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Abstract

Management of today’s systems is becoming increas-
ingly complex due to the heterogeneous nature of the in-
frastructure under which they operate and what the users
of these systems expect. Our interest is in the development
of mechanisms for automating the management of such sys-
tems to enable efficient operation of systems and the utiliza-
tion of services. Central to autonomic management is the
need for systems to monitor, evaluate, and adapt their own
behavior to meet the different, and at times seemingly com-
peting, objectives. Policy-driven management offers sig-
nificant benefit to this effect since the use of policies can
make it more straightforward to define and modify systems
behavior at run-time, through policy manipulation, rather
than through re-engineering. This work examines the effec-
tiveness of Reinforcement Learning methodologies in deter-
mining how to best use a set of active (enabled) policies
to meet different performance objectives. We believe that
Reinforcement Learning offers significant potential benefits,
particularly in the ability to modify existing policies, learn
new policies, or even ignore some policies when past expe-
rience shows it is prudent to do so. Our work is presented
in the context of an adaptive policy-driven autonomic man-
agement system. The learning approach is based on the
analysis of past experience of the system in the use of poli-
cies to dynamically adapt the choice of policy actions for
adjusting applications and system tuning parameters in re-
sponse to policy violations. We illustrate the impact of the
adaptation strategies on the behavior of a multi-tiered Web
server consisting of Linux, Apache, PHP, and MySQL.

Index Terms—Autonomic Management, Reinforcement
Learning, Policy-driven Management, QoS Provisioning.

1 Introduction

Today’s Information Technology (IT) infrastructure is
becoming heterogeneous and complex to the point that it is
extremely difficult, if not impossible, for human operators

to effectively manage. Increasingly, the combination of ap-
plications integrated within a single or multi-computer envi-
ronment has become a key component in the way many or-
ganizations deliver their services and provide support. En-
suring that such systems meet the expected performance
and behavioral needs is among the key challenges facing
today’s IT community. To this end, there has been a lot
of interest in the use of explicit system performance mod-
els to capture systems behavior as well as provide guid-
ance in managing applications and systems. While these
approaches have achieved some success in specific areas,
we note that developing models that accurately capture sys-
tems dynamics, particularly for the state of the enterprise
systems, is highly nontrivial.

Our interest is in the development of policy-driven au-
tonomic techniques for managing these types of systems.
Required or desired behavior of systems and applications
can be expressed in terms of policies. Policies can also
be used to express possible management actions. As such,
policies can be input to or embedded within the autonomic
management elements of the system to provide the kinds
of directives which an autonomic manager could make use
of in order to meet operational requirements. The effective
use of policies in autonomic management requires that the
policies be captured and translated into actions within the
autonomic system. As such, policies can provide the kinds
of directives best suited for flexible, adaptive, and portable
autonomic management solutions.

Previous work on the use of policies has mainly focused
on the specification and use “as is” within systems and
where changes to policies are only possible through manual
intervention. In an environment where multiple sets of poli-
cies may exist, and where at run-time multiple policies may
be violated, policy selection is often based on statically con-
figured policy priorities which an administrative user may
have to explicitly specify. As systems become more com-
plex, however, relying on humans to encode rational behav-
ior onto policies is definitely not the best way forward. It is
imperative, therefore, that autonomic systems have mecha-
nisms for adapting the use of policies in order to deal with
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not only the inherent human error, but also the changes in
the configuration of the managed environment and the com-
plexities due to unpredictability in workload characteristics.

Self-optimization describes the ability of autonomic sys-
tems to evaluate their own behavior and adapt it accordingly
to improve performance [1]. In the context where policies
are used to drive autonomic management, this may often
require having a system monitor its own use of policies to
learn which policy actions are most effective in encountered
situations. The system might try to correlate management
events, actions and outcomes based, for example, on the
long-term experience with a set of active policies. This in-
formation could then be used to enable the system to learn
from past experience, predict future actions and make ap-
propriate trade-offs when selecting policy actions. The use
of policies in this context offers significant benefits to auto-
nomic systems in that it allows systems administrators to
focus on the specification of the objectives, leaving it to
systems to plan how to achieve them. This paper looks at
how Reinforcement Learning methodologies could be used
to guide this process. In particular, we demonstrate how
a model derived from the enabled policies and the con-
sequences of the actions taken by the autonomic system
(which we first proposed in [2]) could be “learned” on-line
and used to guide the choice of policy actions for adjusting
system’s tuning parameters in response to policy violations.

The rest of this paper is organized as follows. We be-
gin with a background on Reinforcement Learning in Sec-
tion 2. In Section 3, we describe the structure of the poli-
cies we assume in our work and provide examples illustrat-
ing how these policies are used to drive autonomic man-
agement. Section 4 presents an adaptive policy-driven au-
tonomic management architecture illustrating key control
feedback interactions involved in guiding the selection of
policy actions for resolving Quality of Service (QoS) re-
quirements violations. Section 5 and 6 describe how Rein-
forcement Learning methodologies could be used to model
an autonomic computing problem involving QoS provi-
sioning. Section 7 describes the prototype implementation
of the learning mechanisms, illustrating the impact of the
adaptation strategies on the behavior of a multi-tiered Web
server. We review some related work in Section 8, and con-
clude with a discussion on key challenges and possible di-
rection for future work in Section 9.

2 Reinforcement Learning Background

Reinforcement Learning describes a learning paradigm
whereby, through trial-and-error interaction with its envi-
ronment (see Figure 1), an agent learns how to best map sit-
uations to actions so as to maximize long-term benefit [3].
As such, Reinforcement Learning is often associated with
training by reward and punishment whereby, for each ac-

tion the agent chooses, a numeric reward is generated which
indicates the desirability of the agent being in a particular
state. A key distinction between Reinforcement Learning
and other forms of learning is on what information is com-
municated to the learner after an action has been selected.
In supervised learning, for example, the learner only has
to visit a state once to know how to act optimally if it en-
counters the same state again. This is because, for each ac-
tion taken, the learner is told what the correct action should
have been. In Reinforcement Learning, on the other hand,
the learner only receives a numeric reward which indicates
how good the action was (as opposed to whether the ac-
tion was the best in that situation). The only way for the
learner to maximize this reward, therefore, is to discover
which actions generate the most reward in a given state by
trying them. Consequently, the learner is often faced with
a dilemma: whether to use its current knowledge to select
the best action to take, (exploit) or try actions it has not yet
tried (explore) in order to improve its guesses in the future.

Figure 1. The agent-environment interaction
in Reinforcement Learning [3].

As with many learning problems, it is often impractical
to obtain an environment model that is both accurate and
representative of all possible situations the learning agent
may encounter while interacting with the environment [3].
While model-free Reinforcement Learning methods exist
which are guaranteed to find optimal policies (i.e., choices
of actions per situation), they make extremely inefficient use
of data they gather [4]. One approach for overcoming this
shortfall is for the agent to learn the model of the environ-
ment’s dynamics, on-line, as it interacts with the environ-
ment. This has been demonstrated to significantly accel-
erate the learning process (see, for example, [5, 6, 7]). In
this approach, a model is updated continually throughout
the agent’s lifetime: at each time step, the currently learned
model is used for planning; i.e., using the learned model to
improve the policy guiding the agent’s interaction with the
environment.

Several model-based learning algorithms exist in the lit-
erature and differ mainly on how the model updates are per-
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Algorithm 1 Dyna-Q
Input: Initialize Model(s, a) for all s ∈ S and a ∈ A(s)

1: for i = 1 to∞ do
2: s← current (non terminal) state
3: a← ε-greedy(s,Q)
4: Execute a; observe resultant state, s′, and reward r
5: Q(s, a) ← Q(s, a) + α[r + γ maxa′ Q(s′, a′) −

Q(s, a)]
6: Model(s, a)← s′, r
7: for j = 1 to k do
8: s← random previously observed state
9: a← random action previously taken in s

10: s′, r ←Model(s, a)
11: Q(s, a) ← Q(s, a) + α[r + γ maxa′ Q(s′, a′) −

Q(s, a)]
12: end for
13: end for

formed. In this paper, we make use of an algorithm called
Dyna-Q [8] (see Algorithm 1) which estimates action-
values; i.e., a measure of how good it is for an agent to
perform a particular action in a given situation. Briefly,
the algorithm works as follows: Beginning with state s, the
agent selects action a ∈ A(s) and observes the resultant
state s′ and reward r. Using this information, the agent up-
dates the action-value associated with action a (line 5) and
adds this information to the current system model (line 6).
It also performs k additional updates of the model by ran-
domly selecting and updating the action-value estimates of
k state-action pairs (lines 7 - 12). In the sections that fol-
low, we describe how model-learning mechanisms could be
applied to an autonomic computing problem involving QoS
provisioning. But first, we begin with a look at how policies
could be used to drive autonomic management.

3 Autonomic Management Policies

We have been exploring the use of policies as the ba-
sis for autonomic management, with a particular focus on
e-commerce systems. We feel that policies can provide the
kinds of directives which autonomic systems can and should
rely on when making management decisions. As with much
of the previous work on policy-driven management (see,
for example, [9, 10]), our interest is on action policies (ex-
pressed as obligation policies in Ponder [9]) since they can
be defined and modified on a per component basis and can
provide useful information for autonomic managers. The
use of action policies within autonomic computing is likely
to continue partly due to their simplicity and, unlike goal
policies [11, 12] and utility policies [11, 13, 14, 15], do not
require a system model in order to be used [11]. In this
work it is assumed that action policies are event-triggered,

action-condition rules [9]. An event triggers the evaluation
of a rule of the form “if [conditions] then [actions]”. An
event is generated as a result of some condition of the state
of the system being true. This section looks at what these
policies are and how they could be used within autonomic
computing.

3.1 Policy Structure

We assume a policy to consist of several attributes in-
cluding one or more conditions and an ordered list of ac-
tions that make adjustments to some tuning parameters:

3.1.1 Policy Rule

A policy rule basically consists of a policy type (discussed
in Section 3.2), policy name, a conditions set which is de-
pendent on one or more conditions, and an actions set (see,
for example, Figure 3). Because a policy may apply to
many different components, the assumption is that the pol-
icy would be instantiated at run-time, say when the man-
agement system starts its components or a particular appli-
cation is started. For example, the policy target might be in-
stantiated to a particular host within a network of hosts, that
is, the same policy could apply to each of the hosts though
each would be monitored separately. In the policy example
of Figure 3, the policy target is the process corresponding
to the Policy Enforcement Point (PEP). The policy subject
is the management component that should receive the event
when there is a violation. Hence, the subject would also be
instantiated. In our prototype, the subject of an expectation
policy (see Section 3.2.2) would likely be the process corre-
sponding to the Policy Decision Point (PDP) as illustrated
by the policy of Figure 3; in larger systems, there could be
other management components to receive events or multi-
ple PDPs. A policy has at least one other attribute which
can change dynamically, which specifies whether a policy
is enabled (set to true) or not.

