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Abstract – For years, software engineers have tried to achieve 

the same collective confidence in their software specifications 

that mathematicians, by way of proof, have in their theorems.  

Most attempts have been rooted in deduction and have 

produced methods that are too difficult to use in practice.  By 

borrowing from mathematics its methods of recording, 

communicating, and scrutinizing arguments instead of its 

methods of deduction, we introduce a method practical proof 

in software engineering.  The result of this work is a cost-

effective method for getting consensus among practicing 

software engineers about the adequacy of a real-world 

software design. 
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I. INTRODUCTION 

This paper is an elaboration of the ideas originally 

published in [1].  We expand on the method of practical 

mathematical reasoning in software engineering; provide a 

more detailed account of how the method can be used to 

argue for the adequacy of a real-world software system; and 

provide an extended analysis of the significance of this 

research. 

One of the most distinguishing features of mathematics is 

the level of consensus among mathematicians about the 

truth or falsehood of their theorems [2]. Mathematicians, by 

way of proof, enjoy an unusually high collective confidence 

in their theorems. For years, software engineers have tried 

to achieve the same collective confidence in their software 

specifications [3].  So far, most attempts have been limited 

to verifying software using some form of deduction [4] – an 

approach rooted in the assumption that proof happens as a 

result of deductive calculation [2]. Deductive methods all 

have the same drawback: the cost (in time and effort) of 

using them to verify a software design is usually an order of 

magnitude greater than the cost of creating the design itself 

[5].  Deductive methods of verification are so expensive 

that, in practice, they are used only to reduce the risk of the 

most serious design flaws – flaws that may compromise 

human safety, for example [6].  

In this work, we borrow proof from mathematics; use it to 

argue for the fitness-for-purpose of a software design; and 

do so in an amount of time that is within same order of 

magnitude that it took to create the design itself.  But rather 

than assuming that proof is achieved through a series of 

deductive calculations, we adopt, instead, the view that 

proof is achieved by a gradual process of collective scrutiny 

and refinement [3]: 

 
First of all, the proof of a theorem is a message. A proof is not a 

beautiful abstract object with an independent existence. No 

mathematician grasps a proof, sits back, and sighs happily at the 

knowledge that he can now be certain of the truth of his theorem. 

He runs out into the hall and looks for someone to listen to it. He 

bursts into a colleague's office and commandeers the blackboard. 

He throws aside his scheduled topic and regales a seminar with his 

new idea. … If the various proofs feel right and the results are 

examined from enough angles, then the truth of the theorem is 

eventually considered to be established. 

 

We borrow from math its methods of recording, 

communicating, and scrutinizing arguments – not its 

methods of deduction.  First, we use Pattern-Oriented 

Analysis and Design (POAD) Theory [7], [8] to structure an 

adequacy argument based on software design patterns (the 

details of POAD Theory are given in Section IV, subsection 

B).  Then, we use fuzzy inference to argue that the particular 

pattern instantiations in the design makes it fit for purpose.  

The result is what we will refer to as practical proof in 

software engineering: a cost-effective method for getting 

consensus among practicing software engineers about the 

adequacy of a real-world software design. 

The rest of this paper is laid out as follows.  We start by 

placing this work within the wider context of existing 

research on software design verification. Next, we specify 

the design for a collaborative wireless sensor network – the 

real-world problem of interest.  We use POAD Theory to 

structure a proof-of-correctness argument for the design and 

calculation (based on fuzzy inference) to complete the 

argument. Finally, we close with an analysis of this work 

and conclusions about its significance. 

 

II. STATE OF THE ART 

The prior art for this research is the body of existing 

proof-of-correctness methods for computer programs. In 

software engineering, requirements are specifications 

proposed in the requirements phase and design is the 

specification proposed in the design phase.  Proof-of-

correctness happens when it is demonstrated that a design 

meets its requirements.  Proof-of-correctness techniques 

reduce to a step-by-step reasoning for determining whether 

or not the design is fit for purpose [9].  Requirements dictate 

acceptable systems behavior by defining a mapping between 
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a set of pre-states and a set of post- states [10].  To satisfy a 

set of requirements, a design must take as input each pre-

state and produce as output the prescribed post-state.  

Regardless of the specific technique, proof-of-correctness 

happens by process of refinement; where the original 

specifications of the requirements are replaced by the 

equivalent or stronger specifications of the design [10]. The 

body of existing proof-of-correctness methods is vast; 

however, they all work according to one of the three 

fundamental laws of refinement: refinement by steps, 

refinement by parts, and refinement by cases [10]. 

