
Database Connection Monitoring
for Component-based Persistence Systems

Uwe Hohenstein and Michael C. Jaeger
Siemens AG, Corporate Research and Technologies

Otto-Hahn-Ring 6, D-81730 Munich, Germany
Email: {uwe.hohenstein|michael.c.jaeger}@siemens.com

Abstract—Server applications often use a relational database
management system (RDBMS) for storing and managing their
data. Storage and management is not limited to the RDBMS
itself, but involves also other software forming a persistence
system. Such system has become complex. Besides the RDBMS
it includes drivers, connection pools, query languages, the
mapping between application logic and a database data model
and it involves the optimisation of resources. One important
resource is the connection from applications to the database
system, because the acquisition of a connection is a very
expensive operation.

This work introduces monitoring facilities for the use or
misuse of connections in component-based applications. In
particular, it explains how the monitoring can take place in
order to configure connection pooling for a set of different
components. The implemented solution uses conventional pro-
gramming methods as well as an aspect-oriented approach.
The described facilities are integrated into the development of
an enterprise-scale application implementing a communications
middleware.

Keywords-persistence systems; O/R mapping; connection
pooling; performance;

I. INTRODUCTION

When it comes to persisting application data, relational
database management systems (RDBMSs) are still the most
used technology. If the application is written in an object-
oriented programming language and a RDBMS is chosen,
a mapping between the object data and the relational data
model takes place. For this purpose, object-relational (O/R)
persistence frameworks exist that implement the orthogonal
persistence of data objects [1]. Examples are Hibernate [11],
or OpenJPA [22] for the Java platform. By using such a
technology, the data model can stay purely object-oriented.
Then, programming can be done on an abstract object-
oriented level, i.e., operations for storing and retrieving Java
objects are provided. The O/R framework translates those
object-oriented operations into SQL statements.

In principle, these O/R frameworks ease the work with
RDBMSs. However, once the application becomes more
complex, once it involves different components and when it
processes huge amounts of data, the allocation of resources
becomes an important issue for providing optimal perfor-
mance. An intuitive use of persistence frameworks is not
sufficient anymore; the developer must know implications of

the used technology and must understand the basic principles
such as caching and lazy/eager fetching strategies in order
to preserve a high performance level.

Functionality and operations that involve persistence in-
volve also the use of heavy-weight objects or can require
the handling of large amounts of data. For example, careless
setting of eager fetching can multiply the amount of datasets
retrieved. With O/R frameworks and database communi-
cation, several heavy-weight objects are used, such as an
entity that manages the mapping during run time, or the
entity that handles the connection to the RDMS. As a
consequence, developers must be aware of settings such as
fetching strategies as well as of the proper use of API with
regard to the creation of heavy-weight objects.

This work will explain the technical mechanisms manag-
ing the connections from the application to the RDMS in the
context of a large-scale application middleware developed by
Siemens Enterprise Communications (SEN). This middle-
ware implements a service-oriented, server-based platform
for common services in the communications domain.

The next Section 2 will explain the particular problems
with database connections for component-based systems.
The architecture of the SEN middleware is explained in
more detail in the next Section 3. Section 4 describes
the persistence subsystem of this middleware. Then, the
monitoring of connections for this middleware will be ex-
plained in Section 5. The presented approach makes use
of the recent technology of aspect-orientation (AO) and is
applicable to common O/R frameworks such as Hibernate
or OpenJPA. The subsequent Section 6 discusses the results
of the connection monitoring. The paper will end with our
conclusions and future work in this area in Section 7.

II. COMMON PROBLEMS WITH DATABASE
CONNECTIONS

One important resource that must be handled carefully
in large-scale applications is a database connection. A con-
nection object is generally considered a heavy-weight data
structure. A database system requires a lot of resources
for setting up the communication and to keep space for
query results etc. Hence, acquiring and releasing database
connections are expensive operations.

366

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



A. Amount of Database Connections

In general, the number of connections is often limited
by a configuration parameter. Moreover, the underlying
operating system, or the RDMS itself has its own limits
with regard to a maximum amount of open connections.
This means that if one component missed to release a
connection, not only resources are wasted, but also other
components could be blocked when the overall number of
connections is exhausted. O/R frameworks abstract from
database connections by offering the concept of a session.
A session includes a connection to the database, but does
not solve those problems.

Moreover, large applications, having a lot of compo-
nents and serving a lot of users, require a large number
of connections. But in most cases, it is not reasonable
to keep connections for a long time. Especially service-
oriented architectures (SOAs) are characterised by short-
living operations where it does not make sense to hold
connections for a long time. Thus, such system has typically
a high rate of connection acquisitions.

And also the best practices for O/R frameworks such
as Hibernate and OpenJPA suggest using one connection
for each transaction and to release it afterwards. This is
inconsistent with general recommendations for using JDBC
connections, since requesting and releasing a connection is
time-consuming. But this is necessary, because each session
has an associated object cache that becomes out-of-date at
transaction end.

