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Abstract—The evaluation of using distributed systems DS in
place of centralized systems has introduced the distribution of
many services and applications over the network. However,
this distribution has produced some problems such as the
impacts of underlying networking protocols over the
distributed applications and the control of the resources. In
this paper we are interested particularly in manufacturing
systems. Manufacturing systems are a class of distributed
discrete event systems. These systems use the local industrial
network to control the system. Several approaches are
proposed to model such systems. However, most of these
approaches are centralized models that do not take into
account the underlying network. In this context, we propose
the modeling of the distributed services and the underlying
protocols with High-Level Petri Nets. Since the model is large,
complex and therefore difficult to modify, we propose a
component-based modeling approach. This approach allows
the reuse of ready-to-use components in new models, which
reduces the cost of development. To illustrate our approach
and its reuse capabilities, we will implement it to model the
link layer protocols of the norms IEEE 802.11b and IEEE
802.3.

Keywords-communication protocols; distributed systems;
modeling; component-based; Petri nets;

I. INTRODUCTION

Distributed systems [1] [2] are increasing with the
development of networks. The development of computer
networks has enabled the emergence of new applications
benefiting from the power and flexibility offered by the
distribution of their functions on different computers. We
are interested particularly in this work on the networked
control of manufacturing systems. Manufacturing systems
are a class of discrete event systems whose elements are
interacting together to build products or to perform services.
The concept of flexible manufacturing systems FMS has
been introduced to develop new manufacturing systems able
to produce small or average series of products.

Modeling such systems is very important to verify some
properties, especially performance issues. In the literature,
many models have been proposed to model manufacturing
systems [3] [4] [5]. However, the classical modeling
paradigm is generally based on a centralized point of view.
Indeed, this kind of modeling does not take into account the

fact that the system will be distributed when implemented
over different machines, sensors, actors, etc. So, the
properties obtained at the design stage are not necessarily
guaranteed at the implementation stage.

In addition, the proposed models do not take into
account the underlying network and protocols in terms of
performance and information exchange. The behavior and
design of manufacturing systems are affected by the
underlying network features: performance, mobility,
availability and quality of service characteristics.

A way to overcome such problems is to model these
systems in a distributed way. A distributed system-model
offers means to describe precisely all interesting forms of
unpredictability as they occur. It takes into account each
part of the system, available resources, and system changes
together with the underlying network. Once this model is
made, its implementation is easier since it has the same
characteristic as the desired system. Nevertheless, these
systems are complex: they show massive distribution, high
dynamics, and high heterogeneity. Therefore, it is necessary
to model these systems in a way that provides higher degree
of confidence and rigorous solutions.

To cope with this challenge, we propose the use of a
component-based methodology which is consistent with the
principle of distributed systems in which elements are
reusable and composable units of code. The component-
based approach uses generic, hierarchical and modular
means to design and analyze systems. It shows that the
system model can be assembled from components working
together and the designer needs only to identify the good
components that offer suitable services with regard to
applications requirements. This methodology allows the
reusability and genericity of the components which reduces
the cost of the systems development.

In this paper, we propose to model these systems with
High-Level Petri Nets which is a powerful tool particularly
dedicated to concurrent and distributed formalism, allowing
to model both protocol and service components. The work
presented in this paper is part of a larger approach on the
design of distributed systems by the evaluation, in the
design phase, of the impact of network protocols on the
distribution of the functions of a distributed system on
different computers [6] [7] [8].
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The paper is organized as follows. Section 2 introduces
the networked control systems and the communication
architecture. In Section 3, we focus on the Petri nets
modeling formalism. Section 4 gives the properties of
modeled components: genericity, modularity, reusability
and abstraction level (hidden implementation with
connection interfaces). Section 5 shows our methodologies
to build the basic components: a top-down analysis
methodology and a bottom-up construction methodology.
This section presents the component-based approach to
develop a library of reusable components based on Petri
Nets formalism. At the end of this section, we illustrate the
reusability of our components by two examples: IEEE
802.11b DCF and Ethernet. In Section 6, we validate our
modeled components by means of simulation to test the
correctness of our models. Section 7 presents a case study
for modeling manufacturing systems. In this section we
show the impact of the underlying network protocols on the
services offered by the system.

II. NETWORKED CONTROL SYSTEMS

Modern advances in hardware technologies and
particularly in communication networks have played a big
role in the rapid development of communication networks
and distributed control systems.

A. Networked Control Systems Overview

Manufacturing systems are a class of discrete event
systems. A Discrete Event System (DES) [9] [10] is a
discrete-state, event-driven, dynamic system. The state
evolution of DES depends completely on the occurrence of
asynchronous discrete events over time. Fig. 1 shows the
state jumps in a DES from one discrete value to another
whenever an event occurs during the time. Nearly all the
DESs are complex and require a high degree of correctness.
Information systems, networking protocols, banking
systems, and manufacturing and production systems fall into
this classification.

Figure 1. Discrete Event System

In order to improve the adaptability to the market and the
quality of manufactured products and to allow their fast
evolution, the implementation of flexible manufacturing cells
is necessary. A flexible manufacturing system (FMS) is a
production system that consists of a set of machines
connected together via an automatic transportation system.
Machines and transportation components such as robots are
controlled by numerical controllers. In all cases, additional
computers or programmable logical controllers PLC are
used to coordinate the resources of the system.

The cell controllers or computers have a lot of functions
and are used to control all the operations of an FMS. The
control system manages most of the activities within an FMS
like parts transportation, synchronising the connection
between machine and transportation system, issuing
commands to each machine, etc. Networking is extensively
applied in industrial applications. The connection of the
system elements through a network reduces the system
complexity and the resources cost. Moreover, it allows
sharing the data efficiently.

Thus, the control of such systems is very important.
Nowadays, a controlled system [11] [12] is the combination
of sensors, actuators, controllers and other elements
distributed around a media of communication, working
together according to the user requirements. It is used to
manage, command, direct or regulate the behaviour of
devices or systems. Combining networks and control
systems together facilitates the maintenance of the systems.

The result of this combination is referred to as the
networked control system (NCS) [13] [14]. NCS is one of
the main focuses in the research and industrial applications.
Networked control systems are entirely distributed and
networked control system used to provide data transmission
between devices and to provide resource sharing and
coordination management. These benefits inspired many
industrial companies to apply networking technologies to
manufacturing systems applications.

B. Communication Systems Architecture

Communication systems are designed to send messages
or information from a source to one or more destinations. In
general, a communication system can be represented by the
functional block diagram shown in Fig. 2. The original
telecommunication system was developed for voice
communications.

Figure 2. Functional Diagram of Communication System
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Today communication networks include all types of
voice, video and data communication over copper wire,
optical fibers or wireless medium. Networks [15] [16] are
organized into a hierarchy of layers where each layer has a
well defined function and operates under specific protocols.
The number of layers can vary from one network reference
model to another but the goal of a layered structure remains
common to all models. OSI model [17] is structured in a
series of 7 layers, while the TCP/IP model includes only
four layers, Fig. 3.

