory footprint
triplets mean sdev mean sdev mean sdev mean sdev mean sdev mean sdev mean sdev mean sdev

100 18.95 4.13 5025.28 1418.13 26.68 7.83 5101.67 1420.78 19.98 5.91 5104.45 1420.83 18.21 7.45 5100.81 1421.06
250 23.54 2.26 5200.98 1308.69 23.38 2.17 5241.25 1308.82 24.12 4.18 5211.77 1308.21 24.03 2.23 5233.40 1305.41
500 38.10 2.97 5441.26 1327.53 38.14 3.10 5441.51 1322.02 52.37 18.03 5377.53 1327.33 39.05 3.56 5491.02 1322.82

1000 74.42 17.78 5986.61 1332.65 67.47 3.10 5983.91 1336.00 68.49 3.18 6061.40 1331.63 68.74 3.10 5969.27 1319.01
2500 165.62 36.42 6997.64 1342.78 171.69 46.86 3362.77 1727.86 173.87 55.31 3875.86 1768.38 160.60 6.81 6972.95 1315.36
5000 320.98 64.36 6004.34 1718.44 320.30 63.49 5391.63 1587.92 355.39 100.29 5309.72 1510.33 324.63 65.44 5935.41 1724.54
10000 662.00 162.01 9545.00 1744.46 662.24 164.92 8440.54 2154.39 654.65 151.11 8560.70 2140.84 670.81 162.15 9595.25 1752.67

(a) (b)

Fig. 8. Response time (x) and memory footprint (�) for knowledge-mode for CQ5(a) and CQ6(b).

Fig. 9. Simulation architecture implemented to verify Dronetology-cas knowledege mode integration.

Next, we present two simulated scenarios for the knowledge-
mode integration where a modification of the architecture
depicted in Figure 9 is developed, whose main difference
is that the KB is connected to the onboard sensors. The
simulation of both scenarios are performed in a Pi3.

Fig. 10. Conflict not considered by Dronetology-cas as the flying airspace
class of the aircraft and the UAS are not the same. Based on [31]

67

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1) Scenario 1: Using ADSB knowledge: ADS-B is a com-
mon surveillance technology that increases situational aware-
ness between both manned and unmanned operations. The
availability of ADS-B equipment and its decreasing cost have
contributed to mount it in UASs. Nowadays, the majority
of aircraft broadcast ADS-B messages constantly. Starting
from the year 2020, civil aviation aircraft in Europe and
United States are required to be ADS-B compliant. Airspace is
divided in classes specified by the International Civil Aviation
Organization (ICAO) [32]. In our simulated scenario, depicted
in Figure 10, manned aircraft and UASs do not share same
airspace class. The developed FCU simulator inserts ADS-B
data in the KB, as ADBSConflict class instances, that refers
to a remote conflicting aircraft. Altitude is an attribute of the
ADBSConflict class. It is obtained from the aircraft airborne
position ADS-B message that is used to broadcast the position
and altitude of the aircraft. It has the Type Code 9–18 and
20–22. When Type Code is from 9 to 18, the encoded altitude
represents the barometric altitude of the aircraft. When the
Type Code is from 20 to 22, the encoded altitude contains the
GNSS altitude of the aircraft.

In our proposed scenario, a small UAS, equipped with
an ADS-B transceiver, flies in VLL and receives ADS-B
messages from an aircraft flying in the class A airspace. In
a common configuration, every ADS-B message received are
transformed into a conflict that are processed by DAIDALUS.
However, DAIDALUS does not provide an evasive maneuver
in this case because vertical separation is larger than the mini-
mum configured, but this processing requires some time. When
the number of conflicts flying in a different airspace class
increases the delay may affect response time of the overall
system. To see this effect we simulate multiple conflicts and
the response time of DAIDALUS. Results, that are depicted
in Table III, show that DAIDALUS Response Time (RT)
increases when the number of conflicts increases. The mean
of the RT has been measured repeating DAIDALUS execution
100 times for each number of conflicts.

TABLE III
DAIDALUS RESPONSE TIME CHANGING THE NUMBER OF

SIMULTANEOUS CONFLICTS.