3.1.2 Policy Condition

A policy condition captures the state of an application, a
system, device, etc. It is assumed that events are generated
from monitoring components and that the Event Handler
(see Section 4.1) filters received events for those of “in-
terest”. An event specified by name only is essentially a
Boolean value; i.e., the occurrence of the event itself is suf-
ficient to take an action. An event with an attribute indicates
that the value of the attribute is to be used in evaluating an
expression, such as comparing the value to a threshold. It
is also possible to have a policy which becomes violated
only when multiple events or conditions occur. These are
specified via the standard logical operators.
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� �
c o n f i g u r a t i o n p o l i c y { I n s t a l l C P U M o n i t o r ( MonitorManager , l o c a l h o s t )}

i f ( INSTALL:CPUMonitor = t r u e )
t h e n { . / CPUMonitor t e s t { I s C o n d i t i o n E n a b l e d ( C P U : u t i l i z a t i o n ) = t r u e }}
� �

Figure 2. A configuration policy for installing a CPU Monitor.

3.1.3 Policy Action

A policy action defines what has to be executed should the
condition(s) specified in the policy hold true. Each action
is, essentially, the name of a function that should be ex-
ecuted. The function may have parameters that would be
determined from the information associated with the pol-
icy, e.g., domain, events, event attributes, etc. One or more
actions may also be specified. Each action may have an
optional test associated with it, with or without param-
eters. The test can be used to determine if the component
state or context invalidates the particular action. Such a test
is a Boolean function or could return a value which is then
compared to some threshold value. If the result of the test
expression is “true” then that indicates that the action is en-
forceable; note that the negation of a test is permitted in
which case the expression is “true” if the test evaluates to
“false”. As such, policy tests provide ways in which the
degree of self-management could be controlled. Action se-
quences may be conjoined (i.e., “AND-ed” together) indi-
cating that all the actions in the sequence should be exe-
cuted. Alternative action sequences may also be specified
in which case only one of the elements of the sequences
would be selected.

In our current approach, we permit only a single action
within a single expectation policy to be executed. This is
done for two reasons. First, this is a strategy of “doing
something simple” and seeing if there is a positive effect.
If the change is not sufficient, then a violation is likely to
occur again and a further action (which could be the same,
e.g., increasing or decreasing the value of a parameter) can
be taken. The management cycle in the implementation is
short enough that this can happen quickly. Second, taking
multiple actions makes it difficult to understand the impact
of the actions; e.g., were they all necessary, were some more
effective than others, etc. By having the autonomic man-
ager take a single action and log that action and other in-
formation, an analysis component can examine that infor-
mation and possibly determine which action(s), or the order
thereof, is better, etc. We outline one such an approach in
Section 6.

3.2 Policy Types

We are currently exploring the use of several types of
policies for driving autonomic management.

3.2.1 Configuration Policies

Configuration policies describe those policies that are used
to specify how to configure and install applications and ser-
vices. This may include, for example, setting static config-
uration parameters based on the Service Level Agreement
(SLA) requirements (e.g., performance, availability, quality
of service), the given or expected environmental parame-
ters (e.g., required services, number of active users), and
the available resources (e.g., number of processors, proces-
sor speed, memory size, disk space).

A sample configuration policy for installing a CPU Mon-
itor for the system of Figure 4 is shown in Figure 2. In this
example, the MonitorManager (i.e., the poliy subject) is
the component responsible for installing the CPU monitor
on a localhost (i.e., the policy target). The policy test
determines the conditions under which the CPU Monitor
is to be installed. In this example, the monitor is installed
only if the condition “CPU:utilization” is enabled -
as determined by a set of enabled expectation policies (see
Section 3.2.2). As such, changes to the policies driving au-
tonomic management could also trigger dynamic reconfig-
uration of systems and applications. For example, by dis-
abling the policy of Figure 9 (assuming, of course, that it
is currently the only policy with a “CPU:utilization”
condition), the CPU Monitor would be disabled as a result.
A key advantage here is the reduction in the management
overhead since events specific to CPU utilization would no
longer be relevant when the policy is no longer active.

3.2.2 Expectation Policies

Expectation policies define information used to ensure that
operational requirements are met and expected conditions
not violated. We have also been using expectation poli-
cies to indicate how the system could optimize its use of
resources. For example, a policy could indicate that, when
the response time of requests to the server falls below a cer-
tain level, then Apache processes handling requests could
be reduced. This would then free up system resources.

A sample expectation policy for resolving violations in
Apache’s response time is shown in Figure 3. It consists
of two conjunctive conditions and three disjunctive actions.
Note that the actions, which specify adjustments to the ap-
plication’s tuning parameters, are quite simple since each
specifies a small - and in some cases the smallest pos-
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� �
e x p e c t a t i o n p o l i c y {RESPONSETIMEViolation ( PDP , PEP )}

i f ( APACHE:responseTime > 2 0 0 0 . 0 ) & ( APACHE:responseTimeTREND > 0 . 0 )
t h e n {A d j u s t M a x C l i e n t s ( + 2 5 ) t e s t {newMaxClients < 151} |

Adjus tMaxKeepAl iveReques t s (−30) t e s t {newMaxKeepAliveRequests > 1} |
AdjustMaxBandwidth (−128) t e s t {newMaxBandwidth > 255}}
� �

Figure 3. A sample expectation policy for resolving Apache’s response time violation.

sible - increment/decrement in the value of the parame-
ter. For example, the Apache’s MaxClients parame-
ter could only be adjusted in increments/decrements of the
number of threads per child process, as specified in the
server’s configuration. Thus, a general knowledge of how
an increase/decrease in the value of a particular parame-
ter impacts a system’s performance metrics may be suffi-
cient to define reasonable policies. For instance, a viola-
tion in Apache’s response time could be due to the fact that
there aren’t enough server processes to handle clients re-
quests, in which case increasing MaxClients could re-
solve the problem. If this is no longer possible (as de-
termined by the action test), one might try to reduce the
amount of time (i.e., MaxKeepAliveRequests) exist-
ing clients hold onto the server processes. And, if this is no
longer possible, it could be that the server is overwhelmed
by the number of requests in which throttling some may
alleviate the problem. This is illustrated by the expecta-
tion policy in Figure 3. Since, only a single action could
be executed, the order in which the actions are specified
within the policy is also important. In this case, more dras-
tic actions could be taken once it is no longer possible,
for example, to meet the objectives through tuning appli-
cation’s parameters. This is precisely the purpose of the
action “AdjustMaxBandwidth(-128)” which throt-
tles requests to the server by reducing the rate at which the
server processes clients requests based on a client’s service
class (see Section 7.3 for details).

3.2.3 Management Policies

Management policies deal with information and actions for
managing the management system itself or for the overall
administration of the system or applications. Such policies
may include those for the prioritization of expectation poli-
cies, for diagnosis in determining an action, or involving
some analysis (say of previous behavior) in determining an
action. We are currently exploring the use of management
policies to guide the on-line learning process. Our partic-
ular focus is on how the learning algorithms could be op-
timized to be less computational intensive in order to meet
the resource constraints imposed by the environment. We
comment further on this in Section 9.

4 System Architecture

A detailed view of the architecture for the adaptive
policy-driven autonomic management system is depicted
in Figure 4. Our approach to autonomic management in-
volves providing quality of service support local to each
host. Each local host, therefore, has a single Policy De-
cision Point (PDP) whose responsibility is to oversee the
management of a single host according to the policies spec-
ified. In a multi-tiered Web-server environment, for exam-
ple, several components (i.e., a Web server, an application
server, and a database server) may cooperate to deliver a set
of services. In the case that all these components are run
on a single host, a local PDP will be responsible for ensur-
ing that the managed application, as a whole, behaves as
expected. Since each component would have it’s own set
of policies, more complex decisions regarding the choices
of actions when multiple policies, possibly from multiple
components, are violated will be confined to a single Event
Analyzer. In the case where each component of the multi-
tiered Web server is run on a different host, several PDPs
could be configured to oversee the management of each lo-
cal host where the individual component is run. However,
a single Event Analyzer is used to co-ordinate the activities
of the individual PDPs on each local host in order to pro-
vide quality of service support spanning multiple hosts. A
key advantage of a de-centralized approach to QoS support
is that the autonomic system is likely to be more scalable
and responsive since QoS decisions specific to local behav-
ior will be confined locally [16]. By reducing the distance
between the autonomous management system and the man-
aged system (see Figure 5), less overhead is incurred, in
part, as a result of using more efficient local communica-
tion mechanisms between components [16]. In this section,
we highlight key functionality of the different components.

4.1 Architectural Components

The following are the key components of the architecture
for the adaptive policy-driven autonomic management:
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Figure 4. The adaptive policy-driven autonomic management architecture.

4.1.1 Knowledge Base

The Knowledge Base is a shared repository for system poli-
cies and other relevant information. This may include in-
formation for determining corrective actions for resolving
QoS requirements violations as well as configuring systems
and applications. The information about policies is eventu-
ally distributed to other management components, and then
realized as actions driving the autonomic management.

4.1.2 Monitor (M)

Monitors gather performance metric information of interest
for the management system such as resource utilization, re-
sponse time, throughput and other relevant information. It
is this information that is then used to determine whether
the QoS requirements are either being met or violated.

4.1.3 Monitor Manager

Monitor Manager deals with the management of Monitors,
including instantiating (i.e., loading and starting) a Monitor
for a certain resource type to be monitored as well as pro-
viding the context of monitoring (i.e., monitoring frequency
or time interval for periodic monitoring or monitoring times
for scheduled monitoring). In addition, it allows Monitors
to be re-configured (i.e., adding a new Monitor, adjusting
the context of monitoring, or disabling a Monitor) dynam-
ically in response to run-time changes to policies. At the
core of its responsibility is the collection and processing of
Monitor events whose details are then reported to the Event

Handler. In essence, the Monitor Manager acts as an event
producer by gathering information from multiple Monitors
as illustrated in Figure 4. It provides customized services
to event consumers (such as the Event Handler) in terms of
how often they should receive events notifications.

4.1.4 Event Handler

The Event Handler deals with the processing of events from
the Monitor Manager to determine whether there are any
QoS requirements violations (based on the enabled policy
conditions) and forwarding appropriate notifications to the
interested components. This includes notifying the PDP of
conditions violations as well as forwarding information to
the Event Log for archiving. A key feature of this compo-
nent is its ability to provide customized services to event
consumers (i.e., PDP, Event Log, etc.) through subscrip-
tions by allowing components to specify, for example, how
often and/or when they should receive notifications.

4.1.5 Policy Decision Point (PDP)

This component is responsible for deciding on what actions
to take given one or more violation messages from the Event
Handler. The PDP must decide which policy, if any expec-
tation policy has been violated, was the “most important”
and then what action(s) to take. It uses information not only
about the violations, but also the expectation policies and
management policies, both expressed within the expecta-
tion policies and via management policy rules.
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4.1.6 Policy Enforcement Point (PEP)

This component defines an Application Programming Inter-
face (API) which maps the actions subscribed by the PDP
to the executable elements; i.e., the various Effectors.

4.1.7 Effector (E)

Effectors translate the policy decisions, i.e., corrective ac-
tions, into adjustment of configuration parameters to imple-
ment the corrective actions. Note that there will be multiple
instances of the Effectors for different types of resources
(e.g., logical partitioning of CPUs, allocation of streaming
buffers) or tuning parameters to be adjusted.

