
Visibility-based Decentralized Swarm Decision Making

Algorithms in 3D Urban Environments

Oren Gal and Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mails: {orengal,doytsher}@alumni.technion.ac.il

Abstract— In this paper, we present a unique and efficient

visible trajectory planning for aerial swarm using

decentralized algorithms in a 3D urban environment. By using

SwarmLab environment, we compare two decentralized

algorithms from the state of the art for the navigation of aerial

swarms, Olfati-Saber’s and Vasarhelyi’s. The first step in our

concept is to extract basic geometric shapes. We focus on three

basic geometric shapes from point clouds in urban scenes that

can be appear: planes, cylinders and spheres, extracting these

geometric shapes using efficient Random Sample Consensus

(RANSAC) algorithms with a high success rate of detection.

The second step is a decentralized swarm algorithms for

motion planning, demonstrated on drones in urban

environment. Our planner includes dynamic and kinematic

platform’s limitation, generating visible trajectories based on

our first step mentioned earlier. We demonstrate our visibility

and trajectory planning method in simulations, showing

trajectory planning in 3D urban environments for drone’s

swarm with decentralized algorithms with performance

analysis such as order, safety, connectivity and union.

Keywords-Swarm; Visibility; 3D; Urban environment;

Decentlized algorithms.

I. INTRODUCTION AND RELATED WORK

In this paper, we study a fast and efficient visible trajectory

planning drone swarms in a 3D urban environment, based on

local point clouds data. Recently, urban scene modeling has

become more and more precise, using Terrestrial/ground-

based LiDAR on unmanned vehicles to generate point clouds

data for modeling roads, signs, lamp posts, buildings, trees

and cars. Visibility analysis in complex urban scenes is

commonly treated as an approximated feature due to

computational complexity.

Our trajectory planning method is based on a two-step

visibility analysis in 3D urban environments using predicted

visibility from point clouds data. The first step in our unique

concept is to extract basic geometric shapes. We focus on

three basic geometric shapes from point clouds in urban

scenes: planes, cylinders and spheres, extracting these

geometric shapes using efficient RANSAC algorithms with a

high success rate of detection. The second step includes

decentralized swarm algorithms for motion planning,

demonstrated on drones in urban environment. Our planner

includes dynamic and kinematic platform’s limitation,

generating visible trajectories based on our first step

mentioned earlier. We demonstrate our visibility and

trajectory planning method in simulations, showing trajectory

planning in 3D urban environments for drone’s swarm with

decentralized algorithms with performance analysis such as

order, safety, connectivity and union [1].

Visibility analysis based on this approximated scene

prediction is done efficiently, based on our analytic solutions

for visibility boundaries. With this capability, we present a

local on-line planner generating visible trajectories, exploring

the most visible and safe node in the next time step, using our

predicted visibility analysis.

For the first time, we propose a solution for decentralized

swarm algorithm which takes visibility into account, avoiding

obstacles using Velocity Obstacle (VO) search and planning

method.

II. VISIBILITY ANALYSIS FROM POINT CLOUDS DATA

As mentioned, visibility analysis in complex urban scenes

is commonly treated as an approximated feature due to its

computational complexity. Recently, urban scene modeling

has become more and more exact, using Terrestrial/ground-

based LiDAR generating dense point clouds data for modeling

roads, signs, lamp posts, buildings, trees and cars. Automatic

algorithms detecting basic shapes and their extraction have

been studied extensively and are still a very active research

field [2].

In this part, we present a unique concept for predicted and

approximated visibility analysis in the next attainable

vehicle's state at a one-time step ahead in time, based on local

point clouds data which is a partial data set.

We focus on three basic geometric shapes in urban scenes:

planes, cylinders and spheres, which are very common and

can be used for most urban entities in modeling scenarios.

Based on point clouds data generated from the current

vehicle's position in state k-1, we extract these geometric

shapes using efficient RANSAC algorithms [3] with high

success rate detection tested in real point cloud data.

After extraction of these basic geometric shapes from local

point clouds data, our unified concept, and our main

201

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contribution, focus on the ability to predict and approximate

urban scene modeling at the next view point Vk, i.e., at the

attainable location of the vehicle in the next time step. Scene

prediction is based on the geometric entities and the KF,

which is commonly used in dynamic systems for tracking

target systems [4],[5]. We formulate the geometric shapes as

states vectors in a dynamic system and predict the scene

structure the in the next time step, k.

