
Component-ware for Autonomic Supervision Services

The CASCADAS Approach

Peter H. Deussen, Edzard Höfig

Fraunhofer Institute for Open

Communication Systems

Berlin, Germany

peter.deussen@fokus.fraunhofer.de

edzard.hoefig@fokus.fraunhofer.de

Matthias Baumgarten, Maurice Mulvenna

School of Computing & Mathematics

University of Ulster

Belfast, UK

m.baumgarten@ulster.ac.uk

md.mulvenna@ulster.ac.uk

Antonio Manzalini, Corrado Moiso

Telecom Italia

Torino, Italy

antonio.manzalini@telecomitalia.it

corrado.moiso@telecomitalia.it

Abstract — This paper describes two complementary

mechanisms for the supervision of large scale and highly

distributed systems structured as a cloud of autonomic

computing components. The first one is based on the creation

of supervision pervasions, for the supervision of clusters of

components (i.e., aggregates structurally organized through

one or several contracts) implementing specific services in

accordance to service-specific management policies. This

mechanism is designed as a supplementary service that can be

requested by operational components and is structured as an

ensemble of self-contained objects that implement an

autonomic control loop, which does not require any a priori

knowledge on the structure of the supervised system. The

second mechanism promotes supervision logic embedded in the

autonomic components, which exploit autonomic features and

cooperate through dedicated protocols over self-organized

overlay networks; this mechanism is suitable for supervising

infrastructural (service-independent) functions of autonomic

components, and their aggregates. The main contribution of

the paper is to define those two mechanisms and to shown that

they are complementary, and can be combined to achieve

cross-layer supervision.

Keywords — autonomic computing, pervasive supervision,

embedded supervision, distributed systems, self-reconfiguration

self-adaptation, self-organization.

I. INTRODUCTION

Networks today are composed of a wide variety of
network elements that introduce a high degree of
heterogeneity. The Telecommunications Management
Network (TMN) is a model defined by ITU-T for
supervising open systems in a communication network,
implementing the fault, configuration, accounting,
performance, and security (FCAPS) management areas. The
TMN model can hardly meet the requirements of future
trends of Telecommunication, Information and
Communication Technologies (ICT) and the Future Internet
(e.g., emerging of Cloud Computing as well as global
pervasive environments). As a matter of fact pervasive
diffusion of powerful smart devices for efficient human-
computer interaction as well as increased systems
heterogeneity are complicating the management and control
of the whole network and service infrastructures. As such,
there is a need for identifying technology and solutions to
simplify the configuration and management of distributed

systems whilst, at the same time, reducing the associated
operational expenses. This is the main objective of
Autonomic Computing [2], as argued in 2003 by IBM‘s
homonymous manifesto. Due to the increasing complexity of
large-scale computing systems, computers and applications
need to be ―capable of running themselves, adjusting to
varying circumstances, and preparing their resources to
handle most efficiently the workloads we put upon them‖ [3].
This vision took inspiration from the biological
characteristics of the human autonomic nervous systems,
where the autonomic system constantly monitors and
optimizes its own status and automatically adapts itself to
changing conditions.

As depicted in Figure 1, autonomous operating managers
define a control loop for autonomic computing that performs
functions associated to the Monitoring, Analyzing, Planning
and Executing (MAPE) of processes. Autonomic managers
continuously observe the managed system and its
environment and handle events on which some (re-)action
measures may be executed upon. Sensors and effectors
provide observation and control interfaces to the managed
elements. Nevertheless, in this model all autonomic
―intelligence‖ is contained in the network of autonomic
managers and in which a knowledge base encodes the know-
how and practices of human operators.

Figure 1. MAPE principle architecture (courtesy to [2]).

This paper is an extended version of the work presented
originally in [1]. It outlines an approach for the supervision
of highly dynamic and fully distributed systems structured as
ensembles of Autonomic Components (ACs), which are

87

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based on two mechanisms: (a) a number of ACs providing a
set of basic supervision services, including services aiming at
predicting possible evolutions of the system under
supervision (SUS), that dynamically self-organize to form
MAPE-like control loops according to the structure of the
SUS and its changes; (b) a set of supervision logic embedded
in the ACs themselves exploiting autonomic features and
cooperating through dedicated protocols over self-organized
overlay networks. The former mechanism is mainly
orientated to the supervision of clusters of ACs
implementing specific services in accordance to
service-specific management policies; on the other hand, the
latter one is oriented to define the logic to supervise
infrastructural (service-independent) functions in distributed
systems that consist of large numbers of ACs, where the
same service is provided by multiple instances.

The remainder of this paper is structured as follows. In
Section II, the foundations of autonomic communication
systems are recapitulated also introducing the notion of
Autonomic Communication Elements (ACEs), developed in
the context of CASCADAS Project [4], that reflect the
framework the proposed supervision component-ware is
implemented upon. ACEs are supposed to form services,
which are configured in a self-organized way. Section III
recalls two self-organization approaches, namely gossiping
and rewiring, which will be important in the later course of
the argument. Section IV gives a first overview over the two
supervision approaches considered in this paper, namely
supervision pervasions (Section IV.A) and ACE embedded
supervision (Section IV.B). Supervision pervasion is
addressed in detail in Section V. Its architecture,
components, and interaction mechanisms are described in
Section V.A. Long-term supervision is addressed in Section
V.B. Section 0 describes how supervision pervasions
configure themselves according to the architecture of the
targeted system under supervision. An experimental
framework for pervasive supervision is explained in Section
VI. Section VII concentrates on ACE embedded supervision.
Two applications are addressed: load balancing (Section
VII.A) and power saving (Section VII.B). Section VII.C
presents evaluation results for these applications. Section
VIII describes how to combine pervasive and embedded
supervision. Section VIII.A describes scenarios in which
such a combination will be useful. Sections VIII.B and
VIII.C target on a more technical level on how to use self-
organization mechanisms to place supervisors, and how
achieve a communication between supervisors. Section IX
addresses advances beyond the state of the art. Application
scenarios are described in Section X. Section XI draws
conclusions and indicates further work.

II. AUTONOMIC COMMUNICATION SYSTEMS

Autonomic communication systems are composed of
distributed interacting ACs, where an AC is defined to be an
entity capable of sensing and adapting to environment
changes whilst also performing autonomic capabilities that
are related to self-CHOP (Configuration, Healing,
Optimization, Protection) through the interaction with other
ACs.

Although the general principles of the proposed approach
on the supervision of distributed autonomic systems is
independent of specific AC models, in the CASCADAS
Project [4] they have been designed and experimentally
evaluated, by integrating it in the CASCADS ACE Toolkit
[5], by considering systems composed of several interacting
ACEs. Figure 2 shows the structure of an ACE highlighting
individual ACE organs (grey components). On the level of a
particular ACE, autonomic behavior is achieved through the
Facilitator, which utilizes a self-model that describes the
business logic in terms of Extended Finite State Machines
(EFSMs) [6] capable of dealing with internal and external
events, storing and accessing data and invoking task specific
functionalities. Several of those state machines can be
executed concurrently utilizing an asynchronous event based
communication mechanism. The facilitator selects and
adapts a set of those state machines in accordance to pre-
defined criteria (in particular at ACE startup time) or based
on incoming events from other ACEs, internal decisions
made during the execution of a previous set of plans, or user
interference. The executor organ is then responsible for the
parallel execution of plans and their selection.

Self-models and plans implement coordination of a set of
elementary ACE internal activities (i.e., they provide a
―choreography‖ for these activities). ACEs therefore
comprise a functional repository where the implementations
of these activities are stored. Activities (JAVA method calls)
make use of so-called session objects providing dynamic
associative memory to store and to access data as key/value
pairs. In addition to this, there is a global session object,
which can be accessed by every currently executed plan, as
well as local session objects, which are specific to a
particular plan.

The CASCADAS approach takes the perspective that
services are provided by (potentially large) ensembles of
relatively simple entities realized as ACEs. The functional
composition of these entities is done in a
self-organized way, using the so-called Goal Needed/Goal
Achievable (GN/GA) protocol as the basic means of service
discovery within the ACE universe. Through GN/GA
dynamic service composition is facilitated by matching a GN
to available GAs, which both semantically describe the type
of services or functions ACE‘s desire and offer, respectively.
After discovery, ACEs may establish specific contracts
among each other to provide for efficient and, more
importantly, secure message exchange over multilateral
communication channels.

The gateway organ is responsible to drive the GN/GA
protocol and comprises two core message types:

 Goal Needed (GN): the GN message is broadcasted to
all ACEs within a certain ensemble of ACEs. Those
ensembles are composed in the following way: At
startup, an ACE registers itself with a broker. Several
brokers form a network for achieving basic service
discovery. Hence, GN messages are distributed by
means of this backbone network. A GN message
contains a description of a function that is desired by the
sending ACE.

88

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2: Autonomic Communication Element (ACE).

 Goal Achievable (GA): if an ACE receives a GN
message then it compares the included functional
specification with its own capabilities, and if it is
capable to perform the required function, it replies with
a GA (goal achievable) message containing its own
address. Since the incoming GN message contains the
address of its sender, the broker network is not used to
transport the GA answer (the CASCADAS ACE Toolkit
uses an underlying agent framework called DIET [7],
which provides address-based message communication).

