
Probe Framework - A Generic Approach for System
Instrumentation

Markku Pollari
Technical Research Centre of Finland, VTT

Oulu, Finland
Email: markku.pollari@vtt.fi

Teemu Kanstrén∗
Technical Research Centre of Finland, VTT

Oulu, Finland
Email: teemu.kanstren@vtt.fi

Abstract—This paper introduces a general framework directed
for system instrumentation. The introduced framework provides
support for a system instrumentation approach that enables
designing information capture, monitoring and analysis features
into a software-intensive system. We describe the general
concept, architecture and implementation of the framework and
two case studies in its application. As a prototyping platform,
we dealt with collecting information from Linux systems
by probes created with the building blocks and interfaces
provided by the framework. We also discuss the effects of
building support for the framework in an implementation from
the viewpoint of different constraints, especially focusing on
real-time embedded systems, where especially strict constraints
are present. Overall, we demonstrate the feasibility of a more
uniform instrumentation approach through this concept and its
application in two case studies.

Index Terms—system instrumentation; monitoring; analysis;
testing.

I. INTRODUCTION

This paper extends the work presented in [1], by offering a
broader view on the background concepts, and the implemen-
tation of the framework and a more detailed account on the
experiences and lessons learned during the work.

Understanding and analysing the behaviour of complex,
software-intensive systems is important in many phases of
their life cycle, including testing, debugging, diagnosis and
optimization. In addition to these, many systems themselves
are built for the sole purpose of monitoring their environmental
data and reacting to relevant changes, such as detecting
patterns in internet traffic or adapting to available resources.
All these activities require the ability to collect information
from the different parts of the system.

These basic activities and requirements in software engi-
neering have existed since the first days of writing software.
However, despite this there has been little research and activity
to build support for systematic monitoring and information
capture into software platforms. Instead, what is most common
is the use of ad-hoc solutions to capture data where needed,
as needed. In these cases, the instrumentation required to
capture the information is added momentarily into the system

————————————
*Also affiliated at Delft University of Technology, Faculty of Electrical
Engineering, Mathematics and Computer Science, Mekelweg 4, 2628 CD
Delft, The Netherlands.

and removed after the short-term need has passed. Recent
studies have still emphasized this problem, describing large-
scale systems where these types of features are important but
support for them is lacking [2].

In this paper we present a design concept, and its implemen-
tation and validation, for a platform to support the systematic
capture and analysis of information related to the behaviour
of a system and its environment. This platform is termed
as the Probe Framework (PF). The PF provides support for
building monitoring functionality for collecting information
on the behaviour of software intensive systems and using
this information for purposes such as built-in features in the
software itself (as product features) and testing analysis of
the systems during their development (testing and debugging)
and deployment (diagnostics). The prototype implementation
of PF is available as open source[3]. We also discuss the
effects of building support for this type of a framework into
a system from the point of view of the system constraints on
available resources and effects on its behaviour and perfor-
mance, especially focusing on real-time embedded systems,
where especially strict constraints are present.

This paper is structured as follows. Section 2 discusses the
background and motivation for the work. Section 3 describes
the main concepts of the PF at a higher level. Section 4 covers
the implementation of the PF and Section 5 presents two case
studies of utilizing the PF and experiences gained from this
work. Section 6 discusses the related work, and finally the
conclusions in Section 7 end the paper.

II. BACKGROUND AND MOTIVATION

The concept of capturing information from a system and its
environment is often described as tracing the system. Similarly,
in this paper we use the term tracing to describe the activity
of capturing information from a running system, either with
external monitoring or internal instrumentation features. The
data captured is described as a trace of program execution.
Many different domains make use of tracing information, such
are: system security analysis, internet monitoring and protec-
tion [4], run-time adaptation and diagnosis[5], optimization
[6], testing and debugging [5], [7], [8], [9].

There are various tools around for specific instrumentation
and tracing on different platforms, such as DTrace for Solaris
[10] and OSX [11], Linux Trace Toolkit Next Generation

34

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(LTTNG) [12] and SystemTap [13] on Linux. These tools
all share a common goal to observe and store traces of
system behaviour and resource use, such as CPU load, network
traffic and filesystem activity. They are typically intended
to provide a trace facility for the low-level resources and
related behaviour of the system kernel, using solutions such
as their own programming/scripting language to define where
to exactly insert trace code into the operating system kernel
[10][13]. For example, in our implementation of PF we make
use of SystemTap, which allows one to add trace code into
the Linux kernel without the need to recompile or reboot the
running system [14].

These low-level frameworks provide an excellent basis for
capturing low-level information from a system when ad-hoc
instrumentation needs arise. However, while these tools are
useful for many purposes, they alone are not sufficient for
efficient observation of complex system behaviour. Additional
useful information from this low-level information can be
gained by using advanced analysis methods such as multivari-
ate analysis to infer additional information such as relations
and similar properties from the low-level data [15]. However,
what is also needed is information on a higher level, including
the events, messages and interactions of different parts of the
system. Also, information about the environments of these
parts and their relation to the lower level details are needed
for a complete view of system behaviour.

This type of information is a part of the higher level design
of a system, and it is implemented as higher-level abstractions
inside the components. Thus, it is not possible to build generic
components that would capture this information from all the
components from the OS kernel or any custom application.
When solutions such as component based middleware are
used, it is possible to build part of this support into the
middleware itself to capture the data [2]. However, for an
effective and descriptive trace, application specific tracing is
also needed. For this level of tracing several frameworks exist,
such as Log4J [16] and syslog [17]. Additionally, when the
availability of such features and information is highly valued,
customized support for these have been built into the system
as first-class features [2].

The above descriptions show how effective analysis of
software intensive systems requires many different types of
traces to be supported, collected and analysed together. Dif-
ferent tools need to be used effectively in different steps and
finally combined as one for both built-in features and external
analysis. Only in this way is it possible to provide the required
support to get a definite view of the behaviour of a complex
system.

From this viewpoint of complete system analysis and its
support through the life cycle, the described trace tools and
frameworks suffer from a set of issues. The tools use their own
interfaces, custom data formats and storage mechanisms. Ad-
ditionally, often the storage is only considered in the form of a
local filesystem with the intention of being manually exported
to external analysis tools or read as such by humans. This
can be problematic in different systems and environemnts. For

example, simply accessing this information from an embedded
system can be very difficult as these systems are often limited
in their external interfaces. Even where this is possible, in
the case of a deployed system, it is not always cost-effective
for someone to go to the field site to examine the trace file.
Additionally, the trend for relying on ad-hoc temporary tracing
solutions makes it very difficult to capture a meaningful trace
of a system as there is no built-in support to be used when
needed. The lack of design support for proper tracing from the
beginning further brings problems such as probe effects, where
addition of temporary trace mechanisms changes the timings
and resource usage of the actual running system that is to be
analysed [18]. The probe effect is illustrated in Figure 1, by
showing how the timing of two tasks is changed by the tracing.

time

task A instrumentation

time

task B

time

task A

time

task B

Task B preempts task A due to 

increased execution time

Never covered until 

instrumentation is removed

task A

task B A continues

Fig. 1. Probe effect

To address these issues, to build a basis for effective system
level tracing, analysis and related program functions, we have
developed a trace platform called Probe Framework (PF). Our
prototype implementation is created on Linux and enables the
collection of trace information both from kernel and user space
probes, through a single unified component in the system. By
starting with the goal of building these features into the system
as first-class features we make it possible to address properties
such as probe effects, information access, limited resources
and real-time requirements. With a commonly shared and
customizable format for the collected trace, it is possible to
store and export this information to different analysis tools.
With unified interfaces inside the platform it is also possible
to easily design built-in features that make use of information
from all the various tools. As the main intent is to build a
higher-level abstraction mechanism, we use existing tools such
as SystemTap and integrate these to the Probe Framework. The
PF and its main concepts are described in more detail in the
following sections.

III. GENERAL CONCEPT

On a higher level, the Probe Framework is a part of a larger
concept, which includes three main components; trace capture,
trace storage database and trace analysis. The PF provides the
needed support as a platform to capture the trace information

35

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



from the system under test. An information database server is
used to collect the trace information and provide the means
to query, filter and export the trace to analysis tools. Various
trace analysis tools can be used to analyse the information
provided. This includes tools specifically for trace analysis and
also tools more generally intended for analysis of data, such
as multivariate analysis. For example, experiences on using a
multivariate analysis tool to analyse the network functionality
and behaviour of a system from information that can be
captured with the help of PF have been studied in [15]. In
addition to making use of the captured information in external
analysis tools, it is also possible to make use of it as part
of built-in product features for processes such as adaptation,
testing and analysis. This overall architecture is described in
Figure 2.

Storage &
Relay

measurements

probe
databasebinaries

Provided /
custom probes

PerVisGL

PCA

 Another
Third party
Analysis tool

export
values

 Another
Third party

Tracing / Data
collection toolSystemTap

interface

interface

values

Third party
analysis /

adjustment
toolPF

Fig. 2. High level overview of PF and external components.

The Probe Framework itself has a layered architecture as
presented by Buschmann et al. [19]. The PF’s architecture
is divided in three main layers: basic services, monitoring
services and test services. Each of these layers builds on the
functionality of the layers below it, as described in Figure 3.

Test Services

Monitoring Services

Basic Services

C
on

fig
ur

at
io

n

Fig. 3. PF internal architecture.

