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Abstract—In this article, we present an automatic image
recognition approach for assisting the communication between
deaf people and hearing physicians. The aim of the approach
is to help the interaction and exchange of information during
medical interviews and in different public services, such as police
departments, hospitals, and citizen service centers. Its scope is
the automatic recognition of the continuous signing through
the analysis of traditional video and depth data (RGB-D data).
Recognition is performed by a cascade of two neural networks.
First, a convolutional neural network encodes the visual input and
extracts relevant features. Second, a recurrent neural network
learns the mapping of the extracted features and transforms them
into words. We use the Connectionist Temporal Classification
approach to train the recurrent network with videos of different
lengths and word sequences. Experiments on two continuous
sign language datasets show the effectiveness of our approach,
achieving an accuracy of around 91% in the Brazilian Sign
Language (Libras) dataset and 94% in Greek Sign Language
(GSL) in signer-independent continuous sign language setup.

Index Terms—Brazilian Sign Language; Sign language recog-
nition; Continuous signing; long short term memory; connectionist
temporal classification

I. INTRODUCTION

This paper builds upon and extends our previous work
[1], where we present our approach, experiments, and results
considering a Brazilian Sign Language (Libras) dataset in the
context of anamnesis. The current paper extends the original
one and also presents experiments and results, taking into
account a Greek Sign Language (GSL) dataset of the public
service interaction domain.

Anamnesis and clinical examination are the standard proce-
dures of physicians to diagnose diseases and health problems
of their patients. Anamnesis is a process of interviewing the
patient to collect information about his/her current health
complaints and medical history. The precise disclosure, correct
understanding, and assessment of this information are precon-
ditions for an effective diagnosis and the identification of the
appropriate therapy. However, the effectiveness of the medical

interview is jeopardized if the physician and the patient do
not have a common language for communication. That is
usually the case when we consider a deaf patient who has
sign language as his/her first language and does not master
the written language of the physician who, by his/her side,
does not understand sign language. A common solution to
overcome this problem is to have a sign language interpreter
assisting the deaf patient during the interview. Besides the
operational difficulties of organizing an interpreter, another
important drawback is the uncomfortable situation created by
the introduction of a third party in the medical interview.
During a medical interview, the patient should feel comfortable
enough to share very personal and sensitive information,
providing any and all relevant information to help the doctor
make a correct diagnosis. A solution to overcome this po-
tential breach of patient-doctor confidentiality is to provide a
robust computer-based solution to support the communication
between physicians and deaf patients. Although the interaction
between doctor and patient is a two-way process, in this
article, we focus only on the issue of automatic recognition
of continuous signing based on computer-based recognition of
video imagery. Our main focus of interest is the continuous
signing recognition of the Brazilian Sign Language. However,
to provide evidence that our approach can be successfully ap-
plied to other sign languages, we also evaluated our approach
using a Greek Sign Language dataset available publicly [2].

Sign languages convey information by the movement of the
hands, body, and face. They are perceived by vision. There
is not a single, universal sign language used worldwide by
deaf people. Each country has its own sign language [3].
The sign language of a country is independent of its oral
language. For example, Deaf Americans speak the American
Sign Language (ASL), the Deaf in the UK use the British Sign
Language (BSL), and Deaf Australians speak the Australian
Sign Language (Auslan). Deaf Brazilians use the Brazilian
Sign Language (Libras).
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There has been increasing research interest in automatic sign
language recognition in recent years. Automatic sign language
recognition applies computer vision combined with machine
learning techniques to analyze and translate, into a written
form, videos with sign language content.

The development of robust automatic sign language recog-
nition systems is challenging. Several techniques have been
proposed for automatic sign language recognition for a variety
of sign languages, including the Brazilian Sign Language
(Libras). Most efforts, however, have been limited to the study
of isolated sign recognition, postures representative of cardinal
numbers (0 to 10), and the manual alphabet or fingerspelling.
Research on continuous signing recognition is still rare.

Concerning the representation of the input data, early works
in automatic recognition of sign language commonly were
based on hand-crafted features that are designed beforehand by
human experts to extract a given set of chosen characteristics
[4]. These features were used with architectures such as
Hidden Models of Markov (HMM) [5] or Conditional Random
Field (CRF) [6] for sequential modeling.

In the last years, deep learning techniques have made
significant advances in computational vision due to the huge
increase in computational power using graphical process units
(GPUs), which have added to the availability of datasets with
millions of images [7], [8], [9]. From this perspective, research
on continuous sign language recognition also benefited, espe-
cially concerning the alignment of frame sequences to word
sequences, be it acting on systems using depth networks solely
[10] or combined with HMMs [11].