Based on the predicted scene in the next time step, visibility

analysis is carried out from the next view point model [6],

which is, of course, an approximated one. As the vehicle

reaches the next viewpoint Vk, point clouds data are measured

and scene modeling and states vectors are updated, which is

an essential for the global swarm visible trajectory planning

based on state-of-the-art decentralized algorithms.

A. Shapes Extraction

1) Geometric Shapes:

The urban scene is a very complex one in the matter of

modeling applications using LiDAR, and the generated point

clouds are very dense. Despite these inherent complications,

feature extraction can be made very efficient by using basic

geometric shapes. We define three kinds of geometric shapes:

planes, cylinders and spheres, with a minimal number of

parameters for efficient time computation.

Plane: center point (x,y,z) and unit direction vector from

center point.

Cylinder: center point (x,y,z), radius and unit direction

vector of the cylinder axis. Cylinder height dimension will be

considered later on as part of the simulation.

Sphere: center point (x,y,z), radius and unit direction vector

from center point.

2) RANSAC:

The RANSAC [7] is a well-known paradigm, extracting

shapes from point clouds using a minimal set of a shape's

primitives generated by random drawing in a point cloud set.

Minimal set is defined as the smallest number of points

required to uniquely define a given type of geometric

primitive.

 For each of the geometric shapes, points are tested to

approximate the primitive of the shape (also known as "score

of the shape"). At the end of this iterative process, extracted

shapes are generated from the current point clouds data.

Based on the RANSAC concept, the geometric shapes

detailed above can be extracted from a given point clouds

data set. In order to improve the extraction process and reduce

the number of points validating shape detection, we compute

the approximated surface normal for each point and test the

relevant shapes.

 Given a point-clouds with associated

normals , the output of the RANSAC algorithm is a

set of primitive shapes and a set of remaining points

.

B. Predicted Scene – Kalman Filter

 In this part, we present the global KF approach for our

discrete dynamic system at the estimated state, k, based on

the defined geometric shapes formulation defined in the

previous sub-section.

 Generally, the Kalman Filter can be described as a filter

that consists of three major stages: Predict, Measure, and

Update the state vector. The state vector contains different

state parameters and provides an optimal solution for the

whole dynamic system. We model our system as a linear one

with discrete dynamic model, as described in (1):

 (1)

where is the state vector, F is the transition matrix and k is

the state.

 The state parameters for all the geometric shapes are

defined with shape center , and unit direction vector , of

the geometric shape, from the current time step and viewpoint

to the predicted one.

In each of the current states k, geometric shape center , is

estimated based on the previous update of shape center

location , and the previous updated unit direction vector

, multiplied by small arbitrary scalar factor c, described

in (2):

 (2)

 Direction vector can be efficiently estimated by

extracting the rotation matrix T, between the last two states

k, k-1. In case of an inertial system fixed on the vehicle, a

rotation matrix can be simply found from the last two states

of the vehicle translations in (3):

 (3)

 The 3D rotation matrix T tracks the continuous extracted

plans and surfaces to the next viewpoint , making it

possible to predict a scene model where one or more of the

geometric shapes are cut from current point clouds data in

state k-1. The discrete dynamic system can be written as

formulated in (4):

 (4)

1{ .. }NP p p=

1{ .. }Nn n

1{ .. }N

1
\{ .. }

N
R P p p =

, 1 1k k k kx F x− −=

x

s d

ks

1ks −

1kd −

1 1k k ks s cd− −= +

kd

1k kd T d −=

kV

1

1

1

1

1

1

11 12 13

21 22 23

31 32 33

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0

0 0 0

0 0 0

k k

k k

k k

k k

k k

k k

x x

y y

z z

x x

y y

z z

s sc

s sc

cs s

T T Td d

T T Td d
T T T

d d

−

−

−

−

−

−

=

202

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where the state vector is vector, and the transition

squared matrix is . The dynamic system can be

extended to additional state variables representing some of

the geometric shape parameters such as radius, length etc. We

define the dynamic system as the basic one for generic shapes

that can be simply modeled with center and direction vector.

Sphere radius and cylinder Z boundaries are defined in an

additional data structure of the scene entities.