The basic services contain services deemed necessary for
information handling, such as data buffering, storage and
relaying to external database. The basic services are general for
all the probes, and offer the support for fast implementation of
the upper level services. The term probe, in the context of this
paper, means the entity that is formed by utilizing the different

service layers to create the functionality for collecting and
handling the monitoring of some aspect of the target system.
The basic services comprises of three parts; the first part is
the probe interfaces, the second is the binary formatter and
the third is the communication handler. These three parts are
illustrated in Figure 4, the figure also describes the internal
division of the basic services. It can be seen that the binary
formatter and the communication handler are encapsulated as
a storage and relay (module), but without going into the details
here the upcoming Section IV-B offers more on this subject.

probe 

database

probes

probe interfaces

pb

pb

pb

pb

pb

pb

pb

pb

shared 

ringbuffers

communication 

handler
binary 

formatter

bin
ary binaries

measurements

Storage & Relay

Basic Services

Fig. 4. Structure of basic services

Together these parts take care of all the data management of
the tracing as described in Figure 2.

The monitoring services offers a set of readily provided
interfaces and probes to attach to the basic services. The
actual services at this layer are used to capture and monitor
different values, such as memory consumption and CPU
usage, and their evolution in the system. Many of these basic
monitoring services are provided as ready probe components
in the implementation of the PF, including CPU load, memory
consumption and network traffic monitoring. Further, they
provide simple interfaces for building new monitoring services
on top of them without the need to concern with the complex
internal details of the data management.

The top layer, test services, is the most implementation
dependent and is where the system specific functionality can
be build. For example, functionality can be built to inject test
data into the system, use a provided set of monitors to see how
the system behaves and store the test results using the basic
services. Similarly, in a running system the same monitors
could be used from a test service (or more accurately, built-
in functionality) that adapts the system’s runtime behaviour
and use of components based on thresholds set for monitored
values such as memory consumption, CPU load and network
traffic patterns.

An important concept for this type of analysis is that of
testability. Although generally associated with testing, it is
also relevant in many ways to any requirement to capture

36

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



information about system execution for analysis. Testability
is commonly divided to two main properties: controllability
and observability [20]. Controllability is the ability to control
the system execution, for example, in order to make it take a
chosen path. Observability is the ability to capture information
about the different properties of the system (such as events
and messages). Although a monitoring framework such as PF
is mainly concerned with observability, also controllability is
important in order to build support for dynamic and effective
tracing as well as services that make use of this trace func-
tionality. For example, in order to insert ”proxy” style probes
to capture communication messages between system compo-
nents, the design must support the reconfiguration required,
possibly even during runtime. Solutions to address this have
been discussed in more detail in [2].

IV. IMPLEMENTATION

A prototype of the PF has been implemented for embedded
real-time Linux systems. This platform was chosen as it
provides an interesting and realistic platform for the imple-
mentation of this type of software, with both possible issues
and available options. These issues include the strict timing
requirements and limited resources inherent to the embedded
real-time systems. Yet, even as we are dealing with embedded
software where we know all the running software beforehand it
needs to be possible to access the whole platform including the
kernel. With Linux as the operating system, this is particularly
easy as the whole operating system is open source software.

A. Setting for the implementation

The setting for the implementation is considered to contain
the following elements: run-time monitoring, Linux environ-
ment and embedded real-time environment. The setting for
the framework entails various interesting challenges. The next
sections depict some of those challenges.

1) Run-time monitoring: The goal of run-time monitoring
creates challenges because is makes the execution somewhat
unpredictable. Generally, the system has limited resources and
many consumers ”competing” for them. As such, any kind of
extra activity in the system can have severe consequences.
The extra activity refers to the act of monitoring, which
in a software-focused case entails some code being run in
order to capture data. The monitoring can be understood as
data collection, and instrumentation is a way to realize it
through software. The monitoring process in whole changes
the targeted system, software monitoring always consumes
resources and inflicts an overhead to the underlying system.
Depending on the context this might pose a problem.

The run-time monitoring states that monitoring, tests, data
collection, etc., are conducted while the target system performs
its appointed functionality. In other words, everything happens
while the target system is executing normally. However, the
concept of ”normally” can be bent a little as certain liberties do
affect cases where some specific property is being monitored.
For those cases, it is only viable to focus on the necessary
items while the rest can be ignored. In practice: a specific

part of the target, in this case it could be a sub-program
of some sort, is isolated and only it is run in the system,
while the rest is substituted with ”stubs”. Still, the aim of
run-time monitoring is to stay true to the actual real-life end
deployment, and limit the overhead of monitoring, or at least
control how the overhead occurs in the target. Because of
this, the control aspect of testability is important. For a highly
controllable system, the choices of instrumentation leave room
to better manage the overhead in the context of the services
built to make use of the provided tracing possibilities, as well
as to configure more dynamically the used trace services.

The importance of run-time monitoring is diverse; the
implementation is seen in its natural environment and several
aspects of it can be measured and analyzed. Testing can be
done against the ”real thing”, therefore, unexpected issues
have a possibility to surface. Wegener et al. [21] mention
a few important issues that can be obtained through run-
time monitoring. These are the dynamic aspects such as the
duration of computations, the actual memory usages of the
program during execution, and the synchronization of parallel
processes. These aspects are of special interest for real-time
systems as resource allocations might be hard to determine
beforehand, and estimates for resource consumptions are only
suggestive, and therefore need to be verified. As such, run-time
monitoring also provides support for a wider part of the system
lifecycle, including in-field diagnosis, where the only option
available is to use the available run-time services or otherwise
lose the information of interest (such as failure state and its
cause in deployed systems). Where information is needed for
a run-time adaption of system behaviour, run-time monitoring
is again the only possible solution.

2) Linux environment: The Linux environment indicates
that the system has either a limited (customized & embedded)
or a full Linux operating system (OS), with support for
network access, filesystem, scheduling, etc.

The Linux OS is open source, and so is the Linux kernel,
with several distributions readily available depending on what
flavour one likes. The distributions aside, the core of Linux
is the monolithic kernel. This core is quite versatile and it is
autonomous from the rest of the OS. The monolithic means
that the entire kernel is run in a privileged kernel space in a
hypervisor mode, as opposed to user space that has relatively
restricted execution possibilities. In a nutshell the difference
is that a program in supervisor (kernel) mode is trusted never
to fail, and this is not questioned or accumulated for, where
as in the user space the failure is an option and there are
measures for managing those failures without a total system
crash. Because of this, a general guideline for when operating
in Linux is to perform actions in the user space if possible, as
kernel space is strictly reserved for running the kernel, kernel
extensions, and some device drivers [22].

a) Modularity: The modular nature of the Linux kernel
is worth mentioning, because it is possible to dynamically
load and unload executable modules to the kernel at run-
time. This modularity of the kernel is at the binary image
level of the kernel. What this means is that after the code

37

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



comprising the Linux kernel is loaded from a binary image
at boot up, it is possible to dynamically load modules to
expand the functionality of the current image at run-time
– as opposed to rebooting with a different kernel image.
The modules allow easy extension of the kernel’s capabilities
as required. However, dynamically loadable modules incur
a small overhead compared to building the module directly
into the kernel image. On the other hand, dynamic loading
of modules helps to keep the amount of code running in the
kernel space to a minimum, useful for example to minimize the
kernel’s memory footprint for embedded devices with limited
hardware resources. Modularity can be used to address the
run-time inclusion of PF services, when there is a need to
consider general resource constraints and there is need to
disable external trace components used with PF for general
operation, while maintaining the option to enable these during
runtime.

b) Linux kernel: On the implementation level of the
Linux kernel the used programming language is C, and as
a big part of the kernel deals with device drivers and other
hardware-oriented functions, the C language is a fitting choice
for all this hardware oriented programming. Due to various
constraints, it is generally considered that any code expected
to run in kernel space has to be C code. Additionally, the
different programs running in the kernel are often separate
processes, and user space contains various different processes,
and programs implemented with numerous programming lan-
guages and environments.

As mentioned the core of a Linux system, kernel, is not
dependent on the rest of the OS, therefore it remains relatively
the same between different hardware platforms. Also, what is
handy about the kernel is that most of the functionality is
highly abstracted. Because of these, the gap between host-
target development common in embedded systems is not so
wide in Linux environment. This gives the option to implement
generic services to support capturing information for any sys-
tem and application running on top of a Linux based system.
Thus, some services for OS level information capture can be
provided as generic, while providing support for application
specific trace implementation.

3) Embedded real-time environment: Another factor in the
environment is the embedded real-time aspect. Embedded
real-time systems possess unique attributes, and requirements.
These two attributes, embeddedness and real-timeness, con-
tribute to the complexity of the environment.

The real-time aspect of the system dictates that there are
constraints placed on the timing of the actions the system
performs. This can be defined as having performance deadlines
on computations and actions[23]. Knowing the state of the
system has conventionally been a great help in testing the
system and in verifying its behaviour. The system being real-
time might cloud this knowledge, the knowledge of the internal
functionality of the system for a given point in time, as the
possible variations in the system’s execution paths quickly
approach infinity when time is taken into consideration.

The other side of the equation, embeddedness, refers to

systems that interact with the real physical world, controlling
some specific hardware, such as a cell phone [24].

In combination, embedded real-time systems are systems
built with a specific purpose in mind. These systems specialize
in fulfilling that purpose, often with the minimal possible cost.
The environment where these systems operate is dynamic;
computational loads are unpredictable yet responses have to
be provided according to precise timing constraints [25]. The
minimization of the cost often results in scarce operating
resources and having just enough resources is quite common
in embedded systems. The resource constraints common to
embedded systems are due to limited physical space, weight
and energy usage, and cost constraints. The strict constraints
associated to embedded real-time, along with the environments
these systems operate in, offer challenging design and imple-
mentation choices. Schulz et al. [26] list characteristics of the
current generation of these systems: continuing increase in sys-
tem complexity, diminishing design cycles, tightly integrated
mixed hardware and software components, and the growing
use of reconfigurable devices.