The challenge faced is a somewhat overlooked problem in
which the sequences of glosses generally are available but
not their time limits in the videos. In order to solve this,
recent models based on Recurring Neural Network (RNN)
with Connectionist Temporal Classification (CTC) [12] have
reached the state of the art in this task [10], [13].

Even with all the advances, work in the area still has
limitations, such as the recognition system processing only
cropped sequences of the hand. However, a robust system
must also take non-manual expressions into account, which are
fundamental components of all sign languages [14]. Another
limitation is to provide extra information about the signs to
the recognition system, such as medium lengths of the signs
on the videos or the developments of subsystems for particular
parts of the body.

This article presents a method for automatic continuous sign
language recognition of Libras during medical interviews. In
addition, we also verified the generalization of our method
on a Greek Sign Language (GSL) dataset [2]. Applying the
method, we implement an approach based on Deep Learning
that is capable of finding and using extracted data from signing
from full-frame sequences. Therefore, it aligns sequences of
video frames displaying continuous sign language content to
sequence glosses. A gloss is a word (or a couple of words) of
a written language that is consistently used to label a sign
within the corpus, regardless of the meaning of that sign
in a particular context or whether it has been systematically

modified in some way [15]. As pointed out in [16], glosses
are a convenient way to write down the meaning of a sign, as
they use written language to represent the signs.

The main contributions of this article are:
• The construction of a robust and representative dataset,

composed of RGB information and depth of signage in
Libras in order to contribute to the advancement of the
research in this area.

• Execution of a Depth-Wise Separable Convolutional Net-
work (DWSCN) based architecture, as feature extractor
preprocessor. Insofar as we know, we are the first to em-
ploy this type of architecture in continuous sign language
recognition systems.

• The development of a new architecture of sequential
learning, based on Recurrent Neural Networks and Con-
nectionist Temporal Classification, which learn to find
and store relevant data in its memory cells from the
full-frame sequences, without importing in its subsystems
structures that process image patches.

The remainder of the paper is organized as follows: Section
II contains a review of relevant related work. Section III
presents our approach. Section IV describes the experiments
performed, and Section V presents the conclusions.

II. RELATED WORK

The recognition of continuous signing is a far more complex
task than the recognition of isolated signs, requiring more
sophisticated methods to deal with the dynamics of production
and the transition between signs. As previously stated, continu-
ous signing recognition systems are more appropriate for real-
world scenarios of interpersonal communication. However,
it is observed that there is still little research that seeks to
solve this problem. In the following paragraphs, we present
approaches aimed at recognizing continuous signing based on
computer vision.

Until recently, research was based on hand-crafted features
for spatio-temporal representations in combination with se-
quence modeling methods. Among these, we can mention the
algorithms based on threshold models such as [17]. Yang and
colleagues focus on parameters of threshold models for labels
of epenthetic movements, in which they perform tests using
HMM, calculating the similarity between the sign model and
the test sequence [17]. Techniques based on dynamic time
distortion (DTW) were also widely used, which measure the
similarity between two sequences of temporal data based on
the minimum distance between them; therefore, the data have
their lengths altered in order to obtain the best mapping.
Among these works are those of Zhang and colleagues [18],
that use DTW for the recognition of Chinese Sign Language
(CSL) sentences using the Kinect. In [19], an HMM is used to
learn hand and elbow features. The authors propose thresholds
that describe the probability of removing transitional motion
from a given video segment and use DTW to determine the
endpoint for each candidate sign. The final recognition is
obtained by concatenating the most possible signs.
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Research using deep learning models has increased consid-
erably in recent years, whether acting in independent systems
or combined with HMMs in the then called hybrid approach.
Using a German Sign Language recognition dataset called
RWTH-PHOENIX-Weather, Koller and colleagues [20], [21],
[22], [23] built a hybrid architecture, consisting of a con-
volutional neural network (CNN) to learn representations of
frame-by-frame labels of hand-cut sequences and HMMs to
model time dependencies. They trained a network with frame
sequences from a label assignment initialization called flat-
start. In [24] they use state alignment per frame, provided by
an HMM as frame labeling to train the neural networks.

Although HMMs have achieved good results in several
tasks that involve sign language, [25] indicates that traditional
approaches to Markov models are limited because their states
must be designed from a modest-sized state space, and that the
dynamic program algorithm used to perform efficient inference
with HMMs scales in time with quadratic time complexity
O(S2) [26]. Moreover, Graves and colleagues claim that these
models require assumptions that observations in HMM are
independent to make inference treatable [12].

On the other hand, RNNs show great capacity for sequential
learning. According to [12], they are not like hybrid systems,
which inherit the previously mentioned inconveniences of
HMMs. Furthermore, hybrid RNN-HMM systems are not able
to exploit the full potential of RNNs for sequence modeling.