After the exchange of GN/GA message pairs, the
initiating ACE selects a partner from the ACEs that have
answered its request, and establishes a contract. Contracts
provide a reliable multicast communication channel
incorporating two or more ACEs. Within these contracts
specific roles (i.e., symbolic names) are assigned to each of
the ACEs involved thus providing a semantically aware way
of communications. A message sent over a contract can be
addressed either by a specific role (in which case the ACE
assuming this role received the message), or is sent without a
specific receiver role (in which case all ACEs involved in the
contract would receive it). Contract establishment and
cancellation is performed through the exchange of so-called
contract establishment and contract cancellation events.

Hence the gateway provides the basic mechanisms for
service discovery, service composition, and service internal
communication. On the basis of these mechanisms, various
self-organization algorithms (see Section III) have been
implemented.

Before concluding the discussion of the basic ACE
architecture, another ACE organ needs to be considered,
namely the internal management bus. This bus provides ACE
internal communication and coordination. Similar to
inter-ACE communication, internal processes are also
coordinated asynchronously by events. For instance, if the
facilitator decides to establish the execution of another plan,
it sends a corresponding event containing this plan to the
executor. Hence, monitoring the events that travel over the
management bus, provides a complete picture of the internal
activities of an ACE. We will make use of this property
when we describe the supervision organ later on in
Section V).

III. SELF-ORGANIZATION

The ―cognitive‖ approaches in Autonomic Computing
and Communication (for which MAPE is a paradigmatic
example) are opposed by ―grass root‖ approaches, i.e., ideas
towards unmanaged self-organization of autonomic systems
and services. In the CASCADAS Project, a number of
self-organization mechanisms have been defined and
experimentally validated to provide efficient and purpose
based self-organization. A system comprising a (probably
large) number of actors (e.g., ACEs) exhibits complex
capabilities that emerge from the interaction of these actors.
The actors itself are envisioned to be relatively simple,
although no limitation on their complexity is imposed.
Depending on their purpose and complexity, they possess a
certain number of behavioral rules. In opposite to the

89

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cognitive approach, which has a certain flavor of centralized
management, self-organization is – by definition –
completely decentralized. Scalability becomes a build-in
property of those systems. In this paper, we consider two
self-organization approaches, namely gossiping and
rewiring, which are discussed next.

A. Gossiping

This approach has been discussed in detail in [8][9][10].
It provides a peer-to-peer communication protocol,
performed by a number of entities organized in a network.
The protocol is generic in the sense that it is based on the
abstract notion of a ―state‖ and a ―state update‖.

Figure 3 illustrates how this gossiping protocol works for

active as well as passive nodes. An entity A may assume an

active or a passive role (both behavioral alternatives are

executed in parallel). In its active role, the entity waits for a

trigger (e.g., a timeout, an external event, etc.). If the trigger

is received, it selects one of its neighbors B, and sends its

internal state S to B. In exchange, it receives B’s state S’.

Then it updates its internal state using S and S’, and awaits

the next trigger. In its passive role, it receives information

from an active entity sending its own state back also

updating its internal state.

Figure 3: Gossiping protocol [9].

A number of applications of this protocol have been

discussed in [9]. To give a simple example, consider a

sensor network measuring relevant environmental

parameters (e.g., temperature, light intensity, etc.). To

compute the average of these values and to diffuse this “new

knowledge” to each element in the network, we can define a

state as the currently measured parameter value, and a state

update as the computation of the average of these values. It

is easy to see that the state values of all elements of the

network converge towards the average of all measured

values.

For our purposes, we define a state as ACE internal state

(i.e., a state of an EFSM including those session entries that

are of interest for the supervision task in question).

B. Rewiring

Another approach for self-organization explored by the

CASCADAS Project is graph rewiring [11]. In opposite to

gossiping (which does not alter the structure of the

underlying communication network) rewiring aims at

changing the neighborhood-relationship in support of the

formation of clusters of entities that are related by certain

criteria. To this end, consider a match criterion between the

elements of the communication graph. The idea is to alter

the structure of the graph in a way that matching entities are

directly connected.
Figure 4 visualizes this on a conceptual level. Here, a

node a, acting as an initiator, requests a matching node from
one of its neighbors m. This node acts as a match-maker and
selects a matching candidate b (if such a node exists). In this
case, the match-maker establishes a connection between a
and b as indicated on the right side of the drawing. In the
negative case, it will report back to a, which will try another
neighbor as a match-maker or, alternatively, will wait until
the global graph structure has been altered and a suitable
match-maker/candidate pair becomes available. Note that,
depending on the concrete problem to be solved by the
rewiring, the edge between a and m may be deleted or may
be maintained for further processing).

 Figure 4:Rewiring

Similar to the gossiping approach, which is parametric in
the notion of states and state updates, the rewiring algorithm
depends on the selection of a match criterion. For instance,
consider a load-balancing scenario. Here, the goal is to
gradually connect all nodes that are capable to process the
same type of jobs. Thus, in this case the matching criterion
used is the node type. This will allow any node to, over time,
find an increased number of nodes to which it can distribute
the load it cannot process.

In the CASCADAS Project, rewiring has been applied to
organize the clustering of ACE based services according to
various criteria such as service logic, communication pattern,
load distribution, fault tolerance, etc. (see Section VII). With
regard to the discussion of communication mechanisms
available for ACEs (Section II), the communication graph
structure corresponds to contracts a particular ACE is
involved in. Within the context of ACEs, graph rewiring
(edge deletion and insertion) is realized through the
establishment, modification, and cancellation of
communication contracts.

IV. SUPERVISION FOR ACE-BASED SYSTEMS

Local and global control loops enable a component (or an

aggregate of components) to react in an autonomous way to

changes of the internal state and to events propagated by its

environment. This feature can be fruitfully applied to

implement supervision features for controlling the behavior

of a component, and for actuating corrective or optimization

measures when a critical situation is detected, such as a

failure state, a performance problem, or a configuration

error. Such autonomic capabilities should be able to address

several supervision areas, such as FCAPS at different levels,

from single ACEs to groups/clusters of ACEs, e.g.,

implementing specific services.

90

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The approach for the supervision of distributed autonomic

systems proposed in this paper is based on two mechanisms:

 Supervision pervasions, for the supervision of clusters
(i.e., an aggregate of ACEs providing a common service,
which is structurally organized in one or several
overlapping contracts) of ACEs implementing specific
services in accordance to service-specific management
policies.

 ACE embedded supervision, for the supervision of
infrastructural (service-independent) functions of ACEs
and their aggregations through contracts. In opposite to
supervision pervasions, which take place on the level of
aggregates, embedded supervision is realized on the
level of singular ACEs and their contracts.

A. Supervision Pervasions

Supervision pervasions as visualized in Figure 5 are

clusters of ACEs implementing specific services according

to service-specific management policies. ACE based

supervision is performed through supervisors, which

provide supervision as a supplementary service: As all

services in the CASCADAS framework, supervisors are

implemented as an aggregation of ACEs, each of them

offering basic supervision functions for filtering,

correlating, and elaborating events provided by the

supervised ACEs, and for autonomously elaborating

corrective or optimization measures. The configuration of

supervisors (which is named pervasion because it is

architecturally not separated from the SUS but pervades it)

is dynamically set-up and updated (e.g., through self-

organization techniques) to align itself to the evolution of

configuration of the ACE ensemble under supervision. In

this way, the ACE based supervision is able to provide

autonomic control loops without any a-priory knowledge on

the structure of the (ACE-based) supervised system.

Figure 5: Supervision pervasions

The supervision service is programmable in order to

implement the service-specific management policies for the

monitoring and the management of groups of ACEs.

Supervised ACEs are grouped into meaningful clusters,

each of them controlled by a supervisor. A supervisor is able

to collaborate with the supervisors of other ACEs clusters.

B. ACE Embedded Supervision

ACE embedded supervision as depicted in Figure 6 can be

used to supervise the basic functions of ACEs and the

interaction among them (e.g., the active contracts). This

mechanism is aiming at performing supervision activities in

a highly distributed way, by exploiting the self-adaptation

features of ACEs, and self-aggregation of data exchanged

among them. Local supervision logic, executed by each

ACE, cooperates by exchanging data through a

self-organized overlay [11], e.g., by means of gossiping

protocols as described in Section III.A.

Figure 6: ACE embedded supervision

Thus this mechanism can create an approximated

knowledge of the (dynamically changing) global properties

of the overall system, and use them to perform local

supervision decisions. This mechanism is suitable to

supervise systems where multiple ACE instances provide

the same “type” of services (possibly implemented

differently), e.g., replicated for performance or fault

tolerance reasons or deployed on end-users devices. The

distribution of the logic and the interactions though overlay

networks guarantee the development of scalable and robust

algorithms.

As detailed in Section VIII, ACE embedded supervision is

complementary to and synergic with Supervision pervasion

approach. In fact, supervision pervasions are more suitable

for the supervision of service specific clusters of ACEs,

whereas ACE embedded supervision is oriented to the fine

grain monitoring and optimization of system generic

properties (such as self-repair, load distribution, and energy

consumption optimization) of distributed systems. In

particular, it is suitable for supervising distributed systems

structured as huge amount of ACEs, where each type of

service is provided by multiple instances, for instance due to

redundancy and performance requirements, or as deployed

on end-users terminals.