The features of the embedded real-time environment that
are considered important in the context of the Probe Frame-
work are resource constraints, scheduling frequencies and
adaptability to data extraction, timing alterations and relaying
possibilities inside the target system.

4) Restrictions forced by the environments: The issues
common to embedded systems and real-time systems, such
as low memory, limited CPU power, timing requirement, etc.,
are valid restrictions for the implementation. Also, the Linux
environment and the run-time monitoring have their share of
challenges for the implementation.

However, the biggest challenge is most likely the inde-
terminism brought forth by the nature of environment. The
reason for this is that the execution has dynamic elements
that can be estimated to some extent but not to the extent to
be irrelevant. Another factor is that each embedded real-time
system is unique in context, and preparing for a wide variety
of embedded systems is challenging. Because of this, several
generalizations and abstractions are needed for adaptability to
be able to cover every system. Deciding on the generalization
and abstractions, i.e., the common factors, for embedded real-
time systems need a set of restriction to be meaningful. Here
the Linux environment offers the needed focus point for that
purpose. The possibilities offered by the Linux kernel and
OS outline a set of functionality for managing the general
required operations for system instrumentation. This set of
functionality is the basis for our prototype implementation
Probe Framework.

A big restriction concerning the run-time monitoring is the
issue of a potentially huge amount of data, as the system can
execute at the speeds of several megaticks per second, and
keep running for a long time, it is clear that the amount of
collected information can accumulate fast. When combined
with the low amount of memory and limited disk space of
typical embedded systems, along with the timing requirements
of real-time systems, the combination requires special atten-

38

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



tion. Another restriction is the used programming language.
Considering the C dependency of the kernel, it is easy to
see why most of the software in Linux is done either in C
or C++. Through this factor, it is natural that the choice for
implementation language of the Probe Framework prototype
is C, and C++ for parts where it is fitting. Also, the partition
of the user/kernel space in Linux causes the need to manage
each side’s monitoring needs separately and as conveniently
as possible.

B. Main parts of the implementation

The focus of the prototype implementation is on the basic
services layer, because the basic services are general for all
the probes, and offer the support for fast implementation of
the upper level services. As mentioned, the basic services
comprises of three parts: the probe interfaces, the binary
formatter and the communication handler, see Figure 4. Here
the implementation of these three parts is covered, starting
with the probe interfaces.

Although conceptually one, the actual implementation of
the probe interfaces in basic service layer is divided in two.
The major reason for this is the way execution in operating
systems typically takes place, in either user space or kernel
space, refer to Section IV-A2. This separation also acts as a
divisor for the probe types, resulting in a split between kernel
probes and user probes. Additionally, in Linux as well as
most modern OS’s each user space process runs in its own
virtual memory space, and thus cannot normally access the
memory of other processes nor can other processes access
its memory [22]. However, for effective implementation of
the PF, all the trace data for a single system needs to be
centrally managed. This requires that there needs to be a single
component that takes care of the data management for all the
probes deployed, either in kernel or user space. This division
of implementations, probes, probe interfaces and storage and
relay module, is described in Figure 5.

User 

space

Kernel 

space

shared 

ringbuffers

measurements

probe 

database
communication 

handler

binary 

formatter

Storage and 

relay module

pb

user space 

probe interfaces

binaries

binary

probes

probes

kernel space 

probe interfaces
pb pb

pb pb

pbpb pb

pbpb

pb

Fig. 5. Division of the implementation

The storage and relay module resides in the user space,
conforming to a general guideline for operating systems [22];
perform actions in the user space if possible, as kernel space
should be reserved for parts that absolutely must be there as
they require special privileges. Kernel code can also crash
the whole system with its privileges and thus these parts
need to be absolutely secure and reliable. Since we do not
need to perform actions with special privileges it makes
sense to locate most of the code in the user space. This is
also one of the main reasons for why the shared memory
regions are used between kernel space and user space, and
also inside user space, see Section IV-C5 for details on the
shared memory utilization. This was all in order to separate
the trace handling functionality, see Section IV-C4 for trace
handling information, from the probes and to centralize the
trace collected by the probes. This enables the storage and
relay module to access the trace, format it and provide it for
higher layer functionality or simply relay it to the end storage
as requested. All this reduces the interference induced to the
target by the monitoring activity conducted by the probe as all
the ”extra” processing can be done separate to the probe in its
own process. Another benefit for having the storage and relay
module, i.e., the basic services, in its own process in user space
is that it enables easier configuration of the provided services.

The binary formatter part of the said module is the simplest
part of the component; it is as the name suggests a formatter
used in changing the collected data to a more manageable
form. The reason for the use of binary format is to provide
an effective, single format to share the data between different
tools, layers and databases, refer to Section IV-C6 for detail
on the binary format. The intent is to support probes created
in different programming languages, running on different
platforms and with strict constraints on memory and real-
time requirements typical to embedded systems. Implementing
this effectively is not trivial; however, the user is completely
shielded from the details by the provided abstraction inter-
faces. The communication handler is the second part of the
storage and relay module. This part handles the data transfer
to end storage locations, takes care of the configuration of
the storage and relay module, see Section IV-C1 for the
configuration, and manages the data extraction from the probe
buffers.

In practice the basic services are implemented as a shared
library component, meaning that the implementation code
needs only a single instance (code segment) to reside in the
memory during runtime. This makes synchronizing all the
trace data for a system overall much simpler due to only having
a single instance of basic services for a system at any time.
The library is implemented as a dynamically linked library,
which is linked to the components during execution, meaning
it is shared also between different processes in the user space.
For the kernel space there is a similar component.

The following sections shed more light on the internal
functionality of the Probe Framework.

39

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Properties of the implementation

The most important properties of the Probe Framework
are covered here. The included sections deal with the Probe
Framework’s configuration possibilities, instrumentation pos-
sibilities and the way the data collected by the probes is
managed in the framework. Also, the message forming and
the used binary protocol is covered here.

1) Configuration of the implementation: In order to cope
with a variety of different devices, the configuration possi-
bilities of the Probe Framework are substantial. Each probe
can be configured separately, as can be the storage and
relay module. Various possibilities for accumulating for the
different capabilities of the target system are offered by the
Probe Framework. The output possibilities and replacement
strategies, etc., used by the storage and relay module are all
configurable to suit the system’s capabilities.

The major control features of the Probe Framework reside
inside a configuration file that is read during the activation of
the storage and relay module. This allows configuring the basic
parameters such as overall buffers, general policies and storage
mechanisms externally. Another layer of control is embedded
in the creation of the probes, during the implementation of
a probe the creator can use custom settings to define probe
specific values or leave them out in which case the default
generic values will be used. The probe specific attributes
include buffer size, preferred storage location, priority, timing
accuracy and presumed output type. Additionally, the creation
of output types used by the probe introduces control as it
is possible to use prioritized data types for increasing the
probability that the collected trace reaches its storage location.
In order to address restrictions such as keeping the monitoring
overhead low, several policy parameters can be defined. One is
the possibility of discarding parts of the collected trace if the
basic services cannot run fast enough to relay it to a storage
destination. This is further influenced by the priority set to the
trace through the configuration. More advanced policies can
be implemented inside custom probes, such as sampling or
time-interval captures.

The most important part in configuration is when, how and
on what condition the data is collected by the probe. This
is left open on purpose so that the implementor can choose
the most suitable collecting method. Choices need to be made
about the frequency of the data collection and preconditioning
of the collection events. As an example, the collection could
be sampling-based so that every Nth data value is collected.
Similarly, some exceptions, values larger or differing from
the expected, could work as a trigger for the collection. The
choice of how to collect the data and the implementation of
this selection is hence forth referred to as the front end of the
probe.

a) Configuration file: The main features of our PF imple-
mentation configuration are controlled by a configuration file.
It allows one to define the storage locations for the collected
data and the relative importances between the storage options
when multiple options are activated.

The available storage types are memory, file, folder, TCP
and UDP. Depending on the type, additional parameters are
given to define, for instance, the ip address of a trace server
for the TCP and UDP options, or the path for the storage file.
The trace server for TCP and UDP in this context refer to
(an external) server component that stores the provided data
into the probe database mentioned earlier. Continuing on the
main types, two of them are quite similar mass storage types,
namely the file and folder. The difference between these two
are the used replacement strategies; more on these strategies
in next paragraph. Another important part of the configuration
is the capability to define if a given location is dynamically
or statically allocated. There are two options for each storage
type. First is the relative priority of each instance compared to
the other storage type instances. The second is the allocation
strategy, which can be either static or dynamic. The static
allocation implies that resources for utilizing that particular
location are reserved immediately when the storage and relay
module is instantiated. For example, the memory type might
specify that 2 MB of main memory can be utilized for storage,
which would be immediately allocated and made writeable. In
the case of dynamic allocation, the memory would be allocated
as required as more data is written.