Another promising model is the CTC Network, originally
proposed for speech recognition [12]. CTC is an ideal method
for tasks where data is poorly labeled, i.e., it does not require
a priori alignments between input and output sequences and
allows recurring networks to be trained with different video
lengths and label sequences.

Camgoz and colleagues propose an approach that breaks
down the problem of recognizing signs into a series of expert
systems called subunits [27]. Each subunit consists of three
layers of neural networks: a Convolutional Neural Network
(CNN) for extraction of spatial features; a Bidirectional Long
Short-Term Memory (BLSTM) [28], an extension of LSTM
[29] that temporarily models the features; and a loss layer
based on the CTC. A recent work, [11], also uses CNN and
LSTM but encapsulated it in an HMM model following the
hybrid approach used in his previous work, this time exploring
sequential parallelism to learn sign language, mouth shapes,
and hand shape classifiers.

The works [10], [30]–[33] use CNNs as feature extractors,
a 3D CNN model, or a 3D residual convolutional network
(3D-ResNet). For modeling and sequential learning, they use
Dilated Convolutional Networks or RNNs such as LSTM,
Gated Recurrent Unit (GRU) [34] and their variants in com-
bination with the CTC algorithm. Among these approaches,
[13] is the one that achieved the best performance in the
RWTH-PHOENIX-Weather dataset and also in a set of images
captured by the Kinect called CSL-25K, which covers 100
daily life sentences expressed in Chinese Sign Language
(CSL).

In our proposal, we also use recurrent neural networks with

CTC, but differently from the other approaches, we apply
a depth-wise separable convolutional network that contains
far fewer parameters and is computationally cheaper than the
state-of-the-art convolutional neural networks, as for example,
VGG16 [35], ResNet50 [36], and InceptionV3 [37].

III. METHOD

In this section, we present the guidelines for the construction
of a dataset and our approach for recognizing continuous
signing. The approach includes a CNN-based model for fea-
tures extraction and an RNN architecture for learning the
spatial-temporal dependencies that exist between the sentence
signs. To solve the alignment problem between the probability
sequences in the RNN outputs with the sequences of glosses,
we used CTC.

A. Dataset construction

A dataset composed of Libras sentences related to medical
interviews is fundamental for developing and testing our
approach. No publicly available image databases of continuous
signing in Libras have been found.

Through the study of existing datasets of other sign lan-
guages [38], [39] and with the intent of meeting our objectives,
we developed specifications to be followed for the construction
of our dataset. The proposal is to develop a robust dataset that
simulates the internal environment of a clinic with artificial
lighting, in which the deaf volunteer or interpreter performs
the sign naturally.

Fig. 1 shows the execution flow. Thereafter, each module
will be described in detail.

Fig. 1. Execution flow for the construction of the dataset

Sentences elaboration. Comprised of the elaboration of
sentences in the Portuguese language from the answers of
a patient in the context of a medical consultation (general
practitioner). The sentences are established through the study
of signs and manifested individual symptoms accordingly to
the anamnesis medical procedure described in [40] and [41].
Following this procedure, our protocol encompasses:

• Main complaint: Brief phrase from the patient that ex-
plains his reason for looking for the physician;

• History of current sickness: Description of the main
complaint concerning the chronology, when symptoms
first manifested;

Transcription of the sentences in Portuguese to glosses.
Glosses created through the assistance of a fluent sign lan-
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guage specialist. The right columns on Tables I and II present
the transcriptions of the sentences from the previous stage.

TABLE I
EXAMPLES OF SENTENCES DEVISED IN PORTUGUESE LANGUAGE AND ITS

TRANSCRIPTIONS TO GLOSSES.

# Target Prediction

1 Eu tenho febre EU FEBRE

2 Eu estou fraco EU FRACO

3 Eu estou com diarréia EU TER DIARRÉIA

4 Eu tenho manchas no rosto EU TER MANCHA-ROSTO

5 Eu estou com tosse EU TOSSE

6 Meu braço direito dói MEU BRAÇO-DIREITO DOR

7 Meu braço esquerdo dói MEU BRAÇO-ESQUERDO DOR

8 Meu dente dói MEU DENTE DOR

9 Meu olho direito
está vermelho

OLHO-DIREITO APONTAR
VERMELHO TER

10 Meu olho esquerdo
está vermelho

OLHO-ESQUERDO APONTAR
VERMELHO TER

11 Minha urina está marrom MEU XIXI COR MARROM

12 Minha boca está sangrando MINHA BOCA SANGUE TER

13 Começou a um dia COMEÇAR UM-DIA PASSADO

14 Começou há uma hora COMEÇAR UMA-HORA
PASSADO

15 Começou agora COMEÇAR AGORA

16 Começou anteontem COMEÇAR ANTEONTEM

17 Começou no domingo
passado

COMEÇAR DOMINGO
PASSADO

18 Faz um ano COMEÇAR JÁ TER TEMPO
UM ANO

19 Faz um mês COMEÇAR JÁ TER TEMPO
UM MÊS

20 Começou na quarta-feira
passada

COMEÇAR QUARTA-FEIRA
PASSADO

Capture device and development of the capture software.
The data recording is made through the Kinect device v2 for
Windows. The capture application is developed using Kinect’s
own software development kit (SDK). This application cap-
tures and stores RGB images, depth images, and mapped
images (RGB images mapped on the depth images), in which
all pixels not belonging to the signer are converted to black.