91

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Moreover, the two mechanisms can fruitfully co-operate.

For instance, a supervision pervasion must be able to react to

events that are produced by ACE local supervision logic

when it is not able to resolve certain situations. For

examples, when the fault management supervision logic

embedded in an ACE is not able to replace a failed contract

for a service of a given type T, then it can inform its

supervision pervasion, which elaborates and returns the

corrective actions by e.g., reconfiguring the internal plan in

order to use a service of an alternative type.

V. SUPERVISION PERVASION

Conforming to the CASCADAS architecture, supervision
capabilities are realized as ACEs and as such offer a
supplementary service to any ACE or ACE ensemble. A
supervisor itself is an ensemble of ACEs, which are
dynamically (re-)configured through service discovery and,
subsequently, self-organized via the establishment of
contracts, which define the relation among individual
components. Thus, basic supervision functions can be
provided as default services to allow for e.g., filtering and
the processing of events that are produced by the supervised
ACEs, and for autonomous elaboration of corrective and
optimization actions.

Figure 7 depicts the architecture of a supervisor, where
the use of the interaction protocols is indicated through
individual arrows. For the sake of simplicity, only one
instance of each component is shown, while in practice there
will be always a number of supervised ACEs, sensors,
effectors, etc. In addition to the basic supervision functions,
supervisors may include other components in order to
perform, e.g., predictions, contingency planning, etc.

ACE under
supervision

SO

SO = Supervision Organ

Sensor

Assessor

Effector

Correlator

PredictorP/S

P/S

Protocols

request / reply notification publish / subscribeP/S

request self-model

Continuous
supervision
loop

Figure 7: Organization of supervision components

This service centric perspective allows formulating and
implementing supervision infrastructures, which go beyond
the supervision of singular ACEs towards a more flexible
and dynamic set of autonomic control loops, which are able
to adjust their own structure and function to the structure of

the SUS, thus forming enhanced service configurations,
which are able to secure themselves against faults,
performance problems, etc. To emphasize the close
relationship and organizational similarity between the SUS
and supervisor, those infrastructures have been named
supervision pervasions.

Therefore, the supervised ACEs and the supervisor ACEs
work synergistically realizing a supervision pervasion in the
following way:

 The supervisors’ autonomic behavior co-operates with

and complements the autonomic behavior of the

supervised ACEs.

 The structure of the supervisor is interwoven with the

one of the SUS and as such is also aligned with its

changes.

 Supervision can be performed based on internal and

external stimuli as well as in accordance to service-

specific management policies.

A. Architecture and components

As introduced in the previous section, the pervasive
structure of a supervisor enhances the SUS by ―completing‖
it through ACEs that implement basic supervision
capabilities that are based on interfaces for observation and
control between the SUS and the supervisor. As discussed in
Section II, ACEs are built upon an event-driven architecture
where effectively all processes are controlled by events that
are propagated through the internal communication bus (for
intra-ACE communication), and the gateway (for cross ACE
communication, i.e., GN/GA based discovery and contract
based message exchange). Hence, observing and controlling
the bus and the gateway provides sufficient information to
understand and to influence all ongoing processes within an
ACE. Effective observation and control can be performed by
interception, removal, and insertion of events sent over these
communication channels.

1) Interfacing the SUS
The interface between the supervision layer and the SUS

is realized by so-called supervision checker objects (SCOs),
which are implemented as gateway checker objects (GCO),
and bus checker objects (BCO) and which:

 provide basic filtering functionalities to identify events
that are of interest for supervision;

 can be used to query specific information about the
supervised ACEs such as its current internal state;

 provide control functionalities to steer the internal
processes of ACEs;

 establish a communication channel to sensors and
effectors.

SCOs can be deployed at run-time by a supervisor (the
deployment process is handled on both sides by the
supervision organ of an ACE; as sensors and effectors are
ACEs too, they have supervision organs as well). Therefore,
this mechanism provides a very flexible and generic way to
set-up task specific interfaces for monitoring and actuation.

92

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A number of functions have been implemented to
provide various monitoring and actuation capabilities as
summarized next:

 Insertion, deletion, and modification of events
travelling over the management bus and the ACE
gateway.

 Interrogative requests to retrieve the current state
(the session objects), as well as the currently running
plans, and the self-model of an ACE. Moreover,
mechanisms are available to obtain the contracts an
ACE is involved in.

 Denial and enforcement of transition execution
within the executor. As discussed earlier, ACE plans
are essentially extended finite state machines
comprising states, variables vectors (i.e., session
objects), and transitions that lead from one state to
another while modifying variables also calling other
repository functions.

2) Communication mechanism
As described below, a number of protocols are available

for the various components to facilitate communication
within an ACE based supervision pervasion:

 Notifications are unacknowledged messages used to
distribute data between two components.

 Request/reply pairs are used to actively retrieve
specific data.

 Publish/subscribe communication scheme is based
on the provisioning of a certain topic, where a topic
is a symbolic concept that is used as a category
identifier for certain types of information. A
supervision component, which is interested in a
certain topic, broadcasts a subscription within the
supervision pervasion. Any ACE providing this topic
adds the requestor to a subscription list for this topic.
If it obtains information matching a given topic, it
distributes this information to all subscribers in the
subscription list.

3) Supervision Pervasion Components
Sensors link the supervision system with an ACE under

supervision by deploying SCOs into the supervised ACE and
by establishing a dedicated communication channel for
monitoring, their goal is to translate events delivered by the
SCOs into the internal message format used by the
supervision infrastructure, and to distribute them to other
components of the supervision infrastructure, in particular to
correlators and components that deal with the long term
supervision of ACE‘s and associated services.

Correlators are responsible to aggregate monitored data
from distributed sources and to correlate them with other
information in order to extract meaningful indicators of the
current condition of the SUS.

Predictors provide long-term supervision functions,
which are discussed in more detail later on in this section.

Assessors make assumptions on the current (or future)
system health based on the output of correlators, and invoke
associated effectors if necessary.

Effectors are responsible to distribute contingency
actions to the SCO of the various ACEs under supervision,
where they are used to steer the execution of the ACE under
supervision.

The application case described in Section VI uses simple
arithmetic operations and pre-defined reaction patterns for
analysis and actuation, but since all components mentioned
above are generic and programmable, more complex
correlation, assessment, and actuation approaches can be
defined. For instance, the reactive part can be extended by
additional components such as planners. A detailed
discussion of such functionality is however outside the scope
of this paper; the interested reader is referred to [12].

Note that because a supervision system is implemented
by a set of ACEs, which are implemented in particular
supervision organs; it is possible to extend the supervision
activities to the supervision system itself by using the very
same mechanisms as described above.

B. Long-term supervision

An important characteristic relevant for the autonomic
self-evolution of pervasive services as well as their
supervision mechanisms is that of prediction. If available at
all levels, predictive capabilities could lead towards
proactive ACE‘s and ACE interfaces that go some way
towards the provision of calm environments, as envisaged in
[13]. Such mechanisms provide the ability to predict the
possible future contexts as well as interaction between
stakeholders within and between ACE‘s. This means that,
based on the observation and analysis of past behavior and
the use of predictive reasoning, an ACE could predict its
own future states for various aspects of e.g., its own
operational environment to either guide itself to a more
optimum state or, if necessary, to prevent unwanted or
dangerous situations before their actually occur.
Mechanisms of such supervision require a temporal aspect to
be taken into account that can otherwise be discarded. That is
that individual concepts and properties of a system under
supervision need to be monitored over time. Similar, past
behavior needs to be observed and analyzed in order to
predict future situations. In relation to ACEs, relevant
concepts to be analyzed include the detection of drift
behavior as well as the modeling, monitoring and prediction
of events, states or situations an ACE can step into or reach
in the future. Thus, the general objective of long-term
supervision components can be stated as to observe, model
and analyze all available numerical and symbolic concepts
over time, in order to predict future properties, behavior and
situations of each ACE as well as any ACE ensemble. This
would ultimately allow counteracting any form of behavior
that could potentially lead to critical or undesired states
before they are actually reached or before they occur.
Additionally, it would, over time, identify the ―best‖
execution plan for a given ACE or ACE ensemble, which
can be actively used to guide new instances of a known
service.

For that, three types of supervision components have
been devised that are each capable of performing a long-term
supervision task. Each service has been realized as an ACE

93

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

itself, following the self-similar design of the ACE platform,
and can be requested by a supervisor in the same fashion as
any of other supervision services, i.e., via GN/GA protocol.

Drift Analyzer (DA) allow facilitating flexible long-
term supervision by analyzing and forecasting numerical
concepts in relation to certain boundaries a system should
operate in or, alternatively, an ideal state of operation that
reflects the most optimum performance of a system or a
systems component. Such numerical (or ordered symbolic)
properties can refer to business goals or to operational
parameters of a supervised ACE and its environment.