Number of conflicts 0 1 2 3 4
DAIDALUS RT (ms) 4 157 175 174 185

Dronetology-cas integration in knowledge-mode avoids this
delay due to conflicts flying in different airspace classes,
as the criteria defined with a SPARQL sentence provides
DAIDALUS only conflicts in the same airspace zone, avoiding
aircraft that fly out of VLL airspace. The SPARQL sentence,
depicted in Listing 1, defines a criteria that selects conflicts
received by an ADS-B transceiver, that fly in VLL (below 500
ft) and its ADS-B type is UAV. When repeating the previous
simulation with the Dronetology-cas integration, no conflicts
are returned to DAIDALUS.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Fig. 11. A no-flight zone defined in a NOTAM is translated to multiple
conflicts in the no-flight zone boundary. UAS planned flight (blue) and evasive
path (red) are represented.

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX drone: <http://www.dronetology.net/dronetology-cas.owl#>

SELECT ?latitude ?longitude ?altitude
WHERE
{

?conflict a drone:Conflict.
?conflict drone:hasLatitude ?latitude.
?conflict drone:hasLatitude ?longitude.
?conflict drone:hasLatitude ?altitude.
?conflict drone:hasLatitude ?type.
?conflict rdf:type ?ADSBConflict.
FILTER(?altitude<500)
FILTER(?type="UAV"ˆˆxsd:string)

}

Listing 1. SPARQL statement to retrieve conflicts received by ADS-B and
flying in VLL

Therefore, Dronetology-cas integration avoids unnecessary
processing delays, as shown in the simulation results obtained,
and also it simplifies maneuvers when one or more conflicts
are dismissed.

2) Scenario 2: Using NOTAM knowledge: A CAS usu-
ally considers conflicts detected by collaborative or/and non-
collaborative onboard transceivers or sensing devices. How-
ever other risks are known such as those listed in NOTAMs.
NOTAMs are usually considered when planning an UAS flight
but they may change so any subsequent update may not be con-
sidered. In the simulated scenario proposed, Dronetology-cas
translates external data from a NOTAM provider to standard
conflicts triplets that can be used by DAIDALUS during the
UAS flight. The download of NOTAMs requires connectivity
to external providers. As NOTAMs refresh rate is unknown
we configure a periodical update of the NOTAM data stored
in the KB.

The simulation performed consist of an UAS crossing a no-
flight zone that it is defined in a NOTAM published during the
flight so it has not been taken into account to plan the UAS
flight, as depicted in Figure 11. DAIDALUS configuration for
this simulation avoids altitude changes in any of the corrective

68

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



guidance generated, therefore, only horizontal maneuvers are
considered. A conflict-generator software is developed to
translate any NOTAM into multiple conflicts in the boundary
of the no-flight zone. Conflicts generated are inserted in the
KB. To avoid unnecessary processing, the conflict-generator
only translates NOTAMs that are near the waypoints of the
flight plan of the UAS.

The number of conflicts derived from a NOTAM and their
positions are estimated using the default configuration of
DAIDALUS (the CD3D parameters). The main parameter used
is the Horizontal Miss Distance threshold (HMD) to separate
generated conflicts so the conflict-generator avoids creating an
excessive number of conflicts, so the no-flight zone boundary
is partially covered.

During the simulated flight, the conflict-generator inserts
conflicts considering the new NOTAN published and the KB
provides DAIDALUS conflicts in the boundary of the no-flight
zone, so DAIDALUS calculates a maneuver that changes the
path of the UAS, avoiding the no-flight zone, as shown in
the red dotted line in Figure 11. Therefore, Dronetology-cas
integration increases situational awareness of the UAS as it
allows to translate hazards, like no-flight zones, to conflicts
that can be managed by DAIDALUS.

Listing 2 depicts the SPARQL query used to retrieve con-
flicts, including the ones generated from the NOTAM, in order
to modify the UAS path and bypass a no-flight zone.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX drone: <http://www.dronetology.net/dronetology-cas.owl#>

SELECT ?latitude ?longitude ?altitude
WHERE
{

?conflict a drone:Conflict.
?conflict drone:hasLatitude ?latitude.
?conflict drone:hasLongitude ?longitude.
?conflict drone:hasAltitude ?altitude.
FILTER(?altitude<500)

}

Listing 2. SPARQL statement to retrieve conflict data

IX. CONCLUSION

In this paper, we describe the Dronetology-cas ontology,
as a value-added component for any CAS, and its integration
with a specific one, DAIDALUS. Dronetology-cas integration
modes allows multiple configurations for different purposes,
such as being a black box or a conflict knowledge manager.
Self developed software components integrate Dronetology-
cas with DAIDALUS to provide knowldege. Results obtained
from simulations performed show that knowledge available in
the KB improves DAIDALUS capabilities and performance,
reducing unnecessary processing and increasing safety. This
was achieved inserting ADS-B data and NOTAM information
as conflicts in the KB and defining SPARQL sentences to fetch
conflicts. The installation of Dronetology-cas in a production-
ready integration on a SBC should take into a account the

performance results and the integration mode required to
balance response time and memory consumption as obtained
in the simulations performed.