Figure 3. OSI and TCP/IP Reference Models

Each layer consists of hardware or software elements
and provides a service to the layer immediately above it.
With the advent of Internet, an increasing number of
computer networks are now connected.

III. MODELING FORMALISM

Modeling communication protocols and distributed
systems is not new. Several formalisms, simulators and
modeling tools exist. However, one of the main challenges in
modeling nowadays is establishing a precise relationship
within a wide range of available modeling formalisms and
comparing their descriptive power and verification
capabilities. Thus, we propose to unify the modeling of both,
protocols and distributed systems, in one formalism. In this
way, our work eliminates the need to transform one
formalism to another one and so facilitates the modeling
process. Since time is an important feature of communication
protocols, it is necessary to choose a formalism that allows to
properly model the temporal behavior of distributed systems.

A. Formal Modeling

The Formal modeling consists of introducing system
requirements (cost, security, manufacturing facilities,
maintenance, evaluation, reliability and availability) into a
small fragment. This introduction of the system requirements
must be inside the chosen mathematical framework for the
modeling process. The main purpose of a formal modeling is
to clarify largely inexplicit information. During the
construction of a formal model, many ambiguities must be
removed. This consists, in general, of taking a decision. A
good model is initially a model that one can understand
easily and which can be explained simply. The procedures of
verification must be simple and convincing. Several formal
tools exist. However, unified modeling language UML,
timed automata TA and Petri nets are some of the most used
modeling formalisms that take into account time factor.

UML [18] is a well-defined, powerful formalism.
However, UML lacks one important feature to achieve the
desired needs since it has not a formal semantic and hence it
is not possible to directly verify timing requirements which
are necessary in communication systems. Timed automata
are mainly used to model temporal applications and are not a
general purpose formalism.

On the contrary, Petri nets are widely used for modeling
concurrent and distributed systems. Many extensions and
tools are available, mainly for time, identification of tokens
and stochastic issues which are very important issues in
communication protocols and services. So, the modeling and
integration of all system elements (services and protocols)
will be easier (no need to make a transformation). Table 1
shows the most important criteria that we used to choose the
modeling formalism.

TABLE I. MODELING FORMALISM

Formalism UML TA Petri nets

Method Semi-formal formal formal

Time modeling Recently Yes Yes

Application General purposes Hard timing General purposes

In computer science Petri Nets are used for modeling a
great number of hardware and software systems, and various
applications in computer networks. A special advantage of
Petri Nets is their graphical notation which reduces the time
to learn Petri nets. This formalism has different extensions
and tools.

Communication protocols have some specific
characteristics and requirements. Thus, the tool selection
criteria depends on the following requirements:

 Time: Communication protocols are real-time
demanding applications. Transmitting and receiving
data, accessing the channel, backoff procedure and
other needs depend on time. Time Petri nets allow
this feature.

 Headers and Data fields: Data packets have many
fields which may be modeled as tuples. This feature
is supported in high-level Petri nets.
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 Probabilistic and Stochastic Properties: Messages
exchanged over the network may be lost or
perturbed, bit rate error is a function of noise, etc.
The representation of such features can be made by
stochastic functions. Stochastic Petri nets are a
powerful model to handle such characteristics.

 Sent and Received Packets: Messages exchanged
over the network require packet identification.
Colored Petri nets have been proposed to satisfy this
need.

The previous requirements have led us to use the high
level Petri nets that combine all the aspects and power of the
other extensions in one modeling tool.

B. Modeling FMS with Petri nets

Different modeling formalisms are used to model FMS.
Petri nets and Automata theory are of the most used
techniques to describe DES. Peterson [19] has introduced
Petri nets to model and analyze the manufacturing systems.
Other works like [20] have also proposed to model and
analyze controllable DES. Later, Lin et al. [21] has
introduced a decentralized control model. Zamaï et al. [22]
has presented a hierarchical and modular architecture for
real-time control and monitoring of FMS. However, newest
modeling approaches are diverting towards the distributed
modeling for the manufacturing systems [23].

Petri nets have been proposed by C. A. Petri in 1962 in
his PhD thesis “Communications with Automata” [24]. Petri
nets are a mathematical and graphical tool used for
modeling, formal analysis, and design of different systems
like computer networks, process control plants,
communication protocols, production systems,
asynchronous, distributed, parallel, and stochastic systems;
mainly discrete event systems.

As a graphical tool, Petri nets provide a powerful
communication medium between the user and the designer.
Instead of using ambiguous textual description, mathematical
notation difficult to understand or complex requirements,
Petri nets can be represented graphically. The graphical
representation makes also Petri nets intuitively very
appealing.

A Petri net graph contains two types of nodes: Places “p”
and Transitions “t”. Graphically, places are represented by
circles, while transitions are represented by rectangles,
Fig. 4. Places and transitions are directly connected by arcs
from places to transitions and from transitions to places. A
place P0 is considered as an input place of a transition t if
there is an arc from P0 to t. A place P1 is considered as
output place of a transition t if there is an arc from t to P1.

Places can contain tokens represented by dots. These
tokens are the marking of places. The initial marking of
places is represented in the initial marking vector m0. The
graphical presentation of Petri nets shows the static
properties of the systems, but they also have dynamic
properties resulting from the marking of a Petri net.

As a mathematical tool, a Petri net model can be described
by a set of linear algebraic equations, linear matrix algebra,
or other mathematical models reflecting the behavior of the
system. This allows performing a formal analysis of the

model and a formal check of the properties related to the
behavior of the system: deadlock, concurrent operations,
repetitive activities, etc.

Figure 4. Discrete Event System

C. Proporties of our High-Level Petri Nets

In this subsection we will give a brief definition on the
desired high-level Petri nets. This definition is not far from
the definition of colored Petri nets [25]. However, we add to
this definition a time notation.

Definition: A High-Level Petri Net is a tuple N= (P, T,
A, m0, Σ, Λ, G, E, D) where:
 Σ is a finite set of non-empty color sets.
 Λ is a color function, Λ: P → Σ
 G is a guard function, G: T → Boolean expression, 

where:
t  T: [Type (G(t)) = Bexpr  Type (Var (G(t))) 
Σ], where:
Type is the color type of the guard function,
Bexpr is a Boolean function
Var is the variables of the guard function.

 E is an arc expression function, E: A→E(a), where: 
a A: [Type(E(a)) = Λ(p(a))  Type (Var (E(a)))
 Σ], p(a) is the place of arc a.

 D is a delay function, D: E → TS, where TS is a 
delay associated to the arc inscription with the
annotation symbol “@”.

The arc expression function can contain any sign and/or
mathematical or logical functions, such as programming
language expressions. The delay function can be associated
to both output arcs (from places to transitions) and input
arcs (from transitions to places).

IV. COMPONENET-BASED MODELING

Component-based engineering [26] has a huge
importance for rigorous system design methodologies. It is
based on the statement which is common to all engineering
disciplines: complex systems can be obtained by assembling
components, ideally commercial-off-the-shelf (COTS) [27].
Reusability and extensibility are key factors that contribute
to this success and importance. Component-based
development aims at decreasing development time and costs
by creating applications from reusable, easily connectible
and exchangeable building blocks.