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS

 In this section, we present an analytic analysis of the

visibility boundaries of planes, cylinders and spheres for the

predicted scene presented in the previous sub-section, which

leads to an approximated visibility. For the plane surface, fast

and efficient visibility analysis was already presented in [6].

In this part, we extend the previous visibility analysis concept

[6] and include cylinders as continuous curves

parameterization .

Cylinder parameterization can be described in (5):

 , (5)

We define the visibility problem in a 3D environment for

more complex objects as:

 (6)

where 3D model parameterization is , and the

viewpoint is given as . Extending the 3D cubic

parameterization, we also consider the case of the cylinder.

Integrating (5) to (6) yields:

 (7)

(8)

 As can be noted, these equations are not related to Z axis,

and the visibility boundary points are the same for each x-y

cylinder profile, as seen in (7), (8).

 The visibility statement leads to complex equation, which

does not appear to be a simple computational task. This

equation can be efficiently solved by finding where the

equation changes its sign and crosses zero value; we used

analytic solution to speed up computation time and to avoid

numeric approximations. We generate two values of

generating two silhouette points in a very short time

computation. Based on an analytic solution to the cylinder

case, a fast and exact analytic solution can be found for the

visibility problem from a viewpoint.

 We define the solution presented in (8) as x-y-z

coordinates values for the cylinder case as Cylinder

Boundary Points (CBP). CBP, defined in (9), are the set of

visible silhouette points for a 3D cylinder, as presented in

Figure 1:

(9)

 (a) (b)

Figure 1. Cylinder Boundary Points (CBP) using Analytic Solution

marked as blue points, Viewpoint Marked in Red: (a) 3D View (Visible

Boundaries Marked with Red Arrows); (b) Topside View.

In the same way, sphere parameterization can be described as

formulated in (10):

 (10)

We define the visibility problem in a 3D environment for this

object in (11):

 (11)

where the 3D model parameterization is , and the

viewpoint is given as . Integrating (10) to (11)

yields:

x 6 1

, 1k kF −

ln (, ,)c dC x y z

ln

sin()

(, ,) cos()C d

r const

r

C x y z r

c

=

=

 _ max

0 2

1

0 peds

c c

c h

= +

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z − =

(,)z constC x y =

0 0 0(, ,)V x y z

sincos

sin cos 0

0

x

y

z

r Vr

r r V

c V

 −

− − =
 −

_

_ _ _

1 1 1

1.. 2 0 0 0

, ,
(, ,)

, ,PBP bound

PBP bound PBP bound PBP bound

i N
N N N

x y z
CBP x y z

x y z= =

=

sin cos

(, ,) sin sin

cos

0

0 2

Sphere

r const

r

C x y z r

r

=

=

0 0 0'(, ,) ((, ,) (, ,)) 0C x y z C x y z V x y z − =

(, ,)C x y z

0 0 0(, ,)V x y z

203

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (12)

Where r is defined from sphere parameter, and

are changes from visibility point along Z axis, as described in

(12). The visibility boundary points for a sphere, together

with the analytic solutions for planes and cylinders, allow us

to compute fast and efficient visibility in a predicted scene

from local point cloud data, which are updated in the next

state.

This extended visibility analysis concept, integrated with

a well-known predicted filter and extraction method, can be

implemented in real time applications with point clouds data.

IV. DECENTRALIZED SWARMS TRAJECTORY PLANNING

In this part, we focus on decentralized swarm algorithms

with visibility analysis in urban environment as cost function

for our trajectory.

For our simulation, we used SwarmLab [8], drone swarm

simulator that was implemented and adapted two

representative algorithms belonging to the category of

decentralized swarming. Decentralized approach can make

the system easily scalable and robust to the failures of a single

individual. SwarmLab includes algorithm developed by

Olfati-Saber [9], who proposes a formal theoretical

framework for the design and analysis of swarm algorithms

based on potential fields and graph theory.

The second algorithm that was implemented is an

adaptation of the recent Vasarhelyi’s algorithm [10], defined

by the following rules: repulsion to avoid inter-agent

collisions, velocity alignment to steer the agents to an average

direction, and self-propulsion to match a preferred speed

value. In addition, the algorithm includes friction forces that

reduce oscillations and ease the implementation on real

robots.

In decentralized approaches, one agent’s movement is

only influenced by local information coming from its

neighbors. Neighbors’ selection can be operated according to

different metrics.