In the case of the Linux implementation, a notable property
is that the Linux filesystem does not discriminate between
mass storage devices, or physical location for that matter.
Because of this, it is even possible to use a nonlocal file
or folder as a storage destination, given that the location is
mounted to the local filesystem. This way, it is possible to use
external hard drives, networked hard drives, usb-sticks, mmc
cards and even memory-mapped files for storage locations,
as long as it is possible to refer to it trough a path in the
main configuration file. This offers a lot more versatility to
configuration.

b) Replacement strategies: The replacement strategy for
the used storage is defined in the configuartion file. Depend-
ing on the type of the storage, there are several strategies
available. For the TCP and UDP types, the strategies are not
used because they typically refer to an external trace server
and controlling an external entity is not in the scope of a
PF functionality embedded inside a system implementation.
Buffering strategies would be meaningful but they are different
from replacement strategies and we have currently focused on
strategies meaningful to embedded functionality. The strategies
are therefor relevant to the memory, file and folder types.

For the memory type, the replacement options are stop,
restart, priority and wrapping. Stop means that when the
amount of memory allocated has been filled with data, the
memory is no longer available as a storage location. With
restart, when the allocated memory is full, all the previous data
is discarded to make room for the new trace. Using priority,
the data with the lowest priority are removed first to make
room when the allocated memory is full. Each data element
is stored with a user defined priority as will be described in
following sections. The last case, wrapping, treats the storage
as a circular buffer with varying slot sizes. The next suitable

40

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



slot is chosen from the buffer for writing.
For the file and folder types, the basic replacement options

are stop and restart. Folder has additionally singleflip and
multipleflipN (where N ∈ {Z+ ∩ {1, 2}}). These two new
options are variations of the restart replacement strategy. Here
N denotes the number of used files. These flips utilize N
number of files to divide the allocated space in N parts. The
result obtained is the maximum size of a single file inside
the folder. When the current file where the trace is stored to
reaches this limit, another file is selected and used as storage
for following data. After the total allocated space runs out,
the first file is removed and a new empty one takes its place
similar to the restart case. The benefit of the flips is that it is
possible to save more of the already traced data. For instance,
if a simple restart is used, all previous trace is lost when space
runs out; but with flips, the trace persists longer in the storage.
Therefore, when the monitoring ends, provided that enough
trace was collected, the folder will contain N-1 files and have
at least

(N − 1) ∗ total allocated space

N
, (where N ≥ 2)

bytes of traced data stored.
Lastly before moving on, a short note about utilizing several

instances of the storage and relay module. The Probe Frame-
work’s architecture places no limitations on this. It is possible
to have several of them, each with a specific configuration.
This way, the probes can choose the storage and relay module
instance to use; the id of the major shared memory region the
probe registered to during creation dictates the division. This
results in a higher level configuration need that is no longer on
the scope of the implemented framework. For the interested,
Linux offers several ways for achieving this type of control.
One method is called resource groups [27]. It could be used in
encapsulating and running the storage and relay modules. This
way the modules could be differentiated and priority, resource
usage, etc., could be set for each allowing for a more managed
solution.

2) Instrumentation possibilities: As described earlier, in-
strumentation is divided into two main types of probes:
kernel and user space probes. A distinction can also be made
between internal and external instrumentation. Internal refers
to embedding the instrumentation code to the software object
that is part of the monitored system. In this case the probe is
an integral part of the program code. External instrumentation
refers to the probes where no modifications are made to the
system software itself. Instead a stand-alone process handles
the monitoring from outside of the target software. The PF pro-
vides support for all these different types of instrumentation.
Custom kernel and user space probes and built-in functionality
can be created using the services provided at the different
layers of the PF. A set of external instrumentation components
are provided as kernel probes and processes to collect and
analyse generic properties such as task-switches, CPU load
and network traffic. More such custom components can also be
easily created. All these instrumentation possibilities share the

set of basic services that remain unchanged between different
implementation possibilities. Therefore, it is simple to analyse
the collected trace data, build additional functionality or make
other use of the instrumentation data from all different probes
and monitoring tools through the provided interfaces.

In order not to limit the instrumentation possibilities, the
choice of what to collect, how to collect it and a part of
the implementation of this functionality is left open by the
Probe Framework. What the Probe Framework provides for
implementing the instrumentation, are the basic services that
remain unchanged between different implementation possibil-
ities. Therefore, after the choice of what to collect from the
SUT and how or if to use sampling or conditioning on the
collection, the Probe Framework’s basic services are used by
passing the trace to it. In short, what is needed is a simple
front end, and then the framework’s services can handle the
rest. Of course, this is overly simplified of what happens on
the detailed level, such as calling the probe interfaces and
setting the configuration parameters, etc., Still, it gives the
bigger picture of creating the probes.

a) Instrumentation types: The types of probes can be
divided to kernel- and user-space probes. These include the
possibility to use third-party frameworks to capture the trace
and link these to the basic services in order to provide a
uniform trace over different parts of the system. One such
framework for kernel space is SystemTap [14]. SystemTap
enables one to add probe code in nearly any location of the
Linux kernel, without the need to modify the kernel source
code. This is done by code injection during runtime execution,
meaning that it can be done while the kernel is running. Use
of SystemTap is discussed in more detail in Section IV-C3.

A second possibility is to modify the system source code
by adding the needed instrumentation code directly to specific
locations. However, the downside is that this method requires
that the software is recompiled.

For external monitoring in the case of the kernel is is pos-
sible to create a kernel module dedicated solely to monitoring
some activity. In this case, as well as the other cases, the basic
services of Probe Framework provide the means of passing the
collected data to the end deployment location.

These different instrumentation options are supported for
both kernel-space and user-space as the services provided by
the PF can be linked to any monitoring code or service.

b) Categorizing the probes: Section III showed the lay-
ered structure of the Probe Framework. Here the two upmost
layers, the monitoring services and test services, are of interest.

The monitoring and test service layers contain what can be
understood as probes. These probes are realizations of certain
types of instrumentations. Depending on the implementation,
probe front end, etc., they are either context dependent or
more general ones. The monitoring services contain the more
general probes and focus on instrumentations that collect
general information from the target system. These services are
reusable, and include for instance the possibility to measure
the memory usage of different programs or the CPU load
generated by the programs. The complexity of these services is

41

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



quite simple as they usually contain just the collection of some
data values. Hence the name, general monitoring services.

The higher level test services are more context depen-
dent, and their functionality is more complex compared to
monitoring services. An example of a test service might be,
for instance, the collection or generation of inputs to some
part of the target, along with the collection of the resulting
outputs. Some processing could also take place in the service
before passing the results to the basic services for end storage.
The implementations are not restricted to just testing related
functionality. The service could, for instance, provide useful
functionality for adjusting some quality parameters in the
deployed system. Although our implementation is focused on
the basic services, for different domains, more generic higher
level components could also be provided.

Finally, as was presented in Figure 3, it is possible to
construct probes that utilize all of the layers. This means
that it is also possible, for instance, to use previously made
probes to create a new more complex one. This case is mostly
relevant for the test services layer, where it is possible to use
the services from all the layers beneath it.

3) Linking with external tools: As an example of linking
the PF with external monitoring tools, this section describes
how we have linked it with SystemTap. SystemTap is a frame-
work characterized to simplify the gathering of information
about the running Linux system. It is also said to eliminate the
need for the developer to go through the tedious and disruptive
instrument, recompile, install, and reboot sequence that may
be otherwise required to collect data.[14]

With SystemTap, it is possible to monitor the variables used
by the kernel, even altering the variables and performing extra
operations inside the placed probes is possible. For controlling
this functionality, SystemTap provides a simple command line
interface and a scripting language for writing instrumentations.
SystemTap can be utilized in most Linux installations as the
required components are commonly included in the distribu-
tions. For other system, similar framework, such as DTrace,
exist as described before.

How the SystemTap works and how the Probe Framework
works in conjunction with the SystemTap is depicted in
Figure 6. The figure is adapted from [28], and has been
modified to include the addition of the Probe Framework.

4) Trace handling in the implementation: This section
describes the path the trace data takes through the Probe
Framework. The trace data is first stored in an internal
ringbuffer inside the PF. To assure correct functionality of the
system, the different operations are prioritized so that write
operations have a higher priority. This is due to the writes
often taking place in kernel-space and reads always taking
place in user-space. Since kernel-space is more critical, this is
given a higher priority.

After storage in this internal buffer, the trace becomes the
responsibility of the storage and relay module. This module
runs inside user-space and manages the end storage locations
for the trace data. It accesses the shared memory regions and
uses a table to access the ringbuffer data values in correct

probe 

database

Storage and 

relay module
binaries

SYSTEMTAP

build

Load/run

store output

Stop/unload

DEBUG-INFO

ELF OBJECTS

probe.out

Embed C code:

call probe interfaces

measurements

TRANSLATOR

parse

elaborate

translate

RUNTIME

C TAPSETS

SCRIPT 

LIBRARY

probe.ko

KERNEL

kprobes

relayfs

profiling

probe.stp

PROBE 

INTERFACESprobe.c

pb

shared 

ringbuffer

Fig. 6. Probe Framework to SystemTap conjunction.

order. Each probe instance has a specific identifier used to
map the correct storage and relay module to the correct
probe data, allowing dynamic creation and destruction of
probe elements during system runtime. The storage and relay
module formats the data into correct format and passes it to
the registered storage mechanisms in the order of preference.
Failure handling is also included in order to manage cases
where a chosen storage becomes unavailable.

For handling special messages including those that denote
the start and end information of the provided trace data, special
regions in the shared memory are used. These are given higher
priority than other parts, as without providing this information
first it is not possible to reconstruct the trace data at the end
storage location.

5) Shared memory utilization: Due to the large volumes
of data that can be produced by tracing specific properties
of a system, such as the process scheduler, the performance
of the trace data relay mechanism is important. In practice,
this requires using shared memory regions between kernel-
and user-space. There are basically two fast enough ways
to address this requirement. One is that the processes can
request the kernel to map a part of another process’s memory
space to its own, and the other is that a process can request
a shared memory region with another process. These shared
memory regions are also useable between kernel space and
user space processes. The choice made when developing the
Probe Framework was in favour of the latter option as it works
both in kernel space and user space.