4.1.8 Event Log

This component archives traces of the management sys-
tem’s events onto (1) an event log in the memory for captur-
ing recent short term events, and (2) a persistent event log on
disk for capturing long term history events for later exam-
ination. Such events may include QoS requirements viola-
tions from the Event Handler, records of decisions made by
the PDP in response to the violations, the actions enforced
by the PEP, as well as other relevant management events.

4.1.9 Event Analyzer

This component correlates the events with respect to the
contexts, performs trend analysis based on the statistical
information, and models complex situations for causality
analysis and predictive outcomes of corrective actions, to
enable the PDP to learn from past, predict future and make
appropriate trade-offs and optimal corrective actions.

4.2 Component Interaction

Figure 5 illustrates key interactions driving autonomic
management. In this approach, we make use of policies to
specify both the expected performance behavior of the man-
aged systems as well as decisions driving autonomic man-
agement. Such policies are specified via the Policy Tool
(see Figure 11). The management system can also adapt,
dynamically, to handle changes to policies made via the in-
terface. This approach is illustrated in the diagram and is
characterized by the interaction between the Managed Sys-
tem and the Autonomous Management System. In essence,
the management system determines what to monitor based
on the policies that are active and determines if changes
should be made. Any changes are done through effectors
which can change the values of various parameters of the
applications (e.g. Apache or other components) or change
the operation of the system itself, such as blocking requests
or adding/removing processes. This section looks at how

the different components interact to achieve the different
performance objectives in the context of self-configuration
and self-optimization.

4.2.1 Self Configuration

Briefly, the management system in Figure 4 is instantiated
by first invoking the Management Agent (not shown in the
diagram). The initial task of this agent is to query all the
enabled configuration policies (see Section 3.2.1) from the
policy repository. It is these policies that are used to install
the management components, with the exception of Moni-
tors, the responsibility of which falls to the Monitor Man-
ager; i.e., the policy subject (see Figure 2). The PDP, in
turn, queries the policy repository for all the enabled expec-
tation policies (see Section 3.2.2) and uses this information
to make decisions on how to respond to violations. Once
the different management components have been installed,
the manager’s responsibility becomes ensuring that appro-
priate components are notified if there are any changes to
the policies governing the behavior of the system.

To illustrate the impact of disabling a policy, let’s as-
sume that the policies of Figures 3 and 9 are the only en-
abled expectation policies and a user disables the latter
policy. This would trigger four specific notifications: (i)
The first notification would be forwarded to the PDP since
this component is the subject of the policy. The PDP in
turn would update its policies accordingly, i.e., by remov-
ing the CPU violation expectation policy. (ii) The second
notification would be forwarded to the Event Handler, the
component responsible for determining whether the QoS
requirements are being met. Disabling the policy of Fig-
ure 9 means that the conditions “CPU:utilization”
and “CPU:utilizationTREND” must also be disabled.
This would prevent any notifications from being forwarded
to the PDP should a violation of any of the conditions occur.
(iii) The third notification would be forwarded to the Moni-
tor Manager to determine whether any of its Monitors are to
be disabled as a result. In this particular case, the CPU Mon-
itor would be disabled since events specific to CPU utiliza-
tion are no longer relevant. This directive is captured by the
test “IsConditionEnabled(CPU:utilization)”
as part of the action to install the CPU Monitor (see the pol-
icy of Figure 2). (iv) The fourth and final notification would
be forwarded to the Event Analyzer, which may need to up-
date policy state information since the change may affect
the learning process. This type of adaptation is the focus of
our current research and will not be addressed here.

4.2.2 Self Optimization

Self-optimization deals with adapting the behavior of appli-
cations as well as systems in order to meet specific perfor-
mance objectives. In the context of where policies are used
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to drive autonomic management, adaptation may be specific
to the choice of policy actions. Figure 5, in particular, illus-
trates two main feedback control loops that drive how the
autonomic system adapts the way it responds to the viola-
tions in the QoS requirements of the managed system.

Figure 5. Two feedback loops driving the au-
tonomic management of a managed system.

The first control loop, which constitutes a single manage-
ment cycle, consists of monitoring the behavior of the man-
aged system and, using the information collected within the
interval, selecting policy actions to resolve violations.

1. The Monitors collect and forward performance met-
ric information to the Monitor Manager (not shown in
the diagram) which is then processed (i.e., for averages
and trends) and forwarded to the Event Handler.

2. The Event Handler’s responsibility is to determine
whether the QoS requirements of the managed system
have been violated. For each violation, a notification
is forwarded to the PDP.

3. For each management interval, the PDP collects all the
violation messages and processes them to determine
whether any of the enabled expectation policies has
been violated. The PDP then determines the order in
which the actions advocated by the violated policies
are to be “tried” (based on the violation information

collected during the interval). The ordered actions are
then forwarded to the PEP.

4. On receiving the policy actions, the PEP performs tests
associated with each action, and if successful, invokes
the appropriate Effector(s) to perform the actual ad-
justment to the managed system’s parameter(s). Note
that, in our current implementation, we only permit a
single action to be executed - for the reasons discussed
in Section 3.1.3.

The above control mechanisms were the focus of our initial
investigation on the performance behavior of the Apache
Web Server (see, for example, [17]). This work was later
extended to incorporate adaptation strategies on how the
PDP selects policy actions from those advocated by the vi-
olated policies in the context of a multi-component Web
server (see [18]).

The second feedback loop deals with self-optimization;
i.e., the ability of systems to evaluate their own behavior and
adapt it accordingly to improve performance. In the con-
text of where policies are used to drive autonomic manage-
ment, this often requires monitoring the behavior in the use
of policies and using the experience to learn optimal poli-
cies; i.e., the selection of optimal policy actions for each
encountered situation. The use of policies in this context
offers significant benefits to autonomic systems in that it al-
lows systems administrators to focus on the specification of
the objectives leaving it to systems to plan how to achieve
them. The key steps of the feedback loop include the fol-
lowing:

1. Process the Event Log information (which includes
Monitor events, QoS requirements violation events,
decisions made by the PDP in response to the viola-
tions, and the actions enforced by the PEP), on-line, to
model the performance of the managed system based
on the observed experience in the use of policies.

2. Use the model, when possible, to advise the PDP on
how to adapt its action selection mechanisms based on
the current state of the system.

Figure 6 summarizes the key interactions between the
different components involved in coordinating the steps of
the two feedback control loops during a single management
cycle. The Policy Tool (see Figure 11), in this case, provides
an interface to the autonomous management system through
which users can manage (i.e., add, modify, delete) policies
governing the behavior of the system.

1. Monitors: Collect performance metric information of
interest from the managed environment (E) and for-
ward it to the Monitor Manager.
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Figure 6. Feedback control interactions.

2. Monitor Manager: Process the Monitor events for av-
erages and trends and forward the processed informa-
tion to the Event Handler.

3. Event Handler: Determine whether any QoS require-
ments have been violated. For each violation, forward
a notification, ei, to the PDP.

4. PDP: During each management interval, form a set,
Pv , of violated policies (from the enabled policies set
P ) based on the violation notification events, ei ∈ Ev ,
received during the interval. A policy is said to be vio-
lated if all its conditions evaluate to true when matched
against violation events in Ev .

5. PDP: Decide whether to use the knowledge learned
from past experience with a set of active policies, P , to
select the best action to take (i.e., by requesting advise
from the learning component with probability 1 − ε),
or to try actions not yet tried (with probability ε).

6. PDP: Form set Av corresponding to the actions asso-
ciated with the current state, A(s), if the state has pre-
viously been encountered, then continue with 10 (ex-
ploit); Otherwise, continue with 7 (explore).

7. PDP: Compute the severity of each condition in Pv

using the values of the violation events in Ev .

8. PDP: Form a set, Av , of unique policy actions based
on the actions advocated by the violated policies in Pv .

9. PDP: Compute Q0(s, a) for each policy action in Av .
Q0(s, a) estimates the initial action-value of the policy
actions based on the characteristics of both violation
events and the enabled policies (see Equation 6).

10. PDP: Sort the actions in Av by the action-value esti-
mate, Q(s, a), and forward them to the PEP. The aim

here is to ensure that actions with the highest value are
tried first. Since only a single action is executed, the
order in which the actions are arranged is of great im-
portance.

11. PEP: Validate the policy actions in Av by performing
the tests associated with each action (see, for example,
Figure 3) and then invoke the appropriate Effector (E)
to perform the actual action, ai, for the first action to
pass the tests.

12. Learning Component: Observes the resultant state s′

and reward r′. Using the Dyna-Q algorithm (see Algo-
rithm 2), update the current system model.

In the next Section, we elaborate on how the above feed-
back control interactions are modelled onto a Reinforce-
ment Learning problem.

5 Modelling Reinforcement Learning

A model, in Reinforcement Learning, describes any
feedback that guides the interaction between the learning
agent and its environment. This interaction is driven by
the choices of actions and the behavior of the system as
a consequence of taking those actions. In the context of
a policy-driven autonomic management agent, the choices
of actions are determined by the expectation policies that
are violated. This section looks at what constitutes a state-
transition model and how this structure is derived. We first
begin by formally defining expectation policies.

Definition 1 An expectation policy is defined by the tuple
pi = 〈C,A〉 where:

• C is conjunctive conditions associated with policy pi

with each condition, cj ∈ C, defined by the tu-
ple cj = 〈ID, metricName, operator, Γ〉,
where; ID is a unique identification for the condition;
metricName is the name of the metric associated
with the condition; operator is the relational opera-
tor associated with the condition; and Γ is the threshold
of the condition.

• A is a set of actions associated with policy pi with
each action, aj ∈ A, defined by the tuple aj = 〈ID,
function, parameters, τ〉, where; ID is a
unique identification for the action; function is the
name of the function (within the PEP) that should be
executed; parameters is a set of function parame-
ters; and τ is a set of tests associated with the action.

An expectation policy condition essentially identifies the re-
gion (or interval) on the side of the condition’s threshold
(based on the condition’s operator) where a condition is said
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to be violated. Thus, our expectation policy conditions only
consider “>, ≥, <, and ≤” operators. For a policy con-
dition “APACHE:responseTime > 2000.0”, for ex-
ample, any response time measurement beyond 2000.0 ms
would be considered as a violation, the severity of which
increases the further the measurement is from the thresh-
old. In our implementation of expectation policies, it is as-
sumed that the quality of service specific to a metric’s mea-
surement deteriorates, i.e., monotonically decreases, as the
measured value increases. In essence, the main objective
for the autonomic manager is to steer the system towards
metrics’ regions where the quality of service is the highest;
i.e., towards the most desirable regions.

A policy-driven autonomic management system is likely
to consist of multiple expectation policies, a subset of which
may be active (or enabled) at any given time; which brings
us to our next definition.

Definition 2 Suppose that PA denotes a set of all expecta-
tion policies such that pi ∈ PA where pi = 〈C,A〉. Let
P be a subset of expectation policies an autonomic man-
ager uses to make management decisions; i.e., P ⊆ PA.
A policy system corresponding to P is defined by the tuple
PS = 〈P,WC〉 where:

• WC = 〈ci, ωi〉 associates each policy condition, ci,
with a weight, ωi, such that, for all ci ∈ pm and cj ∈
pn, ωi = ωj if ci = cj .