B. Connection Pooling

The efficient handling of short-living connections is sup-
ported by connection pools. A connection pool is an entity
that allows multiple clients to share a set of connection ob-
jects each one providing access to a database. This becomes
important, if a large application will serve many clients that
each require connection objects. Most O/R frameworks such
as Hibernate can be configured to work with a connection
pool such as c3p0 [4] or DBCP [7]. Sharing connections in a
pool leads to less initialisation attempts of this data structure
and thus significantly reduces the time when accessing the
RDBMS.

However, a connection pool does not solve all the men-
tioned problems. It basically reduces the number of required
physical connections by means of sharing. Whenever a
logical connection is closed, the underlying physical con-
nection is not closed but put back into the pool for further
usage. Anyway, closing a logical connection can still be
forgotten. Moreover, the parameterization of this pool is not
trivial. If the pool contains too few connections, components
will have to wait until connections will be released by
others. If the pool maintains too many connections, the pool
itself, the RDBMS and the operating system will consume
unnecessary resources for keeping connections open that are
not effectively used.

In order to cope with this case, a pool can be configured
to release pooled items after a certain period of inactivity.
However, also this feature requires special attention, because
if the connection pool might shrink too fast so that new con-
nections must be acquired again; the advantage of a pooled
connection is lost. Finally, it is not easy to understand the
entire semantics of configuration parameters. Details about
these parameters are not scope of this work, but interested
readers are advised to compare the behaviour resulting from
setting particular DBCP parameters with similarly appearing
parameters from c3p0.

C. Issues with Component-Orientation

In a component-based system and also in SOA-based
systems, the persistence system is usually provided as an
individual instance for each unit of deployment, in most
cases for each component or service. This is required,
because the O/R mapping information must be given at
the persistence systems initialisation time. Otherwise the
O/R framework would not know which mapping to perform
between objects and relational tables.

As a consequence, also an individual connection pool
is maintained for each unit of deployment. Therefore, in
a dynamic runtime environment, one can expect different
connection pools for each persistence system that covers
a domain of O/R mapping definitions. It becomes clear
that for a proper use of a connection pool an appropriate
parameterization is required in order to ensure optimal per-
formance: Each unit of deployment must provide sufficient
connections for the highest throughput, but otherwise just
as few connections as possible to allow appropriate settings
for other connection pools as well.

Configuring one connection pool is difficult, because
it requires an appropriate load model and also sufficient
measurements facilities. Besides the number of used con-
nections, it must be also tracked, how long a component or
thread is blocked when obtaining a connection. Considering
a component-based system, it becomes clear that configuring
several pools is even more difficult: How can we obtain
an appropriate load model that also resembles the required
parallelism?

Moreover, services call each other, which implicitly relate
their connection pools somehow implicitly. Even if the
connection pool of a service is large enough for its purpose,
performance is degraded if the service is calling another
service the pool of which is congested. It is also clear that
connection information from the RDBMS is not sufficient,
because the RDBMS does usually not provide information
about the originating component for a connection. Such
information can only be obtained by intercepting JDBC
drivers or the internals of O/R mapping frameworks.

367

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



Java VM / OSGi Container

Service User 
Management

Service 
Contact 

Managment

Service 
Device 

Management

Service for 
3rd party app...

Desktop 
Application

Administrator 
Application

3rd Party 
Application ...

SOA Platform / OSGi Extensions

Component
Logging

Component
Service 

Discovery

Component
Persistence ...

Figure 1. OpenSOA Basic Architecture

III. THE OPENSOA MIDDLEWARE

The application case where the monitoring was applied
is a middleware called OpenSOA [28]. OpenSOA is im-
plemented in Java and provides an open service platform
for the deployment and provision of communication ser-
vices. Examples for such services are the capturing of user
presence, the management of calling domains, notifications,
an administration functionality for the underlying switch
technology, and so forth. One business case is to sell
these services for the integration in groupware and other
communication applications along with the Siemens private
branch exchange (PBX) solutions. The technical basis for
OpenSOA is an OSGi container [23]. This specification was
chosen over JEE [8] because of its smaller size and focused
functional extent.

In order to establish an infrastructure for the provision
of services, custom built or common off-the-shelf com-
ponents (depending on the availability) were added. For
example, they implement the discovery and registration of
services among containers on different computers for a high-
performance messaging infrastructure. Figure 1 outlines the
basic architecture: as the foundation, the software runs on
Java and an OSGi container. Then, a tier provides com-
ponents and extensions in order to implement a service-
oriented architecture (SOA). On top of that, different ser-
vices implement common functionality of a communication
system. Finally, different application can communicate with
this system using service interfaces.

The size of the entire code base (infrastructure and
communication services) has similar dimensions as the dis-
tribution of the JBoss application server with regard to the
defined classes (in the range of 5.000 to 10.000). It involves
about 170 sub-projects among which about 20 projects use
the persistence system.