The Portable Operating System Interface (POSIX) is a name
used to refer to a group of standards specified by the IEEE. The
POSIX shared memory falls under the real-time extensions of
the POSIX Kernel APIs [29].

In the Probe Framework, the POSIX shared memory is used
for inter-process communication (IPC) between the probes
in the user space and the storage and relay module. The
choice for using the POSIX shared memory is because it

42

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



provides a standardized API for using the shared memory,
and the implementation is by a set of common C libraries.
The API in question makes it possible to use the shared
memory regions with reduced effort. The fact that the memory
can be easily created, attached to, detached and removed by
separate programs in the user space makes it, not only a
fast, but also a versatile way of relaying the trace between
the probes and the storage and relay module. The shared
memory objects can even persist after the creator, the probe
of the Probe Framework, no longer exists in the system, thus
facilitating versatile collection possibilities for the storage and
relay module.

The usage of these shared memory objects in Probe Frame-
work works in the following way: the user space probe calls
the probe interfaces of basic services layer to create the
internal ringbuffer for itself. This buffer is implemented as a
POSIX shared memory object. During the creation operation,
the identifier used to refer to the shared memory region, the
ringbuffer, is written to a master shared memory region. The
identifier of the master shared memory region is known by all
parties in the IPC, as such the storage and relay module can
then find the ringbuffers and attach to them. This allows the
dynamic addition of the probes to the system.

However, the POSIX shared memory is only for sharing
memory regions between programs in the user space of the
Linux. As such, the RTAI extension was required to obtain a
similar solution for sharing memory between the kernel and
user spaces.

The Real-Time Application Interface (RTAI) is an extension
to the Linux kernel and a collection of a variety of services
for real-time programming [30]. In the Probe Framework
a specific part of the RTAI is utilized, namely the RTAI
shared memory module. This module provides nearly identical
functions to those of the POSIX shared memory available in
the user space. The difference is that now the shared memory
regions are between the kernel probes and the user space
storage and relay module, instead of just two user space
entities.

Due to the similarity of the RTAI shared memory and the
POSIX shared memory, it is possible to use the same memory
management method as was used in the user space side.
Similar to the POSIX shared memory, a master shared memory
region is used in conveying the identifiers of the kernel space
ringbuffers to the user space storage and relay module.

6) Trace communication protocol: The Probe Framework
uses a predefined set of messages for encapsulating the gath-
ered trace. As such, each single data value is associated with a
testcase, data type and other relevant information such as time
and order stamps. This is important as the collected data needs
to be definable and identifiable for it to offer any real value,
by value it is meant that the data can be used for instance in
detecting anomalous behaviour and in telling when and where
it occurred. The used encapsulation enables the data to be
related to a specific context and thus gives it meaning. It is
also possible to define various properties of the trace, such as
the granularity of the timestamps used for stored values. For

optimization purposes, it is also possible to leave out all the
added properties (such as timestamps) to focus only on the
data where high performance is needed.

In order to support different types of analysis scenarios for
the captured trace data, PF provides possibilities to defined
customized data types. In its basic format, the data can be
defined as either input- or output-data for the system. Further
from this the data can be described as either a primitive value
(such as a number or a boolean) or a text string. This allows
for more advanced analysis of the data that is exported. This
type information is only given at the beginning of the trace,
and different formats are later supported to compress the trace
data where the type is the same for a large number of elements.
This again supports high-performace tracing.

V. EXPERIMENTS AND EXPERIENCES

To evaluate the PF we carried out two case studies. Both
of these are in the domain of monitoring embedded software-
intensive systems. We focused on using the monitoring ser-
vices layer of the PF, and indirectly the basic services through
the monitoring layer. We start with describing each experiment
and the PF overhead cost on the analysed system. We show
what we discovered from the collected trace and how we found
the trace could prove useful in a larger sense. In the end
we describe our experiences in using PF as a platform for
implementing overall instrumentation for system monitoring.

The two case studies we performed were monitoring kernel
task switching and the memory usage of different processes.
The cases are divided by the type of instrumentation, see
Section IV-C2 for the types. The task switching case was
done via an internal kernel space probe and the memory
usage case via an external user space probe. The memory
usage case was conducted on an embedded system that was
provided by Espotel1. This platform, called Jive2, is a battery-
powered, touch screen equipped PDA type of a device with
broad connection interfaces. For the task switching case a
typical desktop PC was used.

A. Task switching case study

The task switching case study focused on the scheduling of
processes (tasks). In a typical modern OS there are numerous
processes running at the same time [22], and the scheduler
handles the execution of tasks by dividing the CPU resources
to slots and distributing these slots to the tasks. Our goal was
to build a monitoring probe to capture the information on how
the task switching is performed with the given usage scenarios.
The visibility of the scheduling activity in this scenario is
strictly for the kernel space only, and as such, the monitoring
had to be implemented as a kernel probe. For this case study,
we collected three types of events:

• Task activate
• Schedule
• Task deactivate

1 http://www.espotel.fi
2 http://www.espotel.fi/ratkaisut jive.htm

43

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The schedule event means that the running task is switched
to another, the meanings of activate and deactivate are a bit
more complex. The activate and deactivate denote that the task
is moved to or away from the run queue. For simplicity it can
be tought that these two events tell when the task can be run,
i.e., scheduled.

1) Internal, kernel space probe: In order to keep the case
simple, the processor was set to utilize only one core during
the instrumentation. A multi-core task switching instrumenta-
tion is possible, but it would overly complicate the case as it
requires that additional data is collected to identify the core.

The instrumentation used in this case is an inline probe im-
plemented via SystemTap. The code that uses the framework’s
probe interfaces is added to the SystemTap probe script as
embedded C. For details, refer to Section IV-C3. The targets
for the instrumentation are the three events, therefore, the first
step is to match them directly to the kernel code. The matches
for the task activate, schedule and task deactivate for kernel
2.6.24 are found from /kernel/sched.c under the kernel source
tree, as show in Table I.

TABLE I
MATCHES FOR THE SCHEDULING EVENTS

Event Line no. Function
Task activate 1004 static void activate task()
Schedule 3636 asmlinkage void sched schedule()
Task deactivate 1016 static void deactivate task()

With the locations of the matches known, the SystemTap is
instructed to collect the desired data and insert the code that
invokes the kernel probe interfaces of PF to these locations.
Also the creation of the probe instance, initialization, etc., are
placed to the appropriate locations in the SystemTap probe
script.

In each of the locations targeted by the probe, the collected
data are the involved task ids, states of the tasks and the current
CPU cycle count. Along with those, the time and order stamps
issued by the Probe Framework are also stored.

As the instrumentation is done using external instrumen-
tation it also serves to provide a generic reusable kernel
monitoring probe for future use when task switching needs to
be analysed. Figure 7 illustrates the instrumentation conducted
in this case.

2) Intrusiveness of the instrumentation: In this case, as
task scheduling happens numerous times each second, the
used instrumentation is extremely intrusive. There are bound
to be consequences due to the instrumentation code. As
we want an accurate picture of the task scheduling, all the
events need to be collected and no sampling can be used.
Therefore, the overhead is so high that the probe is only
useable temporarily for purposes such as diagnostics or to
provide basis for performance analysis. In this case we do
not have any hard real-time requirements so the temporary
inclusion of the probe and the temporal effect it poses on
the execution is acceptable. Due to the use of SystemTap this
probe can also be enabled (included) temporarily in a running
system and disabled (removed) when the required diagnostics

User space

Kernel space

pb

shared 

ringbuffer

probe
SystemTap

Storage and 

relay module

kernel space 

probe interfaces

Scheduler

task activate

schedule

task deactivate

binaries

me
asu
rem
ent
s

Fig. 7. Task switch instrumentation.

data is collected. Thus, it shows how it is possible to create
PF probes that can still be included in the system probe set
also in deployed systems while they are only used in ad-hoc
style during system execution. Concerning the analysis results,
it needs to be taken into consideration that the probe code
will consume part of the CPU time, causing skew in the time
interval trace, and that the storage and relay module that runs
in the user space as a normal task will appear on the obtained
task switch trace.

a) Processing overhead: The overhead of the PF was
measured by capturing system timestamps as jiffies, these
jiffies describe system time/clock ticks as 4ms intervals. The
jiffies were obtained from the /proc/stat pseudo-file, see Sec-
tion V-B for more information on the pseudo filesystem. The
stamps were collected at the beginning of the instrumentation
and at its end. To obtain a reference point, the duration of
the instrumentation was measured, and then the same captures
were done in a system without the instrumentation, using the
measured duration as a time interval between the captures.
To give a better picture of the effect the instrumentation had,
the overhead is given as the reduction caused to the true idle
time of the target system. The overhead is calculated with the
following formula:[

DI
J − (CJE − CJB)

]
−

[
DI
J − (CJEI − CJBI)

]
DI
J − (CJE − CJB)

∗100%

DI = Duration of the instrumentation,
J = Duration of a jiffy,
CJEI = Captured jiffies at the end of instrumentation,
CJBI = Captured jiffies at the beginning of instrumentation,
CJE = Captured jiffies at the end of idle,
CJB = Captured jiffies at the beginning of idle.

Figure 8 clarifies the used formula, note however that the
overhead does not accumulate linearily as the figure might
suggest. What matters here is the total accumulated overhead,
not the momentary overhead values, even though those values
might pose an interesting topic for further study.