In this paper, we adopted these algorithms with visibility

analysis as part of swarm’s trajectory by leading the swarm

to the most visible areas in the scene by the swarm, as

presented in the previous section.

Unlike the original SwarmLab simulation where obstacle

avoidance is based on simulating the obstacles as virtual

agents, we used the Velocity Obstacles [11] local obstacles

avoidance method.

This obstacle avoidance method allows us to deal better

with swarm behavior and can be more precise and gentler,

avoiding obstacles in dense environments.

A. The Planner

 As mentioned above, our planner is based on an iterative

local planning method, where the swarm is moving to the

most visible area. By using RANSAC algorithm, point clouds

data are extracted at each time step into three possible

objects: plane, cylinder and sphere. The scene is formulated

as a dynamic system using KF analysis for objects'

prediction. The objects are approximated for the next time

step, and each safe attainable state that can be explored is set

as candidate viewpoint. The cost for each agent is set as total

visible surfaces, based on the analytic visibility boundary,

where the optimal and safe node is explored for the next time

step.

 At each time step, the planner computes the next

Attainable Velocities (AV). The safe nodes not colliding with

objects such as cubes, cylinders and spheres, i.e., nodes

outside VO, are explored. Where all nodes are inside VO, a

unified analytic solution for time horizon is presented,

generating an escape option for these radical cases without

affecting visibility analysis. The planner computes the cost

for these safe nodes based on predicted visibility and chooses

the node with the optimal cost for the next time step. We

repeat this procedure while generating the most visible

trajectory.

B. Visibility Velocity Obstacles (VVO)

 The visibility velocity obstacle represents the set of all

velocities from a viewpoint, occluded with other objects in the

environment. It essentially maps static and moving objects

into the robot’s velocity space considering visibility

boundaries.

 The VVO of an object with circular visibility boundary

points such as the pedestrians’ case, PBP, that is moving at a

constant velocity vb, is a cone in the velocity space at point A.

In Figure 2, the position space and velocity space of A are

overlaid to illustrate the relationship between the two spaces.

The VVO is generated by first constructing the Relative

Velocity Cone (RVC) from A to the boundaries of the object,

i.e., PBP, then translating RVC by vb.

 Each point in VVO represents a velocity vector that

originates at A. Any velocity of A that penetrates VVO is an

occluded velocity that based on the current situation, would

result in an occlusion between A and the pedestrian at some

future time. Figure 2 shows two velocities of A: one that

penetrates VVO, hence, an occluded velocity, and one that

does not. All velocities of A that are outside of VVO are

visible from the current robot's position as the obstacle

denotes as B, stays on its current course.

 The visibility velocity obstacle thus allows determining if a

given velocity is occluded and suggesting possible changes to

this velocity for better visibility. If PBP is known to move

0 0 0(, ,)V x y z

204

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

along a curved trajectory or at varying speeds, it would be best

represented by the nonlinear visibility velocity obstacle case

discussed next.

Figure 2. Visibility Velocity Obstacles

 The VVO consists of all velocities of A at t0 predicting

visibility's boundaries related to obstacles at the environment

at any time t>t0. Selecting a single velocity, va, at time t = t0

outside the VVO, guarantees visibility to this specific obstacle

at time t. It is constructed as a union of its temporal elements,

VVO(t), which is the set of all absolute velocities of A, va,

that would allow visibility at a specific time t.

 Referring to Figure 3, va that would result in occlusion with

point p in B at time t > t0, expressed in a frame centered at

A(t0), is simply in (13):

va =
VBPi

t−t0
 ()

where r is the vector to point p in the blocker’s fixed frame,

and visibility boundaries denoted as Visibility Boundary

Points (VBP). The set VVO(t) of all absolute velocities of A

that would result in occlusion with any point in B at time t >

t0 is thus in (14):

VVO(t) =
VBPi(t)

t−t0
 ()

 Clearly, VVO(t) is a scaled B for two-dimensional case

with circular object, located at a distance from A that is

inversely proportional to time t. The entire VVO is the union

of its temporal subsets from t0, the current time, to some set

future time horizon th in (15):

VVO(t) = ⋃
VBPi(t)

t−t0

th
t=t0

 ()

 The presented VVO generates a warped cone in a case of

2D circular object. If VBP(t) is bounded over t = (t0, ∞), then

the apex of this cone is at A(t0).We extend our analysis to 3D

general case, where the objects can be cubes, cylinders and

circles. The mathematical analysis with visibility boundaries

is based on VBP presented in the previous part for different

kind of objects such as buildings, cars and pedestrians.