OpenSOA 
Service

OpenSOA 
Comp. / Lib.

Wrapper Template, Configuration

RDBS

O/R Mapping Framework (Hibernate, OpenJPA)

Connection Pool

JDBC Driver

OpenSOA 
Comp. / Lib.OpenSOA 

Comp. / Lib.OpenSOA 
Comp. / Lib.

OpenSOA 
ServiceOpenSOA 

ServiceOpenSOA 
Service

Figure 2. Persistence System Architecture

IV. OPENSOA PERSISTENCE SYSTEM

The previous overview OpenSOA did not explain the
persistence system of OpenSOA which is subject of this
section. Figure 2 shows the persistence architecture as an
outline. The persistence system is divided into different tiers.
Each of the tiers accesses the functionality provided by the
tier below. An OpenSOA service using persistence services
generally accesses the wrapping template.

A direct access of the O/R mapping framework or JDBC is
not desired, however, cannot be prevented. The O/R mapping
framework obtains connection from a connection pool. And
the pool accesses the database via the JDBC driver. Again,
the direct access to the database cannot be prevented by
using the JDBC driver. But in practise it is a set rule that
such calls are forbidden.

In the beginning, the Hibernate framework was used as
implementation of the O/R mapping. Then, because of a
patent infringement claim against Red Hat (the vendor of
Hibernate), the persistence system was migrated to OpenJPA
distributed by the Apache Software Foundation.

The entire persistence system allows OpenSOA for run-
ning on several RBDSs. Various business reasons require
the support of solidDB from IBM: solidDB provides high
performance paired with high reliability because of its hot-
stand-by feature. In addition, MySQL and PostgreSQL are
also supported. Moreover, the persistence framework makes
programming easier by offering an object-relational mapping
in order to store and retrieve the data of Java objects.

A. Working with O/R Mapping

An O/R mapping framework like Hibernate or OpenJPA
requires the information about which Java classes and which
fields in them are persistent, how classes map to tables,
and how fields map to table columns and how pointers are
mapped to foreign keys. OpenJPA supports the definition of

368

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



mappings by using an XML-document or by annotation in
the Java code (with Java 5). In JPA, a self-contained set of
mapping definitions forms a so called persistence unit.

The APIs of Hibernate and OpenJPA are very similar.
Both use a factory object that maintains connection objects
to the storage. The connection object is called Session
in Hibernate and EntityManager in the JPA specification.
Accordingly the factory objects are called SessionFactory
and EntityManagerFactory respectively. An EntityManager-
Factory exists for each persistence unit. Consequently, a
connection pool is by default maintained for each persistence
unit.

For programming actual operations, the developers needs
to obtain a Session or an EntityManager object. From a
conceptual point of view, a connection to the database
is opened then (Actually, OpenJPA, for example, can be
configured to actually defer the opening of a connection in
order to tune for a shorter period of connection obtainment).
The O/R mapping framework obtains database connections
from a connection pool implementation, while the pool
obtains concrete database connection from the JDBC driver.
In addition, a connection pool such as DBCP or c3p0 is set
between the JDBC driver and the persistence framework.
The JDBC driver is used to communicate with the RDBMS.

A general recommended programming practice is to begin
a transaction as well at this point. When a session is
opened, the developer can perform various object operations,
such as creation, deletion, modifications that are translated
to according SQL statements. If a set of operations is
finished, the developer should commit the transaction and
close the session. From a conceptual point of view, the
connection to the database is closed then. In conjunction
with a connection pool, the connection is free for the next
connection acquisition then. Listing 1 shows an example use
with OpenJPA.

Listing 1. Example Use of OpenJPA
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("myPerUnit");
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
Customer c = new Customer(4711);
em.persist(c);
Query q =

em.createQuery("SELECT c FROM Customer c");
List result = q.list();
Customer c2 = mySession.find(Customer.class, 42);
tx.commit();
em.close();

B. Wrapping Template

The OpenSOA middleware extends the persistence frame-
work with a wrapping template implementation, which
standardises the use of Hibernate or OpenJPA. This tem-
plate works in a similar way as the JDBC abstraction in
the Spring framework [26]. It offers different functionality
upon the O/R mapping framework. It basically abstracts

from concepts such as OpenJPAs EntityManagerFactory
(in principle a database with a schema and an associated
connection pool), EntityManager (a database connection)
and persistence units (logical database name). It ensures the
appropriate and standardised use of this framework. When
a developer uses the persistence system via the wrapping
template, the following functions are provided:

1) Standardised parameterization of the persistence
framework. This includes the RDBMS URL, the ac-
cess credentials as well as other settings performed by
the framework.

2) Standardised allocation of resources. A general setting
for opening and closing connections and transactions
is performed.

3) Standardised error handling. In case of recoverable
errors, exceptions returned by the persistence frame-
work or by the JDBC driver are caught and a retry
is initiated, e.g., in case of concurrency conflicts.
Furthermore, exceptions are converted into OpenSOA-
specific ones for coverage in the layers above.