Figure 8: Drift Analyzer

The rationale of DA‘s is that the underlying concepts are
volatile in nature and as such are likely to constantly change
over time and that there is a strong desire to keep them
within certain operational boundaries that reflect the correct
or optimum behavior of the system under supervision. Thus,
detecting if a parameter suddenly or slowly drifts towards its
operational boundaries or away from its ideal state of
operation would allow to deploy corresponding measures
that counteract an observed effect before the system can
reach a more serious, unwanted, state. As depicted in
Figure 8, drift analyzers constantly monitors and analyses the
numerical property it is attached too comparing it to the

defined boundaries -
, +

 and the desired ideal state =
. If

drift is detected a dedicated planner component may be
notified to invoke actions to counteract the detected drift.

Event Predictors (EP) predict the time window in which
a certain event is most likely to occur next. As depicted in
Figure 9, an EP is monitoring the occurrence of past events
and computes a static as well as dynamic prediction around
which a given type of event may reoccur. The static service
provides the mean distance between events as its prediction,
whereas the dynamic service is based on the time of
calculation/request, thus taking into account the time elapsed
since that last event has been registered.

This service is of particular interest for periodic services
and it would allow for both, the validation of correct
behavior (e.g., an event should occur periodically) or,
alternatively, for the detection of fraudulent behavior (e.g., if
an event occurs outside of its predicted time window).
Another useful application for such a service is the priming
of ACE‘s, ACE ensembles or the allocation of resources in
anticipation of a given event. For instance, if a frequently

occurring service requires specific information or a certain
amount of system resources then these could be acquired or
reserved, respectively, in time for the event to occur.

Figure 9: Event Predictor

State Predictors (SP) aim at observing and predicting
the execution logic of ACEs as represented by their self-
models. In particular, they allow (a) monitoring the
execution of ACEs, (b) to build an execution model based on
these observations and (c) based on an observed state
change, to predict potential next states as well as the most
likely transition(s) that lead to the predicted state(s). Note
that, instead of a single possible ―solution‖, a state predictor
provides a ranked list of candidates as well as a ranked list of
transitions that are associated to each candidate state. Thus, a
given planner or executer component can evaluate the
recommendation before executing them. Depending on their
configuration, state predictors operate based on the
observation of past and/or mass behavior as inspired by [14].
For instance an SP could monitor the execution of all ACEs
(services) of a certain type and would, over time, construct a
model that reflects how this particular type of service
operates. In particular the constructed model would reveal
the collective behavior of the type of service that is under
supervision. If a new instance of this type of service is
requested then the associated predictor component could
provide recommendations of how the service should perform
or behave, which would be based on the successful execution
of past instances of the same service type. This would allow
preventing illegal or dangerous behavior of an ACE and
would also allow for the optimization of service execution in
the long term. Based on the ACE concept and the associated
self-model two distinct types of predictors have been
devised.

Figure 10: Meshed State Predictor (MSP)

94

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Firstly, a meshed state predictor (MSP) that only takes
into account a single state change thus discarding all
preceding activity and, secondly, a directed state predictor
(DSP), which takes into account the entire execution path of
a given service from a defined start to a defined end state.
Based on this, the former is more suitable to validate
stateless operational behavior as defined by individual states
and transitions of a given self-model whereas the latter is
more appropriate to model more specific behavior or cross
ACE interactions, which are likely to be state dependent and,
as such do require a more rigid model where the path of
execution is relevant. For instance C can only occur if
A B has occurred first. In knowledge discovery terms this
corresponds to associative pattern for the MSP and to
sequential pattern for the DSP.

Figure 10 and Figure 11 show an example of the same
execution model as constructed by the MSP and the DSP
respectively. Each model contains a number of nodes, the
transitions between them and the occurrence property that
reflects how often a state has been assumed or how often a
transition has been traversed. As can be seen, the full path of
execution is maintained in Figure 10 whereas the model
shown in Figure 10 discards this type of information. The
rationale for this is based on the stateless method invocation
of specific as well as common service functionality of ACE‘s
and relates to an undirected graph in which a collection of
states may form short sequences to reflect individual service
execution rather than long-term business goals. In fact only
the current state transition is of interest, independently of the
current state of execution.

Figure 12: State Predictor Pervasion

Figure 11: Directed State Predictor (DSP)

95

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Such a loose model of observation is ideal for short lived,
stateless services where previous conditions are irrelevant.
Independent of the path prefix that is maintained by the DSP,
both models take into account only a single state change,
which is reflected by the triple source state – destination state
– transition traversed. Based on this and the properties of
each state/transition, which reflect how often they have been
visited or traversed in the past by the same service type, the
likelihood of states / transitions to occur next can be
computed. Thus an SP indicates how a service is most likely
to continue based on its past behavior or based on the
behavior of other instances of the same service. Such
information can be used directly to, e.g., initialize subsequent
states, provide system guidance, detect system violations etc.

For ACE ensembles that provide more complex services
at runtime, a combination of both models is feasible that
utilizes the meshed execution model at ACE level whereas
the directed execution model is used for cross ACE
interactions. This is depicted in Figure 12 where the top
shows the execution plan of a directed state predictor, which,
at certain states, steps into the execution plans of one or more
meshed state predictor(s). Depending on configuration each
execution plan can relate to the same or to different ACE‘s
or ACE instances thus adapting to the distributed nature of
the underling SUS. Notable for such a configuration is that
no interaction between individual predictor components is
required as this is embedded within the logic of the ACE
ensemble that provides the overall service, which is equally
reflected by the configuration of the supervision pervasion.
However, how feasible such a configuration is within the
context of very complex ACE configurations still needs to be
explored in detail and is subject of future work.
Another aspect to be evaluated is to aid the prediction

process with other parameters that relate to e.g., the current

state of an ACE, its environment or its business goals. For

example, during normal operation, the best path of

execution of a given business process may be reflected by

ABC with A, B and C referring to system nodes where

a given service is executed on. If load on C is high, then this

candidate could be demoted in favor of a candidate where

load is low, e.g., ABD; thus ensuring that overall

system load is evenly distributed. Such functionality could

easily be incorporated into the state predictor by using the

normalized and inverted load-factor of each node as a

weight factor that influences the importance of each node

within the execution model, which is normally only

reflected by the occurrence property.

C. Automatic Configuration of Pervasion

The configuration of a supervision pervasion is done in a
number of steps:

Contracting: Supervision is a supplementary service to
be used by ACE ensembles that provide service(s) to a user
(or another ACE ensemble). To facilitate supervision, the
first step involves contracting all components (sensors,
effectors, correlators, etc.) to be involved in the supervision
pervasion. This is done via a special controller ACE, which
commits a supervision contract with the SUS. Then the

controller discovers, via GN/GA, the remaining ACEs, and
sets up another contract for communication within the
supervision pervasion. Finally, it obtains relevant
configuration information, required to establish individual
supervision checker components that provide a specific
monitoring and control channel as discussed next. Note that
the discovery of ACE‘s and the contracting is a service that
is part of the common functionality of an ACE and as such is
provided by default.

SC Deployment: Supervision checker objects (GCO and
BCO) are deployed by sensors into individual ACEs that are
to be supervised. To this end, a temporary contract is
established between a sensor and an ACE at which an SC
object is to be deployed. The SC object itself is sent as part
of a specific message, which is handled by the supervision
organ of the ACE to be supervised. After deployment, each
SC object establishes a connection to a sensor as well as an
effector ACE.

Subscription: A publish/subscribe based interaction
mechanism is used as a general communication paradigm
within the supervision pervasion. For instance, correlators as
well as state predictors subscribe to information published by
sensors, where the specific selection of topics obviously
depends on the SUS and on the supervision task to be
performed. Hence, the publish/subscribe protocol provides a
data-flow driven group communication schema, where
groups are defined by topics.

Re-configuration: Changes in the architectural structure
of the SUS can be detected in several ways. The most
generic approach is to use the BCO of an ACE to intercept
events that steer the reconfiguration (contract cancellation,
discovery, new contract establishments, etc.) on the internal
communication bus, and to forward this information via
sensors to a dedicated correlator. In some cases it is however
easier to simply notify the supervisor ACEs about an
ongoing reconfiguration, which in turn will adapt to this
change.

The supervision pervasion reacts to the reconfiguration of
the ACE ensemble under supervision by performing
reconfiguration operation on itself. In particular it removes
SC objects from ACEs that are not longer part of the SUS,
and deploys new SCs to ACEs that are part of the new SUS
ensemble. Moreover, it adapts its internal structure to reflect
the new architecture of the supervised ensemble using the
mechanisms (contracting, subscription) described above.

Termination: Supervision activities are terminated (or
suspended in the case of long-term supervision) when the
ACE ensemble under supervision decides to break the
supervision contract, which is usually the case when the
service contract grouping this ensemble is terminated. The
controller ACE notifies all components of the supervision
pervasion, and breaks the contract between them. As for the
long-term supervision components, a contract can be
re-instantiated to the same statefull supervision object thus
allowing for the continuing observation of execution plans.