In refinement by steps, proof-of-correctness proceeds by 

sequential actions where, in each step, a part of the 

requirement specification is replaced by a suitable design.  

The refinement continues until all requirements have been 

interpreted as sequences of computational steps.  In practice, 

proof-of-correctness techniques based on refinement by 

steps work by using semantic rules for interpreting 

requirements, specifying designs, and making comparisons 

between the two.  For example, [11], [12], and [13] all 

develop competing formal semantics that makes it possible 

to prove (by steps) the correctness of designs documented in 

UML state chart diagrams.  

In refinement by parts, an analyst normalizes the 

requirements into orthogonal parts, and then independently 

replaces each part with a suitable design element.  In 

practice, proof-of-correctness using refinement by parts 

proceeds by normalizing requirement specifications into 

domains [14].  The requirements of each domain are 

replaced by designs represented by mathematical constructs 

– for example, partial functions as in [15]; actor-based 

models as in [16]; or by games between the environment 

and the system as in [17].   

In refinement by cases, requirements are specified in terms 

of a correspondence between pre and post conditions.  In 

Hoare Logic [18], for example, the central construct is the 

Hoare Triple that relates a pre-condition to a post-condition 

by way of a command. Refinement occurs by replacing a 

requirement with a design that achieves the same 

correspondence.   

Existing proof-of-correctness methods (whether they use 

refinement by steps, parts, or case) require that requirements 

be replaced by suitable designs and that those replacements 

be justified by deductive implication [10]. As mentioned in 

the Introduction, deduction is expensive to use in the proof-

of-correctness of real software systems – about an order of 

magnitude more expense that the cost of creating the design 

itself.  Lightweight formal methods [5] are a way of 

compensating for the high cost; but instead of reducing the 

cost of deduction, lightweight formal methods simply limit 

its use. The central problem in the current state of the art 

remains – current methods of proof-of-correctness are too 

expensive for general use in real-world systems.  

This research breaks from the state of the art by rejecting 

the restriction that deduction must be used to justify 

refinement.  Instead, we will propose a proof-of-correctness 

technique based on Problem Oriented Software Engineering 

(POSE) [19] and software design patterns.  The details of 

POSE are given in Section IV, subsection A. Deduction is 

one of many methods for justifying the substitution of 

requirements with engineering designs. We do not evaluate 

our method of justification by comparing it to deduction. 

Instead, in Section V, we evaluate our method of 

justification by determining whether or not it is logically 

sound (a standard more general than deduction).  

POSE provides a framework for accepting engineering 

expertise as justification for replacing a requirement with a 

design.  We complement POSE by using software design 

patterns as ready-made units of justification and engineering 

expertise.  There are prior works that combine both formal 

methods and software design patterns.  Most of these works 

(for example [20], [21], and [22]) offer proposals for 

formally representing software design patterns, but they do 

not offer methods for proof-of-correctness.  The works that 

do offer proof-of-correctness methods (such as [23], [24], 

and [25]) do so based on deductive calculation; and, 

therefore, have the same drawbacks as the rest of the works 

surveyed. 

POSE gives us the freedom to choose a more efficient 

method of reasoning. Software design patterns allow us to 

easily connect our arguments to the processes of collective 

scrutiny and feedback already in existence in the pattern 

community [26].  In the course of this research, we 

contribute to the state of the art a proof-of-correctness 

technique that is closer to real-world use of proof in 

mathematics [3]: rigorous arguments (but not deductive 

arguments) whose truth is established by a social process of 

scrutiny and feedback; arguments whose truth could be 

demonstrated by formal deduction if it were worth the time 

and effort. 

 

III. A COLLABORATIVE SYSTEM DESIGN 

In this section we introduce a real-world design for a 

software system.  This design will be the target of analysis 

and proof-of-correctness in subsequent sections. 

In collaborative systems, otherwise autonomous 

computing nodes cooperate to achieve a common task that 

would not be possible with any individual node acting alone 

[27]. Although the exact definition of a collaborative system 

can vary depending on context, in this paper, we focus on 

three defining characteristics:  

 Nodes in collaborative systems are autonomous 

and spatially distributed. 

 Task-execution responsibilities are distributed 

across multiple nodes. 

 The communication links between nodes are 

decentralized and dynamic. 

  

Figure 1 is an example of a collaborative system – a 

network of environmental sensor stations. The system is 

designed to report the environmental condition of a given 
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geographic region. Each sensor is capable of recording and 

reporting its local conditions, but to record and report the 

condition of the entire region requires all sensor stations to 

cooperate.  