44

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



DI

start end

Capture

Instrumentation in 

place

start end

Without 

instrumentation

DI

CJEI
CJBI

CJE
CJB

overhead

time

jiffies

Fig. 8. Processing overhead

The calculated overhead for this case was 16%. Overall, this
could be considered a high cost for instrumentation. However,
for an analysis case where the monitoring instrumentation is
very intrusive, i.e., in one of the most frequently executed
function of the kernel, we do not consider this to be a bad
result at all. This probe is only intended to be used as a
temporary analysis aid and not as a fully included production
class feature.

b) Experiences: The Probe Framework manages to ob-
tain the targeted attributes. The three events are captured, and
the associated cycle counts, task ids and states are collected.
The internal probe is successfully injected to the running
kernel via SystemTap. The probe is placed into the correct lo-
cations in the running kernel, and correct values are extracted.
On the user space side, the storage and relay module manages
to handle the data collected by the probe, but not without
some initial difficulties. We had to optimize our initial code
to address the large amount of data captured. However, in the
end, the obtained trace is successfully stored according to the
configuration on the mass storage.

In our first try, the internal ringbuffer overflowed, causing
corruption in the final stored trace data. This was due to the
huge amount of data from capturing all task switches in the
scheduler. By modifying the monitoring system to use a larger
ringbuffer and with the use of the shared memory regions, the
experiment was finally carried out successfully and both the
trace capture and the storage and relay module were able to
perform their duties without error, producing a correct set of
trace data.

c) Utilization possibilities for the trace: In our case
study, we used the obtained trace for different purposes,
including the characterization of the process load running on
the system as described in [31], for analysing task blocking
and scheduler performance.

The used instrumentation provides a fingerprint of the com-
bination of processes run of the system during instrumentation,
a load characteristic. Based on this data the internal depen-
dencies between tasks are revealed, such as task execution
order dependencies. A practical case conducted by Jaakola
[31] showed how this kind of data can be used in simulating
how the load characteristic could be executed on a different
amount of processing units. With his method, it is possible to
simulate how the number of CPUs affects the time required
for running the same task set as was run on the instrumented

system. For testing purposes, the obtained trace could be used
in detecting if priority inversion is taking place. A lower
priority task blocks a higher priority task due to the higher
priority task waiting for a resource the lower priority task is
utilizing. The trace can also be used in estimating how well
the scheduling performs and if the time slots dished out by
the scheduler are of the adequate length, i.e., the scheduling
itself is not restricting the performance.

B. Memory usage case study

The memory usage instrumentation case is defined more
specifically. The focus is on user space instrumentation, and
the instrumentation target is the procfs, process information
pseudo filesystem, which is an interface to the kernel data
structures and provides information about the processes on
the system. It is located under path /proc in a typical Linux
distribution. Actually, the procfs is not really a file system
because it consumes no storage space. It needs only a limited
amount of memory, as all of /proc resides in the main memory,
not on disk. It offers an easy access to information about the
processes on the system. Originally, as the name suggests,
procfs was meant for kernel and kernel modules to send
information about processes’ to user space. Nowadays, it is
used by all of kernel to report anything interesting to the
user space. As such, it is a popular method for user-level to
obtain information on the system internals such as the current
memory consumption.
The targets of interest here are two memory usage illustrating
attributes:

• Total amount of used physical memory
• Total amount of used (memory) swap space

The swap space in Linux context is no different from
any other modern OS; it stands for the chunks of memory,
normally referred to as pages, that are temporarily stored on
the hard disk to cope with the limited amount of available
physical memory. Swapping, the process of utilizing the swap
space, works by copying a page to or from the preconfigured
space on the hard disk to free up or populate a page on
the physical memory. With the combination of the physical
memory and the swap space usages it is possible to derive
the amount of used virtual memory. The used virtual memory
is the sum of the used physical memory and the used swap
space. Before proceeding further, it is good mention that pages
in swap can have duplicates also in the physical memory, thus
making the actual values a bit inaccurate.

1) External, user space probe: Per specified, the probe used
in this case is an external, user space probe. It is an executable
that contains the probe front end and the code that calls the
user space probe interfaces. This executable is run in the user
space with all the other tasks.

As the procfs, target of the instrumentation, houses the
wanted data, the probe needs to read the file that contains the
total amount of used physical memory and the total amount of
used swap. The pseudo-files in procfs reside in memory and
have no content until they are read.

45

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Unfortunately, in procfs there are no direct equivalents to
the wanted values, but there are four attributes in a pseudo-file
meminfo that can be used to derive the target attributes.

The four values, targets of interest, inside the /proc/meminfo
are:

MemTotal: X kB
MemFree: X kB
...
SwapTotal: X kB
SwapFree: X kB
...

In order to capture these values the external probe opens
the /proc/meminfo file and reads the content; a snapshot of
the values taken when the meminfo was opened. After the
probe parses the four values and performs simple subtraction
operations to obtain the used physical memory and the used
swap:

MemTotal −MemFree = MemUsed

SwapTotal − SwapFree = SwapUsed

The probe proceeds by storing the MemUsed and SwapUsed
values to its ringbuffer. Along with the two attributes, the time
and order stamps issued by the Probe Framework are also
stored. The capturing of the four values and the processing
is nested inside a loop that iterates every three seconds until
the probe executable is terminated. The creation of the probe
instance, initialization, etc., are also done inside the probe
executable.

Figure 9 displays the instrumentation setup used in this case
study.

User 

space

Kernel 

space

pbprobe

Storage and 

relay module

user space 

probe interfaces

binaries

me
asu
rem
ent
s

procfs

meminfo

Fig. 9. Memory usage instrumentation.

2) Intrusiveness of the instrumentation: The instrumenta-
tion in this case has plenty of leeway, as the intrusiveness can
be better controlled. The external probe is a normal task in
the system. To minimize its effect, the capture frequency for
the target attributes was considered. As reading the meminfo
file causes extra operations for the kernel, it needs to populate
the pseudo-file with values from the memory; the overhead of

the read of meminfo is proportional to the read frequency.
Similarly, the parsing the probe performs along with the
normal operations of using the framework’s probe interfaces
causes overhead that is proportional to the capture frequency.
Also, the fact that the nature of the wanted information does
not specify how often it needs to be captured, as opposed to
the previous case where all the events had to be captured,
leads a result that time sampling is used to limit the probe’s
impact on the system. The external probe is set to sleep at
least three seconds between captures. The three seconds is an
approximation because the processing in the system and the
processing of the probe itself induces indeterminism.

Considering the frequency of the capture and the small extra
work created by the data collection, the overhead of the probe
should remain fairly low. Still, some periodic delays to the
execution of the processes running in the system are expected.
For this case, the overhead caused by the used instrumentation
was measured using the same method as in the previous case.
The induced overhead was 2%, which is not overly much and
could still be further improved with more efficient integration
with kernel functionality.

3) Experiences: The Probe Framework succeeds in ob-
taining the targeted attributes, total physical memory usage
and total swap usage. The external probe processes the
/proc/meminfo pseudo-file successfully and calculates the tar-
geted attributes. The storage and relay module manages to
handle the data collected by the probe. The obtained trace is
also successfully stored according to the configuration on the
mass storage. Overall, the framework performs as expected,
no errors or exceptions rose, and the targeted values were
collected.

a) Discoveries made from the trace: A closer inspection
of the obtained trace, after feeding the binary file containing
the trace to the probe database and reviewing the actual values
of MemUsed, SwapUsed and the accompanying time and
order stamps, revealed several issues. First of all, the order
stamps indicate that the external probe’s internal ringbuffer
did not overflow, i.e., all the values captured by the probe
made it to the probe database. Second, the time stamps of
each target value are all neatly three seconds apart, as specified
by the configuration. And Third, an interesting discovery was
made by inspecting the SwapUsed values – they were all
zero. There are three possible explanations for this: either the
external probe failed to process the target values correctly or
the storage and relay module misbehaved silently and stored
incorrect values or the Linux running in the Jive simply is not
configured to utilize swap space. To ensure that the trace was
not erroneous, the Jive was inspected, and it turned out that
swap space was indeed not in use. The fourth observation was
that the MemUsed values in turn all remained under the 64
MB limit, the total amount of physical memory present, and
appeared consistent in magnitude.

For effective compression of the trace data values, the
storage of two different types of data values at each timestamp
proved problematic. The PF implementation only provides
options for compressing the data with an expectation that

46

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



single data elements are present. This works in a case like
task switching, where only the id value of the next task is of
interest. However, in a case where several values (MemUsed
and SwapUsed) are stored at each timestap, this does not work.
Instead, more powerful support would be needed for formats
where several data elements are stored in always the same
order but there are more than one type of element. This was
a design choice in the prototype implementation and could be
addressed with an update version.

Additionally, the fact that the swap is not in used by the
Jive raises question: Would it not be better to only collect
the physical memory statistics? Indeed, it would. But the idea
here was to create a generic external monitoring probe that
can serve as a monitoring service in other devices too, where
the swap could be utilized.

b) Utilization possibilities for the trace: Our intent was
to use this information for observing memory leaks and growth
of consumption over time, similar to audit tests inside a
running system as described in [2]. This type of memory
problems are considered to be among the most common and
difficult to debug due to the long time they take to develop
[32]. Thus this type of information is useful to have available
to describe the development of the symptoms and to analyse
their cause over time.

Worth mentioning is also that the trace can be used for
estimating how a new program added to the system or a
modification to an existing one changes the memory usage.
The trace could help in answering if the available physical
memory of the system should be increased to meet the
requirement placed by the tasks being run in the system.