Although it is theoretically possible for developers to
create, for example for the OpenJPA case, an EntityMan-
ager directly, this is generally a not allowed practice. The
subsequent discussion will focus on OpenJPA and solidDB
although the principles have been applied to the Hibernate
framework and the other RDBMSs as well.

V. CONNECTION MONITORING

The general aim of the monitoring is the proper config-
uration and usage of connections and the connection pool.
Main pool parameters are the initial number of connections,
the maximum and minimum number possible and the idle
time after which a connection is closed after inactivity. It is a
complex task to determine appropriate settings for the pool.
Moreover, it is important to monitor the correct usage of
connections, e.g., to avoid that connections are not released.

The monitoring functionality has been implemented at
different levels in order to cover the different ways a client to
the persistence system can obtain connections. Generally, the
developer of a service should implicitly obtain connections
by using the wrapping template. That is the first place to
integrate monitoring. However, this corresponds to a logical
acquisition of connections since not always real physical
connections are requested thanks to pooling. The overall
goal is also to get information about any physical open/close
connection activity in order to keep track of the number of
currently used connections for each functional unit. How-
ever, there is major a problem to obtain this information:
in principle, the JDBC driver needs to be intercepted, but
for example in case of solidDB, its source code is not
available. To this end, the recent technology of aspect-
oriented programming AOP provides an adequate solution.

369

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



A. Aspect-Oriented Programming with AspectJ

Aspect-oriented programming (AOP) provides a solution,
which is not immediately obvious. AOP has originally been
proposed for developing software to eliminate crosscutting
concerns (CCCs) [10]. Those CCCs are functionalities that
are typically spread over several classes, thus leading to code
tangling and scattering [5], [20] in conventional program-
ming. AOP provides special extensions to Java to separate
crosscutting concerns. Recent research has shown usefulness
to this respect, e.g., [12], [25], [29], [13], [19].

AOP is ideal for monitoring purposes. So far, some tools
are implemented with AOP to monitor the system perfor-
mance [3], [9]. We applied the AO language AspectJ [18],
[16] to monitor the usage of database connections.

Programming with AspectJ is essentially done by Java
and newly aspects. An aspect concentrates crosscutting
functionality. The main purpose of aspects is to change the
dynamic structure of a program by changing the program
flow. An aspect can intercept certain points of the program
flow, called join points. Examples of join points are method
and constructor calls or executions, attribute accesses, and
exception handling. Join points are syntactically specified
by means of pointcuts. Pointcuts identify join points in the
program flow by means of a signature expression. Once join
points are captured, advices specify weaving rules involving
those joint points, such as taking a certain action before or
after the join points.

As AspectJ is a new language, which offers no syntactic
constructs such as aspect, pointcut and advice, it requires
a compiler of its own. Usually, the AJDT plug-in will
be installed in Eclipse. However, a new compiler requires
changes in the build process, which is often not desired.
Then, using Java-5 annotations is an alternative: Aspect code
can be written in pure Java; we could rely on standard
Eclipse with an ordinary Java compiler, without AJDT plug-
in for AspectJ compilation etc. The Listing 2 is an example
that uses Java classes with AspectJ annotations.

Listing 2. Example Use of OpenJPA
@Aspect
class MyAspect {
internal variables and methods;
@Before(execution(* MyClass*.get*(..)) )
public void myPC() {

do something before join point
} ... }

An annotation @Aspect lets a Java class MyAspect be-
come an aspect. If a method is annotated with @Before,
@After etc., it becomes an advice that is executed before or
after join points, resp. Those annotations specify pointcuts as
a String. This aspect possesses a @Before advice that adds
logic before executing those methods that are captured by
the pointcut myPC. In order to use annotations, the AspectJ
runtime JAR is required in the classpath. To make the aspect
active, we also have to start the JVM (e.g., in Eclipse or an

OSGi container) with an javaagent argument referring to the
AspectJ weaver. Annotations are then evaluated and become
really active, because a so-called load-time weaving takes
place: Aspect weaving occurs whenever a matching class is
loaded.

If loadtime weaving cannot be applied, e.g., if AspectJ
should be applied to code running in an OSGi container, an-
other pre-compilation approach can be used which requires
the iajc compiler. We can take the aspect class and compile
it into a JAR file with an ordinary Java compiler. Then,
the aspects JAR can be applied to classes or existing JARs,
particularly, 3rd party JARs such as Hibernate or JDBC
drivers. There is an iajc taskdef in ANT to make both steps
easier. That is the approach we are pursuing. This is only a
brief overview of AspectJ; examples are given later in the
code samples.

B. Monitoring Component

All the connection information is collected by a cen-
tral persistence statistics component. This component im-
plements an OSGi component and acts as a subpart of
the persistence system. This component offers two basic
interface parts:

One part provides the parameterisation of the statistics
functionality. It covers switching certain functionality on and
off. And it defines how detailed the monitoring results should
be. The output is written to a log with a definable frequency.