The nodes in the network are autonomous and spatially 

distributed across the region shown. Each sensor is capable 

of recording and reporting its local environmental 

conditions without the help of any of the other sensor 

stations. Task-execution is distributed across multiple nodes 

since reporting conditions for the entire region requires the 

cooperation of multiple sensor stations. The communication 

links between the sensor stations are decentralized and 

dynamic. Sensors can enter and leave the network at 

anytime. Every station is wirelessly connected to every 

other station, so no single sensor failure can disrupt the 

overall network connectivity.  

 

 
Figure 1: Example Collaborative System [28].  

 

In our system, we expect that node failures will be 

common and that the wireless communication links will be 

prone to frequent interruptions. For example, the sensor 

stations are exposed to adverse weather, they are knocked 

over and broken easily, and they can be expected to run out 

of power. People, cars, and animals passing between two 

sensor stations can cause a temporary loss of 

communication between them. If any of these things happen 

at the right time, a controller in a region may miss a sensor 

update and become out of touch with the current conditions 

in the region.  

A robust design will allow the sensor stations (referred to 

from now on as nodes) to both detect and mitigate these 

kinds of failures. Each node must be designed to detect 

when other nodes become unresponsive; each node must be 

designed to perform in degraded mode when disconnected 

from the network; and the network must be capable of using 

node redundancy to compensate for the loss of any 

particular node. A satisfactory design must satisfy the 

following requirements. 

Req.  1. Group Communication. Each node must be able 

to communicate with all other nodes and detect when a node 

becomes unresponsive.  

Req.  2. Fault Tolerance. The network must be capable of 

using node redundancy to compensate for the loss of any 

particular node. 

Req.  3. Degraded Mode Operation. Each node must be 

capable of performing limited functions while disconnected 

from the network, and be capable of resuming full function 

when network communication is restored. 

Figure 2 shows the class diagram of our design for a robust 

collaborative system. We consider Figure 2  to be the class 

diagram of a real-world design since it was taken from the 

design of an actual software system built to provide fault 

tolerance in collaborative systems [29]. Each GroupNode 

operates in its own thread of execution. Each node gets its 

ability to collaborate through an association with a 

CommStrategy object. The CommStrategy has an 

association back to its GroupNode in case the GroupNode 

needs to be notified of events from the CommStrategy. The 

PushPullNode (which, represents a sensor or controller) is a 

specific type of GroupNode. The PushPullStrategy is a 

specific type of CommStrategy. Using the JGroup 

communication API [30] the PushPullStrategy gives each 

PushPullNode the ability to communicate with other 

PushPullNodes.  

 

 
Figure 2: Class diagram of a design for a robust collaborative system. 

 

Figure 3 is a sequence diagram of how nodes participate in 

group operations. Sensors A and B are controlled by the 

Controller. Sensors A and B join the same group 

representing a single physical zone. The Controller relies on 

both sensor A and sensor B to report temperature for a given 

region. The controller doesn't care which sensor it uses as 

long as at least one of them is always available. When the 

Controller wants a temperature reading from the zone, it 

joins the zone's group and executes 

CommStrategy.groupOperation(). JGroups elects a leader 

within the group and calls getState() on that node (let's 

assume that sensor A was chosen).  The getState() operation 

of sensor A takes a temperature reading and sets the reading 

as the operation's return value. JGroups then calls setState() 

on the Controller, passing it the temperature reading from 

sensor A. In subsequent requests for the zone temperature, if 

sensor A becomes unresponsive, JGroups will failover to 

sensor B.  
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Figure 3: Nodes participating in a group operation 

 

We have a design, but is it a good one? Does it solve our 

problem and satisfy our requirements? In the remainder of 

this paper, we will construct a proof-of-correctness-

argument for the design. 

 

IV. OUR METHOD FOR PROOF OF CORRECTNESS 

A. Our Approach: The Basis 

The method that we use in the next section to structure our 

proof-of-correctness argument (POAD Theory) is based on 

a system of reasoning known as Problem-Oriented Software 

Engineering (POSE) [19].  In POSE a software engineering 

problem has context (a real-world environment), W; a 

requirement, R; and a solution (which, may or may not be 

known), S.  We write        to indicate that we intend to 

find a solution S that, given a context of W, satisfies R. 

Details about an element of the problem can be captured in a 

description for that element; and a description can be written 

in any language (UML in our case) considered appropriate. 