96

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. EXPERIMENTAL FRAMEWORK FOR SUPERVISION

PERVASION

A prototype of the proposed pervasive supervision
mechanism has been implemented. It is integrated within the
CASCADAS ACE Toolkit and it is available as open source
[4]. Within the prototype, each of the supervision
components is realized as a separate ACE. In particular, the
supervision library includes a set of generic ACEs, one for
each component thus providing basic as well as long-term
supervision features (i.e., sensor, effector, correlator,
assessor, drift analyzer, planner, state predictor, event
predictor). In order to accommodate for systems specific
requirements, these components can be further specialized
by extending these components. More importantly, the
supervision library provides relevant communication and
interaction protocols (request/reply, notification,
publish/subscribe) to set-up and (re-)configure a supervision
pervasion and its components.

Provider

Client

GCO

GCO

heartbeats

AssessorEffector

Correlator

Sensor

AssessorEffector

Correlator

tlast sent

tlast sent

d tlast sent – tlast received

d tlast sent – tlast received

d

d

d > threshold?

d > threshold?

reset

reset

BCO

MSP

Display

Sensor

events

Figure 13: Dynamic Reconfiguration Scenario

The described supervision approach has been applied to
supervise a video service implemented as a set of distributed
ACEs. Pervasive supervision has been introduced in order to
handle failures of ACEs implementing the video client and
one of several available video providers as depicted in
Figure 13. The goal for this scenario is to autonomously
reconfigure the supervision pervasion (that is the SUS and
the supervision components) if the Provider-Client
relationship develops a fault.

Subject of such supervision activity is the liveliness of
the contract between the client ACE and the provider ACE.
Supervision is done by issuing an exchange of heartbeat
signals between these two ACEs, hence, if the contract is
malfunctioning in one or both directions, this fault can be
detected by comparing the time stamps of sending and

receiving a heartbeat signal. Heartbeats are handled by
GCOs that are deployed into the supervised ACEs. Hence,
the liveliness validation mechanism is transparent to the
supervised ACEs where dynamic reconfiguration of the
supervision pervasion takes place if the provider changes. In
this case, the scenario depicted in Figure 13 is automatically
adapted to work with the new service contracts. Relevant
functions to inject specific GCOs / BCDs into the new SUS
are provided via the ACE framework.

For long-term supervision, the MSP computes the
probability of subsequent states based on observed state
changes within the execution logic of the SUS (in this case,
the video player ACE). Hence, in the above scenario
predictions are related the probability that a certain channel
will be selected and the probability that a fault during
transmission will occur due to a contract problem. These
probabilities are computed on the basis of sending the events
of self-model transitions, which occur when the channel
changes or timeouts for individual video channels occur, to
the MSP ACE. The former is of particular interest, as it
would allow a system to determine the channel that has been
selected most in the past, which in turn could be selected if
the currently selected channel becomes unavailable or if the
selection procedure develops a fault.

We have not yet carried out a detailed analysis of the
performance of the pervasive supervision approach. For
general ACEs however, such an analysis is available, which
allows inferring results also for the specific application
described in this paper. Resource consumptions can be
expressed in several terms:

Number of Thread: The number of threads an ACE runs
in stand-by mode is around 11. Changing from an idle to a
working mode the number of threads is increased to 18, with
additional three threads for each new contract (which are
needed to handle incoming and outgoing messages).
Moreover, each parallel plan executed by an ACE adds
another thread. An ACE involved in a supervision pervasion
contributes to two to five contracts and runs two to six
concurrent plans. Hence, in terms of threads, the
performance burden seems to be significant. It should
however be noted that a comparable supervision system,
which is not based on ACEs would require resources too. In
particular, the establishment of communication relations
(corresponding to contracts) and working threads
(corresponding to parallel plans) would be comparable. The
main difference is that those threads are executed by ACEs
and not by an external supervisor.

Memory Consumption: According to the experimental
evaluations performed on the CASCADAS ACE Toolkit
[15], the memory consumption turns out to be largely linear
compared to the number of ACEs a system comprises and
the number of established contracts (i.e., the memory needed
for input queues). Hence, similar remarks on a comparison
with supervision systems that are not ACE based apply.

A detailed analysis of response times in relation to the
current application case is not yet available. Nevertheless,
SCOs have been designed to infer with the internal event
propagation of an ACE in the least possible way (monitoring
is non-blocking). Hence, the performance burden added to an

97

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACE by deploying SCOs can be expected to be not
significant.

To summarize, the impact of adding a supervision
pervasion to an ACE configuration depends clearly on the
architecture of this pervasion. Implementing feedback loops
for each ACE (or pair of ACEs as in our application
example) by means of a complete supervision configuration
clearly increases the resources used in an unreasonable way.
Supervision pervasions become (at least in term or resources)
meaningful if larger configurations of ACEs are considered
as SUS. For micro-level supervision the approach described
in the following Section VII is more appropriate.

VII. ACE EMBEDDED SUPERSION

ACE embedded supervision is based on the self-adaption

of behavior according to local “supervision” logic. It

processes their internal state (e.g., active contracts, load

information), and information received from their neighbors

in “supervision” overlays. These overlays are used to

communicate (through gossiping protocols) information

about given ACEs that are relevant for distributed

supervision algorithms. They are continuously adopted to

efficiently achieve interactions among local supervision

logic and as such guarantee scalability by keeping the

interactions local thus avoiding information flooding.

As depicted in Figure 14 two types of “supervision”

overlays are used to facilitate ACE embedded supervision:

 Achieving (T): interconnecting the ACEs, which

provide a service of type T.

 Contracting (T): interconnecting the ACEs with an

active contract to a service of type T.

The construction of the “contracting (T)” and

“achieving (T)” clusters makes use of the rewiring

algorithm described earlier in Section III.B.

Figure 14: Self-organized overlays for service type T

This algorithm relies on the possibility to reconfigure the

contracts of a given SUS and implies that services are state-

less. If an execution context is needed to achieve multiple-

request transactions then it can be passed as an argument

within the request and response message. In this way, an

ACE A with an active contract to another ACE B offering a

service of type T, can replace B with another ACE that

provides a service of the same type T, without losing the

current context of execution. That is that information

relevant for the current execution of a service are

maintained, which allows such a service to continue

execution instead of restarting it.

To achieve this, the ACE logic is enriched with specific

supervision logic (described as a set of self-models), which

process the ACE internal state and the information

exchanged with the neighbors of the supervision overlays.

The following sections describe and evaluate ACE

embedded supervision algorithms for load balancing, and

power saving. An additional algorithm for handling contract

failures outside the scope of this paper but is described in

detail in [16].

A. ACE Load Balancing

The Load Balancing algorithm (LB) implements load
distribution policies, in a fully distributed way. LB enables
the migration of load, in terms of contracts, from ACEs that
are overused to ACEs that are underused. Such underused
ACEs ―invite‖ their neighbors to the achieving (T) overlay in
order to redirect some of their contracts, which is depicted in
Figure 15 and facilitated as follows:

 when B’ is underused, it informs all its neighbors in

achieving(T);

 if B, one of B’ neighbors, has a high load, it replies to

B’ by accepting the offer, and, negotiates with B’ the

load to be transferred. This negotiation mechanism

effectively prevents B to transfer too much load to B’;

 when A sends a request to B through one of the

contracts that have been transferred to B’, B informs A

to redirect its contract to B’. Then A destroys the

contract with B and send to B’ the request to create a

new contract.

Figure 15: Load balancing supervision logic

B. Power Saving

The power saving algorithm extends the LB algorithm
and assumes that each node in a distributed computing cloud
is associated with an ACE that is in charge of its supervision,

98

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and as such of its optimized use within the cloud. This
supervisor ACE is able to monitor the load of the node and
the contracts to the services it provides. The logic stems from
the fact that a node in stand-by consumes much less energy
than a node that is idle. Moreover, the energy consumed by
an active node is proportional to its load, but with a small
difference between an idle and a fully loaded state [17].
Thus, a group of servers with low utilization is a waste of
energy considering that the same work could be executed by
a smaller number of servers. In this case, the remaining
servers could be put in stand-by, thus reducing energy
consumption.

An ACE A supervising an underused node could contact
its neighboring nodes in achieving (T) to take its entire load.
If this succeeds, the node monitored by A can go in stand-by
to save energy. Vice versa, it could be woken-up by a node
that has a high workload if this node is not able to find any
currently awake node with sufficient resources available.

Measures to force a node into stand-by logic may be
executed by an ACE A that is monitoring an underused node,
according to the following:

 if A gets a random neighbor B in the achieving (T)
overlay, and

 if B is able to take all the load of A;

 then A transfers its load (contracts) to B and goes in
stand-by.

Accordingly, a wake-up ―call‖ is executed by an ACE B
that is monitoring an overloaded node, which is, according to
the set out LB policies, not able to transfer its load to any
other node currently active. Then B selects a neighbor in
stand-by mode, if any, and transfers part of its load to it.

To avoid node oscillation, a woken-up node has to wait
for some period before it can go into stand-by again.
Moreover, to reduce the number of failures in looking for a
neighbor to wake-up, an overloaded node has to wait for a
fixed time after a failed attempt in waking up a node, before
performing a new one.

C. Evaluation of the algorithms

The algorithm for load balancing (LB) and its extension

with power saving policies (LB+PS) have been

implemented and evaluated through simulations by using

the ‗breve‘ simulation environment [18].