The conditions’ weights, which are specified manually in
our current implementation, provide a way of distinguish-
ing policy conditions based on the significance of violating
a particular metric. In essence, WC provides a way of bi-
asing how the autonomic system responds to violations; we
elaborate further on this in Section 6.1.

To model system’s dynamics from the use of an active
set of policies, we make use of a mapping between the en-
abled expectation policies and the managed system’s states
whose structure is derived from the metrics associated with
the enabled policy conditions.

Definition 3 A policy system PS = 〈P,WC〉 derives a set
of system metrics, mi ∈ M , such that, for each C ∈ pj

where pj ∈ P , M =
⋃

ci∈C

{ci.metricName}.

In this approach, a state-transition model (see Definition 4)
is defined which uses a set of active expectation policies
(see, for example, Figure 3) to create a set of policy-states
and the actions of the management system to determine
transitions between those states. This mapping is moti-
vated by two key observations about the expectation poli-
cies. First, they define what the expected performance and
behavioral objectives are (as captured by the conditions of
the enabled expectation polices). Second, they define the

choices of actions whenever the specified objectives are vio-
lated. In essence, the interaction between the learning agent
and its environment is driven, partly, by the enabled expec-
tation policies. Thus, we assume a standard Markov Deci-
sion Process (MDP) [3, 4].

Figure 7. A sample state transition graph.

Definition 4 A state-transition model derived from the pol-
icy system PS = 〈P,WC〉 is defined by the graph
GP = 〈S, T 〉 where:

• S is a set of system states (see Section 5.1.) derived
from the metrics of the conditions of the enabled ex-
pectation policies.

• T is a set of transitions (see Section 5.2) where each
transition, ti ∈ T , corresponds to a directed edge on
the graph. A transition is determined when the auto-
nomic manager takes an action as a result of being in
one state, which may, or may not, result in a transition
to another state.

As such, we capture the management system’s behavior in
the use of an active set of policies using a state-transition
graph. This is illustrated in Figure 7 which shows the dif-
ferent types of states (see Definition 7) as well as transitions
between states as a result of either the actions of the auto-
nomic manager (i.e., ai) or other dynamic characteristics
outside the control of the autonomic manager (i.e., a0); we
elaborate further on this in Section 5.2. The result can then
be used by the autonomic manager to consider choices of
policy actions that it might take when it determines that the
system is in a particular state. That is, the autonomic man-
ager could take an action as defined below:

ai ∈ A(si) (1)



64

International Journal On Advances in Intelligent Systems, vol 1 no 1, year 2008, http://www.iariajournals.org/intelligent_systems/

where A(si) is a set of actions advocated by the expecta-
tion policies that are violated when the system is in state si.
The information about the system that is used to determine
the state-transition graph is extracted from the Event Log
as illustrated in Figure 5. For a given set of active policies,
this structure is built dynamically as the events from the dif-
ferent management components are recorded in the logfile.
Note that, since the autonomic manager records only those
states that are experienced, “states explosion” is likely to be
restricted. We comment further on this in Section 9.

5.1 System States

As indicated, states are based upon the metrics in the
conditions of the policy system. We define states through
the following definitions.

Definition 5 A policy system PS = 〈P,WC〉 with metrics
set M derives a set of metric-regions, MR, for each metric
mi ∈ M , rmi ∈ MR, whose structure is defined by the
tuple rmi = 〈αmi , σmi〉, where:

• αmi = 〈ID, metricName, ω〉 corresponds to a unique
metric from among the metrics of the conditions of the
policies in P ; such that, metricName is the name of
the metric and ω is the weight of the condition (see
Definition 2) associated with metric mi. In the case
that a single metric is associated with more than one
policy condition and where each condition might have
different weights, the value mi.ω is computed as fol-
lows:

mi.ω = max
c.mi∈C

c.ω (2)

which essentially corresponds to the weight of the con-
dition with the largest weight value from among the
conditions associated with metric mi.

• σmi = {Γ1,Γ2, . . . ,Γk} is a set of thresholds from
the conditions associated with metric mi such that,
Γi < Γj if i < j. As such, σmi derives a set of metric
regions which map the observed metric measurement
onto appropriate localities (i.e., intervals) as defined by
the thresholds of the policy conditions associated with
metric mi, such that Rmi = {R1

mi
, R2

mi
, . . . , Rk+1

mi
},

where R1
mi

= (−∞,Γ1); R2
mi

= (Γ1,Γ2); and,
Rk+1

mi
= (Γk,∞).

Thus, if σmi = 〈Γ1,Γ2〉, for example, it would yield
three regions in our approach: R1

mi
= (−∞,Γ1), R2

mi
=

(Γ1,Γ2), and R3
mi

= (Γ2,∞); which brings us to our next
definition.

Definition 6 Given a set of metric-regions for each met-
ric mi ∈ M , rmi ∈ MR, such that rmi = 〈αmi , σmi〉,
where σmi derives a set of metric regions Rj

mi
∈ Rmi;

we define a mapping function, f(Rj
mi

) → R, which as-
signs a numeric value to the j-th region in Rmi such that,
f(Rk

mi
) > f(Rl

mi
) if k < l.

An example of such a mapping, which we make use of
in our current implementation, is defined by Equation 3:

f(Rj
mi

) = 100− (
100

n− 1
)(j − 1) (3)

where n is the total number of regions in Rmi
. This func-

tion assigns a numeric value between 100 and 0 for each
metric’s region in Rmi , starting from 100 for the most de-
sirable region and decrementing at equal intervals towards
the opposite end of the spectrum, whose region is assigned a
value of 0. This approach guarantees that the highest value
is assigned to the most desirable region (i.e., the region cor-
responding to the highest quality of service), assuming, of
course, that the assumptions about the conditions of the ex-
pectation policies hold (see Definition 1).

Definition 7 A policy system PS = 〈P,WC〉 with metrics
M and metrics-regions MR derives a set of system states
S such that, each state si ∈ S is defined by the tuple
si = 〈µ,M(si), A(si)〉, and where:

• µ is a type which classifies a state as either “vi-
olation” or “acceptable” depending, respectively, on
whether or not there are any policy violations as a re-
sult of visiting a particular state. As noted previously,
a policy is said to be violated if all its conditions evalu-
ate to true when matched against violation notifications
received during a single management cycle.

• A(si) is a set of actions advocated by the expectation
policies in P that are violated when the system is in
state si.

• M(si) is a set of state metrics for each metric mj ∈
M , rmj ∈ MR, rmj = 〈αmj , σmj 〉, such that each
state metric si.mj ∈M(si) is defined as follows:

Definition 8 A state metric si.mj ∈ M(si)
given αmj = 〈ID, metricName, ω〉 and
σmj = 〈Γ1,Γ2, . . . ,Γk〉 is defined by the tuple
si.mj = 〈ID, ω, value, Rl

mj
〉 where:

• ID is an integer value that uniquely identify each met-
ric mi ∈M .

• ω is the weight associated with metric mi.

• value is the observed metric measurement, or aver-
age value when state s is visited multiple times.
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mi ck Policy Condition Rmi Rj
mi

f(Rj
mi

)

m1
m1.value ≤ 2000.0 R1

m1 100
c1 APACHE:responseTime > 2000.0 m1.value > 2000.0 R2

m1 0

m2
m2.value ≤ 0.0 R1

m2 100
c2 APACHE:responseTimeTREND > 0.0 m2.value > 0.0 R2

m2 0

Table 1. A metrics structure derived from the policy system of Example 1.

State Rk
mj

f(Rk
mj

) A(si)

si Rk
m1 Rk

m2 f(Rk
m1) f(Rk

m2) al State action

s1 R2
m1 R2

m2 0 0

a0 γ-action
a1 AdjustMaxClients(+25)
a2 AdjustMaxKeepAliveRequests(-30)
a3 AdjustMaxBandwidth(-128)

s2 R2
m1 R1

m2 0 100 a0 γ-action
s3 R1

m1 R2
m2 100 0 a0 γ-action

s4 R1
m1 R1

m2 100 100 a0 γ-action

Table 2. Sample policy states based on the metrics structure of Table 1.

• Rl
mj

is the region corresponding to a region in σmj in
which the average metric measurement (i.e., value)
falls; i.e., if Rl

mj
= (Γ1,Γ2), then Γ1 < value < Γ2.

For each such region, f(Rl
mj

) then associates a value
as described by Equation 3.

Using this approach, each state can be uniquely identi-
fied by the region occupied by each state metric based on
the conditions of the expectation policies and the value
associated with each metric. That is, for a set of poli-
cies involving n metrics, each state would have n metrics
{m1,m2, ...,mn} and, for each metric a specific region
whose intervals are derived from the thresholds of the con-
ditions associated with the metric. To elaborate this further,
consider the following examples:

Example 1 Suppose that, policy system PS = 〈P,WC〉
currently consists of a single active (enabled) expectation
policy shown in Figure 3 (i.e., p1) such that P = {p1}.

From the conditions of the policy, states derived
from the policy system of Example 1 would con-
sist of two metrics; i.e., M = {m1,m2} where
m1 =“APACHE:responseTime” and m2 =“APACHE:
responseTimeTREND”. It follows from Definition 5 that
σm1 = {2000.0} and σm2 = {0.0}. As such, metric m1

would map onto two regions; the response time is either
greater than 2000.0 or not. Similarly, metric m2 would
map onto two regions; the response time trend is either
greater than 0.0 or not. This is illustrated by the regions
shown in Table 1. In the case of the two regions of the
metric “APACHE:responseTime”, for example, the re-
gion where the response time is “> 2000.0” would be

assigned a value of 0, whereas the region where the re-
sponse time is “≤ 2000.0” would be assigned a value of
100 (see Equation 3). This is because it is more desirable
for the system to be in the region where the response time
is not violated; i.e., “m1.value ≤ 2000.0”. Thus, given
a measurement about a particular metric (i.e., mi.value),
Equation 3 assigns a numeric value corresponding to the
appropriate metric’s region where the measurement falls. It
is the combination of these values over all the metrics that
uniquely identify individual states.

Thus, if the policy of Figure 3 was the only policy in P ,
it would yield four states in our approach as illustrated in
Table 2. In this case, state s1 would be considered a “vio-
lation” state since it is the only situation which causes the
policy to be violated, i.e., as a result of the violation of both
policy conditions. Hence, actions set A(s1), in addition to
action a0 (i.e., do-nothing), would consist of the actions of
the violated policy. The remaining three states are consid-
ered as “acceptable” states.

Example 2 Suppose that, we extend Example 1 by adding
the policy of Figure 8 (i.e., p2) onto the policies set P such
that P = {p1, p2}.