The problem,    , of designing a collaborative system can 

be expressed in POSE as: 

 

                (1)    

where   is the real-world environment for the system 

(shown in Figure 1);   is the system itself and   are 

requirements Req.  1, Req.  2, and Req.  3. Equation (1) says 

that we can expect to satisfy R when the system S is applied 

in context W. 

In POSE, engineering design is represented using a series 

of problem transformations. Transformation steps can be 

arbitrary in size; large steps can be composed of smaller 

ones. A problem transformation is a rule where a conclusion 

problem          is transformed into premise 

problems                            using 

justification   and a rule named  , resulting in the 

transformation step 
     

 

   
   

.  This means that   is a 

solution of          whenever            are solutions of 

                            . The justification   collects 

the evidence of adequacy of the transformation step and is 

validated by all relevant stake-holders.  Through the 

application of rule   , problems are transformed into other 

problems that may be easier to solve or that may lead to 

other problems that are easier to solve. These 

transformations occur until we are left only with problems 

that we know have a solution fit for the intended purpose.   

POSE allows us to use one big-step transformation to 

represent several smaller ones. We can apply big-step 

transformations without having completed justification, with 

the understanding that we will complete the justification 

later and solve our problem. The progression of a software 

engineering solution described by a series of 

transformations can be shown using a development tree. 

 

                           

           

    
    

           

    
    

 

(2)    

 

 In the tree, the initial problem forms the root and problem 

transformations extend the tree upward toward the leaves.   

There are four problem nodes in the tree:   ,   ,   , and     
The problem transformation from    to    is justified by   ; 

the transformation from    to    and    is justified by   . 

The bar over    indicates that    is solved. Because 

  remains unsolved, the adequacy argument for the tree (the 

conjunction of all justifications) is not complete, and the 

problem    remains unsolved. A complete and fully-

justified problem tree means that all leaf problems (in this 

case    and    ) have been solved. 

For the sake of clarity, we will show the context, solution, 

and requirement of a problem only when necessary to 

understanding a given transformation.  In many of the 

subsequent equations, these details are omitted and only the 

problem’s name is shown. 

 

B. Our Approach: Practical Mathematics 

In this section, we introduce POAD theory and use it to 

structure the argument that the design from Section III is fit-

for-purpose.   

A software design pattern is a tool that a software engineer 

can use to take a complex, unfamiliar problem and 

transform it into simpler, more familiar ones [31].  The basis 

of POAD Theory is that software engineering design can be 

represented as a series of transformations from complex 

engineering problems to simpler ones, and software design 

patterns can be used to justify those transformations:  

 
              

              

        
                     

 
(3)    

In (3) the patterns                     are used to 

justify the transformation from the                to the 
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              . The engineering expertise documented 

in the Object Group pattern describes how to achieve 

reliable multicast communication among objects in a group 

[32]. The pattern gives us justification for substituting 

        with the easier problems of implementing a 

communication mechanism (    ) and implementing an 

object that uses the communication mechanism (   ).  We 

write this as 

 
        

               
        
    

 
(4)    

 

which, means that we used the engineering expertise in the 

Object Group pattern (represented as     ) to justify a 

solution interpretation (represented by the rule         ) 
from         to      and    .   

But there is a problem. Equation (4) implies that if we 

have a solution to      and     then we also have a 

solution to        .   Having a communication 

mechanism that allows for reliable multicast communication 

and objects capable of communicating that way may be 

sufficient to argue that the solution can satisfy the group 

communication (Req.  1) and fault tolerance requirements 

(Req.  2); but the solution does not address the requirement 

that the objects be capable of degraded mode operation 

(Req.  3). 

We can add to our solution as many transformations as 

necessary.  We can add to (4), a transformation justified by 

the Explicit Interface pattern [33].   

 

    
         

   
        
    

               
        
    

 

(5)    

The Explicit Interface pattern describes how to achieve 

separation between an object and its environment [33].  We 

can use that separation to argue that the nodes in our design 

can function even when disconnected from each other. 

Equation (5) is a solution tree with          at the root. 

Two problem transformations extend the tree upward 

toward the leaves     ,     , and     .   The equation 

structures an argument whose adequacy is established by the 

conjunction of all justifications – in this case by the 

engineering expertise contained in the Object Group pattern 

     and the engineering expertise contained in the 

explicit interface pattern     .  A solved problem is 

written with a bar over it; for example, if the Object Group 

pattern were sufficient to convince us that we have an 

adequate communication mechanism, then we could rewrite 

(5) as follows 

 

                      
   

        
    

               
        
    

 

(6)    

where the bar over               indicates that we have 

sufficient justification to consider that problem solved. A 

complete and fully-justified problem tree means that all leaf 

problems – for (5), the leaves are     ,     , and       

– have been solved. We complete the problem tree in (5) by 

adding transformations and justifications sufficient to solve 

all leaf problems.  