In component-based engineering research literature,
several approaches [28] [29] have focused on the aspects of
the development of components. However, reusing available,
ready-to-use components decreases time-to-market for new
systems and applications. This may be done by selecting the
appropriate components from the available components
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based on the needs and then assembling them to build a new
component system-model.

Different methods of component specification software
exist; from the Interface Description Language IDL (Object
Management Groups’ CORBA, java based components such
as JavaBeans and Microsoft’s .Net) to formal methods, by
design-by-contract methods. Despite their widely difference
in the details, they have a common concept: a component is a
black box that is accessed through exposed interfaces. In this
section we will state more precisely the main features that a
component-based method must verify.

A. Genericity

Genericity is used in component-based engineering to
reduce time-to-market, and raise productivity and quality in
systems development. The term generic component refers to
a component that implements a process or part of a process-
set and that is adaptable to accommodate different needs.
Genericity of a component is based on its independence
compared to its type. This is an important concept for high-
level methods because it can increase the level of abstraction
of these methods.

A generic component can be seen as a parameterable
element. Parameters should be specified and a specific
version of the component (an instance) will be created and
used. Another advantage is that a generic component can be
represented as a generic factory that will create as many
components as necessary for the application. Thus, the main
objective of genericity is to integrate the component-based
approaches with the technical approaches.

B. Modularity

Modular models are easier to design compared to similar
complex models. “Modularity is having a complex system
composed from smaller subsystems that can be managed
independently yet function together as a whole” [30]. The
objective of modularity is the ability to identify
homogeneous, compatible, and independent entities to
satisfy the needs of a system or an application. In many
domains, modularity is essential to manage the design and
the production of complex technology. Modular design aims
at organizing complex systems as a set of components or
modules. These components can be developed independently
and then joined together.

The decomposition of a system model into smaller
modules has the following advantages:

 A modular model can be very near to the real
system, since it reflects the hierarchical structure
inherent to the system.

 Components which are too complex can lose some
of their details and their interactions can be
confused. A component can be divided into smaller
components until each module is of manageable
size.

 It is possible to concentrate on each component as a
small problem.

 Modular model allows testing each component
separately.

 Implementation changes and corrections on simple
components can be done easily.

 Documentation in modular structure becomes also
easier.

C. Reusability

The implication of reusability is that the available
components must give enough information to ease the
assembly of components into a new system [31]. The
information must include dependency and configuration
information. To take sound decisions about selecting and
reusing components, the following information is required:

 Operational specification: the semantic interaction of
the component,

 Operation context: where and how the component
will be used,

 Non-functional properties: describe the properties
such as performance, security and reliability,

 Required interfaces and resources: the functionality
and resources needed by the specified component to
execute its main functionality.

Since all real systems are made of components,
component-based systems are built of multiple components
[32] that:

 are ready “off-the-shelf,” (generally called
“Commercial Off The Shelf”),

 have significant combined functionality and
complexity,

 are self-contained and can be executed
independently,

 will be used “as is” without modification,
 must be combined with other components to get the

desired functionality.
All these benefits and more led us to use the component-

based approach to model the distribution of manufacturing
systems and the underlying protocols. The reuse of
components is very important in the modeling level since
most of the system parts and machines are the same. In
addition, protocols share many properties. With the reuse of
already modeled components, the time and modeling-cost
are reduced. As we can see in Fig. 5, models are sharing
some properties (the triangle). Once this part is modeled, it
can be reused in any model that has a need to such
component.

Figure 5. Basic Module Reusability

D. Components Abstraction

The modeled components are seen as black box where
the internal functionality is hidden, while the interfaces
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represent the service that can be offered by this component.
Every component or module is characterized by its internal
hidden behaviour. Its interfaces are chosen to reveal as little
as possible about its inner implementation.

Components abstraction is useful for reducing the design
complexity by decomposing a problem into connected
components. Abstraction (or specification) describes the
functional behavior of the components, i.e. components are
considered to be specific to an application. Abstraction
focuses on the important characteristics of component upon
the designer point of view. This definition supports the
abstraction of data, hiding internal function, reusability and
self-contained component behaviour descriptions.

Thus, during the design of components we must focus on
well-defining the service offered by the component at its
interfaces and the parameters that can be adapted to the
application requirements, rather than spending the time on
describing its internal behaviour. This can be achieved by
giving appropriate names to the interfaces and parameters
and documenting these interfaces and parameters.

E. Components Interfaces

Components can be built according to the needs of the
user and different requirements and points of view.
However, these components are characterized by:

 The service they offer: each component has its own
functionality and service. The resulting of this
service depends on the parameters and value given
to the component.

 The hidden implementation: the service and
functionality are hidden. However, the designer has
the access to the internal code but there is no need to
modify the code.

 The interfaces: to access the component service or to
connect the components, interfaces are used. Several
modes of connection between the different
components in the model can be defined.

The component interfaces declare the services that a
component offers. They are used as an access point to the
component functionality by other components. Since we use
Petri nets to model the different component behaviors, we
used places to be the input interfaces of components and the
output interfaces are transitions. The input interfaces (places)
receive as many tokens as the producer components. The
output interfaces (transitions) generate as many tokens as the
consuming components, Fig. 6.

Figure 6. (a) input interfaces (b) output interfaces

This choice is coherent with the traditional way to model
asynchronous communication between processes modeled
by Petri Nets. Moreover it guarantees the genericity of the

components and facilitates the connection between the
different components.

The connection between interfaces of two blocks can be
1-to-many, many-to-1 or 1-to-1. As an example, Fig. 7
shows a many-to-1 and a 1-to-many connections. To
illustrate the interest of this choice of interfaces, let us
consider the modeling of workstations connected to a
communications bus. A many-to-1 connection is used to
connect workstations output transitions to a medium input
place since workstations put their data on the medium only.
A 1-to-many connection is used to connect the medium
output transitions to workstations input places, since all the
workstations can see the signals propagating on the
medium.

Figure 7. (a) input interfaces (b) output interfaces

This approach is very useful to deal with the
complexity due to the size of a system. Indeed, if one has
already a model of some workstations connected on a bus
and one wants to increase the size of its model, the
connection of new workstations can be done easily just by
adding an arc between the output transition of the bus model
and the input place of the station model. . So this does not
require any modification of the bus or the workstation
component. Conversely, if the transitions are used as input
interfaces and places as output interfaces, the addition of a
new workstation would need to add a new token in the
output place, and hence modify the internal code, so we loss
the genericity.

V. MODELING COMMUNICATION PROTOCOLS

In our approach, we want to model reusable components.
In this section, we will build the components that will be
used to model the communication protocols. The modeling
will be hierarchical since we build first the basic
components. Then, with these components, we construct
composite-components.

Before starting the construction of modeling components,
we will analyze the data link layer protocols that we are
interested in this work. These analyses will help to identify
the basic common behaviors of the different protocols that
lead to definition of the basic components. These basic
components are the initial bricks of the library that will serve
to model all the complete behavior of the different protocols.