The other part receives the notifications of various con-
nection attempts to obtain and release connections. The com-
ponent receives such notifications and saves this information
in a counter-based local data structure. Since during the
life cycle, the entire application uses millions of connec-
tions, a comprehensive logging of every attempt would not
make sense. Hence, the persistence statistics tracks for only
currently open entities and stores an operational maximum
number in addition.

Furthermore, the persistence statistics component can
place an alert, if a connection remains open without any
closing action, or if an attempt to close a non-existent
connection happens (where no preceding obtainment has
taken place). It is important to determine the origin of
connection acquisitions, which could be resembled by the
database user or by the persistence unit. In our case, there
are only few database users are configured. Extracting the
persistence unit is a better choice.

The data for these events is also separated by the func-
tional components. That is, the persistence statistics stores
all attempts separated by the user management services, all
by the contact list service, etc. Depending on the parame-
terisation of the persistence statistics component, reports of
this data can be written at different levels of granularity at
different time intervals.

370

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



C. Connection Pool Monitoring: Wrapper Template

As already mentioned, the persistence system introduces
a wrapping template that encapsulates database requests at a
central place. This template is a first place to add monitoring
functionality. It covers the notification of following events:
First, the wrapping template notifies the obtainment and the
release of an EntityManager of OpenJPA (which is a Session
in Hibernate). Then, the template notifies the persistence
statistics component when such a logical connection is
obtained or released. Depending on the parameterisation,
the persistence framework can automatically initialise a
connection when a Session/EntityManager is obtained, or
it can defer this step to later phases. For example, OpenJPA
allows for three settings of connection initialisation:

a) a connection is automatically obtained for an obtained
EntityManager,

b) a connection is obtained if a transaction is opened and
c) a connection is opened on demand when a connection

is actually used by the persistence framework.
This represents the acquisition of logical connections.

Due to a connection pool, this does not necessarily acquire
a new physical JDBC connection. Similarly, closing an
EntityManager is handled. The Listing 3 presents an excerpt
of the template implementation.

Listing 3. Control Points in Operation Flow
start = System.currentTimeMillis();
session = sessionFactory.openSession();
if (OpenJPAWrapper.getStatistics()

.isNotificationsGenerallyEnabledYN()) {
EntityManagerFactory emf =

this.sessionFactory.getEMF();
persistenceUnit = (String)

emf.getConfiguration()
.toProperties(false).get("openjpa.Id");

OpenJPAWrapper.getStatistics()
.notifySessionOpened(

persistenceUnit, getActionId());
}
...
EntityManager oem = session.getEM();
trans = session.beginTransaction();
if (OpenJPAWrapper.getStatistics()
.isNotificationsGenerallyEnabledYN()) {
connectionId = jdbcConn.hashCode();

OpenJPAWrapper.getStatistics()
.notifyTemplateConnectionObtain(

persistenceUnit, getActionId(),
connectionId, elapsed);

}
stop = System.currentTimeMillis();
elapsed = stop start;
if (elapsed > THRESHOLD) {
printTimingWarning("connection",

action, sql, elapsed);
}
start = System.currentTimeMillis();

if (OpenJPAWrapper.getStatistics()
.isNotificationsGenerallyEnabledYN()) {
OpenJPAWrapper.getStatistics()

.notifyTemplateConnectionRelease(
persistenceUnit, getActionId(), connectionId);

OpenJPAWrapper.getStatistics()
.notifySessionClosed(

persistenceUnit, getActionId());
}
session.close();

D. Connection Pool Monitoring: JDBC Driver

The overall goal is also to get information about any phys-
ical open/close connection activity in order to keep track of
the number of currently used connections for each functional
unit. Since the JDBC driver needs to be intercepted the
source code of which is generally not available, we apply
the monitoring aspect as listed in Listing 4.

Listing 4. Aspect for JDBC Driver: Origin
@Aspect
public class ConnectionMonitorAspect {
@AfterReturning(
pointcut = "execution(Connection

solid.jdbc.SolidDriver.connect(..))",
returning = "ret")
public void monitorOpenJDBC
(final Connection ret) {
if (monitoringIsPossible) {
String unit = determineFunctionalUnit();
SolidConnection conn =

(SolidConnection) ret;
theStatistics.notifyJDBCConnectionObtain

(unit, conn.hashCode());
} } ...}

At a first glance, ConnectionMonitorAspect is a Java
class that possesses a method named monitorOpenJDBC.
However, an annotation @Aspect lets the Java class become
an aspect. Since the method is annotated with @AfterRe-
turning, it becomes an advice that is executed after returning
from a method; the returning clause binds a variable ret
to the return value. The method possesses a corresponding
parameter Connection ret that yields access to the return
value.