It follows from Example 2 that the state met-
ric m1 =“APACHE:responseTime” would now
be associated with two unique policy conditions;
“APACHE:responseTime > 2000.0” from pol-
icy p1 and “APACHE:responseTime < 250.0”
from policy p2. Consequently, the state metric
“APACHE:responseTime” would now consist of
three regions; i.e., “m1.value < 250.0”, “250.0 ≤
m1.value ≤ 2000.0”, and “m1.value > 2000.0”. In
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mi ck Policy Condition Rmi Rj
mi

f(Rj
mi

)

m1

c3 APACHE:responseTime < 250.0 m1.value < 250.0 R1
m1 100

250.0 ≤ m1.value ≤ 2000.0 R2
m1 50

c1 APACHE:responseTime > 2000.0 m1.value > 2000.0 R3
m1 0

m2
m2.value ≤ 0.0 R1

m2 100
c2 APACHE:responseTimeTREND > 0.0 m2.value > 0.0 R2

m2 0

Table 3. A metrics structure derived from the policy system of Example 2.

State Rk
mj

f(Rk
mj

) A(si)

si Rk
m1 Rk

m2 f(Rk
m1) f(Rk

m2) al State action

s1 R3
m1 R2

m2 0 0

a0 γ-action
a1 AdjustMaxClients(+25)
a2 AdjustMaxKeepAliveRequests(-30)
a3 AdjustMaxBandwidth(-128)

s2 R3
m1 R1

m2 0 100 a0 γ-action
s3 R2

m1 R2
m2 50 0 a0 γ-action

s4 R2
m1 R1

m2 50 100 a0 γ-action

s5 R1
m1 R2

m2 100 0

a0 γ-action
a4 AdjustMaxClients(-25)
a5 AdjustMaxKeepAliveRequests(+30)
a6 AdjustMaxBandwidth(+64)

s6 R1
m1 R1

m2 100 100

a0 γ-action
a4 AdjustMaxClients(-25)
a5 AdjustMaxKeepAliveRequests(+30)
a6 AdjustMaxBandwidth(+64)

Table 4. Sample policy states based on the metrics structure of Table 3.

this case, the values assigned by Equation 3 to the above
three regions would be 100, 50, and 0, respectively, as
shown in Table 3. As a result, the policy system of Exam-
ple 2 would yield six states in our approach as illustrated
in Table 4 where states s1, s5, and s6 would be considered
as “violation” states whereas the remaining states would
be considered as “acceptable” states. Thus, depending
on the number of active policies in a set as well as the
number of different metrics and different conditions on
those metrics, the number of potential policy-states could
be quite large; we comment further on this in Section 9. A
key distinction between this and other related work (see,
for example, [19, 20, 21, 22, 23]) is that the state structure
is dependent only on the enabled expectation policies and
can thus be automatically determined once a set of policies
is specified.

5.2 System Transitions

Transitions are essentially determined by the actions
taken by the management system and labelled by a value de-
termined by our Reinforcement Learning algorithm. Which
brings us to the next definition:

Definition 9 Let GP = 〈S, T 〉 be a state transition
graph for the policy system PS = 〈P,WC〉 such that
ti(sp, ap, sc) ∈ T . A state transition ti(sp, ap, sc) is a di-
rected edge corresponding to a transition originating from
state sp and ending on state sc as a result of taking action ap

while in state sp, and is labelled by 〈λ, Qti(sp, ap)〉, where:

• λ is the frequency (i.e., the number of times) through
which the transition occurs.

• Qti(sp, ap) is the action-value estimate associated
with taking action ap in state sp. In our current imple-
mentation, Qti(sp, ap) is computed using a one-step
Q-Learning [3] algorithm (see Equation 4).

A change in the system’s state may also be due to ex-
ternal factors other than the impact of the actions taken by
the autonomic manager. In a dynamic Web server environ-
ment, for example, a transition may be a result of a request
to a page with a database-intensive query, which could po-
tentially cause a state transition. These are modeled in the
state-transition graphs as γ-transitions; the actions responsi-
ble for such transitions are denoted by a0 (i.e., γ-action)
as illustrated in Table 4.

Q(s, a)← Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)] (4)
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� �
e x p e c t a t i o n p o l i c y {RESPONSETIMENormal ( PDP , PEP )}

i f ( APACHE:responseTime < 2 5 0 . 0 )
t h e n {A d j u s t M a x C l i e n t s (−25) t e s t {newMaxClients > 49} |

Adjus tMaxKeepAl iveReques t s ( + 3 0 ) t e s t {newMaxKeepAliveRequests < 91} |
AdjustMaxBandwidth ( + 6 4 ) t e s t {newMaxBandwidth < 1281}}
� �

Figure 8. An expectation policy for dealing with an improvement in the server’s response.

5.3 Reward Function

The main objective (or goal) of the autonomic manager,
in essence, is to learn an optimal policy for “steering” the
system towards “acceptable” states and away from “viola-
tion” states. In order to achieve this, a numeric reward, r,
must be defined after each time step during which the agent
acts (see, for example, Figure 1) to indicate the desirability
of taking a particular action in a given situation (i.e., state
st). What, then, should the reward be in order to encourage
the learning of optimal behavior?

We are currently exploring one approach for deriving the
reward signal, such that the learning agent is encouraged
to take actions which may eventually lead to “acceptable”
states. Rather than taking the simplest approach whereby
an agent is only rewarded if an action results in a transition
to such a state, we associate each state (both “violation” and
“acceptable”) with a reward value (derived from the state’s
metrics), which measures the desirability of the agent being
in a particular state. We take this approach for three main
reasons:

1. We do not make any assumptions about the accuracy
of the enabled expectation policies since our main ob-
jective is to evaluate the effectiveness of these policies
and, if necessary, adapt their use accordingly in order
to meet specific objectives. We cannot assume, for ex-
ample, that the use of an active set of expectation poli-
cies as is would be sufficient to effectively resolve the
violations in QoS requirements; i.e., completely steer
the system from “violation” to “acceptable” behavior.

2. The main objective of the learning agent is to figure out
how to effectively use existing policies. Thus, while
it may not always be possible to achieve the final ob-
jective based on the current set of active policies, the
agent could still learn how at least to steer the system
“towards” acceptable behavior. For example, if the
objective (as defined by the enabled expectation poli-
cies) is to ensure that violations in the server’s CPU
and memory utilization are resolved, then we would
consider a state where only a single metric is violated
as better, i.e., closer to the acceptable behavior than,

say, a state where both metrics are violated1. We could
even go a step further by also considering the signif-
icance of state metrics. It could be that a violation
in CPU utilization carries more weight than, say, that
of memory utilization. Thus, the agent could be re-
warded more generously for taking actions which re-
sult in no violation in CPU utilization, but less gener-
ously if those actions lead to no violations in memory
utilization. We elaborate further on this in the next sec-
tion.

3. The dynamicity of the system in terms of the changes
in the state structure as a result of run-time policy mod-
ifications necessitates more flexibility in terms of how
the reward function is derived. This is the focus of our
current research on adaptation strategies and is beyond
the scope of this paper.

Thus, we associate each state with a reward whose value
increases towards acceptable behavior. From the exam-
ple above, a reward is zero if the action leads to a state
where both CPU and memory utilization are violated (since
f(Rj

mi
) is 0 for both metrics), and is the highest for a state

with no violation (since f(Rj
mi

) is 100 for both metrics).
And this brings us to our next definition.

Definition 10 Given the current system state
st = 〈µ,M(st), A(st)〉, such that mi ∈ M(st); an
agent visiting state st after taking action a in the previous
state is rewarded as follows:

r(st) =

√√√√ n∑
i=1

mi.ω × [f(Rj
mi)]2 (5)

where, n is the number of metrics, and mi.ω and Rj
mi

cor-
respond, respectively, to the weight associated with metric
mi and the region where metric mi measurement falls (see
Definition 8). In essence, Equation 5 assigns each state a re-
ward whose value increases as one moves towards the most
desirable states.

1In this example, there would be four states since each state metric
could have two possible regions; either it is violated or not. Thus, the fol-
lowing states are possible; (i) a state where both metrics are violated, (ii) a
state where only CPU utilization is violated, (iii) a state where only mem-
ory utilization is violated, and (iv) a state where neither metric is violated.
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6 Learning by Reinforcement

Central to the functionality of the PDP is the need to de-
termine what actions to take given certain violations in QoS
requirements. Note that the choice of actions, a ∈ A(s), is
dependent on the expectation policies that are violated when
the system is in state s. Since policy violations are triggered
by Monitor events collected during the current management
interval, the PDP must decide whether to base its action se-
lection decisions on this information alone or whether to re-
quest advice based on past experience when making those
decisions. This decision-making dilemma lends itself well
to the explore-exploit dilemma in Reinforcement Learning
and is explored in detail next. But first, we comment briefly
on key characteristics that could influence the choice of the
algorithm for balancing exploration and exploitation.

• Each action a ∈ A(s) cannot be treated equally, par-
ticularly because of the importance of the order in
which the actions are specified within each expecta-
tion policy. As illustrated by the the expectation policy
of Figure 3, it is often the case that more drastic ac-
tions (i.e., AdjustMaxBandwidth(-128) which
throttles clients requests by reducing server’s network
bandwidth) are taken once it is no longer possible,
for example, to meet the specified objectives through
the adjustment of applications tuning parameters. It is
therefore important that, to some extent, this order is
preserved, at least during the initial phase of the learn-
ing process.

• It is often the case that characteristics specific to the
violations (and not just the type of violation) provide
useful information about the state of the system as well
as how to best respond to the situation. For example,
if the aim is to ensure that the server’s response does
not exceed 2000.0 ms, then it might be desirable to
treat a violation in the server’s response time of 5000
ms differently than, say, a violation of 2001 ms. Such
kind of information could also be useful in guiding the
exploration process to ensure that more urgent needs
are addressed first.

• We note also that exploration could be quite costly es-
pecially in situations where excessive penalties are in-
curred. It is, therefore, important that the exploration
process takes advantage of existing knowledge about
the policies and violation events as opposed to select-
ing policy actions based exclusively on the type of vi-
olations.

To this end, we propose the use of a near greedy ap-
proach to balancing exploration and exploitation whereby
the learning agent behaves greedily - by executing the action
with the highest Q(s, a) - most of the time (with probability

1 − ε) and, once in a while (with probability ε) the agent
selects an action independent of the current action-value es-
timate Q(s, a). Unlike the ε-greedy method [3] which treats
all actions equally during exploration, action selection is
based on the action-value estimate that is derived from the
characteristics of both policies and violations. This is par-
ticularly useful when it is necessary to differentiate one ac-
tion from another given that multiple, and at times conflict-
ing, actions may be “advocated” by the violated policies and
where the order in which the actions are specified might be
of importance.

6.1 Exploration Strategy

In certain situations, the learning agent may need to
make management decisions without depending, exclu-
sively, on past experience. This could be part of the agent’s
strategy of exploring its environment to discover what ac-
tions bring the most reward. It could also be because the
agent may have no other choice if past experience does not
include knowledge about the current situation if, in fact, it
is the first time the situation is encountered. Consequently,
the agent may have to base its decisions on information
other than past experience. In our approach, these decisions
are guided by the following strategies that are based on the
characteristics of the enabled expectation policies and those
of the violation events:

1. The severity of the violation: Rather than treating
each violation equally, we assign more weight to
those violations that are more severe. The severity
of the violation is based on the value of the met-
ric relative to the condition’s threshold. For exam-
ple, for a CPU utilization of 100% given the condition
“CPU:utilization > 85.0” (i.e., as a result of
violating the policy of Figure 9), this value is computed
from the difference between the measured value and its
threshold value (i.e., 15%) as defined by Equation 8.