Installation of the capture system. The Libras signing
recordings executed by the volunteer are made in a labo-
ratory, with artificial illuminations and homogeneous scene
background.

The Kinect is fixed on an adjustable photographic tripod
and positioned at approximately 1,2m high and to a distance
of around 1,3m from the signer, as seen in figure 2. These
positions are determined taking in consideration the capture
hardware characteristics as, i.e., minimum distance (0,5m) and

TABLE II
EXAMPLES OF SENTENCES DEVISED IN PORTUGUESE LANGUAGE AND ITS

TRANSCRIPTIONS TO GLOSSES - VERSION IN ENGLISH

# Target Prediction

1 I have fever ME FEVER

2 I am weak ME WEAK

3 I have diarrhea ME HAVE DIARRHEA

4 I have spots on the face ME HAVE SPOT-FACE

5 I have spots on the face ME COUGH

6 My right arm hurts MY RIGHT-ARM PAIN

7 My left arm hurts MY LEFT-ARM PAIN

8 My tooth hurts MY TOOTH PAIN

9 My right eye is red RIGHT-EYE POINT RED HAVE

10 My left eye is red LEFT-EYE POINT RED HAVE

11 My urine is brown MY PEE BROWN COLOR

12 My mouth is bleeding MY MOUTH BLOOD HAVE

13 It started a day ago START ONE-DAY PAST

14 It started an hour ago START ONE-HOUR PAST

15 It started now START NOW

16 It started the day
before yesterday

START
THE-DAY-BEFORE-YESTERDAY

17 It started last Sunday START SUNDAY LAST

18 It is been a year START ALREADY HAVE
TIME ONE-YEAR

19 It is been a month START ALREADY HAVE
TIME ONE-MONTH

20 It started last Wednesday START WEDNESDAY LAST

maximum depth (4,5m), horizontal (70 degrees), and vertical
(60 degrees) field of view.

The Kinect is connected to a computer with USB 3.0 port,
with 64-bit (x64) operational system, physical dual-core 3.1
GHz processor, 4GB random access memory (RAM) or more,
and a graphics adapter with DirectX 11 support [42].

In addition, the environment also has a conventional monitor
(2D), in which the sentences to be signed are exhibited to the
volunteer during the recordings.

Capture and data storage. The only request to the vol-
unteer is to wear plain shirts of any color other than black,
as some black shirt dyes can absorb infrared light, impairing
Kinect’s capacity of tracking the user (depth data) [42]. A
Libras interpreter teacher member of the research team helps
with the video acquisition. The position where the volunteer
must be positioned during the recordings is indicated by
ground marks. This position, called rest position, consists of
standing in front of the capture device with lowered hands, as
shown in Figure 2.
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Fig. 2. Positioning and relative distances of the signer to the device.

Once the volunteer is properly positioned, the sentences are
exhibited on the monitor to the volunteer. After each exhibited
sentence, the volunteer must sign it naturally and return to the
rest position after signing it. During the signing, the images
are captured and stored on the computer. The participant is
asked to remain in the rest position for a few seconds so the
capture system can finish the data storage. The next sentence
is then exhibited on the monitor, and the recording procedure
as described above is repeated.

Figure 3 illustrates the process of capture and data storage.

Fig. 3. Process of capture and data storage.

B. Our approach
The approach that recognizes continuous sign language

includes a CNN-based model for features extraction and an

RNN architecture for learning the spatial-temporal depen-
dencies that exist between the sentence signs. To solve the
alignment problem between the probability sequences in the
RNN outputs with the sequences of glosses, we used CTC.

Fig. 4 presents a general view of our approach composed
of three main models. The first comprises spatial modeling,
while the others encompass sequential learning and a CTC
loss layer to decode categorical probabilities in sequences of
glosses.

Fig. 4. Overview of our continuous sign language recognition approach

Features extraction. DWSCN is used for representations
of spatial features of the frame sequences. The pre-trained
MobileNetV1 [43] operational model is among the models
based on the DWSCN. The use of pre-trained models enables
the development of efficient models in situations of limited
data availability, in addition to reducing processing time [44].