Future work will be focused on improving performance,
testing different SBC implementations, customizing the default
linux-based OS, considering others, like Microsoft Windows
IoT Core, and building a specific OS distribution devoted for
CAS applications.

Another line of work is to create a dataset with semantic
mission data to be used for research of UAS air traffic.
Software components developed for the simulation could be
evoluted to a generic software simulation for UASs. Further
developments of this work will develop an extension of
Dronetology-cas to manage other UAS subsystems, like the
path planner. These developments have the potential to expand
the initial Dronetology-cas domain and to achieve an ontology
standard for autonomous UAS.

REFERENCES

[1] D. Martı́n-Lammerding, J. J. Astrain, and A. Cordoba, “A refer-
ence ontology for collision avoidance systems and accountability,” in
SEMAPRO 2021, The Fifteenth International Conference on Advances
in Semantic Processing, IARIA, 2021, pp. 22–28.

[2] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, M.
Consiglio, and J. Chamberlain, “Daidalus: Detect and avoid alerting
logic for unmanned systems,” in 2015 IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC), IEEE, 2015, 5A1–1.

[3] ICAO. (2021). Annex 13 — aircraft accident and incident investigation,
[Online]. Available: https : / / www. icao . int / safety / airnavigation / aig /
pages/documents.aspx (visited on 05/30/2022).

[4] C. Rekkas and M. Rees, “Towards ads-b implementation in europe,” in
2008 Tyrrhenian International Workshop on Digital Communications-
Enhanced Surveillance of Aircraft and Vehicles, IEEE, 2008, pp. 1–4.

[5] B. Albaker and N. Rahim, “A survey of collision avoidance approaches
for unmanned aerial vehicles,” in 2009 international conference for
technical postgraduates (TECHPOS), IEEE, 2009, pp. 1–7.

[6] J. Phillips, J. Martinez, I. A. Bârsan, S. Casas, A. Sadat, and R.
Urtasun, “Deep multi-task learning for joint localization, perception,
and prediction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE, 2021, pp. 4679–4689.

[7] W. W. Group. (2021). SSN, Semantic Sensor Network Ontology,
https://www.w3.org/tr/vocab-ssn/, [Online]. Available: https : / / www.
w3.org/TR/vocab-ssn/ (visited on 05/30/2022).

[8] R. M. Keller, S. Ranjan, M. Y. Wei, and M. M. Eshow, “Semantic
representation and scale-up of integrated air traffic management data,”
in Proceedings of the International Workshop on Semantic Big Data,
2016, pp. 1–6.

[9] H. Rahman and M. I. Hussain, “A light-weight dynamic ontology for
internet of things using machine learning technique,” ICT Express,
2020.

[10] M. P. Owen, A. Panken, R. Moss, L. Alvarez, and C. Leeper, “Acas
xu: Integrated collision avoidance and detect and avoid capability for
uas,” in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference
(DASC), IEEE, 2019, pp. 1–10.

[11] J. T. Davies and M. G. Wu, “Comparative analysis of acas-xu
and daidalus detect-and-avoid systems,” National Aeronautics and
Space Administration NASA Ames Research Center; Moffett Field CA
United States Technical Report NASA/TM-2018-219773 ARC-E-DAA-
TN50499, 2018.

[12] B. Zhou, P. Krähenbühl, and V. Koltun, “Does computer vision matter
for action?” Science Robotics, 2019.

[13] Redcat Holdings. (2021). Drone Box,
https://www.redcatholdings.com/drone-box, [Online]. Available:
https://www.redcatholdings.com/drone-box (visited on 05/30/2022).

[14] Tl-Elektronic. (2021). Black box, https://www.tl-elektronic.com/, [On-
line]. Available: https://www.tl-elektronic.com/index.php?page=uav&
p id=40&lang=en (visited on 05/30/2022).