2. The significance of the violation: In the case that mul-
tiple policies are violated, it may be desirable to as-
sign a higher priority (or weight) to a particular event
so that the management system can respond to such
a violation (i.e., by selecting appropriate policy ac-
tions) first before dealing with other less-important vi-
olations. For instance, it is quite reasonable to respond
to CPU utilization violations before addressing viola-
tions related to, say, response time since failure to ad-
dress the former may result in more severe violations
of the latter as a result of over-utilization of CPU re-
sources. This is done by allowing a weight to be asso-
ciated with events which then become weights on the
conditions that become true in violated policies (see
Definition 2). The weight associated with policy con-
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� �
e x p e c t a t i o n p o l i c y {CPUViola t ion ( PDP , PEP )}

i f ( C P U : u t i l i z a t i o n > 8 5 . 0 ) & ( CPU:u t i l i za t ionTREND > 0 . 0 )
t h e n {A d j u s t M a x C l i e n t s (−25) t e s t {newMaxClients > 49} |

Adjus tMaxKeepAl iveReques t s (−30) t e s t {newMaxKeepAliveRequests > 1} |
AdjustMaxBandwidth (−128) t e s t {newMaxBandwidth > 255}}
� �

Figure 9. An expectation policy for resolving Apache’s CPU utilization violation.

� �
e x p e c t a t i o n p o l i c y {CPUandRESPONSETIMEViolation ( PDP , PEP )}

i f ( C P U : u t i l i z a t i o n > 8 5 . 0 ) & ( CPU:u t i l i za t ionTREND > 0 . 0 ) &
( APACHE:responseTime > 2 0 0 0 . 0 ) & ( APACHE:responseTimeTREND > 0 . 0 )

t h e n {Adjus tMaxKeepAl iveReques t s (−30) t e s t {newMaxKeepAliveRequests > 1} |
AdjustMaxBandwidth (−128) t e s t {newMaxBandwidth > 255}}
� �

Figure 10. An expectation policy for resolving Apache’s CPU utilization and response time violations.

dition ci which then becomes the strength of policy pj

is denoted by the parameter ci.ω (see Equation 7).

3. The advocacy of the action: In the case that multiple
policies are violated, it might be possible that more
than one policy advocates the same action. For ex-
ample, in our current test environment involving the
Apache server and other components, different poli-
cies with different conditions (see, for example, Fig-
ures 3 and 9) may indicate that the same action be
taken, i.e., AdjustMaxBandwidth which controls
the maximum number of requests a server can process.
The number of policies advocating the action as well
as the position of the action within each policy (whose
weight is denoted by the parameter Wa(pj) in Equa-
tion 6) are also considered when estimating Q0(s, a).
The position is of particular interest since, in our expe-
rience, it is often the case that more drastic actions are
not taken until other actions to adjust tuning parame-
ters have first been “tried”.

4. The specificity of the policy: In a situation where sev-
eral policies are violated, the number of conditions
within each policy (as well as conditions weights)
could also be taken into consideration when determin-
ing which policy has more weight. For example, in
the event that both CPU utilization and response time
are violated, the policy in Figure 10 would be given
more weight than the policy of Figure 9. This infor-
mation could be taken into account when evaluating
the strength of policy pj , which we refer to as S(pj)
(see Equation 7).

Thus, given the policy system PS = 〈P,WC〉 (see Def-
inition 2) and supposing that Pv is a set of expectation poli-

cies that are violated in the current management interval
such that Pv ⊆ P , we can estimate the initial value of an
action, a, as follows:

Q0(s, a) =

∑
pj∈[Pv ]a

tanh[S(pj)] × Wa(pj)

‖ [Pv]a ‖
(6)

where [Pv]a is the subset of violated policies advocating
action a; Wa(pj) is the weight of action a based on its po-
sition within policy pj . In our current implementation, ac-
tions weights take values between 100 and 0 such that the
first policy action gets the highest value (i.e., 100) while the
last policy action gets the lowest value (i.e., 0), with weights
assigned to the actions at equal intervals according to Equa-
tion 3. Thus, in the case of a policy with three actions such
as the policy of Figure 9, the values would be 100, 50, and 0,
in that order; S(pj) is the strength of policy pj as specified
by Equation 7:

S(pj) =
∑

ci∈pj

ci.ω × V (ci) (7)

where ci.ω is the weight associated with policy condition ci

based on the significance of the condition’s violation (see
Definition 2), and V (ci) is the severity of the violation of
condition ci. This value is computed as follows:

V (ci) =
∣∣∣∣ei.value− ci.Γ

Ω

∣∣∣∣ (8)

where ei.value is the current value of the event responsi-
ble for violating condition ci, ci.Γ is the threshold value of
condition ci, and

Ω =
{

1, |ci.Γ| ≤ 1
ci.Γ, otherwise

(9)
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Briefly, Equation 7 estimates Q0(s, a) based on the
severity of the violations of the conditions associated with,
as well as the significance of, individual policies. We mea-
sure the severity based on the difference between the condi-
tion’s threshold, ci.Γ, and the observed value of the metrics,
ei.value, responsible for its violation (see Equation 8). In
certain situations, it may be desirable to designate a higher
priority to a particular event so that the management system
can respond to such a violation first (i.e., by selecting appro-
priate policy actions) before dealing with other less impor-
tant violations. This is the purpose of the parameter ci.ω in
Equation 7. This information could then be used to estimate
the action value (see Equation 6), which takes into account
the number of policies advocating the action, the position of
the action, and the severity associated with the violation of
the conditions within each violated policy. Thus, the same
set of violations, for example, may result in different actions
being taken depending on the initial action-value estimates.
This is in contrast to static approaches where the order of the
actions is always the same for the same set of violations.

6.2 Exploitation Strategy

As noted previously, it is often very difficult to obtain,
in advance, models that accurately capture systems dynam-
ics particularly for the state of the enterprise systems. Our
approach to learning, for reasons mentioned in Section 2,
is based upon the Dyna-Q framework [8] where the model
of the system is continuously learned, on-line, and used for
planning. We are currently exploring several strategies on
how such a model, represented by the state-transition graph
(as discussed in Section 5), might be used to help the system
adapt the way it uses policies when making decisions on
how to resolve QoS requirements violations. These strate-
gies fall into two broad categories:

1. Reactive Enforcement: In this approach, the auto-
nomic manager could adapt the way it reacts to vio-
lations in QoS requirements (i.e., respond after a vi-
olation has occurred) based on the currently learned
model. One such approach involves having the PDP
request advice from the learning component during
each management cycle where the system is in “vio-
lation” state. This may include, for example, an advice
on what policy action to take in the current state (i.e., s)
based on the currently learned Q(s, a) estimates asso-
ciated with each action a ∈ A(s). It may also be pos-
sible to recommend multiple actions if their impact is
deemed positive. This may involve, for example, com-
puting the shortest path from the current “violation”
state to an “acceptable” state based on the Q(s, a) es-
timates associated with the actions within the current
state-transition graph. A path, in this case, constitutes
an ordered list of actions. For instance, if the system

is in state s1 of Figure 7, the learning agent may rec-
ommend the enforcement of a set of actions consisting
of {a3, a2, a2} essentially steering the system to an
“acceptable” state s8.

2. Proactive Enforcement: In this approach, the auto-
nomic manager, in anticipating possible violations in
QoS requirements, may recommend a set of actions
aimed at steering the system away from “violation”
states before the system gets there. For instance, if it
has been observed that the system makes a γ-transition
from an “acceptable” state (i.e., s2 in Figure 7) to a
“violation” state (i.e., s1) with a very high probability,
then appropriate actions could be taken before the sys-
tem gets to state s1. Thus, actions {a3, a2, a2} could
be enforced while the system is still in state s2 which
may, as a result, move the system to a more stable “ac-
ceptable” state (i.e., s8) consequently minimizing pos-
sible future violations.

The above two approaches to QoS provisioning highlight
several key advantages on how the autonomic management
system can respond to violations: First, rather than restrict-
ing the selection of policy actions to only those advocated
by the violated policies (i.e., a ∈ A(s)), the autonomic
manager is able to look beyond the actions within a sin-
gle state for actions, some of which might not even be part
of those in the violated policies, whose impact may be pos-
itive but not immediate. Second, the autonomic manager
could take multiple actions. Assume, for example, that the
system is in state s1 and that a2 corresponds to the action
“AdjustMaxClients(+25)” as specified by the policy
of Figure 3. Thus, instead of increasing MaxClients by
25, the same action could be performed twice. A key ad-
vantage here is that multiple adjustments to the tuning pa-
rameters could be made when past behavior suggests that
it is likely prudent to do so. Third, the autonomic manager
has the ability to be proactive, that is, use past experience to
take actions in anticipation of policy violations. This would
be done by looking ahead in the state graph. The agent may
determine whether some action could lead to either a very
bad situation or a very good one. For instance, the agent us-
ing the state-transition information in Figure 7 could avoid
actions such as a2 while in state s1 if past experience show
that, once that action is taken, it is less likely for the system
to make a transition back to an acceptable state.

6.3 The Learning Algorithm

To compute the action-value estimates, we use a mod-
ified version of the Dyna-Q algorithm (see Algorithm 1)
that enables the agent to learn in non-deterministic environ-
ments. The algorithm (see Algorithm 2), which we refer to
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herein as Dyna-Q*, takes into account transition probabili-
ties when computing action-value estimates.

Algorithm 2 Dyna-Q* Algorithm
Input: Initialize GP = 〈S, T 〉 for policy system PS =
〈P,WC〉

1: for i = 1 to∞ do
2: s← current (non terminal) state
3: a← ε-greedy(s,Q0) (see Equation 6)
4: Execute a; observe resultant state, s′

5: Q(s, a) ← Q(s, a) + α{E[r(s, a)] +
γE[maxa′ Q(s′, a′)]−Q(s, a)}

6: GP ← 〈s′, t(s, a, s′)〉
7: for j = 1 to k do
8: s← random previously observed state
9: a← random action previously taken in s

10: Q(s, a) ← Q(s, a) + α{E[r(s, a)] +
γE[maxa′ Q(s′, a′)]−Q(s, a)}

11: end for
12: end for

To compute the expected values, we define a transition
probability as follows:

Pr[t(s, a, s′)] =
ti(s, a, s′).λ∑

ti(s,a,s′
j)∈T (s)

ti(s, a, s′j).λ
(10)

where ti(s, a, s′).λ is the frequency associated with a tran-
sition originating from state s and terminating at state s′

as a result of taking action a in state s (see Definition 9).
Thus, ti(s, a, s′j) ∈ T (s) is a subset of transitions originat-
ing from s (i.e., T (s)) as a result of taking action a. From
Equation 10, the expected reward can be computed as fol-
lows:

E[r(s, a)] =
X

ti(s,a,s′
j)∈T (s)

Pr[ti(s, a, s′j)]× r(s′j) (11)

where r(s′j) is the reward associated with state s′j computed
using Equation 5. Similarly, the expected action-value esti-
mate can be computed as follows:

E[max
a′

Q(s′, a′)] =
X

ti(s,a,s′
j)∈T (s)

Pr[ti(s, a, s′j)]×max
a′

Q(s′j , a
′)

(12)
Note that, in the case of deterministic transitions,

Pr[ti(s, a, s′)] = 1. Thus, E[r(s, a)] is essentially equal
to r(s′j); i.e., the reward the agent receives after making a
transition to state s′j (see Definition 10). Similarly, Q(s, a)
is essentially the same as the action-value estimate asso-
ciated with the transition (i.e., Qti

(s, a)) as computed by
Equation 4. And this is consistent with the implementation
of the Dyna-Q Algorithm in deterministic environments as
described in Section 2 (see Algorithm 1).