 We transform the visibility's boundaries into the velocity

space, by moving the VBP to the velocity space, in the same

analysis presented for 2D circle boundaries.

Following that, we present a 3D extension for VBP case,

transformed to the velocity space.

 Given two objects, VBP1, VBP2 will create a VVO

representing VBP2 (and vice-versa) such that VBP1 wishes to

choose a guaranteed collision-free velocity for the time

interval τ, and visibility boundary in velocity space.

In case of cars, buildings and pedestrians where visibility

boundaries can be expressed by geometric operations of 3D

boxes, analyzed in the same concept and formulation

presented so far, as can be seen in Figure 3.

Figure 3. Visibility Velocity Obstacle for visibility boundaries consists of

3D boxes

C. Pursuer Planner Using VVO

Our planner, similar to previous work [11] is a local one,

generating one step ahead every time step reaching toward

the goal, which is a depth first A* search over a tree. We

extend previous planners which take into account kinematic

and dynamic constraints and present a local planner for UAV

as case study with these constraints, which for the first time

generates fast and exact visible trajectories based on VVO,

tracking after a target by choosing the optimal next action

based on velocity estimation. The fast and efficient visibility

analysis of our method allows us to generate the most visible

trajectory from a start state startq to the goal state
goalq in 3D

urban environments, which can be extended to real

performances in the future. We assume knowledge of the 3D

VVO

A

PBP

𝑣𝑏

𝑣𝑏

VVO

A

𝑣𝑏

CBP(t)

205

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

urban environment model, and by using Visibility Velocity

Obstacles (VVO) method to avoid occlusion, planner is based

on exploring maximum visible node in the next time step and

track a specific target.

1) Attainable Velocities

Based on the dynamic and kinematic constraints, UAVs

velocities at the next time step are limited. At each time step

during the trajectory planning, we map the AV, the velocities

set at the next time step t + , which generate the optimal

trajectory, as it is well-known from Dubins theory.

We denote the allowable controls as (, ,)s zu u u u= as

U , where V U .

We denote the set of dynamic constraints bounding

control's rate of change as (, ,) 's zu u u u U= .

Considering the extremal controllers as part of the motion

primitives of the trajectory cannot ensure time-optimal

trajectory for Dubins airplane model but is still a suitable

heuristic based on time-optimal trajectories of Dubin - car

and point mass models.

We calculate the next time step's feasible velocities

~

()U t + , between (,)t t + as shown in (16):

𝑈
~

(𝑡 + 𝜏) = 𝑈 ∩ {𝑢|𝑢 = 𝑢(𝑡) ⊕ 𝜏 ⋅ 𝑈′} ()

Integrating
~

()U t + with UAV model yields the next

eight possible nodes for the following combinations in (17):

~

min

,
~ ~

max max max

~ max

() ()

() () tan , () tan () tan

, ()()

s
s s s

z s s s

z z z

U t u u t a

U t U t u u t u t u a

u u t aU t

+ +

+ = + = − +

 −+

()

At each time step, we explore the next eight AV at the

next time step as part of our tree search, as explained in the

next sub-section.

2) Tree Search

Our planner uses a depth first A* search over a tree that

expands over time to the goal. Each node (,)q q

,where

(, , ,)q x y z = , consists of the current UAVs position and

velocity at the current time step. At each state, the planner

computes the set of AV,
~

()U t + , from the current UAV

velocity, ()U t . We ensure the visibility of nodes by

computing a set of Visibility Velocity Obstacles (VVO).

The search method is based on exploring nodes which are

outside of VVO. The safe node with the lowest cost, which is

the next most visible node, is explored in the next time step.

This is repeated while generating the most visible trajectory,

as discussed in the next sub-section.

Attainable velocities profile is similar to a trunked cake

slice, due to the Dubins airplane model with one time step

integration ahead. Simple models attainable velocities, such

as point mass, create rectangular profile.

3) Cost Function

Our swarm direction and movement is guided by minimum

invisible parts from viewpoint V to the approximated 3D

urban environment model in the next time step, 𝑡 + ∆𝑡, set by

KF after extracting objects from point clouds data using the

RANSAC algorithm. The cost function next state is a

combination of IRV and ISV, with different weights as

functions of the required task.