A. A top-down analysis methodology

To build the basic components one must identify these
components to be reused in different models. Since we are
interested in manufacturing systems, the analyses will be
made at the Data Link Layer protocols. The Data Link Layer
DLL is the second layer in the OSI model. The data link
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layer is often split in two sub-layers: the logical link control
LLC and the Media Access Control MAC, Fig. 8.

Figure 8. IEEE MAC Sublayer

The MAC sub-layer provides hardware addressing and
channel access control mechanisms that enable hosts to
communicate. Different MAC protocols are used. The data
link layer defines most LAN and wireless LAN technologies:
IEEE 802.2 LLC, IEEE 802.3 Ethernet, IEEE 802.5 Token
Ring, FDDI and CDDI, IEEE 802.11 WLAN.

The next step is to define the protocols that have the
same functionality. Here, one can find two protocols
Ethernet IEEE 802.3 [33] and wireless IEEE 802.11
Distributed Coordination Function DCF [34] protocols that
share the carrier sense multiple access CSMA procedure [35]
to send the data over the shared medium. Finally, one must
find the common behaviors to associate basic components to
it. The result of these analyses is three basic common
elements:

1) Channel check:
A workstation attempting to send data must at first check

if the channel is free or not. Ethernet uses the CSMA/CD
Protocol. Here, CD means collision detection. The
workstation must check if the channel is free for a period of
9.6µs first, then it starts its transmission.

The IEEE 802.11 DCF uses the CSMA/CA protocol.
Here CA means collision avoidance. To use the network, a
workstation must before check if the channel is free for more
than a period of time called Distributed Inter-Frame Space
DIFS, Fig. 9. If so, the workstation starts a random backoff
before starting its transmission. If the channel status is
changed in both Ethernet and IEEE 802.11 deferring and
backoff times, the workstation must restart the process of
sensing the channel.

Figure 9. Channel Access in IEEE 802.11 DCF

2) Sending and Receiving: Data, Acknowledgments and
JAM:

Workstations send and receive packets. These packets
can be data packets, acknowledgment packets or JAM frame
(a 32-bit frame, put in place of the correct MAC CRC). In
Ethernet networks, workstations receive either a data packet
or a JAM after a collision. The destination workstation does
not need to send an acknowledgment to the transmitter at
the MAC layer. However, in wireless LANs, the destination
workstation must send an acknowledgment to the
transmitter after a successful reception of a packet, Fig. 10.
Otherwise, the transmitter will consider that its packet is lost
or a collision has occurred, so it will retransmit this packet
causing an extra load on network worthlessly.

Figure 10. Backoff mechanism in IEEE 802.11 DCF without RTS/CTS

On the other hand, to send data, workstations need only
to put the destination address in the packet. Since the
medium is shared in most LAN technologies, all the
workstations will see the packet. However, only the
workstation that has the destination address reads the packet
and the others will either forward it, or drop it.

3) Random and Binary Exponential Backoffs
In communication networks errors can occur. This is due

to many factors like the surrounding environment, noise and
interference, or because of collisions. Ethernet and IEEE
802.11 networks use the channel check and the inter-frame
space to decide the medium access. Thus, collisions may
occur when more than one workstation transmit on the
shared medium at the same time. In Ethernet, the maximum
time needed to send the first bit from one end to the other
end of a 10BaseT medium is 25.6 µs. During this time,
(an)other workstation(s) may attempt to send its data, as that
the channel is considered as free.

As a result, a JAM signal is propagated over the shared
medium informing the occurrence of a collision. Each
workstation concerned by a collision starts a binary
expositional backoff procedure, called BEB, to decide when
it can do a new attempt to access the medium. The BEB
algorithm computes randomly a waiting delay that increases
with the number of the attempts Tn of the workstation.

At the beginning Tn equals zero (See Fig. 11). Each time
a collision occurs, the workstation increments Tn counter
until it reaches 15. Before trying to transmit its data again,
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the workstation starts a BEB by taking a random value
between 0 and 2X and multiplies it by 51.2 µs, where:

X = ൜
ܶ ,݊ if 0 < ܶ݊ ≤ 10
10, if 10 < ܶ݊ ≤ 15

(1)�

This helps in decreasing the possibility for a collision
occurrence. In case of no collision, the workstation
continues transmitting and when it is done it leaves the
channel. However, If Tn reaches 15, (the load on the
channel is very high), then the workstation aborts its
transmission and tries it again later.

Figure 11. Transmission in Ethernet

In wireless LANs, after a collision, no JAM signal is
sent. However, if the workstation does not receive an
acknowledgment after a period of time equals to Short IFS
SIFS (Fig. 9), it considers that a collision has occurred and
starts a backoff procedure. For each retransmission attempt,
the backoff grows exponentially according to the following
equation:

STbackoff = R(0,CW) * Slot-time (2)

Where:
 ST is the backoff time.
 CW is the Contention Window.

 R is a random function.
In general, the initial value of CW (CWmin) is 16. After each
unsuccessful transmission attempt, CW is doubled until a
predefined maximum CWmax is reached (often 1024).

There are two major differences between Ethernet and
IEEE 802.11 backoff processes:

1- The wireless LAN starts a backoff procedure even
at the first attempt to send its data (Fig. 10), while
Ethernet does not. This is one of the mechanisms
used to implement the Collision Avoidance feature
of CSMA/CA.

2- Ethernet starts its BEB algorithm after a collision
(without conceding the status of the channel) and
then restarts checking the channel to send its data.
While in IEEE 802.11, the workstation checks first
the channel status and then it decrements its
backoff by:

R = ൜
R − 1, if the channel is free during 1 time slot
R, if the channel becoms busy

� (3)

The design of CSMA protocol offers fair access in a
shared medium. This means that all the workstations have a
chance to use the network and workstations cannot capture
the channel for ever. The remaining value of R is reused
after the channel status becomes free for more than a DIFS
period. The workstation starts sending its data when R
equals zero, Fig. 12.

Figure 12. Medium Access Process for 802.11 Protocol

≤10
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B. A bottom-up construction methodology

As one can see in the last subsection, three elements are
in common. These elements can now be used to model the
basic components.

1) The channel-check component
Fig. 13 shows a channel check component. Elements in

light gray represent the places and transitions used to build
the component. Elements in dark gray represent the
interfaces of the component. Initially, the channel is idle for
all workstations. This is represented by a token in place
“Idle”. A workstation that wants to send data (a token in
place “Data send”) must first check the channel.

In wireless LANs, the channel must be free for a period
more than DIFS, while in Ethernet, it is 9.6 μs. This is
represented by the ‘@t’ at the arc between place “Idle” and
transition “TF” (t’ equals 9.6 μs in Ethernet and 50 μs in
802.11b). The workstation must wait before it starts
transmitting, represented by a token put in place “sdata”. In
Ethernet the wait “@t” equals to 9.6 μs, while in 802.11 it is
equal to random value between CWmin and CWmax slots
time. Place “Backoff/Deferring Time” and transition “FC”
is used to decrement the backoff in wireless LAN, while for
Ethernet, it can be left as it is in the figure (no dependence
to that transition in the model).