The @AfterReturning annotation also specifies the point-
cuts as a String. Here, any execution (execution) of a
method SolidDriver.connect with any parameters (..) re-
turning a Connection is intercepted and the logic of the
monitorOpenJDBC method is executed after being re-
turned. In other words, this aspect monitors whenever a
connection is opened. It determines the functional unit
and uses the hashCode to identify the connection and
pass both to the persistence statistics by using theStatis-
tics.notifyJDBCConnectionObtain.

There are other forms of advices such as @Before
(executing before) or @Around (putting logic around or
replacing the original logic) which are handled similarly.
Closing a connection via JDBC is monitored by the aspect
shown in Listing 5.

Listing 5. Aspect for JDBC Driver: Counting
@Before("execution(*
solid.jdbc.SolidConnection.close(..))")
public void monitorCloseJdbc (final JoinPoint jp) {

371

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



if (monitoringIsPossible) {
String unit = determineFunctionalUnit();
SolidConnection conn =

(SolidConnection)jp.getThis();
theStatistics.notifyJDBCConnectionRelease

(unit, conn.hashCode());
} }

The parameter JoinPoint jp gives access to context in-
formation about the join point, especially the object on
which the method is invoked (jp.getThis()). The gathered
information is sent to the central theStatistics object that
keeps this information to determine the number of currently
open connections. Moreover, it keeps track of the maximal
value. This information is managed for each functional unit.
The important point is that the solidDB JDBC driver is
intercepted although its source code is not available. That
is, the aspect code is applied to a 3rd party JAR file.

E. Detecting Misusage

Developers should use the template to access the database,
however, there is no way to force them. Sometimes devel-
opers use JDBC to connect to the RDBMS directly, thus
bypassing the entire infrastructure, e.g., for administration or
setup purposes. When it comes to the monitoring of connec-
tions, all the attempts from different levels of the persistence
system architecture must be monitored: Directly using JDBC
connections has the inherent danger of programmers not
releasing the connection, which would lead to an increase
in connection usage.

Additional aspect advices allow for monitoring certain
kinds of misusage when using the persistence framework
directly. For example, it is monitored whenever an Entity-
ManagerFactory is created by bypassing our wrapper tem-
plate (creation is usually not done explicitly, but implicitly
in the template). This means that an additional connection
pool would be created for the same functional unit. The
corresponding pointcut is:
@Before("execution(

* *..*.createEntityManagerFactory
(String, java.util.Map)) && args(str,map)")

Another pointcut detects any direct usage of JDBC con-
nection handling beside the connection pool:
@Pointcut("execution(*

org.apache.commons.dbcp.*.*(..))")
public void withinDbcp() {}
@AfterReturning(pointcut = "execution(*

solid.jdbc.SolidDriver.connect(..))
&& !cflow(withinDbcp)", returning = "ret")

In both cases, an advice will issue a warning.

F. Connection Aquisition Times

Besides the amount of actual open connections and also
besides the information of the origin, a problem remains:
From the counting of connections, it cannot be seen, if
the pool actually performs efficiently when providing con-
nection objects. It is obvious that connection counting can

happen only at specified intervals. However, an overload
situation can easily slip through the measurement points.

Thus, another measurement facility has been added to the
wrapping template, a time measurement, how long actually a
connection obtainment takes place. If the obtainment takes
place obviously the demand is higher than the number of
connections that the connection pool provides.

In addition, we can guess at medium-ranged connection
obtain times that the pool has freshly created the connection.
Please note that it depends on the computer system used how
many milliseconds the initialization of a connection object
actually takes. This can have two reasons: Either the settings
of the pool reduce the number of kept open connections
too quickly. Or the integrity conditions for a connection are
missed too often, which lets the pool replace an existing
connection with a new one. Both cases also reduce the
performance of the overall system. In the first case, the
settings of the pool need revision. In the second case,
the connection integrity conditions must be checked or the
handling of connections must be evaluated for inappropriate
operations on the connection object.

Although we issue a warning whenever the time to obtain
a connection exceeded a certain threshold, we still do not
know the reason why: Is it because the pool is exhausted and
the DBS has to create a new one? Or has the connection
pool some contention problems solving parallel requests?
To get more diagnostics, we added an additional aspect
that allows distinguishing whether a connection is newly
created or taken from the pool, thereby passing a threshold.
In addition, the current connection pool properties (recently
active and idle connections) are printed.

G. Summary

The proposed environment offers the desired information
about connections. It presents an overview of currently
requested logical database connections and really used phys-
ical connections for any component a certain time intervals.
Moreover, it keeps track of maximal values. If the logical
number value is higher than the physical one, then the pool
seems to be undersized. Similarly, an oversized pool can
easily be detected. An example output send top the log files
is listed in Listing 6.

Listing 6. Example Output of Monitoring
14:12:00,097 DEBUG [PersistenceStatistics]
@b6d6ab says: sess opened ever/current: (1/1),
template conn obtain

ever/max at once/current open: (1/1/1),
jdbc conn max same time/current: (35/35).