69

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[15] UAV Navigation. (2021). Black Box https://www.uavnavigation.com/,
[Online]. Available: https : / / www. uavnavigation . com / sites / default /
files/docs/2021-03/UAV%20Navigation%20FDR01%20Brochure.pdf
(visited on 05/30/2022).

[16] D. Zuehlke, N. Prabhakar, M. Clark, T. Henderson, and R. J. Prazenica,
“Vision-based object detection and proportional navigation for uas
collision avoidance,” in AIAA Scitech 2019 Forum, 2019, p. 0960.

[17] U. Papa, G. Ariante, and G. Del Core, “Uas aided landing and obstacle
detection through lidar-sonar data,” in 2018 5th IEEE International
Workshop on Metrology for AeroSpace (MetroAeroSpace), IEEE, 2018,
pp. 478–483.

[18] U. Papa, “Sonar sensor model for safe landing and obstacle detection,”
in Embedded Platforms for UAS Landing Path and Obstacle Detection,
Springer, 2018, pp. 13–28.

[19] N. Gellerman, M. Mullins, K. Foerster, and N. Kaabouch, “Integration
of a radar sensor into a sense-and-avoid payload for small uas,” in
2018 IEEE Aerospace Conference, IEEE, 2018, pp. 1–9.

[20] A. Muraru, “A critical analysis of sense and avoid technologies for
modern uavs,” Advances in Mechanical Engineering ISSN: 2160-0619,
vol. 2, Mar. 2012. DOI: 10.5729/ame.vol2.issue1.23.

[21] D. Martı́n-Lammerding. (2021). Dronetology, the UAS Ontology,
https://dronetology.net/dronetology, [Online]. Available: https : / /
dronetology.net/dronetology (visited on 05/30/2022).

[22] ——, (2021). Dronetology-cas, the anti-collision ontology,
https://dronetology.net/dronetology-cas, [Online]. Available: https :
//dronetology.net/dronetology-cas (visited on 05/30/2022).

[23] Web Working Group. (2021). SPARQL Query Language for RDF,
https://www.w3.org/2001/sw/wiki/sparql, [Online]. Available: https://
www.w3.org/TR/sparql11-query/ (visited on 05/30/2022).

[24] ——, (2021). Spin Working Group, Rules for SPARQL,
https://www.w3.org/submission/spin-sparql/, [Online]. Available:
https://www.w3.org/Submission/spin-sparql/ (visited on 05/30/2022).

[25] T. Licu, F. Cioran, B. Hayward, and A. Lowe, “Eurocontrol—systemic
occurrence analysis methodology (soam)—a “reason”-based organisa-
tional methodology for analysing incidents and accidents,” Reliability
Engineering & System Safety, vol. 92, no. 9, pp. 1162–1169, 2007.

[26] Web Working Group. (2021). Web Ontology Language (OWL),
https://www.w3.org/owl/, [Online]. Available: https://www.w3.org/owl/
(visited on 05/30/2022).

[27] ——, (2021). Resource Description Framework (RDF),
https://www.w3.org/2001/sw/wiki/rdf, [Online]. Available: https :
//www.w3.org/rdf/ (visited on 05/30/2022).

[28] Raspberry Pi Foundation. (2021). Raspberry Pi 3,
https://www.raspberrypi.org/, [Online]. Available: https : / / www .
raspberrypi.org/ (visited on 05/30/2022).

[29] D. Martı́n-Lammerding. (2021). Competency questions in sparql,
https://dronetology.net/sim/competency-questions.zip, [Online]. Avail-
able: https://dronetology.net/sim/competency-questions.zip (visited on
08/02/2021).

[30] S. Graham, J. De Luca, W.-z. Chen, J. Kay, M. Deschenes, N.
Weingarten, V. Raska, and X. Lee, “Multiple intruder autonomous
avoidance flight test,” in Infotech@ Aerospace 2011, 2011, p. 1420.

[31] UAVionix. (2021). Inert and alert: Intelligent ads-b for uas nas integra-
tion, [Online]. Available: https://uavionix.com/downloads/whitepapers/
Inert-and-Alert-CONOPS.pdf (visited on 05/30/2022).

[32] I. Frolow and J. H. Sinnott, “National airspace system demand
and capacity modeling,” Proceedings of the IEEE, vol. 77, no. 11,
pp. 1618–1624, 1989.

70

International Journal on Advances in Intelligent Systems, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