Figure 13. Transmission in Ethernet

Consequently, if the channel status is changed (a token
is put in place “Busy”), the workstation can be in one of the
following states:

 It is the transmitter (there is no more tokens in
place “sdata”), then nothing is changed and the
token in place “Busy” is consumed by transition
T1;

 It attempt to send or it has no data to send, then T2
is fired;

 It is in the backoff/deferring phase, then T3 is fired
(the workstation rechecks the channel again) and a
token is put in place “BusyC” to stop decrementing
the backoff. Hence, in wireless LAN, the
workstation stops decrementing the backoff, but it
keeps its remaining value.

In the three cases the channel status is changed from idle to
busy.

Initially, this component has one token with value 1
(representing the free channel) in place Idle. The use of this
component is possible in any protocol that demands the
sensing the channel before transmitting data. It represents
also the status of the channel free or idle. Let us notice here
that, for genericity, we use two parameters t’ and t to define
the delay on the arc Idle-FT and arc Backoff/Deferring
Time-Transmit.

2) Receiving and sending ACK component
Workstations receive two types of packets: data packet

and ACK/JAM frames. In Ethernet network, no
acknowledgment is sent after the reception of packet.
Therefore, the received packet can be either a data packet or
a Jam frame. While in wireless LAN, the received packet is
either a data packet or an acknowledgment frame.

Fig. 14 shows the receiving and sending
acknowledgment component. One assumes that a token is
put in place “Receive”. The fields of the token represents:
the source address “Sr”, the destination address “Dr”, the
received data “rdara” and the last field represents the lengths
of the packet. The workstation checks at first the destination
address “Dr” of the packet. The guard condition on
transition “Address” checks if the received packet belongs
to this workstation, a token is put in place “Data?”.
Otherwise, the token in place “Receive” is eliminated by
transition “Drop”. Hence, for simplicity, “Dr==1” is
considered as the own address of the workstation, while
“Dr==0” is used to represent the multicast or JAM frame
reception.

Next, the guard condition of transition “ACK/JAM” is
used to check if the received frame is an ACK frame or a
JAM frame (for Ethernet only). The “abc” in the guard can
be modified according to the needs of the designer and the
type of network. However, if the received packet is a data
packet, transition “DA” is enabled. This transition is fired
after a time equals to the time needed to receive the packet
modeled by the “@time(Lr)” at the outgoing arc. This
“@time(Lr)” is a function that returns the time
corresponding to the length “Lr” of the packet.

Figure 14. Receiving and Sending ACK Component
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Let us notice here, the functions dynamicity can be used
to model mobility of a wireless networks nodes. This can be
done since the bit rate is a function of the signal strength
and that the signal strength is a function of distance. This
means if the source knows the location of the destination,
then the distance can be computed, and hence the time
needed to send a packet is determined.

The last step is to represent the bit rate or receiving
errors. The random function Random() is used to generate a
random variable i. Assuming that the bit rate error is less
than or equal to 10% of the transmitted/received packets.
So, if the value of i is less than 0.1, then the packet is
discarded (the token in place RD is consumed by transition
“BE”). Else, the packet is received correctly and then an
acknowledgment is sent, by firing transition “SA”. This
interface can be left unconnected in Ethernet. As we can see
in Fig. 14, the modification of tuples can be done easily, just
by modifying the arc inscriptions according to our needs.

As one can see, this component has an important
functionality since it is used to identify the received data
(own or not), the type of the received data (JAM, ACK, data
frame) and the process of sending an acknowledgment after
a successful reception. Thus the use of this component is
possible for the protocols demanding the identification of
data and the send/receive process.

3) Backoff / BEB component
The third component is the backoff / BEB component

shown in Fig. 15. As we can see in the figure, retransmitting
the packet depends on the value of n, (transitions T6 and
T7). If the packet is correctly sent/received (a token is put in
place “Done”), then n is reset to z (0 for Ethernet and 1 for
wireless), for the next attempt to transmit, place N.
However, the component inscriptions depend on the type of
the network. As an example, Table II shows the differences
between Ethernet and IEEE 802.11b networks.

Figure 15. Backoff / BEB Component

In addition to Table II, in Ethernet, places “FreeC” and
“BusyCh” are not used (they can be left as it is), since the
backoff decrement in Ethernet does not depend on the status
of the channel. While in 802.11b, this interface is very
important in decrementing the backoff each time the
channel is free for a slot time or the backoff is conserved if
the channel status is changed to busy.

TABLE II. DIFFERENCES BETWEEN ETHERNET AND IEEE 802.11B

NETWORKS

Variable Value Ethernet IEEE 802.11b

fun1(n) n<15 n<33

fun2(n) n=n+1 n=n*2

y 16 64

z 0 1

R(0, Q)
random(0, 2X), X

depends on n
random(0, CW)

Fun(R) R*51.2µs 0

ST(t) 0 Time slot (20μs)

The firing of transition TS represents the
(re)transmission allowance of a packet (backoff equals to 0).
The backoff component is useful for the protocols that may
need a specific timing procedure since it can be related to
another components (which the case of wireless: by
checking channel always) or just for standalone use

C. Application protocols

In this subsection, we will illustrate our modeling
approach through two examples: IEEE 802.3 Ethernet MAC
protocol and IEEE 802.11 MAC protocol because both
protocols are based on CSMA. One of the objectives is to
illustrate the advantage of having generic components and
the hierarchical composition that allows building composite-
components.

1) Modeling an Ethernet workstation
Ethernet is the most widely used LAN technology in the

world. Ethernet was designed at its beginning at the Xerox
Palo Alto Research Center PARC, in 1973. The used
protocol differs from the classical protocols like token
control, where a station cannot send before it receives an
authorization signal, the token. With Ethernet, before
transmitting, a workstation must check the channel to ensure
that there is no communication in progress, which is known
as the CSMA/CD Protocol.

Fig. 16 shows the detailed and complete module for the
Ethernet workstation. As one can see in the figure, the three
components: Backoff component, Channel Check
component and Receive/Send component are reused to build
the workstation. To complete the model and to bind the used
components together, some additional places and transitions
(in white) are used to answer the specification of an
Ethernet workstation.

In the figure, one can see that five interfaces were not
connected:

 The “FreeC” and “BusyCh” interfaces of the
Backoff component, and the FC and BC interfaces of
the Channel Check component, since Ethernet
workstations decrement their backoff without the
need to check whether the channel is idle.

 The SA interface of the Receive/Send component,
because in this part we do not model the service
offered by an Ethernet workstation
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Figure 16. Composite design of an Ethernet Workstation Component based
on Generic Basic Components

An important notice is that the whole component can be
reused as one component for the Ethernet workstation to
build a complete Ethernet network. In other words, this new
component is seen as a composite-component with the black
places and transitions as the interfaces of this new
component.