MobileNetV1 was pre-trained on ImageNet [7]. Mo-
bileNetV1 has a reduced size (17MB) and reduced number
of parameters (4,2 million) when compared to other state-
of-the-art models. Figure 5 shows the components of this
architecture, in which each convolutional layer is followed by
Batch Normalization and ReLU activation function.

MobileNetV1 expects color input images with size of 224
x 224 x 3. Thus, the obtained images with Kinect must be
rescaled to this size.

The pixel values are scaled between 0 and 1, and then each
channel is normalized with respect to the ImageNet dataset
according to (1), (2) and (3), where pr, pg and pb are the
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Fig. 5. MobileNetV1 Architecture

pixel values for the red, green and blue channels of the dataset
images.

bandr =
pr/255−meanr

stdr
(1)

bandg =
pg/255−meang

stdg
(2)

bandb =
pb/255−meanb

stdb
(3)

The averages meanr, meang and meanb with respect to the
Imagenet are 0.485, 0.456, 0.406, respectively. The standard
deviations stdr, stdg and stdb are equal to 0.229, 0.224, 0.225.

To use MobileNet as a feature extractor preprocessor, the
softmax classification layer (SM) and the completely con-
nected layer (FC) have been removed, keeping all the depth-
wise separable convolution blocks and the Average Pooling
layer.

All dataset images are processed by the resulting model. As
the last layer has 1024 nodes, each image will be represented
as a 1024 value vector. Each video sample results in a three-
dimensional array of dimensions equal to 1 x number of
frames x 1024 features. Since the numbers of frames are
different between the videos, the padding in each array has
been performed to allow the concatenating of all feature arrays.

All arrays are then concatenated and stored for a single
NumPy array [45] in the standard binary file format (NPY).

The glosses are coded in categorical variables and, together
with the feature arrays, are used as input to train our model

based on recurring neural networks. This is an overlooked
learning problem as the gloss sequences are available but not
its time limits.

Sequential learning. Our approach uses BLSTM to model
the correspondences between the input sequences and output
glosses. This architecture is capable of storing data for long
periods of time and try to avoid the explosion of the gradient,
a common problem of the Vanilla Neural Networks.

To implement a BLSTM network, it takes two parallel layers
of LSTM cells, backward LSTM and forward LSTM, each
of them being responsible for processing the information in
the direction of time. The final hidden layer is given by the
concatenation of the two networks.

The memory neurons of an LSTM are called cells. Fig. 6
presents the structure of a BLSTM network and highlights one
single memory cell. The cells are capable of storing data in
the course of a sequence through units called gates. According
to [46], these units calculate the weights that connect them
to avoid the gradient degradation through parameterized or
manually chosen values.

Fig. 6. BLSTM network structure, highlight to a single memory cell

The memory cell gates are composed of a sigmoid activation
function and a multiplication operation between the weights
and the inputs given by the Hadamard product. The operations
that happen inside of an LSTM cell is detailed thereafter:
The forget gate given by (4) decides which elements from
the memory cell of previous state, Ct−1, are discarded.

ft = σ(Wf .[ht−1, xt] + bf ) (4)

The input gate given by (5) selects which information is
going to be stored, multiplying its result by the candidate of
the current memory cell, given by (6).

it = σ(Wi.[ht−1, xt] + bi) (5)

C̃t = tanh(Wc.[ht−1, xt] + bc) (6)

The hidden state of the current memory cell is given by (7),
which combines the previous operations, that is, the process
of forgetting ft ∗ Ct−1 and the process of insertion of new
information on memory cell, it ∗ C̃t.

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)
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After these procedures, the hidden state of the current cell
is built, ht, given by (9), multiplying the output gate, (8), by
the value of the hidden state of the memory cell, Ct.

ot = σ(Wo.[ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

In the equations above, Wf , Wi, Wc, Wo, bf , bi, bc, bo are
the values of the network weights and bias.

A softmax activation function on a fully connected layer is
used in the network output and is applied to each time frame.

Connectionist Temporal Classification. In the BLSTM
training phase, CTC is used to calculate the cost value. During
prediction, it decodes the probability matrices of the softmax
function in gloss sequences.

To allow the CTC algorithm to decode the target sequence,
one more unit is introduced to the total number of labels in
the softmax output layer. This unit refers to a token named
blank, that models the transitions between different labels.

Let us consider the mapping of the input frames sequence
X = [x1, x2, ..., xT ], for the sequences of output words Y =
[y1, y2, ..., yT ]. The CTC cost function for a pair (X, Y) has
the conditional probability p(Y/X) equal to the sum of all the
valid paths A ∈ AXY , calculating the probability pt(at|X) to
a single step-by-step alignment following (10).

p(Y/X) =
∑

A∈AXY

b∏
a

pt(at|X) (10)

For a training set M, the model parameters are tuned to
minimize the negative log-likelihood. That way, the CTC
objective function is given by (11).