The cost function presented in (18) is computed for each

agent from its current state, considering the agent’s future

location at the next time step (𝑥1(𝑡 + ∆𝑡),𝑥2(𝑡 + ∆𝑡)) as

viewpoint:

𝑤(𝑞(𝑡 + 𝜏)) = 𝑎𝑏𝑠(𝑣𝑎(𝑞(𝑡 + 𝜏) − 𝑣𝑡𝑐𝑘(𝑞(𝑡 + 𝜏)) (18)

where ∝, 𝛽 are coefficients affecting the trajectory's

character, as shown in (14). The cost function 𝑤(𝑥(𝑡 + ∆𝑡)

produces the total sum of invisible parts from the viewpoint

to the 3D urban environment.

 We divide point invisibility value into Invisible Surfaces

Value (ISV) and Invisible Roofs Value (IRV). This

classification allows us to plan delicate and accurate

trajectories upon demand. We define ISV and IRS as the total

sum of the invisible roofs and surfaces (respectively).

Invisible Surfaces Value (ISV) of a viewpoint is defined as

the total sum of the invisible surfaces of all the objects in a

3D environment, as described in (19):

 (19)

In the same way, we define Invisible Roofs Value (IRV) as

the total sum of all the invisible roofs' surfaces, as described

in (20):

 (20)

Extended analysis of the analytic solution for visibility

analysis for known 3D urban environments can be found in

[12].

V. SIMULATIONS

We implemented the presented algorithm and tested some

urban environments on an 1.8GHz Intel Core CPU with

1.. 1

1.. 10 0 0

1

(, ,)
obj

j Nbound
i
j Nbound

i

N

VP

VP
i

ISV x y z IS
= −

= −

=

=

0 0 0

1

(, ,)
obj

j Nbound
i
j Nbound

i

N

VP

VP
i

IRV x y z IS
=

=

=

=

206

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matlab. We computed the visible trajectories using our

planner, simulating cloud points using Matlab functions.

On the first part, we tested our visibility analysis integrated

into decentralized drones swarm algorithms as described

above. The workflow of a swarm simulation is summarized

in Figure 4, were typical scenario of cylinder objects in our

environment can be seen in Figure 5.

In the first case, we tested our algorithm with relatively

large number of agents. As can be seen in Figure 4, thirty

agents in the swarm moving forward in straight line,

presenting swarm trajectory, distance between the agents

during mission, speed and accelerations during movement.

The swarm navigates based on modified Olfati-Saber’s

algorithm where obstacle avoidance implemented by

Velocity Obstacles, where the agents are simulated by point

mass model. Swarm cost function is based on visibility

analysis computed each time step as mentioned in the

previous section.

In the second case, we tested our algorithm with ten agents

in the swarm, so each agent simulated with quadrotor

dynamic model. As can be seen in Figure 6, ten agents in the

swarm moving forward in straight line with Vasarhelyi’s

algorithm, but visibility analysis and dynamic constraints

swift the swarm to the right side. presenting swarm trajectory,

distance between the agents. Figure 5 also includes speed and

accelerations during movement, performances analysis and

total distance to the obstacles during mission.

Order metric captures the correlation of the agents

movements and gives an indication about how ordered the

flock. Safety metrics measure the risk of collisions among the

swarm agents or between agents and obstacles.

Union metric counts the number of independent subgroups

that originates during the simulation.

Connectivity metric is defined from the algebraic

connectivity of the sensing graph that underlines the

considered swarm configuration.

Detailed mathematical definitions of these performances’

parameters can be found in [8].

Figure 4. SwarmLab simulation workflow. From the top left, in clockwise

order: (1) in the GUI, the user sets the parameters related to the simulation,

drone typology, swarm algorithm and environment. (2) the main simulation

loop computes control commands for the drones, based on the information

of the map and neighboring drones; (3) both real-time and post-simulation

(Source [8]).

Figure 5. Typical Scenario of Environmmet Obstacles Simulation

(1)

(2)

(3)

207

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(4)

Figure 6. Thirty agents swarm moving forward in straight line using

Olfati-Saber’s algorithm with visibility analsysis; (1) presenting swarm

trajectory; (2) distance between the agents during mission; (3) speed and

(4) accelerations during movement.