C. Experiences in PF development and use

Few of the hardships faced in developing the PF and
experiences gained from those are discussed next.

1) Testing and debugging of the framework: A major
challenge proved to be the debugging and testing of the
implementation itself. As the Probe Framework deals with a
large number of error-prone functionality, such as concurrent
accesses, shared memory and a great deal of pointer operations
in the memory, and contains several internal as well as external
interfaces, the testing and verification of it was considered
quite important. The testing and debugging had to be done
not only in the host environment but also in a system that
represents the assumed target environment. The Jive served as
an example of such a system.

It took a lot of effort to prune the Probe Framework of errors
and to assure its correct behaviour. For testing the tool, C++
unit tests [33] were utilized in testing the user space part, and
lots of debugging by hand was carried out. Even with all the
effort, the possibility that the tool contains errors still remains.
This is the fundamental problem when it comes to testing any
complex system. By exaggerating a little it can be said that
in every software application there are bound to be lingering
errors, because if that was not the case there would be no need
for testing to exist in the first place.

As such, this highlights the usefulness of providing a com-
ponent such as PF, which can be highly intrusive in a system,
and needs to work in critical parts such as the kernel-space
functionality. Thus re-implementing all the required services
in different projects is not feasible but providing a well tested
and optimized version would be of great benefit, such as our
prototype implementation in the used case studies.

2) Host-target separation: The first hand experience on
developing on the Jive platform made the complications asso-
ciated to host-target separation abundantly clear. The reason
was that this separation created large obstacles for the de-
velopment and trials of the Probe Framework, as the many
dependencies in the used compilers, capabilities of the host
and target systems, and the used C libraries resulted in many
complications.

If there is a lesson to be learned from this, it is to ensure
that the system where the development takes place resembles
the target system as closely as possible. Of course, this does
not mean that the host system should be hard to access and
contain the challenging features of embeddedness and real-
time. Instead, it means that there ought to be easy connectivity
and fast trial possibilities available, either on the actual target
or in a very close resembling simulator or emulator solution.
This also supports the usefulness of having a readily provided
trace component available for use in different environments.
Even with the common factor of the Linux kernel, and an
overall similar OS, between the host and the target, the
development was challenging.

3) Trace handling: Two particularly challenging issues in
the development and trials of the tool were both faced in
relaying to collected trace. The first on was the crossing the
of the kernel/user space boundary. Even though there are a
few methods for achieving it, there is not much information
available on the matter, due to this and the unfortunate lack
of time the finding of the most effective method had to be
left for another time. As mentioned, the Probe Framework
had to result to an outside solution for communicating over
the kernel/user space barrier, several issues contributed to this
choice but the most notable one was the lack of time to
implement a custom solution for it.

The other hardship tied to the trace relaying was encoun-
tered in the task switch instrumentation. The problem encoun-
tered was two-fold; the first part was that the overwhelming
amount of collected data required special measures to be taken.
For Probe Framework this meant optimizations to certain
functionality, but it also increased the intrusiveness of the data
relaying as more complex functionality had to be implemented.
Overall this kind of instrumentation that collects ”too much”
trace is not very feasible to begin with, and certainly cannot
be left active in the system all the time.

The latter part of the encountered problem was that because
of the nature of the task switch instrumentation, some insta-
bility was present. The reason for this is that the scheduling
activity cannot be allowed to be blocked. In other words,
the system will hang if the probe cannot access its internal
ringbuffer and associated pointers, due to the storage and relay

47

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



module holding the synchronization lock. As a relieving mea-
sure, the probe had to be set to ignore all used synchronization
methods and to behave as if it was the only one operating on
its shared ringbuffer. Initially, this caused the instability, as
the data pointed to by the read and write pointers did not
stay consistent with the synchronization gone. To reduce the
instability to unnoticeable, the storage and relay module had
to take precautions not to alter any of the data while the probe
was operating on it. This was achieved with a manner of a safe
zone that was utilized in the storage and relay module to keep
the read operation from reaching the write location, and thus
interfering with it.

4) Inherent indeterminism: On a more general level, one
insight gained is that preparing for the unexpected is not
always feasible. For instance, the case might be to perform
an instrumentation or testability related activity in a predefined
time slot to minimize the effect it has. As this can be extremely
hard, rather than trying to hit a specific time instance, it
might be more beneficial to aim for a certain event slot in the
execution sequence of the target system. The reason for this
is the indeterminism present in the system, the performance
and usability improving features, such as the buffering of the
write operations, the preemption of tasks, etc., change the time
instance when the instrumentation’s resource consumption
takes place. The indeterminism also contributes to the hardship
of estimating the consequences of testability functionality
because it induces variations to the observations.

For dealing with the indeterminism, it is beneficial to have
several possibilities for implementing the instrumentation.
Focusing on the software approaches is not the only way.
For a more versatile solution, the hardware-based approaches
and hybrid approaches are worth considering. However, this
creates another trade-off for testability, by multitude of instru-
mentation choices the factors that need to be considered also
multiply. Thus one goal for future work could be to bring also
these types of tracing methods into the framework to support
providing a single unified trace also in a combined hardware
and software tracing domain.

5) A general instrumentation approach: After our trials
with the two case studies, we can say that the framework
provides a reliable and efficient instrumentation interface with
high potential for reuse. We implemented two highly reusable
and generic probes. Due to their very generic nature, they
can be reused as is or with minor modifications in other
contexts. As a generic framework is also bound to be used
more frequently and by more people and projects, the code
will also become more reliable and optimized over time than
separate custom solutions. That is, the more the PF is used
the better it becomes. This makes it more likely that found
problems are in the system itself and not in the instrumentation
code.

The best side of a general, reusable solution is that the
more it gets used, the better it becomes. This is true for
the Probe Framework, as new probes are created, monitoring
services and test services alike, the usability of it increases.
For instance, even though the two case studies used in this

work were simple, now that the probes have been created
they can be reused with very little effort or modification. The
ready monitoring services of the Probe Framework also lower
the required understanding of the target system. However, a
downside related to the usability of the Probe Framework is
that the current interfaces of utilizing it might be a bit complex
and should be considered for improvement.

As noted earlier, the basic services of the PF have also
been implemented on the Java platform. As the PF’s imple-
mentations both share the same file formats and protocols, we
have also been able to successfully use them together. In this
sense, through the shared information database storage and
export facilities it is possible to get a view of systems with
varying component implementations. It is our experience also
from these implementations that the simplicity of the provided
interfaces is a key to their easy adoption. They must be simple
and easy to use and not get in the way of the developer.
By hiding all the complexity of trace storage, processing and
access behind simple interfaces the PF becomes also more
convenient to use. And, that is what the PF aims for, to be
a general reuseable approach for instrumentation that lets the
developers better focus their efforts on implementing the actual
product rather than spend overly much time on creating ad-hoc
instrumentation solutions.

Regarding the usability of the Probe Framework, it is not
limited to the context of embedded real-time systems. Those
attributes are merely something that create a challenge for the
PF, i.e., limit the available resource, etc., and in no way limit
the environment that the PF concept is suitable to. Similarly,
the prototype implemetation being Linux specific doesn’t
indicate that the PF concept couldn’t be used in a different
OS. The PF’s mentioned Java platform implementation for
instance is not limited to the Linux environment.

VI. RELATED WORK

There are no direct equivalents for the Probe Framework but
it does have similar aspects with many other approaches for
instrumentation. In general, the instrumentation solutions re-
main as specific and customized as the systems they target, and
as the Probe Framework is just that, a framework for building
a more meaningful functionality, it is hard to compare it to
other specific solutions. The Probe Framework is considered
as a support provider, a building block to be used with other
tools and custom handmade solutions, not a replacer for the
other instrumentation solutions.

One particular instance, quite similar in the used methods to
Probe Framework, is introduced by Chodrow et al. [34]. Their
tool is for specifying and monitoring the properties of real-time
systems during runtime. Their tool uses an ”external” monitor
that collects data from events. These events are somewhat
similar to the probes used in the Probe Framework but not
as versatile, as the events only count the occurrence of some
”event” inside a given task. The monitor they use is similar
in functionality to the storage part of the storage and relay
module offered by the Probe Framework, but not much is said
about the storage possibilities. Another similarity is the use

48

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of shared memory. Their tool uses a file-mapped memory, a
shared memory region, to pass data from the events to the
monitor. This usage of the shared memory is similar to that
in the Probe Framework, but it is much simpler and lacks the
timing and other associated data that is stored by the Probe
Framework. Also, the methods they use for data collection,
inline or external entity, are much like the ones used in the
Probe Framework. An interesting point they make is to use a
tool such as theirs for other functionality than just testing.
They give an example: “One can envision an environment
where an application task specifies a user-defined function that
is invoked by the run-time monitor in response to an event
occurrence.”[34]

It can be argued that any tool meant for monitoring, testing,
data collection, etc., is similar to the Probe Framework, and
yes it is a valid deduction. The whole concept of system
instrumentation offers a wide field for different tools, and as
the Probe Framework can be customized and used for specific
purposes on that field then there are bound to be similar
existing tools to that specific instance. Yet it is not meaningful
to compare the possible implementations realizable with the
framework to existing ones, and the sheer number of possible
implementations and existing tools makes it unfeasible in this
context.