2) Modeling a 802.11b DCF workstation
Wireless technology has become popular to access to

internet and communication networks. The IEEE 802.11
offers the possibility to assign part of the radio channel
bandwidth to be used in wireless networks. The IEEE
802.11 protocol is a member of the IEEE 802 family, which
is a series of specifications for local area network
technologies, (Fig. 8). IEEE 802.11 is a wireless MAC
protocol for Wireless Local Area Network WLAN, initially
presented in 1997. The IEEE 802.11 standard defines
Medium Access Protocol and Physical (PHY) frameworks
(layer 2 in the OSI model) to provide wireless connectivity
in WLAN. This independence between the MAC and PHY
has enabled the addition of the higher data rate 802.11b,
802.11a, and 802.11g PHYs. The physical layer for each
802.11 type is the main differentiator between them.
However, the MAC layer for each of the 802.11 PHYs is the
same.

Many other 802.11 variants have appeared. For instance,
in 2004, the 802.11e was an attempt enhancement of the
802.11 MAC to increase the quality of service. The 802.11i
and 802.11x were defined to enhance the security and
authentication mechanisms of the 802.11 standard. Many
other variants exist like 802.11c, 802.11d, 802.11h. The
IEEE 802.11 MAC layer defines two coordination functions
to access the wireless medium: A distributed coordination

function DCF and a centralized coordination function PCF
(Point Coordination Function).

Fig. 17 shows the detailed and complete module for the
DCF IEEE 802.11b workstation model by the reuse of
ready-to-use components designed from the previous
sections. The workstation sets the value of N to 1 (place
“N”), sense the channel (transition “TF”), sends its data
(place and transition “Send”) and waits for an
acknowledgment (place “Wait”). If no acknowledgment is
received during the SIFS period or 10μs, Transition T11
will fire putting a token in place “Retransmit?” to check if
the packet can be retransmitted (transition T6) or not
(transition T7).

As one can see in this figure, all the components are
reused to compose the workstation module. All the
interfaces were also used in this module.

Figure 17. Hierarchical Design of a DCF IEEE 802.11b Workstation
Component based on Generic Basic Components

VI. EXPERIMENTAL VALIDATION

In the previous sections, we have modeled several
components (basic and composite components). In this
section, we will validate and evaluate the quality and
accuracy of our model by means of simulation. The
obtained results will be compared with the data given by
other studies about IEEE 802.11b network and also the
results of NS-2 simulations performed in the same
conditions.

A. Performance evaluation techniques

Different models and methods are used to evaluate the
performance in communication and distributed systems [9]:
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1) Measurement can offer the most exact and accurate
results. The system is observed directly. However,
measurement is often the most costly of the techniques since
it is only possible if the system already exists. In some
cases, measurements may not be accurate since it depends
on the state of the system. For example, if network
measurements are done during peak period, the observed
results would not be the same as if the measurements were
done during a period of low use of the network.

2) Analytical models may provide exact answers.
Analytical modeling uses simple mathematical expressions
to obtain the performance results for a system. However,
these results may not be accurate, because of their
dependencies on the made assumptions in order to create the
model. The behavior of computer systems including
processing periods, communication delays, and interactions
over the communication channels is difficult to model.
Analytical models are excellent to model small to medium
systems that fulfil some requirements but this is not the case
for industrial-sized, networked and distributed systems.

3) Simulation models [36] allow modeling and
observing the system behavior. It facilitates the
understanding of the real system. Simulation allows the
evaluation of a system model in an executable form, and the
data of such process are used to calculate different measures
of interest. Simulation is generally used because the
complexity of most systems requires the use of simple
mathematical ways for practical performance studies. This
makes simulation as a tool for evaluation. Simulation
models allow creating very detailed, potentially accurate
models. However, developing the simulation model may
consume a big amount of time, but once the model is built it
takes a little time to get results.

Table III shows a qualitative comparison between the
different methods used to evaluate the systems performance.

TABLE III. COMPARISON OF THE DIFFERENT PERFORMANCE

EVALUATION TECHNIQUES

Criterion Analytical Simulation Measurement

Stage Any Any Post prototype

Time Required Small Medium Varies

Tools Analysts
Computer
Languages

Instrumentation

Accuracy Low Moderate Varies

Trade-off
evaluation

Easy Moderate Difficult

Cost Small Medium High

Scalability Low Medium High

Flexibility High High Low

This comparison is based on different criteria [37] [38]:
 Stage: Which performance evaluation technique

should be used at any point in life cycle,

 Time required: The time consumed/required by a
particular technique,

 Tools: Which analytic tools, simulators,
measurement packages are used,

 Accuracy: It represents the degree to which the
obtained results match the reality (evaluates the
validity and reliability of the results obtained).

 Scalability: It represents the complexity degree to
scale a particular technique

 Trade-off evaluation: It represents the ability of a
technique to study the different system
configurations.

 Cost: This cost must not be considerable in term of
time and money needed to perform the study.

 Flexibility: The system-model under test should be
easy to modify and extend. The used evaluation
technique should provide the possibility to integrate
these considerations easily in the developed model.

Simulation seems to be the mostly used technique used
to evaluate the performance of the computer systems. It
represents a useful means to predict the performances of a
system and compare them under many conditions and
configurations. One major advantage of this technique is
that even if the system is already implemented, it offers
flexibility difficult to reach with measurement techniques.

Our modeling formalism, Petri nets, combines both the
analytical and simulation models which let the possibility to
model system mathematically. However, communication
networks and distributed systems are so complex that
building and solving the equations’ system are too difficult
and needs tools capable to perform this process.

More suitable for our aims are the discrete-event
simulations [9]. Discrete-event simulation is a powerful
computing technique for understanding the behavior of
systems. In discrete-event simulations, the state changes
occur at discrete steps in time. Discrete event simulation is
mainly used in real environments such as communication
networks and protocols [39], manufacturing systems [40],
material handling [41], etc. General purpose programming
languages like C/C++ and Java and several simulators such
as NS-2 [42] and OPNET [43] are based on the discrete
event simulation.

B. Simulations and Results

To perform the simulations, many tools and extensions
of Petri Nets exist such as PROD, Renew, ALPHA/Sim,
CPN Tools, Artifex and other tools [44]. However, the
development of most of these tools has been stopped for a
long time, or they do not support our needs or they are
commercial. Two main, free of charge tools were possible to
cover the previous features “CPN Tools” [45] and “Renew
2.1.1” [46].

However, during simulation, “CPN Tools” has shown an
important problem that does not apply to our timing needs.
We have chosen “Renew” since it is a Java-based high-level
Petri nets discrete-event simulator.

Our simulations are based on full-mesh dense networks
with different numbers of workstations:
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i- The simulations were performed for different
number of workstations sharing the medium.

ii- For each case, the simulations were repeated 100
times to get average measures.

iii- Each simulation assumes that all nodes transmit at
11Mbps.

iv- All nodes attempt to send data as soon as possible.
v- Each node has 1000 packets (to get the average

possible measures) with average packet length of
1150 bytes (packet length varied from 800 byte to
1500byte).

vi- All simulations were accomplished on Intel®
Core™ 2 Duo Processor T2300, 2G of RAM.

1) Average bandwidth per node
The first result is the average bandwidth per workstation.