7 Results and Experience

This section presents the prototype implementation of
the adaptive policy-driven autonomic system as well as re-
port on our experience.

7.1 Managed System

We evaluated the effectiveness of the learning mecha-
nisms on the behavior of a multi-component Web server
consisting of an Apache (v2.2.0) [24] which was config-
ured with a PHP (v5.1.4) module [25], and a MySQL (v5.0)
database server [26]. We used the PHP Bulletin Board (ph-
pBB) application [27] to generate dynamic Web pages. This
application utilizes queries to display information stored in-
side a database, in our case, the MySQL database. The
main database tables include forums, topics, posts, users,
and groups. These tables are used to store information spe-
cific to discussions. In addition to viewing forum-related
information, users may post messages using forms, which
can be viewed through a Web browser. A single worksta-
tion was used to host the components as illustrated in Fig-
ure 12. Service differentiation mechanisms for classifying
gold, silver, and bronze clients were also implemented (see
Section 7.3). Several effectors were implemented and in-
cluded those for adjusting the following parameters: (For
a detailed description of the tuning parameters excluding
MaxBandwidth, the reader is referred to [24, 26].)

• MaxClients (Apache): controls the maximum num-
ber of server processes that may exist at any one time
(i.e., the size of the worker pool) and corresponds to
the number of simultaneous connections that can be
serviced. Setting this value too low may result in new
connections being denied. Setting it too high, on the
other hand, allows multiple clients’ requests to be pro-
cessed, but may lead to performance degradation as a
result of excessive resource utilization.

• MaxKeepAliveRequests (Apache): corresponds
to the maximum number of requests that a keep-
alive connection [28] can transmit before it is
closed. Its value is often set relative to the
KeepAliveTimeout, which corresponds to the
client’s think time - the amount of time, in seconds,
the server will wait on a persistent connection before
closing it. Setting this value too high may result in
having connections linger for too long after a client
has disconnected thus wasting server’s resources. On
the other hand, setting this value too low may lead to
having clients rebuild their connections often, possibly
impacting the response time and CPU utilization.

• EaccMemSize (PHP): The PHP performance was
further enhanced with the eAccelerator [29] encoder.
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Figure 11. A Graphical User Interface (GUI) to the autonomous management system.

This module provides mechanisms for caching com-
piled scripts so that later requests invoking similar
scripts do not incur compilation penalty. The parame-
ter EaccMemSize controls the size of memory cache.

• KeyBufferSize (MySQL): corresponds to the to-
tal amount of physical memory used to index database
tables.

• ThreadCacheSize (MySQL): corresponds to the
number of threads the database server may cache for
reuse. Thus, instead of creating a new thread for each
request to the database, the server uses the available
threads in the cache to satisfy the request. This has the
advantage of improving the response time as well as
the CPU utilization.

• QueryCacheSize (MySQL): corresponds to the

maximum amount of physical memory used to cache
query results. Thus, a similar query to previously
cached results will be serviced from memory and not
from disk.

• MaxConnections (MySQL): corresponds to the
maximum number of simultaneous connections to the
database.

• MaxBandwidth (System): corresponds to the physi-
cal capacity (in kbps) of the network connection to the
workstation hosting the servers.

The servers provide support for dynamic adjustment of the
parameters. For the Apache-PHP server, for example, the
actual adjustment to the parameters was done by editing
the appropriate configuration file and performing a grace-
ful restart [24] of the server.
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7.2 Using Policies

We used the Policy Tool of Figure 11 to specify poli-
cies which expressed the desired behavior of the managed
system (in terms of CPU, memory utilization, and response
time thresholds) as well as possible management actions to
be taken whenever those objectives were violated (see, for
example, the policy of Figure 3). We also defined several
policies that dealt specifically with the optimization of re-
source usage whenever an opportunity arose. This is illus-
trated by the policy of Figure 8 where, given that there are
no violations in QoS requirements, one might reduce the
number of MaxClients to a smaller value, thus reducing
memory utilization. During this time, existing clients might
also be allowed to hold onto server processes for much
longer (i.e., by increasing MaxKeepAliveRequests) to
improve their response time (rather than requiring them to
re-negotiate their connections every so often). One might
also increase the server’s bandwidth. In our implementa-
tion, we classify states associated with the violations of such
policies as “acceptable” (see Definition 7). Each state con-
sisted of ten metrics corresponding to equally weighted (see
Definition 2) conditions from the enabled policies.

7.3 Testbed Environment

A testbed environment consisted of a collection of net-
worked workstations, each connected via 10/100 megabit-
per-second (Mbps) Ethernet switch (see Figure 12). They
include an administrative console used to run the Policy
Tool; a Linux workstation with a 2.0 GHz processor and 2.0
Gigabytes of memory which hosted the Apache Web Server
along with the Knowledge Base and the MySQL database
server; and three workstations used to run the traffic load
tool for generating server requests for the gold, silver and
bronze service classes.

Figure 12. Testbed Environment.

In order to support service differentiation, a Linux Traf-
fic Controller (TC) Tool [30] was used to configure the
bandwidth associated with the gold, silver, and bronze ser-
vice classes. Thus, given the maximum possible bandwidth
the service classes throughput were assigned proportion-
ately according to the ratio 85:10:5; bandwidth sharing was
also permitted. The actual classification was based on the
remote IP address of the clients’ request and occurred at
the point where requests reached the workstation hosting
the Apache server. The tuning parameter MaxBandwidth
is what determines how much bandwidth is assigned to
each service class. Thus, given that the policy of Fig-
ure 3 has been violated and that it is no longer possible,
for example, to adjust the parameters MaxClients and
MaxKeepAliveRequests, then the last policy action
(i.e., AdjustMaxBandwidth(-128)) would be exe-
cuted, which essentially reduces the total bandwidth by 128
kbps. The percentage of the new bandwidth is what is even-
tually assigned to the different service classes.

7.4 Workload Generator

To simulate the stochastic behavior of users, the Apache
load generator tool (ab) [24] was modified to support con-
current and independent keep-alive requests to the server.
The tool was also modified to emulate the actual behav-
ior of users by traversing the Web graph of an actual Web
site. Thus, for each response from the server, the tool ran-
domly selects which subsequent link (among the links in
the received Web page) to follow. In the experiments re-
ported in this paper, we only considered requests involving
dynamic Web content through the use of the phpBB applica-
tion. Also, we only considered database read-only requests.
For all the experiments, the load generator in each client’s
workstation was configured such that the number of con-
current connections to the server and the think-time for the
gold, silver, and bronze clients were identical. These values
were set to ensure that the server was under overload condi-
tions (i.e., saturated) for the duration of the experiment.

7.5 Experiments and Results

To evaluate the impact of the learning mechanisms on
the behavior of the server - which was measured in terms of
Apache’s responsiveness (i.e., response time), throughput
(i.e., number of requests processed), and resources utiliza-
tion (i.e., CPU and memory) - we conducted three exper-
iments: The first (base) experiment (Exp-1) looked at the
behavior when all the expectation policies were disabled.
The server’s bandwidth was also set arbitrarily large and
service differentiation mechanisms were disabled. The sec-
ond experiment (Exp-2) looked at the impact of the action
selection mechanisms (see Equation 6) which depended ex-
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Figure 13. Server’s CPU utilization measurements.

clusively on the characteristics of both the violation events
and the violated policies within a single management inter-
val; i.e., without the learning mechanisms. The third experi-
ment (Exp-3) looked at the impact of action selection mech-
anisms based on learning from past experience in the use of
policies. We used the areas occupied by the curves beyond
the thresholds (85% for CPU utilization, 50% for memory
utilization, and 2000 ms for response time) to compare the
performance of the server relative to the base experiment
(i.e., Exp-1). This provided a measure of the amount of
time the system spent in “violation” states, essentially al-
lowing us to compare performance improvement relative to
the base experiment.

7.5.1 CPU Utilization

Figure 13 compares the behavior of the server in terms of
CPU utilization. The number listed in square brackets be-
side each experiment is the average utilization for the dura-
tion of the experiment. From these results, we can see that
the average CPU utilization for the base experiment (i.e.,
Exp-1) fell above the threshold value (i.e., 85%) whereas
that of Exp-2 and Exp-3 fell below the threshold. While the
main objective was to ensure that CPU utilization did not
exceed 85% (which was accomplished in both Exp-2 and
Exp-3), it is worth noting that action-selection mechanisms
based on learning from past experience in the use of policies
(i.e., Exp-3) performed slightly worse than when no learn-
ing mechanisms were enabled (i.e., Exp-2). This became
more obvious when we considered the area occupied by the
graphs above the thresholds relative to the base experiment
as illustrated in Figure 14.

There are several reasons for this: The most obvious is
probably the impact of γ-action (see, for example, Ta-

Figure 14. Area beyond the thresholds.

ble 2) particularly during the initial stages of the learn-
ing process whereby the agent may be forced to spend
more time exploring its environment (while building up
the model). This may include trying actions such as γ-
action; i.e., doing-nothing instead of performing actual
adjustments to the tuning parameters to resolve QoS vio-
lations. This stage can clearly be seen from the graph of
Exp-3 in Figure 13; i.e., between time-steps 26 and 70. The
less obvious reason relates to the fact that the agent may
have to consider multiple, and at times competing, objec-
tives and this might be the best way of optimally meeting
all the objectives. Thus, while the server may have per-
formed slightly worse in Exp-3 than in Exp-2, the reverse
was also true when considering the server’s response time
(see Figure 14) and throughput (see Figure 18). This is an
illustration of one of the key challenges facing autonomic
systems; i.e., how to negotiate between seemingly conflict-
ing objectives: On the one hand, striving to meet customer
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Figure 15. Server’s response time measurements.

needs, in this case improving server’s response time; on the
other hand, trying to ensure efficient operation of systems
and utilization of services.

7.5.2 Response Time

Response time measurements on the server side corre-
sponded to the amount of time requests from non keep-alive
connections spent on the waiting queue before they were
served. The results are depicted in Figure 15 which also
shows the average response for each experiment listed in-
side square brackets. From these measurements, one can
see a significant improvement in the server’s response time.
This became more obvious when we computed the area
above the thresholds relative to the base experiment as illus-
trated in Figure 14 where Exp-2 recorded at least a 65% im-
provement while Exp-3 recorded at least an 85% improve-
ment in response time.

Figure 16. Client’s response time.