The simulations were executed on a set of 6400 nodes,

each of which supervised by an ACE. Each node is

initialized with a random number of queued tasks (in the

range of 1 to 1000) and a number of contracts (ranging from

1 to 60). During each simulation cycle, each contract

generated a random number of task requests (between 0 and

10), and each node executed 200 tasks.

 Two thresholds were defined as follows: a node with less

than 400 pending requests is considered underused, while a

node with more than 2000 pending requests is considered

overloaded. In order to avoid that an underused node

immediately becomes overloaded, the total amount of

contracts assigned to it should not exceed the number of 40

after receiving contracts from overloaded neighbors.
The energy consumption of a node is computed in

―energy units‖, according to the following formula, which
are aligned with the considerations set out in [17]:

energy
units

= {
8 if the node is in stand-by

120
if the node has less than
100 queued tasks

140
if the node has less than
150 queued tasks

160 Otherwise

Due to the initial conditions, if a load balancing policy is

not adopted, the system is instable, as some nodes become
immediately overloaded. Moreover, in the interval
[200 : 300] cycles, the experiments simulate a traffic peak
with an increment of 50% of the rate of incoming tasks.

Figure 16: Comparison of task execution time

99

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17: Comparison of energy consumption

Figure 16 and Figure 17 compare the average execution
time and energy use for LB and LB+PS, respectively. As
shown, the adoption of PS policies seems to introduce a
benefit in the system that resulted in energy savings of about
14% (about 785000 energy units in stable state), which is
achieved with a limited impact on execution time (about 5%
in stable state). During the recovery phase from traffic peaks
there is a maximum increment of 45% in the average
execution time. This is due to a the higher delay of the
system in returning to a stable state, which is based on the PS
logic, which puts nodes into stand-by based on a single
policy evaluation (see stand-by logic) disregarding the
overall system state. Based on this some nodes may be
forced into stand-by even if the overall system is still
considered as overloaded. Although these nodes will be
woken-up again, the system will perform inefficiently for a
short time span.

LB+PS computes a quasi-optimal solution and the results
were compared with the ones of a simulation of a system
with an optimal distribution of load (e.g., a task is
immediately assigned to an idle node). By considering the
statistic variation of traffic, 5200 nodes are required to have
a stable system with an average execution time of tasks of
1.95 cycles (instead of 2.15 cycles of LB+PS), and an
average use of about 779000 energy units (instead of
785000). On the other hand, it is worth to point out that
LB+PS requires about 25 cycles to reach a stable state in
normal traffic and 160 cycles to recover from traffic peaks.

The described scenario shows that fully distributed
algorithms with simple supervision logic are able to
distribute load in a suitable and efficient way under normal
load conditions as well as after load peaks. The efficient load
balancing is also due to the fact that the proposed supervision
algorithms do not move queued tasks, but contracts, i.e., the
sources of requests. In this way, the algorithms balance the
forthcoming load and limit the amount of information that is
exchanged between ACEs. An extensive analysis of the LB
and PS algorithms, and alternative options, is given in [19].

VIII. COMBINING ACE EMBEDDED AND SUPERVISION

PERVASION

ACE embedded supervision as well as supervision
pervasions are considered to be complementary in both, the
level of supervision tasks as well as their granularity. While
the ACE embedded approach is more suitable for fine
grained validation of system generic properties (e.g.,
self-repair, load distribution, and energy consumption /
optimization); supervision pervasions are more suitable for
service specific tasks and – due to the overhead resulting
from the employment of a probably large number of
supervision ACEs – applicable for tasks that can only be
handled at a higher level of abstraction. For instance, the
enforcement and validation of generic system management
policies might turn out to be difficult using an embedded
approach because it is not clear how to map those policies
automatically into a local rule set or, in the context of ACEs,
into the self-model. Vice versa, embedded supervision is
applicable for the supervision of ACE internal properties.
Nevertheless, a combination of both approaches is desirable
for a number of application scenarios such as described next.

A. Scenarios

 Root cause analysis of faults in distributed systems is
difficult because a fault might manifest itself at a
completely different location of the system. While basic
repair activities can be suitably handled by an embedded
approach in many cases, root cause analysis requires a
global view to a system, which contradicts the idea of
embedded supervision to perform supervision activities
on the basis of local information.

 Some problems require the coordinated effort of a
number of distributed components to be solved.
Consider a software update in a distributed computing
network. One might want to apply a schedule that
maintains a basic functionality while shutting down

100

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

some parts of the overall system to perform the update.
While the execution of those coordinated activities can
be performed based on local interactions and thus can be
performed by a embedded supervision logic, the
construction of an appropriate schedule and the
distribution of sub-tasks requires again a global view.
Similar, whilst updating such a system it may be
important that the nodes and services from the ―old‖
system are not mixed with the updated system. Again,
this requires a more global viewpoint of the SUS.

 Supervision tasks based on statistical data concerning
certain types of component requirements are derived
from mass data (compare Section V.B on long-term
supervision). For instance, load balancing requires the
analysis of the current load situation in the
neighborhood of a server. The same type of data can be
used to do predictions of future load situations to e.g.,
identify bottlenecks. The unrestricted gossiping of such
data to perform the necessary computations for such
predictions is certainly not advisable; instead, the setup
of dedicated event processing and correlation pipelines
is required.

B. Supervisor Placement

In this section, we describe an approach to place
supervisors ―strategically‖ within a network of
communicating nodes, and how to use it to distribute data
amongst supervisors. Based on Figure 18, strategically
means that:

 Each relevant cluster has to be connected to a particular
supervisor. Recall that clusters are the result of the
rewiring process and reflect, in a certain way, the
functional structure of the SUS. Entities providing
similar or connected sub-functions belong to the same
clusters. In particular we are interested in those clusters
that are dedicated to embedded supervision activities.

 As the system under supervision is organized according
to various functional processes and considering that
contracts between nodes define the interaction and
relationships between interrelated processes,
communication between supervisors that are related to
overlapping node clusters is required for a large number
of communication tasks. For instance, root cause
analysis often requires the back tracing of a chain of
faults until the initial problem is identified. For this, the
communication between supervisors also has to back
trace propagation of the fault. A similar observation
applies to the software update scenario, where critical
paths through the SUS need to be considered and where
rollback procedures may need to be executed.

Consider an off-line computation approach where the
dynamics of the underlying self-organized system, such as
pre-computed distribution needs, need to be continuously
updated on the basis of data obtained from the SUS. Changes
in the contract structure within the SUS also require, the
conceptually higher orientated, supervisor network to update
itself. This shows that even off-line computation requires the
existence of some kind of monitoring infrastructure that
monitors and updates the current contract and clustering

structure of the computing system. Self-organization
mechanism could autonomously keep such a system up to
date without the need for a centralized evaluation
mechanism.

Figure 18: Strategic placement of supervisors (top nodes) in the SUS
(bottom nodes)

For the initial construction of a supervisor network, we
use the rewiring mechanism described in Section III.B. The
network is constructed in three steps; steps 2) and 3) are
continuously (concurrently) performed to update the network
according to changes in the structure of the SUS. Each step is
described as follows:
1. For the initial placement, a supervisor is determined for

each cluster of the system. Using an ACE based system
where nodes have unique identities; this can be achieved
for each cluster by electing a leader (e.g., the ACE with
the minimum address, or the highest computing power),
and performing a GN/GA interaction to discover and to
contract a supervisor ACE.

2. The supervisor discovers the other nodes within its
associated cluster by using the rewiring mechanism. For
that, recall that clusters are formed by the rewiring
algorithm as well as by using a service dependent
matching criteria. The matching criterion is that a
supervisor s matches a node b if s is already connected
to a node a matching b according to the matching
criterion of the underlying cluster.

3. Finally, the connections between the supervisors that
make up the supervisor network are achieved through
the rewiring algorithm utilizing the following matching
criterion: Supervisors s1 and s2 match if the sets of SUS
nodes they are related to overlap.

Note that because steps 2) and 3) are performed
continuously, each change in the contract structure of the
SUS is detected. Thus, the supervisor network converges
towards a state of strategic placement as described before.

C. Supervisor Communication

The gossiping algorithm described in Section III.A can
be used to distribute global information about the state of the
SUS. Thus, all supervisors have up to date information about
the nodes in the clusters they belong too. Data related to
parts of the system that are not directly connected to a
supervisor are obtained through gossiping with adjacent
supervisors. Naturally, the type of the data exchanged
depends on the supervision task at hand. For instance, in the
root cause analysis example data about ―suspicious‖
observations can be exchanged, i.e., those information that
indicate a possible propagation of the fault. In a second step,

101

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

more concrete analyses can be performed through the direct
cooperation of supervisors on the potential propagation path.

Hence, the supervisors are able to maintain a global
picture of the state and more importantly on the organization
of the underlying SUS. A mathematical approach on this
idea is given in [12] and [20].

IX. ADVANCES BEYOND THE STATE OF THE ART

ACE based systems provide services by means of
interactions of a probably large distributed set of ACEs with
a dynamically adapted interaction structure and task
diversification [21][22]. Hence, the basic assumption
underlying to traditional supervision approaches (see for
instance [1][23][24][25][26]), which state that the SUS
maintains a static architectural structure (i.e., it does not
perform run-time architecture adaptations) is not longer valid
for ACE based services.