LossCTC =
∑

(X,Y )∈M

− log p(Y/X) (11)

To calculate the CTC loss efficiently, the Forward-Backward
algorithm given in [12] is used.

IV. EXPERIMENTS

This section reports on the experiments performed and the
performance of our architecture in continuous Libras signing
recognition. We evaluated the performance of our method on
the GSL dataset [2].

A. Datasets

In order to develop and test our approach, 280 sentences
signed in Libras by a professional interpreter were captured,
corresponding to 5 repetitions of 56 sentences. 42663 frames
were obtained at a rate of 30 fps. The statistical details are
presented in Table III.

TABLE III
STATISTICS OF OUR DATASET

Statistics Data

Sentences 280

Vocabulary 67

Frames 42663

Glosses per Sentence 2 - 6

Frames per Sentence 124 - 277

RGB images obtained by Kinect have a resolution of 1920 x
1080 pixels. But for better performance of our data capture and
storage application, at run time, these images were rescaled to
640 x 360 pixels. Table IV summarizes the written data and
its corresponding sizes.

TABLE IV
SPECIFICATIONS RESULTING FROM OUR DATA CAPTURE AND STORAGE

APPLICATION.

Data Size

RGB Image 640 x 360

Depth Image 512 x 424

Mapped Image 512 x 424

Figure 7 presents 3 types of captured data: 7(a) Depth
images, 7(b) RGB images and 7(c) Mapped images. In this
paper, only mapped images are used.

(a) Depth Image

(b) RGB Image

(c) Mapped Image

Fig. 7. Examples of data captured by the Kinect device.

We also evaluated our method on the GSL, in the Signer-
independent continuous sign language recognition setup [2].

The GSL dataset is publicly available, and the captured data
involve cases of deaf people interacting with different public
services (police departments, hospitals, and citizen service
centers). Recordings are performed in the laboratory using an
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Intel RealSense D435 RGB+D at a rate of 30 fps. Data is
acquired at a spatial resolution of 848x480 pixels. In total, 7
signers participate in data capture. Fig. 8 illustrates examples
of frames from the GSL dataset.

Fig. 8. Example frames of the GSL dataset

The statistical details are presented in Table V:

TABLE V
STATISTICS OF GSL DATASET

Statistics Data

Sentences 10295

Vocabulary 310

Frames 1036155

Mean sentence lenght 4,23

Frames/Sentence 6 - 615

B. Evaluation Metrics

The Word Error Rate (WER) is the metric widely [30], [31],
[47], [48], [33], [32], [10], [13], [27], [21], [22], [23] used in
continuous sign language recognition work. We also use this
metric in our evaluation. The WER is given by (12).

WER =
I +D + S

N
(12)

Where I is the number of errors entered, D is the number
of deletion errors, S is the number of substitution errors, and
N is the total number of glosses in the reference sentence.

The accuracy is given by (13).

acc = 1−WER (13)

C. Training and Evaluation

We performed experiments on an Nvidia RTX 2080Ti, and
the model is implemented in the Keras framework [49], using
tensorflow [50] as a backend.

Both in the Libras dataset and in the GSL dataset the
simulations performed processed the mapped images. Initially,

these images were resized to 224 X 224 pixels, dimensions
expected by the MobileNetV1 network, using bilinear inter-
polation. Then the images are converted to Numpy array, the
pixel values are scaled between 0 and 1, and then each channel
is normalized in relation to the ImageNet dataset.

After spatial modeling with our structure based on DWSCN,
the resulting feature matrix has a dimension equal to the
number of samples x time steps x features.

Libras dataset. In our experiments, we used 80 percent of
the data (224 sentences) for the training set and 20 percent for
the test set (56 sentences).

According to [51], training small datasets offers some
challenges, as the network effectively memorizes the training
dataset. The author recommends that adding noise is an
approach to improve the generalization error and to enhance
the structure of the mapping problem during learning. Thus,
we applied Gaussian noise, at the entrance of the BLSTM
network, with a standard deviation of 0.5 during the training
phase.

The training of our BLSTM architecture is performed by
implementing the backpropagation algorithm through time,
[52]. The initialization for the recurrent weights matrix is
orthogonal [53], for non-recurring weights the glorot uniform
[54] and the vector bias is initialized with zeros. The optimizer
used is the Root Mean Square Propagation (RMSprop) [55]
with a learning rate of 0.01, a discounting factor of 0.9, a
momentum of zero, (default values in the framework), and
a batch size of 82. Then, we use the CTC beam decoder
described in [56] to decode sentences with a beam width of
10.