We also compared client-side response time measure-
ments which calculated the average time it took for a client
to receive a response from the server (see Figure 16). Since
no service differentiation mechanisms were enabled for the
base experiment (i.e., Exp-1), the measured response was
somewhat similar for gold, silver, and bronze clients. How-
ever, this changed significantly in Exp-2 and Exp-3 where
gold clients response time was significantly better than that
of silver and bronze clients. We also observed significant
improvement in the response time of gold clients in Exp-2
and Exp-3 compared to the average of Exp-1. However, be-
tween the two experiments, there was very little difference
when similar service classes were compared.

7.5.3 Throughput

Throughput measurements looked at the average number of
requests serviced by the server for the duration of the ex-
periment. The results specific to Exp-3 are shown in Fig-
ure 17: results for all the three experiments are summarized
in Figure 18. Again, since no service differentiation mech-
anisms were enabled in Exp-1, the measurements were es-
sentially similar for the three service classes. Furthermore,
comparing the average across service classes (see the values
listed inside square brackets in Figure 18), one can see that
slightly more requests were serviced in Exp-1 than in Exp-2
and Exp-3. This was expected since there weren’t any re-
strictions, for example, in terms of the server’s resource uti-
lization. In terms of the performance of individual service
classes for both Exp-2 and Exp-3, the throughput measure-
ments were consistently higher for the gold than for the sil-
ver and bronze service classes. The server also performed
consistently better in Exp-3 than in Exp-2 across service
classes.
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Figure 17. Server’s throughput measurements.

Figure 18. Server’s throughput.

8 Related Work

Recently, several approaches based on Reinforcement
Learning have been proposed for managing systems per-
formance in dynamic environments. This section reviews
some of the research work in this area and contrast them to
our approach.

The work in [21] proposes the use of Reinforcement
Learning for guiding server allocation decisions in a multi-
application Data Center environment. By observing the ap-
plication’s state, number of servers allocated to the applica-
tion, and the reward specified by the SLA, a learning agent
is then used to approximate Qπ(s, a). To address poor scal-
ability in large state spaces, the authors initially proposed
an approximation of the application’s state by discretizing
the mean arrival rate of page requests [20]. In their most
recent work [21], they address this shortfall by proposing
an off-line training, to learn function approximators using

SARSA(0) [3], based on the data collected as a consequence
of using a queuing-model policy, π, on-line. A key assump-
tion is that the model-based policy is good enough to give
an acceptable level of performance.

The authors in [22] propose a framework which make
use of Reinforcement Learning methodologies to perform
adaptive reconfiguration of a distributed system based on
tuning the coefficients of fuzzy rules. The focus is on the
problem of dynamic resource allocation among multiple en-
tities sharing a common set of resources. The paper demon-
strates how utility functions for making dynamic resource
allocation decisions, in stochastic dynamic environments
with large state spaces, could be learned. The aim is to
maximize the average utility per time step of the computing
facility through the reassignment of resources (i.e., CPUs,
memory, bandwidth, etc.) shared among several projects.

The work in [23] proposes the use of Reinforcement
Learning techniques in Middlewares to improve and adapt
the QoS management policy. In particular, a Dynamic Con-
trol of Behavior based on Learning (DCBL) Middleware is
used to learn a policy that best fits the execution context.
This is based on the estimation of the benefit of taking an
action given a particular state, where the action, in this case,
is a selection of a QoS level. It is assumed that, each man-
aged application offer several operating modes from which
to select, depending on the availability of resources.

Our approach differs in several ways; First, the model
of the environment is “learned” on-line and used, at each
time-step, to improve the policy guiding the agent’s interac-
tion with the environment. Second, our strategy for adapt-
ing the use of policies makes use of a learning signal that is
based only on the structure of the policies and should, thus,
be applicable in other domains. Similarly, changing poli-
cies dynamically means that the heuristics will still work
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for a new set of policies. Since the state signal is depen-
dent only on the enabled expectation policies, its structure
and size can also be automatically determined once a set of
policies is specified. Third, we do not make use of poli-
cies which are by themselves “models” of the system being
managed. While steady-state queuing models have received
significant interest in on-line performance management and
resource allocation in dynamic environments, we note that
most of these approaches model the behavior of the applica-
tion using the mean requests arrival rate, ignoring other im-
portant characteristics. In dynamic Web environments, for
example, requests to dynamic pages with database intensive
queries could stress the application significantly different
(in terms of server’s response, resources utilization, etc.)
compared to, say, requests to static pages under the same
rate. Our policies, on the other hand, are simpler and do
not make any assumptions about workload characteristics.
Fourth, our approach does not make any assumption about
the accuracy of the policies used to drive autonomic man-
agement. We view learning as an incremental process in
which current decisions have delayed consequences on how
the learning agent behaves in future time-steps. It is sig-
nificantly important, therefore, for training to be performed
on-line in order for the agent to learn from the consequences
of its own decisions and, if necessary, dynamically adapt the
policy guiding its interaction with the environment.

9 Conclusion

In this paper, we have proposed a strategy for determin-
ing how to best use a set of active policies to meet the dif-
ferent performance objectives. Our focus has particularly
been on the use of Reinforcement Learning methodologies
to determine how to best use a set of policies to guide auto-
nomic management decisions. Such use of learning has sig-
nificant ramifications for policy-driven autonomic systems.
In particular, it means that system administrators no longer
need to manually embed system’s dynamics into policies
that drive autonomic management. Unlike previous work
on the use of action policies, for example, which required
system administrators to manually specify policy priorities
for resolving run-time policy conflicts, desirable behavior
could be learned. It should be noted, however, that, while
Reinforcement Learning offers significant potential bene-
fits from an autonomic computing perspective, several chal-
lenges remain when these approaches are employing in real-
world autonomic systems. This section looks at how we
intend to address some of these challenges.

9.1 Challenges

The choice of how to model system states has signifi-
cant impact on the learning process. As with many real-

world systems, the state space can become prohibitively
large since its size increases exponentially with the num-
ber of state metrics and their discretization. As such, stor-
ing and analyzing statistics associated with each state may
require significant computation resources, which could be
exceedingly costly to implement in a live system. In our
current approach, we make an approximation in the repre-
sentation of the system’s state by mapping the conditions
of the enabled expectation policies onto the state metrics.
A system where each state has ten metrics, each with two
possible regions (i.e., “violation” and “acceptable”), for ex-
ample, would have 210 (1024) possible states. We note that,
in such a system, a majority of the states are likely to corre-
spond to “acceptable” system’s behavior. This is illustrated
in Table 2 where out of the four states, only one state (s1)
is considered a “violation” state since it is the only state
that results in the violation of the policy in Figure 3. Thus,
while the size of the state space could be large, many of
these states may be considered as “goal” states and, as such,
would have no actions associated with them. Furthermore,
it is not guaranteed that the agent would visit all the possi-
ble states during the learning process. An immediate con-
sequence of this is a reduction in the amount of information
associated with states and their transitions.

As was noted previously, the change in the system’s state
might be a result of external factors other than the conse-
quences of the actions of the agent. In a Web-server envi-
ronment, such transitions are often triggered by changes in
workload characteristics. For example, a sudden increase in
the number of clients could trigger a transition to a viola-
tion state. The fact that the state signal is not derived from
such characteristics means that the learning agent can not be
certain about whether or not the system’s behavior at time
t+1 is the consequence of its action at time t. We have taken
the approach of excluding requests characteristics from the
state signal mainly due to the stochastic nature of the in-
teractions between these characteristics and the behavior of
the system. For instance, the number of concurrent con-
nections, the type of request (i.e., static vs dynamic), the
requests rate, etc., all these could have significant ramifica-
tions on the behavior of the server. Including these charac-
teristics as part of the state signal is likely to add significant
overhead in the learning process. Excluding such character-
istics, on the other hand, will not hinder the learning process
since in the long run, the agent would learn about the impact
of the action at st as the number of times the action is taken
becomes large.

The decision to exclude requests characteristics from the
state signal means that transitions between states could be
a result of other factors. We refer to such transitions as γ-
transitions (see, for example, Figure 7). We note that such
transitions are more likely to originate from “acceptable”
states since most of these states would have no actions as-
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sociated with them. For example, a sudden increase in the
number of clients requests may cause a violation in CPU
utilization; i.e., a γ-transition from an “acceptable” state
with no CPU utilization violation to a “violation” state. It
may also be possible for such transitions to originate from
“violation” states. Revisiting our example in Table 2, it
might be that all three actions of the policy of Figure 3 are
invalid, in which case no action could be taken while the
system is in state s1. The only possible transition, in this
case, would be a γ-transition. We note, however, that such
transitions are rare in comparison to those originating from
“acceptable” states since it is unlikely that all state actions
would fail within a single management interval. The ex-
istence of γ-transitions in the state-transition graph intro-
duces some interesting challenges for the learning agent.
First, the agent may have to decide whether doing noth-
ing (i.e., taking a γ-action) while in state s might be better
than, say, taking an action advocated by the violated poli-
cies. This may require having to learn the action-values as-
sociated with the γ-transitions (i.e., Qt(s, γ)). Second, the
learning agent may need to distinguish between two “ac-
ceptable” states if past experience shows that one state is
more unstable than another. The measure of stability could
be based on the characteristics of γ-transitions.

9.2 Future Work

Policy conflicts remain one of, if not, the most chal-
lenging area in policy-driven autonomic management. On
the one hand, conflicts due to policy overlaps can, in most
cases, be detected and corrected by analyzing static policy
characteristics. On the other hand, policy conflicts which
arise from dynamic characteristics specific to policy inter-
actions can only be detected at run-time. For autonomic
systems to function correctly, these kinds of conflicts need
to be addressed. To what extent Reinforcement Learning
could help address some of these challenges is something
we hope to address in our future work.

Model-based Reinforcement Learning methods tend to
be computationally demanding, even for fairly small state
spaces, and could be costly when implemented in a live sys-
tem. As pointed out previously, this is often due to the size
of the state space as well as the computations required to
process information associated with the states and actions.
The key challenge then is ensuring that computational costs
specific to on-line learning tasks do not hinder the learn-
ing process. In order to address this challenge, we have be-
gun looking at how management policies (see Section 3.2.3)
could be used to optimize resources usage during the learn-
ing process. This may include, for example, deciding on
the circumstances under which computation-intensive algo-
rithms (i.e., action-value estimations) could be executed or
paused depending on the current behavior of the system.

We are also interested in the use of management policies
for “tuning” the behavior of algorithms to meet the resource
constraints imposed by the environment. This may, for ex-
ample, involve dynamically selecting the types of updates
to be performed in order to minimize the algorithms’ use of
computational resources. For instance, management poli-
cies could be used to determine a reasonable value for k
(which determines how many updates can be performed) in
the Dyna-Q algorithm (see Algorithm 1 in Section 2).

The use of policies in autonomic computing means that
the system must be able to adapt not only to how it uses the
policies, but also to run-time policy modifications. In the
context of where policies are used to drive autonomic man-
agement, this often means dynamically changing the param-
eters of the policies, enabling/disabling policies or actions
within policies, or adding new policies onto an active set of
policies. A key question then is whether a model “learned”
from the use of one set of policies could be applied to an-
other set of “similar” policies, or whether a new model must
be learned from scratch as a result of run-time changes to
the policies driving autonomic management. Our most re-
cent work [31] has began addressing some of the questions.
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