VII. CONCLUSION AND FUTURE WORK

The Probe Framework described in this paper provides the
means to build and later on reuse system instrumentation
approaches effectively and reliably. It provides support for the
basic requirements of storing, relaying and accessing data.
More advanced needs such as processing, monitoring and
building new functionality to use the traced information are
supported by the PF’s higher layers. Two cases studies where
the PF was used were carried out to validate the different
uses of the framework. These cases used the provided building
blocks and interfaces to build generic, reusable probes for
gathering important system information.

The nature of embedded systems is that there is little
consistency between different devices, having led to creation
of customized solutions for information access. Here, we have
shown that for a system where the PF is available it provides
a basis for a uniform instrumentation solution. Generic probes
can be reused across systems and new ones implemented by
using the provided building blocks and interfaces. The reuse
of the framework and probes thus leads to reduction of the
implementation effort and also to increased reliability as the
found problems are more likely to be in the system itself than
the instrumentation code.

For easing the lifespan testing, diagnostics and management
of the target system the Probe Framework can be very useful.
Given that the Probe Framework is intended to remain in the
target system after deployment, it can provide its services dur-
ing the targets lifespan. Therefore, it can hasten the detection
of the possible problems and offer the testing and monitoring
services during the targets lifespan. In practice, the Probe
Framework requires that the shared library, storage and relay

module and the various probes remain in the target, to provide
its services after the target has been deployed. Overall, the
space requirement of the Probe Framework is minimal, but
naturally its presence will affect the rest of the system and
should be carefully considered.

As always, there is room for improvement and the list
of potential improvements and new features contains sev-
eral higher-level properties, as well as implementation level
optimizations. One interesting high-level improvement is a
way to extract internal errors and exceptions from the Probe
Framework itself. Voas and Miller [35] mentioned that it is
naive to think one can get the monitoring correct when the
software under analysis is lacking (no software is seen to be
bug-free), as such being able to distinguish between errors of
the target and the framework is beneficial. The implementation
of this feature could be via predefined ”macros”, premade
messages, for quick and simple reporting on the internal errors
and exceptions.

Another desired property for the Probe Framework is the
ability to control and configure it remotely. Systems, em-
bedded in particular, are often physically situated in hard-
to-access locations. For instance, mobile base stations are
scattered around the country, cities, rural towns, etc., and if
one happens to malfunction, sending an engineer without any
prior knowledge about the problem to do maintenance and
repairs will be costly. With remote configuration, the Probe
Framework could reside in the system and be adapted to
pinpoint the problem. This way, the problem could even be
fixed without sending the engineer over, or at least the engineer
would have a basic understanding on what the problem is and
what to take with him onsite.

However, not all of the development has to be directly
in improving and optimizing the framework. Recalling the
layered structure of the tool, see Section III, the monitoring
services and test services for certain parts are reusable in
different implementations. Hence, the utilization of the Probe
Framework and the creation of the monitoring and test services
can be perceived as development. As more services are created
to the monitoring and test layers, the easier it gets to use
the tool. The result is that the effort of deploying the Probe
Framework in other systems is lower. For future work, in
addition to improving the PF and creating new services, the
analysis of the data collected by the instrumentations and the
ways it could dynamically guide further instrumentations and
testing are of great interest.

For further details on the Probe Framework tool and instru-
mentation methods [36] offers an in depth view.

ACKNOWLEDGMENT

The authors would like to thank Juha Vitikka from VTT
for his collaboration in designing the binary format used in
storing the collected traces.

REFERENCES

[1] M. Pollari and T. Kanstrén (2009) A Probe Framework for Monitoring
Embedded Real-time Systems. In Proceedings of the Fourth International

49

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Conference on Internet Monitoring and Protection, Venice, Italy, pp.
109–115.

[2] T. Kanstrén (2008) A Study on Design for Testability in Component
Based Embedded Software. In Proceedings of the Sixth International
Conference on Software Engineering Research, Management and Ap-
plications, IEEE Computer Society, Prague, Czech Republic, pp. 31–38.

[3] Framework for Dynamic Analysis and Test, Website, [accessed
23.5.2010], http://noen.sf.net

[4] A. Hussain, G. Bartlett, Y. Pryadkin, J. Heidemann, C. Papadopoulos,
and J. Bannister (2005). Experiences with a continuous network tracing
infrastructure. In Proceedings of the ACM SIGCOMM Workshop on
Mining Network Data, Philadelphia, Pennsylvania, USA, August 26 -
26.

[5] S. Elbaum and M. Diep (2005) Profiling Deployed Software: Assessing
Strategies and Testing Opportunities. IEEE Transactions on Software
Engineering 31, pp. 312-327.

[6] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song, and
J. Xu (2008) HMTT: a platform independent full-system memory trace
monitoring system. In Proceedings of the ACM SIGMETRICS interna-
tional Conference on Measurement and Modeling of Computer Systems,
Annapolis, MD, USA, June 02 - 06.

[7] K. Yamanishi and Y. Maruyama (2005), Dynamic syslog mining for
network failure monitoring. In Proceedings of the Eleventh ACM
SIGKDD international Conference on Knowledge Discovery in Data
Mining, Chicago, Illinois, USA, August 21 - 24.

[8] M. Diep, M. Cohen, and S. Elbaum (2006) Probe Distribution Tech-
niques to Profile Events in Deployed Software. In Proceedings of the 17th
International Symposium on Software Reliability Engineering, IEEE
Computer Society, Raleigh, NC, USA, pp. 331-342.

[9] H. Giese and S. Henkler (2006) Architecture-Driven Platform Indepen-
dent Deterministic Replay for Distributed Hard Real-Time Systems. In
Proceedings of the ISSTA workshop on role of software architecture for
testing and analysis, ACM, Portland, Maine, USA, pp. 28-38.

[10] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal (2004), Dynamic
Instrumentation of Production Systems. USENIX annual technical con-
ference, Boston, MA.

[11] Mac OS X. Website, [accessed 22.6.2009]
http://www.apple.com/macosx

[12] M. Desnoyers and M. Dagenais (2008), LTTng: Tracing across execution
layers, from the Hypervisor to user-space. Ottawa Linux Symposium.

[13] F. Eigler (2006), Problem solving with systemtap. Ottawa Linux Sym-
posium.

[14] SystemTap. Website, [accessed 22.6.2009]
http://sourceware.org/systemtap

[15] P. Tuuttila and T. Kanstrén (2008), Experiences in Using Principal Com-
ponent Analysis for Testing and Analysing Complex System Behaviour.
In Proceedings of the 21st International Conference on Software &
Systems Engineering and their Applications, Paris, France.

[16] Apache log4j. Website, [accessed 22.6.2009]
http://logging.apache.org/log4j

[17] C. Lonvick (2001), The BSD Syslog Protocol. RFC Editor.
[18] H. Thane and H. Hansson (1999) Handling Interrupts in Testing of

Distributed Real-Time Systems. In Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applications, IEEE
Computer Society, Washington, DC, USA, p. 450.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal
(1996) Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley & Sons, New York, NY, USA, 476 p.

[20] R.V. Binder (1994) Design for testability in object-oriented systems, In
Communications of the ACM, Vol. 37, No. 9, Sept. 1994, pp. 87-101.

[21] J. Wegener,H. Sthamer. B. F. Jones, and D. E. Eyres (1997) Testing
real-time systems using genetic algorithms. Software Quality Control 6,
pp. 127–135.

[22] A.S. Tanenbaum (2008) Modern Operating Systems. 3rd edition, Pren-
tice Hall, 1104 p.

[23] B. P. Douglass (1999) Doing Hard Time: Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns. Addison-Wesley, 749 p.

[24] B. Broekman and E. Notenboom (2002) Testing Embedded Software.
Addison-Wesley, 348 p.

[25] G. Buttazzo (2006) Research Trends in Real-Time Computing for Em-
bedded Systems. ACM SIGBED Review 3, pp. 1–10.

[26] S. Schulz, K. J. Buchenrieder, and J. W. Rozenblit (2002) Multilevel
Testing for Design Verification of Embedded Systems. IEEE Design &
Test of Computers 19, pp. 60–69.

[27] P. B. Menage (2007) Adding Generic Process Containers to the Linux
Kernel. Ottawa Linux Symposium.

[28] W. Cohen (2005) Figure 1. Flow of data
in SystemTap. Website, [accessed 22.6.2009]
http://www.redhat.com/magazine/011sep05/features/systemtap

[29] IEEE std. 1003.1b-1993 (1993) POSIX .1b: Real-time Extensions.
[30] RTAI - the RealTime Application Interface for Linux. Website, [accessed

22.6.2009] https://www.rtai.org
[31] M. Jaakola (2008) Performance Simulation of Multi-processor Systems

based on Load Reallocation. Masters thesis, Oulu University, Depart-
ment of Electrical and Information Engineering, Oulu.

[32] J. Vincent, G. King, P. Lay, and J. Kinghorn (2002) Principles of built-
in-test for run-time-testability in component-based software systems.
Software Quality Control 10, pp. 115-133.

[33] UnitTest++. Website, [accessed 22.6.2009]
http://sourceforge.net/projects/unittest-cpp

[34] S. E. Chodrow, F. Jahanian, and M. Donner (1991) Run-Time Moni-
toring of Real-Time Systems. In Proceedings of the Real-Time Systems
Symposium, IEEE Computer Society Press, San Antonio, TX, USA, pp.
74–83.

[35] J. Voas and K. Miller (1996) Inspecting and ASSERTing Intelligently.
In Proceedings of the Fourth European Conference on Software Testing,
Analysis & Review.

[36] M. Pollari (2009) A Software Framework for Improving the Testability
of Embedded Real-time Systems. Masters thesis, Oulu University, De-
partment of Electrical and Information Engineering, Oulu.

50

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