...
14:12:00,097 DEBUG [PersistenceStatistics]
session referrer history:
---------------------------------------
domain:
|_ com.siemens...createDomain(),

ever: 1, curr: 1
|_ max 1 session(s) in use at the same time.

---------------------------------------

372

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



connection referrer history:
---------------------------------------
domain:
|_ com.siemens...createDomain(),

ever: 1, curr: 1
|_ max 1 template conn(s) at the same time.

---------------------------------------
1 current template connections (max at once: 1):
---------------------------------------
12743356 origin: com.siemens...createDomain(),

---------------------------------------
35 current jdbc connections (max at once: 35):
---------------------------------------
|_ domain: 35
---------------------------------------
...

In addition to the introduced monitoring in the previous
sections, also the RDBMS is queried for the connected
users and the number of open connections. Figure 3 shows
a comprehensive overview of the monitoring points in the
architecture.

VI. RESULTS

The introduced connection monitoring allowed insights on
the use of connections for particular services or components.
Such kind of information is important for the following
reasons:

1) Some functionality is called very seldom, resulting in
few database operations, for example a backup service,
while other functionality is called in a continuous man-
ner, for example, a user management service in several
threads. The distinction by the functional units allows
for an assessment of required parallel connections to
the RDBMS. Over- and under-sizing can be avoided.

2) The OpenSOA platform and the services will be
combined in different deployment scenarios resulting
in different total amount of required connections.
Such aggregated numbers are important for the proper
parameterisation of the RDBMS, or the server running
the RDBMS.

3) The monitoring of JDBC connections also verifies the
proper use of the persistence framework. When using a
persistence framework, avoiding direct connections to
the RDBMS is very important. Otherwise, the object
initialization, caching and the retry mechanisms can
lead to inconsistent data. Using our monitoring, we
could detect one component that uses JDBC directly.

4) The monitoring revealed that the number of connec-
tions oscillates within seconds with some settings
of the DBCP: sometimes, even if components were
waiting for a connection from DBCP, newly released
connections were physically closed and immediately
requested again because of the load. This is an im-
portant performance issue that leaded to severe per-
formance degradation. Using our monitoring, it turned
out that the maxActive configuration parameter defines
the upper limit of connections. If another maxIdle

parameter is lower, then DBCP immediately releases
any exceeding connection - even if there are still
requests!
Furthermore, idle connections are evicted in a con-
figurable interval until a minIdle threshold is passed.
Again some kind of oscillation occurs, since a bulk of
connections is released first, and then connections are
acquired to satisfy the minIdle parameter. This strange
and unexpected behavior of the DBCP could then be
fixed.

5) If one component calls additionally internal operations
within the same persistence unit and thus the same
pool a deadlock situation can occur: At high loads
the maximum amount of possible open connection can
be reached by originating calls. Then a sub operation
required cannot obtain further connections. However,
the originating operation cannot proceed, because it
waits for the sub operation. Thus, the combination of
appropriate load models for testing and detailed mon-
itoring facilities is required to systematically identify
such deadlock situations.

The applied connection monitoring has clearly improved
the knowledge about the deployment needs of the OpenSOA
platform. We ask the reader for understanding that no
detailed figures can be given as the OpenSOA platform is
commercial software acting in competition to other solu-
tions. Regarding related solutions, it must be noted that the
presented implementation of such a monitoring was required
for the following reasons:

1) Not every connection pool offers this information at
the required grade: For example, the DBCP connection
pool that we integrated into OpenJPA offers no logging
at all in the current version.

2) The solidDB JDBC driver does not offer such logging
facilities as required.

3) Even if some of the information were available with
OpenJPA, Hibernate, or if an alternative connection
pool like c3p0 would provide the information here and
there, the analysis would require a cumbersome search
inside the log files. In contrast, the a centralised per-
sistence statistics component offers also the advantage
of an aggregated reporting.

4) A RDBMS stores the information at system level.
However, such information can be only used to verify
the information gathered from the various other points.
The RDBMS stores in most cases information about
the number of connections obtained by a particu-
lar database user. Since different components of an
application use the same database user, no detailed
information can be found from there.

VII. CONCLUSIONS

Monitoring database connections in complex software is
manifold and cannot be done by the database system only,

373

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



OpenSOA 
Service

OpenSOA 
Comp. / Lib.

Wrapper Template, Configuration

RDBS

OpenJPA

Connection Pool

JDBC Driver

OpenSOA 
Comp. / Lib.OpenSOA 

Comp. / Lib.OpenSOA 
Comp. / Lib.

OpenSOA 
ServiceOpenSOA 

ServiceOpenSOA 
Service

Code Session /
EntityManager /
Connection Aquisition
Code Connection
Aquisition Time

AspectJ 
Session / EntityManager
Aquisition

AspectJ
Connection Misuse

Query
Open Connections

AspectJ
Connection Aquisition

Figure 3. Monitoring in the Persistence System

if the application is distributed and involves many different
components. Moreover, statistics over the counted connec-
tions is mandatory in order to precisely define parameters
for optimal resource consumption/performance trade-off of
the connection pool. The discussion has motivated that a
precise monitoring of connections to the database and their
origin is relevant in order to optimise different deployment
configurations in terms of the parameters for a connection
pool.