(1)

(2)

(3)

(4)

(5)

(6)

Figure 7. Ten agents swarm moving forward in straight line using

Vasarhelyi’s algorithm with visibility analsysis, with quadrotor synamic

model for agent; (1) presenting swarm trajectory; (2) distance between the

agents during mission; (3) speed and (4) accelerations during movement;

(5) performances analysis; (6) total distance to the obstacles during

mission.

VI. CONCLUSION AND FUTURE WORK

 In this research, we have presented an efficient swarm

trajectory planning algorithm for visible trajectories in a 3D

urban environment.

 We extend our analytic visibility analysis method to

cylinders and spheres, which allows us to efficiently set the

visibility boundary of predicted objects in the next time step.

Based on these fast computation capabilities, the on-line

planner can approximate the most visible state as part of a

decentralized swarm algorithms.

 By using SwarmLab environment, we compare two

decentralized algorithms from the state of the art for the

navigation of aerial swarms, Olfati-Saber’s and Vasarhelyi’s.

Our planner includes dynamic and kinematic platform’s

limitation, generating visible trajectories based on our first

step mentioned earlier.

We demonstrate our visibility and trajectory planning

method in simulations, showing trajectory planning in 3D

208

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

urban environments for drone’s swarm with decentralized

algorithms with performance analysis such as order, safety,

connectivity and union.

Further research will focus on advanced geometric shapes,

which will allow precise urban environment modeling, facing

real-time implementation with on-line data processing from

sensors.

REFERENCES

[1] O. Gal and Y. Doytsher, “Decentralized Swarms Visibility
Algorithms in 3D Urban Environments,” GEOProcessing
2022, The Fourteenth International Conference on Advanced
Geographic Information Systems, Applications, and Services,
pp. 47-52.

[2] G. Vosselman, B. Gorte, G. Sithole and T. Rabbani.
"Recognizing structure in laser scanner point clouds," The
International Archives of the Photogrammetry Remote Sensing
and Spatial Information Sciences (IAPRS), 2004, vol. 36, pp.
33–38.

[3] R. Schnabel, R. Wahl and R. Klein, "Efficient RANSAC for
Point-Cloud Shape Detection," Computer Graphics Forum,
2007, vol. 26, no.2, pp. 214-226.

[4] R. Kalman. "A new approach to linear filtering and prediction
problems," Transactions of the ASME-Journal of Basic
Engineering, 1960, vol. 82, no. 1, pp:35–45.

[5] J. Lee, M. Kim and I. Kweon. "A Kalman filter based visual
tracking algorithm for an object moving," In IEEE/RSJ
Intelligent Robots and Systems, 1995, pp. 342–347.

[6] O. Gal and Y. Doytsher, "Fast Visibility Analysis in 3D
Procedural Modeling Environments," in Proc. of the, 3rd
International Conference on Computing for Geospatial
Research and Applications, Washington DC, USA, 2012.

[7] H. Boulaassal, T. Landes, P. Grussenmeyer and F. Tarsha-
Kurdi. "Automatic segmentation of building facades using
terrestrial laser data," The International Archives of the
Photogrammetry Remote Sensing and Spatial Information
Sciences (IAPRS), 2007, vol. 36, no. 3.

[8] E. Soria, F. Schiano and D. Floreano, "SwarmLab: a Matlab
Drone Swarm Simulator," 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 8005-8011, doi: 10.1109/IROS45743.2020.9340854.

[9] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems:
Algorithms and Theory,” IEEE Transactions on Automatic
Control, vol. 51, no. 3, pp. 401–420, 2006.

[10] G. V´as´arhelyi, C. Vir´agh, G. Somorjai, T. Nepusz, A. E.
Eiben, and T. Vicsek, “Optimized flocking of autonomous
drones in confined environments,” Science Robotics, vol. 3,
no. 20, 2018.

[11] O. Gal, Z. Shiller and E. Rimon, "Efficient and safe on-line
motion planning in dynamic environment," in Proceedings of
the IEEE International Conference on Robotics and
Automation, 2009, pp. 88–93.

[12] O. Gal and Y.Doytsher. ”Patrolling Strategy Using
Heterogeneous Multi Agents in Urban Environments Using
Visibility Clustering,” Journal of Unmanned System
Technology, ISSN 2287-7320, 2016.

209

International Journal on Advances in Intelligent Systems, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/intelligent_systems/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