For the aforementioned configurations, dozens of experi-
ments were carried out using different network topologies,
with a maximum of 4 layers (1 to 3 recurring layers and a
completely connected layer) and the number of neurons equal
to powers of 2 in the range of 2 to 512. The last layer is fixed
with 68 neurons (one for each vocabulary label plus the blank
label). Given the stochastic nature of the algorithms used,
repetitions of the tests are performed in order to determine
the most promising models.

In order to detect overfitting and determine the most promis-
ing models, a validation set is prepared, based on the training
set, consisting of 60 sentences. During the training, at the
end of each epoch, the value of the loss CTC is calculated
in the validation set, and the best model in each training is
determined according to the lowest value of the loss in that
set.

Also, to identify and soften the effect of overfitting, we used
the method of regularization called dropout, presented in [57].
Dropout values equal to 0.5 were applied for both recurrent
and non-recurrent connections.

Among the best models that fit the data, the simplest model,
that is, with the least hyperparameters, is considered the most
plausible to be used in the test set.

GSL dataset. To verify the generalization, we also evaluate
our method in the GSL dataset in the Signer-independent
continuous sign language recognition setup [2]. The recordings
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of a signer are separated into the validation set (588 sentences)
and test set (881 sentences). The recordings of the other 6
signers comprise the training set (8821 sentences).

Due to memory constraints, we do not use all video frames
of the GSL. Instead, we calculate the average of existing
frames in the training set and use this value as the maximum
amount for each video. As a result, all videos with more than
100 frames are reduced to 100, in such a way that the selected
frames are determined from a linear spacing. Videos with less
than 100 frames remain unchanged.

The random weight distribution types for the recurrent
weights matrix, non-recurring weights, and the vector bias are
the same as used in the Libras dataset.

Simulations were performed using the RMSProp optimizer
and also with the optimizer Adaptive with Momentum (Adam)
[58] and its variants Adadelta [59], Adagrad [60] and Adamax
[58].

The hyperparameters of the optimizers’ exponential decay
rate for the 1st moment and the 2nd moment estimates were
set at 0.9 and 0.999 respectively, while the learning rate varied
from 0.01 to 0.00001. The batch size values in the simulations
were: 128, 256, 512 and 1024. We use the CTC beam decoder
to decode sentences with beam width of 100.

In the same way as we did in the Libras dataset, we
used several topologies with a maximum of 5 layers (2 to 4
recurrent layers and a fully connected layer) and the number
of neurons equal to a power of 2 in the range of 32 to 1024.

In order to reduce overfitting, in addition to applying the
regularization dropout, we use the L2 regularization factor
[61], varying its value from 0.1 to 0.0001.

D. Results

Libras dataset. Our best result was achieved by configuring
two recurrent layers with 32 and 64 neurons, respectively. At
the end of 30000 epochs, it was determined that the best model
corresponds to epoch 21422. The values of the initial weights
and the settings referring to that model were saved and stored
for reproducibility, as well as for use in the unseen data set
during the training.

Of the 56 sentences in the test set, 11 obtained some kind of
error in the model prediction. The average WER was 8.92%
and therefore, an accuracy of 91.07%. In Table VI we can
observe some errors found, comparing the results of the model
with the ground-truth sentences. Bold words are associated
with errors in prediction. Table VII presents the equivalent
results in English.

Therefore, the errors found were: 13 substitutions, 2 inser-
tions, and no deletions. Low values in relation to the total
amount of glosses existing in the dataset demonstrate the
effectiveness of our architecture.

GSL dataset. Our best result is achieved by configuring
two recurrent layers with 256 and 256 neurons, respectively.
At the end of 40,000 epochs, it was determined that the best
model corresponds to epoch 28371. This is achieved using
the Adam optimizer, with a learning rate of 0.0001 and L2