As future work, a self-parameterisation of the connection
pool parameters can be implemented based on the moni-
toring functionality. For this purpose, dynamic connection
pools exist already. However, a combination with the dy-
namic deployment of bundles in the OSGi container would
improve adaptation of connection pool parameters instead
of monitoring the resulting traffic on the connection pool
level only. Such a mechanism requires additional research,
because the optimal number of connections would result
from a statistical model that includes also usage patterns
and the number of served users.

REFERENCES

[1] M.P. Atkinson, R.Morrison: Orthogonally Persistent Object
Systems. VLDB Journal 4, 3 (1995) pp 319-401.

[2] M. Aksit (ed.): Proc. of 2nd Int. Conf. on Aspect-Oriented
Software Development, Boston 2003

[3] R. Bodkin: AOP@Work: Performance monitoring with
AspectJ. http://www.ibm.com/developerworks/java/library/j-
aopwork10/index.html

[4] c3p0 Connection Pool, Project site available at:
http://c3p0.sourceforge.net/

[5] Y. Coady, G. Kiczales: Back to the Future: A Retrospective
Study of Aspect Evolution in Operating System Code. In
[AOSD03]

[6] M. Chapman, A. Vasseur, G. Kniesel (eds.): Proc. Of Industry
Track 3rd Conf. on Aspect-Oriented Software Development,
AOSD 2006, Bonn, ACM Press

[7] Commons DBCP Component. project website available at
http://commons.apache.org/dbcp/

[8] The EJB3 Specification (JSR 220): http://java.sun.com /prod-
ucts/ejb/docs.html

[9] K. Govindraj, S. Narayanan et al.: On Using AOP for Appli-
cation Performance Management. In [CVK06]

[10] R. Filman, D. Friedman: Aspect-Oriented Programming is
Quantification and Obliviousness. Worksh. on Advanced Sep-
aration of Concerns, OOPSLA 2000

374

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/



[11] Hibernate Reference Documentation.
http://www.hibernate.org /hib docs/v3/reference/en/html/

[12] J. Hannemann and G. Kiczales: Design Pattern Implementa-
tion in Java and AspectJ. In Proc. of the 17th Annual ACM
Conf. on Obj.-Orien. Programming, Systems, Languages, and
Applications, OOPSLA 2002, Seattle

[13] U. Hohenstein: Using Aspect-Orientation to Manage
Database Statistics. In:

[14] JSR-000012 JavaTM Data Objects Specification. http:
//jcp.org/aboutJava/communityprocess/first/jsr012/

[15] Java Persistence API. http://java.sun.com/javaee/technologies
/persistence.jsp

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.
Griswold: An Overview of AspectJ. ECOOP 2001, Springer
LNCS 2072

[17] G. Kiczales: Adopting AOP. In Proc. 4th Conf. on Aspect-
Oriented Software Development; AOSD 2005, Chicago, ACM
Press

[18] R. Laddad: AspectJ in Action. Manning Publications Green-
wich 2003

[19] N. Lesiecki: Applying AspectJ to J2EE Application Develop-
ment. IEEE Software, January/February 2006

[20] G. Murphy, A. R. Walker, M. Robillard: Separating Features
in Source Code: An Exploratory Study. In Proc. of 23rd Int.
Conf. on Software Engineering 2001

[21] H. Masuhara, A. Rashid (eds.): Proc of 5th Int. Conf.
on Aspect-Oriented Software Development. Bonn (Germany)
2006

[22] Java Persistence API. http://java.sun.com/javaee/ technologies
/persistence.jsp

[23] Open Service Gateway Initiative. Home Page of the OSGi
Consortium. http://www.osgi.org.

[24] Rashid, A.: Aspect-Oriented Database Systems. Springer
Berlin Heidelberg 2004

[25] A: Rashid, R. Chitchyan: Persistence as an Aspect. In
[AOSD03]

[26] Rod Johnson: Introduction to the Spring Framework.
October 2007. http://www.theserverside.com/tt/articles/ arti-
cle.tss?l=IntrotoSpring25

[27] S. Soares, P. Borba: Implementing Modular and Reusable
Aspect-Oriented Concurrency Control with AspectJ: In
WASP05, UberlŁndia, Brazil

[28] W. Strunk: The Symphonia Product-Line. Java and Obj.-
Orient. (JAOO) Conf. 2007, Arhus, Denmark (2007)

[29] C. Zhang, H.-A. Jacobsen: Quantifying Aspects in Middle-
ware Platforms. In [AOSD03].

375

International Journal on Advances in Intelligent Systems, vol 2 no 2&3, year 2009, http://www.iariajournals.org/intelligent_systems/