Fig. 18 shows the throughput of 802.11b nodes sharing a
bandwidth of 11Mbps. As illustrated by the figure, the
bandwidth per node decreases logically with the increase of
nodes number. When the number of nodes is small each
workstation has more bandwidth from the shared effective
bandwidth. However, when the number of the nodes on the
network increases, the bandwidth is decreasing
exponentially. This is due to the increased number of
collisions on the network, and so more bandwidth will be
lost.

The other factor is that CSMA gives fair timing to the
machines to access the channel. Thus, workstations must
wait longer time to have access to the channel. Another
factor is after a collision, the workstations must double their
contention window which means longer backoff time. So,
more time is spent to decrement the backoff or less total
bandwidth.

Figure 18. Bandwidth Variation with Number of Nodes

2) Collisions rate percentage
The next step is to compute the collision rate percentage

or errors versus the network utilization. Fig. 19 shows how
the collision rate increases when the number of workstations
increases. As we can see in the figure, when three
workstations are sharing the medium, the collision rate is
nearly 8%. However, when there are 12 workstations
sharing the medium, the collision rate reaches 23.2%. These

results confirm the results obtained in the previous section
and our explanation.

As one can see, the collision rate is increasing linearly
until certain point (8 workstations). The reason is when
more workstations attempt to send, more packets are on the
shared channel and hence the probability that a collision
occurs increases. However, when the number increases
more, the collision rate increase becomes slower. The
explanation for this evolution is the backoff procedure.
With more workstations, the number of collisions increases,
and the value of CW also increases (backoff time). On the
other hand, this increment of backoff time decreases the
probability of a collision, since workstations in collision
must wait for longer time before attempting to send again.
So, the collision rate increment becomes slower.

Figure 19. Collisions Rate Percentage

3) Transmission Time per Packet
The next test is to measure the overall time needed to

send a packet over Ethernet or DCF protocols (from sender
side to receiver side). Fig. 20 shows the time required to
transmit one packet versus the number of nodes on the
network. The transmission time increases linearly due to the
increased number of sent packets on the network and
collision rate.

Figure 20. Transmission Time per Packet
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However, sending a packet over Ethernet requires less
time than sending it over DCF. The figure shows that with
three nodes on the network, DCF seems to be the same as
Ethernet. However, with the increase of nodes the difference
becomes obvious. This is due to:

1- A workstation attempting to use the channel in
wireless networks needs to ensure that the channel
is idle during a DIFS period or 50µs, while in
Ethernet it only needs 9.6 µs.

2- From the first attempt to transmit, wireless nodes
starts a backoff procedure (Bavg = 8 * 20 µs)
decremented only if the channel is idle, while in
Ethernet, workstations defers only for 9.6 µs.

3- After a collision, in wireless networks, the channel
status becomes idle only when all the workstations
finish their transmissions (no collision detection
process), while in Ethernet the channel becomes
idle after 51.2 µs (channel acquisition slot time).

4- The backoff procedure used after each collision in
wireless networks doubles the contention window
value which is already 8 times greater than the one
used in Ethernet. This makes the backoff in
wireless greater than Ethernet BEB even with slot
time (20µs) less than the 51.2 µs used in Ethernet.

C. Comparison with ns-2 simulator and other studies

To evaluate the quality and accuracy of our model, we
have used the network simulator NS-2 as a comparative tool
since it is widely used to model communication protocols.
The NS-2 simulator is a discrete-event network simulator
that allows simulating many scenarios defined by the user. It
is commonly used in the research due to its extensibility,
since it is an open source model. NS2 is widely used in the
simulation of routing, multicast protocols and ad-hoc
network.

Fig. 21 shows the results obtained from NS-2 and those
from our model, (Fig. 18). As we can see the results of both
simulations Renew and NS-2, are nearly identical which
confirms the correctness of our model. Moreover, if we
compare our obtained results with those in [Anastasi05] and
[Heusse03], we can get also the same results from both the
simulation technique and the equation we obtained from the
results.

Figure 21. Comparison between our model and NS-2

The other comparison is the effective simulation time.
As we can see in Fig. 22, the simulation time increases in a
linear way when the number of nodes increases (confirmed
by the results in Fig. 20). The figure shows that NS2 needs
less time to perform the same simulation. However, NS2
does not support the step-by-step simulation to verify the
system event by event. The second important issue is that it
is not possible to model distributed services with NS2 (no
supporting package). However, with “Renew” as Petri nets
editor and simulator, it is possible to combine both services
and protocols in one global model.

Figure 22. Effective Simulation Time versus number of nodes

VII. CASE STUDY: EVALUATING PERFORMANCE OF A

DISTRIBUTED MANUFACTURING SYSTEM

In the last sections, we have shown the modeling part of
the communication protocols. In this section we will show
the modeling part that concerns the services. An illustrative
example, Fig. 23, will be used to model the services offered
by a production system. The used modeling technique will
be the same as the communication protocols, i.e. component-
based methodology, where each part of the system is
modeled in hierarchical composition: “service-workstation”,
i.e. each service is modeled over a workstation.

Figure 23. Manufacturing Plant with Flexibilities
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A. System Components

Fig. 24 shows the complete system components used to
transfer one product from IN/OUT area to any machine M1,
M2 or M3. Z1 to Z4 represent the input and output areas for
each machine and the IN/OUT area. The capacity of each is
limited to one product. IS1 to IS6 areas represent the stock
area before and after machining a product. The capacity of
each stock area is greater than one. R1 to R4 represent the
robots used to make a transfer from a Z area to a machine or
IN/OUT area and vice versa. Finally, T1 to T8 represent the
transfer elements from and to a Z and an IS stock areas. The
component represents the service offered by a resource, a
robot or a transfer component. Machines, Z’s and stock
areas are considered as shared resources.

Figure 24. Complete Area and Transfer Components

B. Product transfer

In order to transfer a product from one area to another
one, areas must allocate the required area/resource. Pre-
allocation is passed through a transfer component. Transfer
components check the possibility to allocate the destination
area (depending on the capacity of each area). An
acknowledgement is from the destination area when a place
is free. During this time the source area and the transfer
component are in waiting period (machines and Z areas do
not perform any action during this time, while stock areas
can receive products from other components).

Fig. 25 shows the centralized model of a product transfer
from S to D areas. In the figure, to transfer a product, the
product must be available in area S (a token put in place
S/REQ), the transfer component must be also available (a

token in place SD/NOP) and a free place in area D (a
token in place D/CONS). These three tokens enable the
transition SD/t1 and a token is then put in place
SD/TRSF-START starting the transfer process. The
transfer component takes the product from area S. The firing
of transition SD/t2 and the put of a token in place S/ACK
inform that a place is released up in area S. The transfer
process continues by putting a token in place SD/TRSF-
END. When the product arrives to area D (transition
SD/t3), the transfer component becomes free again (a
token is put in place SD/NOP) and an area is used in area
D (a token is put in place D/PROD).

Figure 25. Product Transfer in centralized model

Fig. 26 shows the complete messages exchanged in case
of implementation of the 3 processes (S, SD, and D) on 3
different computers.