 The notion of a service providing system makes a novel
approach for the formulation and deployment of autonomic
control loops necessary, which does not require any a priori
knowledge on the structure of the SUS. In order to address
this need, the pervasive supervision approach includes a
novel scheme to set-up those control loops that are based on
the interaction of various ACEs that form a supervision
ensemble. Evidently, the structure of the supervision
pervasion adapts itself dynamically to the changes of the
actual structure of the SUS.

Another novel achievement is the use of a common
technological basis (namely the ACE software component)
both for the SUS and the supervision system, which
promotes self-similarity among components. This has a
number of advantages as discussed next. The introduction of
additional technologies does always increase the complexity
of a system; hence a reduction of operational efforts by using
a supervision system that is technologically different from
the SUS is at least questionable. On the other hand, for the
supervision system described in this paper, a number of basic
functions that are necessary for supervision are already
provided by the ACE component platform itself. Examples
thereof include the service discovery and contracting
mechanism based on the GN/GA protocol, which supports
dynamic adaptation as described earlier; The separation
between the process logic (provided by ACE self-models)
and the function implementation (provided by ACE
functional repositories); the built-in monitoring and control
mechanisms the ACE supervision organ offers. Note that
generic supervision tasks (such as liveliness validation as
described in the case study in Section VI) can be applied to
the components of a supervision pervasion as well. Thus,
self-supervision can be performed through the proposed
approach.

The temporal supervision of quantitative as well as
symbolic based parameters and behavior is provided as a set
of long-term supervision components. A more complex
supervision ensemble can be enhanced through the flexible
configuration / orchestration of these components with once
that offer only basic supervision features. These components
have been specialized to work with the ACE model and its
declarative execution logic (i.e., based on self-models). For

instance, state predictors have been specifically designed to
address individual features of the ACE self-model / plan
philosophy to model detailed ACE behavior over time and
subsequently provide detailed predictions of potential future
behavior.

The proposed approach for supervision of distributed

autonomic systems introduces several novelties with respect

to analogous solutions based on autonomic technologies. In

fact, most solutions (e.g., [23]) rely only on the self-

adaptation of the components, by elaborating changes in

their internal state and in their execution

environment / context. The proposed approach enhances the

local self-adaptation features of autonomic components,

with the possibility to exchange data in a peer-to-peer

fashion. Supervision-related information is exchanged with

neighbors through self-organized overlays. In this way the

local supervision logic can work on a local vision of the

whole system. In fact, through the overlay and the self-

aggregation of information, the elements are able to

collect and to diffuse data from / to their neighbors, to

propagate them through gossiping protocols (e.g., the ones

described in [14]), and combine them with locally available

data.

Self-organization algorithms have already been adopted

in defining supervision capabilities. For instance, [24]

describes a load balancer based on these mechanisms.

Nevertheless, the CASCADAS ACE Toolkit embedded

supervision goes beyond this as it is fully integrated in the

abstraction and communication model. Moreover, its

implementation fully exploits the ACE model, its organs,

self-models and interaction mechanisms. This would allow,

for instance, that the load balancing is performed at the level

of contracts, and not at the level of pending tasks.

Moreover, it is important to point out that, in contrast to

centralized solutions that are designed to monitor a static

cluster of computing resources [25], the proposed solutions

are implemented in a pervasive and distributed way across

the system to be supervised and that are able to supervise

systems, which are dynamically changing in the number and

in the configuration of their elements.

The proposed approach for embedding supervision logic

in ACEs for managing distributed systems introduces

several novelties with respect to analogous solutions based

on autonomic technologies. In fact, most solutions, e.g.,

[27], rely only on the self-adaptation of components, which

is achieved by elaborating changes in their internal state and

in their execution environment / context. Instead, the

proposed approach enhances the local self-adaptation

features of ACEs, with the local exchange of information in

a self-organized overlay through gossiping protocols such as

described in [8][9][10]. In order to achieve decentralized

supervision logic the algorithms can create, in a fully

decentralized way, an approximated knowledge of

(dynamically changing) global properties of the whole

system, and use them in local supervision decisions.

102

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

X. APPLICATION SCENARIOS

In general, the supervision mechanisms proposed in this
paper could be adopted to supervise any hardware and / or
software system that are composed of a set of distributed and
interacting components. As such, any resource of any given
system can be associated to an ACE that is in charge of
performing decentralized supervision logic or interacting
with ACEs implementing specific supervision services.

This section elaborates briefly on some application
scenarios, in the context of future telecommunications
environments, where the supervision mechanisms proposed
in this paper can be fruitfully exploited. For this, let‘s
consider a simple architecture comprising the following three
levels:
1. Level of resources where each of them is controlled by

an ACE (or an aggregation of ACEs) through an

interface, which allow its monitoring and affecting;

2. Level of ACEs supervising the resources according to

embedded local supervision logic cooperating through

gossiping protocols and overlays networks;

3. Level of self-organized ensembles of ACEs

implementing self-adapting supervision services.

This simple architecture can be applied to tame the

growing complication of supervision in future

telecommunications networks that is characterized by the

integration of several heterogeneous systems supporting the

dynamic interconnection of huge amounts of small devices

that simultaneously provide and consume services and data.

The distributed supervision logic embedded in ACEs will

allow the provision of supervision at infrastructure level, by

coping with pervasiveness and the dynamic evolution of

these environments. At the same time, the supervision

pervasion would be able to self-configure and self-adapt its

supervision capabilities in dependence to individual QoS

and SLA specifications of specific end-to-end services.

For instance, as shown earlier, distributed supervision

could improve the overall performance of pervasive clouds

of computing resources by, e.g., shortening the response

time through more effective load balancing policies or

reducing the energy consumption by reallocating resources

or putting the underused resources in stand-by. Furthermore,

supervision pervasions can be adopted to cope with the

management (e.g., QoS monitoring or SLA enforcement) of

reliable content access and distribution services on such

cloud of resources.
In fact, cloud computing is an area where the application

of the proposed supervision principles can provide important
benefits especially when considering that cloud computing
involves a lot of disruption. For instance, the features that are
essential for computing are within the network (processing
and storage), the communication bus is the network itself and
the input / output devices are the end user terminals. This
reflects a fully distributed, highly heterogeneous system that
needs to be supervised at various levels of granularity.
Autonomic supervision can be used to support load
balancing, dynamic configuration, fault tolerance, to enhance
security, and to improve QoS in the presence of very

dynamic conditions, which include resource availability and
service requests. The basic idea consists in adopting ACEs to
manage the high dynamicity of the cloud nodes in which
users‘ may enter and exit the cloud in an unpredictable way
increasing the dynamicity of the SUS even further. For
example, each computing resource could be equipped with
ACEs capable of exchanging and managing events coming
from ACEs deployed on other resources and with ACEs
implementing supervision services. In turn, supervision
services could be used to cope with the problems of data
synchronization whilst providing the proper number of
duplications for the requested persistency.

Another application scenario is the supervision of
distributed service provisioning platforms, where different
actors can develop, provide, connect and interact, in a secure
and reliable way, for selling, buying, negotiating, exchanging
and trading any content, information, services and service
components [28]. In such a context where components are
dynamically negotiated and aggregated, supervision
pervasions could be used by an actor creating a service by
aggregating a cluster of components to enforce service-
specific management policies, or by a provider of service
components to supervise the instances of a service.

XI. CONCLUSIONS AND FUTURE WORK

One of the most serious technological challenges of
future Telecommunication, ICT and Internet endeavors will
be the interconnection and management of heterogeneous
systems and the huge amounts of devices that are tied
together in networks of networks. Autonomic Computing has
already argued that, due to the increasing complexity of
large-scale computing systems, both computers and
applications need to learn how to manage themselves in
accordance to high-level policies as specified by human
operators. Nevertheless current autonomic solutions don‘t
exploit the real pervasive nature of distributed systems.

This paper presented a novel approach for the
supervision of highly dynamic and fully distributed systems
structured as ensembles of autonomic components, based on
two complementary and co-operating mechanisms:
supervision pervasion, and embedded supervision.

The supervision pervasion is structured as an ensemble of
distributed components that implement an autonomic control
loop, which does not require any a-priori knowledge on the
structure of the supervised system. The architecture devised
is highly modular and can be configured towards individual
needs. In addition, the supervision system is able to re-
configure itself according to the changes of the SUS. This
mechanism is mainly oriented to the supervision of clusters
of ACEs implementing specific services in accordance to
service-specific management policies. It was experimentally
validated by the development of a prototype, which has been
made available as open source. The performance overheads
can be mostly neglected considering that advantages
provided. This is based on the fact that the interaction
between the SUS and the supervision system is
asynchronous (i.e., the supervisor does not slow down the
SUS), and performance bottlenecks resulting from the
introduction of a supervisor are expected to be moderate.

103

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Full quantitative evaluation of the approach is on all aspects
is, however, subject of our ongoing work. A possible
evolution of the prototype would be to include the definition
of the management policies through a specific language.
Also, the long-term supervision components could be
enhanced to facilitate the dynamic orchestration into more
advanced hierarchical supervision pervasions.