TABLE VI
SENTENCES WITH PREDICTION ERRORS

# Target Prediction

1 COMEÇAR
ANTEONTEM COMEÇAR ONTEM

2 COMEÇAR QUINTA-FEIRA
PASSADA

COMEÇAR
TERÇA-FEIRA PASSADA

3 COMEÇAR SEGUNDA-FEIRA
PASSADA

COMEÇAR
QUARTA-FEIRA PASSADA

4 COMEÇAR TERÇA-FEIRA
PASSADA

COMEÇAR
QUINTA-FEIRA PASSADA

5 MAU-HÁLITO
FEDOR TER

MAU-HÁLITO FEDOR
VERMELHO TER

6 MEU DENTE DOR MEU COSTAS TER

7 MEU NARIZ DOR MEU OLHO-ESQUERDO
INCHADO

8 OLHO-DIREITO
APONTAR VERMELHO TER

OLHO-DIREITO
APONTAR VERMELHO
SABOR NÃO-TER

9 MEU OLHO-DIREITO DOR MEU OLHO-DIREITO
INCHADO

10 MEU OMBRO-DIREITO DOR MEU PESCOÇO DOR

11 MEU PESCOÇO DOR MEU
GARGANTA MARROM

TABLE VII
SENTENCES WITH PREDICTION ERRORS - VERSION IN ENGLISH

# Target Prediction

1 START BEFORE-YESTERDAY START YESTERDAY

2 START THURSDAY PAST START TUESDAY
PAST

3 START MONDAY PAST START WEDNESDAY
PAST

4 START TUESDAY PAST START THURSDAY PAST

5 BAD-BREATH
BAD-SMELL HAVE

BAD-BREATH
BAD-SMELL RED HAVE

6 MY TOOTH PAIN MY BACK HAVE

7 MY NOSE PAIN MY
LEFT-EYE SWOLLEN

8 RIGHT-EYE POINT RED HAVE RIGHT-EYE POINT RED
FLAVOR DO-NOT-HAVE

9 MY RIGHT-EYE PAIN MY RIGHT-EYE
SWOLLEN

10 MY RIGHT-SHOULDER PAIN MY NECK PAIN

11 MY NECK PAIN MY THROAT BROWN
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regularization factor in each recurring layer with a value of
0.001.

Of the 881 sentences in the test set, 790 sentences were
correctly predicted, and 91 sentences were obtained some kind
of error in the model prediction. These 91 sentences total
372 glosses, of which 227 gloss predictions are correct, and
the errors found were: 79 substitutions, 16 insertions, and
50 deletions. Therefore, the average WER was 6.0% and,
consequently, the accuracy 94.0%.

In table VIII, we quantitatively compare our results with
the best results obtained in [2]. In this work the authors
implement recent deep neural network methods for contin-
uous sign language recognition. Such methods are: SubUNets
[27], GoogLeNet+TConvs [10], 3D-ResNet+BLSTM [31] and
I3D+BLSTM [62]. Sequence alignment and decoding use CTC
[12], Entropy Regularization CTC [63] and Stimulated CTC
[64].

TABLE VIII
COMPARISON WITH METHODS ON GSL IN THE SIGNER-INDEPENDENT

CONTINUOUS SIGN LANGUAGE RECOGNITION SETUP

Method WER (%)

SubUNets+CTC 20.58

3D-ResNet+BLSTM+EnStimCTC 24.01

GoogLeNet+TConvs+EnCTC 6.75

I3D+BLSTM+EnStimCTC 6.1

DWSCN+BLSTM+CTC (Our) 6.0

Compared to the mentioned methods, our method achieves
the best performance in the test set in the GSL dataset in
the Signer-independent continuous sign language recognition
setup. This is achieved using only the traditional CTC criterion
(computationally cheaper) rather than using extensions to
it. Furthermore, there is no need to pretrain the model in
the respective isolated sign dataset version in our method.
Another advantage is that we do not need data augmentation
techniques, and we use less data than what we provide.

V. CONCLUSIONS

In this article, we presented an approach for the recognition
of continuous sign language. This approach receives sequences
of images of a person communicating in sign language and
translates continuous signing into written language. Our ap-
proach produces state-of-the-art comparable results.

In general, when compared to other approaches in the
literature, our approach demonstrates a series of advantages:

i) It does not depend on the extraction of manual features,
specifically designed for a domain and laboriously calculated
from the geometry of the hands and arms.

ii) It takes into account characteristics related to non-manual
expressions, such as movements of the face, eyes, head, and
torso, instead of using only continuous sequences of the hands.

iii) Contrary to other studies’ continuous signing recogni-
tion, which performs the feature extraction process in video
segments related to isolated signs, our spatial representation
module is processed on the entire video. Our choice is due to
the fact that video representation based on fixed-length signs
can compromise the continuous recognition of signing in real
situations since the same sign varies in length in a video, even
when performed by the same person in different situations

iv) Our spatial modeling, which is based on depthwise
separable convolutions, reduces the latency and favors the
development of real-time sign recognition because of the
accuracy and the number of parameters and demanded cal-
culations. This is a great advantage when compared to other
convolutional neural networks.

v) Our architecture based in BLSTM with CTC learns
to find and store information relevant memory cells from
the data channels included in full-frame sequences. This is
done without injecting subsystems in its structure that process
image patches. Consequently, our approach presents a greater
capacity for temporal learning compared to studies that import
extra data in its system to ease the learning.

Our approach demonstrates the potential to be applied in
signing recognition on heterogeneous backgrounds due to
the use of Kinect, which performs the segmentation of the
individual while capturing the depth and color of images. In
our upcoming work, we intend to include more signage and
diversify the recording scenarios of our dataset images, as well
as increase the vocabulary in order to maximize the robustness
of our recognition approach.
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