Figure 26. Exchanged Messages over the Network for the Transfer

Each process plays a different role with regard to the
client/server mechanism. S is always a client and D is

349

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



always a server. The role of SD varies depending on the
message. At first, the source area S (workstation) sends a
request message to the transfer workstation, SD (Ti or Ri),
containing the destination workstation D. Ti (or Ri) sends a
request to D, requesting a free place (Cons-D). If there is a
free place, D will send a positive acknowledgment to Ti (or
Ri), otherwise S and Ti (or Ri) will stay in a waiting period.
Once Ti (or Ri) receives the acknowledgment, it sends two
messages to S containing a positive acknowledgment and a
request to release the product. When the product is released
S sends an acknowledgment to Ti (or Ri) to start the transfer.
When Ti (or Ri) takes the product, it sends an end message
to S to free one its places (Cons-S). Finally, it sends a
message to D asking the arrival of the product to its side.
Once the product arrives to D, it sends an acknowledgement
to Ti (or Ri) informing the end of the transfer.

C. Modeling the service components

Fig. 27 shows the complete messages sent and received
by a transfer component. The component receives a request
packet from an area (transition t60). In order to validate this
request a token must be present in place “Cons”,
representing the capacity of this component. It sends a
message to the destination area requesting a free place. The
component stays in a waiting period (place p60) until it
receives acknowledgment packet from the destination area
(transition t62).

Once the acknowledgment arrives, the transfer
component sends request (“release P?”) to the source area.
To insure a proper functionality of this module, a guard is
associated to the transition t63 to assure that the sender of
the acknowledgment is the destination area. Again, the
component stays another time in waiting period (place p62)
until it receives the second acknowledgment.

Figure 27. Transfer Component – Service Part

When the acknowledgment arrives, transition t64 is
enabled (condition: the sender must be the source), two
messages are sent: to the sender releasing one place (the

product is taken by the transfer component), and to the
destination area requiring if the product has arrived. This
second message is sent when the first message is sent (the
TNext inscription on the arc between t64 and p63).

Fig. 28 shows a complete Petri Net model for Z1 area. In
the figures, when a product arrives to the area, a procedure
of exchanged messages starts depending on the destination
area until that product is transferred to its final destination.
Hence, only the workstation component is connected to the
network, while the output interfaces of the service
component (dark gray) is connected directly to their
destination components.

Figure 28. Hierarchical Service-Workstation Petri Net

Fig. 29 shows a sub-model for a transfer of a product from
area Z1 to stock IS1 through the transfer element T1. In the
figure, the modeled components are reused to build the

350

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



whole system. This reuse is applicable for the other
elements in the system. Some additional places and
transitions are used to complete the system-model and to
insure its functionality.

Figure 29. Service-Workstation Composite-Component

D. Simulating the complete model

The simulation was performed on the same PCs used in
the above sections. The system is assumed to perform 100
different products. The simulation aims to see the impact of
using different type of products and different protocols over
the system. The transfer time is supposed to be 50 msec and
the machining time to be 100 msec. These values have been
chosen in milliseconds to really verify the impact of the
underlying network on the system. Otherwise, if we use the
real values in minutes, the impact of the underlying network
would not be obvious with the example we have used. The
number of simultaneous products per type is varied from 2 to
5 products.

The type of services on the system affects the number of
exchanged messages and transactions on the network. For
example, to perform the service f2, the number of
transactions is 72 exchanged messages per product.
However, to complete service f1 or f2, the number of
exchanged messages is 90 messages per product. This is in
the case of one product only on the system. However, when
there are several products on the system, this number
increases due to collisions. So, this number may reach

90~100 messages per product for service f2, and 110~120
messages per product for service f1 or f3.

a) One Product

The first simulation is performed to get an idea about the
time needed to machine one product over the system. Table
IV shows the impact of changing the communication
protocol in the system over the time needed to finish one
product. An important difference appears between Ethernet
at 10Mbps and 100Mbps. However, the 1Gbps does not
create a big difference, since the machining and transfer
times are the dominant in this case.

TABLE IV. TIME TO MACHINE A PRODUCT

Service 802.11b E-10Mbps E-100Mbps E-1Gbps

f2 564.5 ms 567.6 ms 506.7 ms 500.7 ms

f1 or f3 680.2 ms 684.5 ms 608.5 ms 600.9 ms

The other interesting result is the time difference when
the required service is f2, or f1 or f3. Since the path to finish
the product is longer, the time needed to make the product is
clearly longer. In this part, 11Mbps 802.11b seems to be
better than 10Mbps Ethernet.

b) Same Products; Different Protocols

The second results are the most important, since they
show the impact of changing the communication protocol
on the system. Different remarks can be done from the Fig.
30:

1- 802.11b protocol does not present a good choice.
This result is conforming with the results of Fig.
20. This becomes clear when the number of
simultaneous products increases (the number of
exchanged messages increase also).

2- A big time difference is noticed when using
100Mbps Ethernet (compared to 10Mbps Ethernet
and 802.11b). The number of messages is
important. With 2 simultaneous products of each
type, the number of exchanged messages reaches
500 to 600 exchanged messages. With 3
simultaneous products of each type, the number of
exchanged messages reaches 900 to 1000
exchanged messages. While with 5 simultaneous
products of each type, there are nearly 1400 to
1500 exchanged messages on the network.
The type and speed of protocols is very important
since to exchange this huge number of messages on
the network, the bit rate is very important and
decreases obviously the time needed to exchange
these messages between the different
resource/workstation on the system.

3- The use of 1Gbps Ethernet did not show a big
difference with respect to 100Mbps Ethernet.
However, this conclusion is not really correct. The
impact of using Giga Ethernet can appear if the
modeled system is larger (more machines, stock
areas, resources, etc.).
In that case, the number of exchanged messages
over the network will be greater. Thus, the impact
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of using Giga Ethernet will become obvious since
the time needed to send these messages will be
shorter (for example, as the time difference
between 10 and 100Mbps).
However, in our model the number of modeled
components is still medium (3 machines, 4
resource areas and 6 stock areas). So, the
machining and transfer times are dominant here
when using Giga Ethernet compared to 100Mbps
Ethernet.

Figure 30. Impact of changing the communication protocol in the system

VIII. CONCLUSION

Distributed systems are more and more present in our
daily life. These systems are complex and can be in one
place or even everywhere in the world. The use of
distributed systems allows sharing different and expensive
resources by a several clients. Thus, the need to control the
distributed systems is very important. Manufacturing
systems are one kind of these systems.

The need to model these systems before their
implementation is important. The design stage allows
verifying some of their properties. A well-designed model
that takes into accounts all the requirements and constraints
of a system can save cost and time.

In this work, we have presented the problem of
modeling manufacturing systems and the underlying
communication protocols. However, modeling a huge and
complex system implies to have also a big and complex
model. So, we have proposed in this work a component-
based modeling approach based on High-Level Petri Nets.

This approach can meet the challenges of modeling the
distributed systems and the communication networks.
Genericity, modularity and reusability are the main and
important characteristics of this approach since it allows
reusing ready-to-use components and easily fitting them to

new system-models depending on the requirements of
clients and applications. These advantages allow building
complex models in an easier way.
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