The embedded supervision consists of a set of
supervision logic embedded in ACEs themselves. This
mechanism enhances the local self-adaptation features of
ACEs, with the local exchange of information in a self-
organized overlay through gossiping protocols in order to
implement decentralized supervision algorithms. This
mechanism can supervise potentially huge amounts of
components that are pervasively distributed and
interconnected by offering the capability to manage ACEs at
the level of their basic functions and at the level of their
aggregations. Examples are fully distributed algorithms for
handling binding failures, load balancing and for optimizing
the utilization of resources. Some algorithms that have been
implemented according to the embedded supervision
approach were evaluated by means of simulations, which
showed that a quasi-optimal behavior at system level could
emerge from decisions that have been made by the
cooperating local supervision logic. A full integration of this
mechanism in the CASCADAS ACE Toolkit [5] is planned
as future work.

The two mechanisms presented can fruitfully cooperate
in order to provide a ―cross-layer‖ supervision mechanism
for distributed autonomic systems. In fact, a supervision
pervasion must also be able to react to events generated by
local supervision logic when it is not able to properly solve a
given situation. These cooperation aspects will be considered
in further investigations and in future experimental
evaluations.

Security has not been taken into account yet. Obviously,
any automated agent that is able to monitor and to impact the
execution of some system comprises a considerable security
threat. A solution would be to employ standard security
mechanisms to authenticate and authorize a supervisor
against the supervised system. Communication between
supervisor and system under supervision can be encrypted
using standard cryptographic approaches. More advanced
approaches could use distributed schemes to establish trust
relationships as outlined, for instance, in [31][32].

ACKNOWLEDGMENT

Authors would like to acknowledge European
Commission for funding the IP CASCADAS (IST-027807)
(FET Proactive Initiative, IST-2004-2.3.4 Situated and
Autonomic Communications).

REFERENCES

[1] Deussen P., Baumgarten M., Mulvenna M., Manzalini A., and Moiso
C., ―Autonomic Re-configuration of Pervasive Supervision Services -
The CASCADAS Approach,‖ Proc. 1st International Conf. on
Emerging Network Intelligence, 2009, pp. 33–38.

[2] Kephard J. O. and Chess D. M., ―The Vision of Autonomic
Computing,‖ IEEE Computer, Vol. 36, No. 1, 2003, pp. 41–50.

[3] Horn, P. "Autonomic Computing Manifesto",
http://www.research.ibm.com/autonomic/manifesto/, 2001.

[4] Manzalini A., Zambonelli F., Baresi L., and Di Ferdinando A., ―The
CASCADAS Framework for Autonomic Communications,‖ in
―Autonomic Communication‖, A. Vasilakos, M. Parashar, S.
Karnouskos, W. Pedrycz (Eds.), Springer, 2009, pp. 147–168.

[5] CASCADAS Project, ―ACE Toolkit open source,‖ available at
http://sourceforge.net/projects/acetoolkit/.

[6] Extended Finite State Machine,
http://en.wikipedia.org/wiki/Extended_finite_state_machine

[7] Marrow P., Bonsma E., Wang F., and Hoile C., ―DIET — A Scalable,
Robust and Adaptable Multi-Agent Platform for Information
Management,‖ BT Technology Journal, Vol. 21, No. 4, 2003, pp.
130–137.

[8] Jelasity M., Montresor A., and Babaoglu O., ―Gossip-based
Aggregation in Large Dynamic Networks,‖ ACM Transactions on
Computer Systems, Vol. 23, No. 3, 2005, 219–252.

[9] Babaoglu O., Canright G., Deutsch A., Caro G. A. D., Ducatelle F.,
Gambardella L. M., Ganguly N., Jelasity M., Montemanni R.,
Montresor A., and Urnes T., ―Design patterns from biology for
distributed computing,― ACM Transactions on Autonomous and
Adaptive Systems, Vol. 1, No. 1, 2006, pp.:26–66.

[10] Babaoglu O. and Jelasity M., ―Self-* Properties through Gossiping,‖
Philosophical Transactions of the Royal Society, Vol. 366, No. 1881,
October 2008.

[11] Saffre F., Tateson R., Halloy J., Shackleton M., and Deneubourg J.
L., ―Aggregation Dynamics in Overlay Networks and Their
Implications for Self-Organized Distributed Applications,‖ The
Computer Journal, 2008.

[12] Deussen P. H., "Model Based Reactive Planning and Prediction for
Autonomic Systems," Proc. Workshop on INnovative SERvice
Technologies (INSERTech07), 2007, pp. 1–10.

[13] Weiser M., ―The Computer for the 21st Century,‖ Scientific
American, Vol. 265, No. 3, 1991.

[14] Han J. and Pei J., ―Mining Frequent Patterns by Pattern-Growth:
Methodology and Implications,‖ ACM SIGKDD Explorations
Newsletter, Vol. 2, No. 2, 2000, pp. 14–20.

[15] Manzalini A., Minerva, R., and Moiso C., ― Autonomic Clouds of
Components for self-managed Service Ecosystems,‖ in Journal of
Telecommunications Management, Vol. 3, No. 2, 2010, to appear.

[16] Deussen P. H., Ferrari L., Manzalini A., and Moiso C., ―Highly
Distributed Supervision for Autonomic Networks and Services,‖
Proc. 5th Advanced International Conference on Telecommunications
(AICT2009), 2009.

[17] Chen B., Jamieson K., Balakrishnan H., and Morris R., ―Span: An
Energy Efficient Coordination Algorithm for Topology Maintenance
in Ad Hoc Wireless Networks,‖ Journal Wireless Networks, Vol. 8,
No. 5, 2002, pp. 481–494.

[18] Klein J., ―breve: a 3d environment for the simulation of decentralized
systems and artificial life,‖ Proc. 8th International Conference on the
Simulation and Synthesis of Living Systems (Artificial Life VIII),
The MIT Press, 2002.

[19] Manzalini A., Minerva R., and Moiso C., ―Supervision of
decentralized systems: the magic of self-organization,‖ Telecom Italia
Internal Report TFC0900009, 2009.

[20] Deussen P. H., "Supervision of Autonomic Systems – Tutorial," Proc.
Budapest Tutorial and Workshop on Autonomic Communications and
Component-ware, 2008, Published on CD.

[21] Devescovi D., Di Nitto E., Dubois D., and Mirandola R.,
―Self-organization algorithms for autonomic systems in the SelfLet
approach,‖ Proc. 1st Conference on Autonomic Computing and
Communication Systems, 2007, pp. 1–10.

[22] Shackleton M., Saffre F., Tateson R., Bonsma E., and Roadknight C.,
―Autonomic Computing for Pervasive ICT – A Whole-System
Perspective,‖ BT Technology Journal, Vol. 22, No. 3, 2004,
pp.191–199.

104

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[23] Deussen P. H., Valetto G., Din G., Kivimaki T., Heikkinen S.,
and Rocha A., ―Continuous On-Line Validation for Optimized
Service Management,‖ Proc. EURESCOM Summit 2002, 2002.

[24] Garlan D., Cheng S., Huang A., Schmerl B., and Steenkiste P.,
―Rainbow: Architecture-based Self-adaptation with Reusable
Infrastructure‖, IEEE Computer, Vol. 37, No. 10, 2004, pp. 46–54.

[25] Kaiser G., Parekh J., Gross P., and Valetto G., ―Retrofitting
Autonomic Capabilities onto Legacy Systems,‖ Journal of Cluster
Computing, Vol. 9, No. 2, 2006, pp. 141–159.

[26] Knight J. C., Sullivan K. J., Elder M. C., and Wang C., ―Survivability
Architectures: Issues and Approaches,‖ Proc. DARPA Information
Survivability Conference and Exposition, 2000, pp. 157–171.

[27] McCann J. and Huebscher M., ―Evaluation Issues in Autonomic
Computing,‖ Proc. Grid and Cooperative Computing Workshops
(GCC), 2004, pp. 597–608.

[28] Deussen P. H., Höfig E., and Manzalini A., ―An Ecological
Perspective on Future Service Environments,‖ Proc. 2nd IEEE
International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, 2008, pp. 37–42.

[29] Di Nitto E., Dubois D. J., Mirandola R., Saffre F., and Tateson, R.
―Applying Self-Aggregation to Load Balancing: Experimental
Results,‖ Proc. Bionetics2008, 2008, pp. 1–8.

[30] Pinheiro E., Bianchini R., Carrera E., and Heath T., ―Load Balancing
and Unbalancing for Power and Performance in Cluster-Based
Systems,‖ Proc. Workshop on Compilers and Operating Systems for
Low Power, 2001.

[31] Zubair, I., and M. H. Islam, ―Adaptive Trust Management in P2P
Networks using Gossip Protocol‖, Proc. 4th Int. Conf. on Emerging
Technologies, Rawalpindi, Pakistan, 2008, pp. 176 – 181.

[32] Cascella, R., ―Enabling Fast Bootstrap of Reputation in P2P Mobile
Networks‖, Proc. IEEE 23rd International Conference on Advanced
Information Networking and Applications (AINA-09), Bradford, UK,
2009, pp. 371 – 378.

105

International Journal on Advances in Intelligent Systems, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