 

             

    

        
    

                  

    

        
    

                 

    

        
    

 
(7)    

Equation (7) continues the solution from (5) by providing 

solutions for all leaf problems in (5). In (7) the problems 

     ,        , and        correspond to the Receiver, 

PushPullStrategy and PushPullNode  (from Figure 2) 

respectively.  Each leaf problem from (7) is a design 

implementation of the patterns chosen in (5). The      is 

an implementation of the communication mechanism 

prescribed by the Object Group pattern,         is an 

implementation of the interface prescribed by the Explicit 

Interface pattern, and        is an implementation of the 

domain object prescribed by the Explicit Interface pattern. 

By considering (5) in combination (7), we can conclude 

that, given sufficient justification (  ,    ,  and   ), we can 

consider our original problem (        from  (5)) solved. 

In other words, once we find    ,    ,  and   , we will have a 

complete proof-of-correctness argument for the design 

described in Section III. 

 

C. Our Approach: Practical Calculations 

So far, we have a general argument for how to use 

software design patterns to solve our problem, but it isn’t 

clear how this general argument relates to our specific 

design.  In this section, we introduce a method of 

calculation – based on Fuzzy Inference [34] – that connects 

our more general argument to the specific design decisions 

represented by the Receiver, PushPullStrategy and 

PushPullNode  elements of Figure 2. We use the calculation 

results as the justification (  ,    ,  and   ) needed to 

complete the proof-of-correctness argument for (5) and (7). 

Fuzzy inference is based on a generalized modus ponens 

[34] where arguments take the form: 

 
           

  
            

 
(8)    

For example, suppose we accepted the general rule that: if 

the Object Group pattern were well implemented as part of 

our collaborative system, then the group communication of 
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our system would be good.  If we knew that, in our system, 

the Object Group pattern were implemented poorly, then 

fuzzy inference would allow us to conclude that the group 

communication of the system would also be poor.  

We apply fuzzy inference to statements about the use of 

software design patterns to create a technique for calculating 

the results of software design decisions.  In works such as 

[35], [36], and [37] fuzzy logic has been used in 

combination with design patterns to reverse engineer a 

design from source code.  A software design pattern can 

have several different implementations. These works use 

fuzzy inference to determine if an existing solution, known 

to satisfy certain requirements, matches a general design 

pattern.  We apply this same idea, but in reverse: for a given 

design pattern, we use fuzzy inference to determine if a 

particular implementation of that pattern will lead to a 

solution that we can trust will satisfy particular 

requirements. For all fuzzy logic operations (such as 

creating fuzzy input variables, performing fuzzy inference, 

and visualizing fuzzy output variables), we used 

Mathematica’s Fuzzy Logic Environment [38].  

 

We begin our calculation by creating fuzzy rules [34] that 

represent the design constraints introduced by (5) and (7): 

Rule 1. If the object group pattern is implemented then 

group communication will be good 

Rule 2. If the object group pattern is not implemented 

then fault tolerance will be low 

Rule 3. If the explicit interface pattern is not implemented 

then degraded-mode operation will not be enabled 

Rule 4. If the push pull node communicates statically then 

degraded-mode operation will not be enabled 

Rule 5. If the push pull node communicates dynamically 

and the explicit interface pattern is implemented then 

degraded-mode operation will be enabled 

Rule 6. If the push pull node communicates dynamically 

and the object group pattern is implemented then 

group communication will be good and fault tolerance 

will be high. 

 

Each rule makes statements concerning input and output 

variables. Each variable has membership functions [34] that 

allow the inference engine to turn the numeric values of the 

variables into the more intuitive concepts used in Rules 1-6.  

For example, Figure 4 shows the three membership functions 

(Poor, Good, and Moderate) for the Group Communication 

output variable.  From the shape of the membership 

functions, we can see that a Group Communication variable 

with a value of 0.7 would be considered mostly moderate, 

slightly good, and not at all poor.  

 

 
Figure 4: Membership function for the Group Communication output 

variable 

 

The fuzzy rules capture our understanding of how the 

software engineering expertise contained in       and 

     (from (5)) relates to the original requirements    of 

(1). In our calculation,      ,        , and        (from 

(7)) are represented using input fuzzy variables and Req.  1, 

Req.  2, and Req.  3 (from (1)) are represented using output 

fuzzy variables. As shown in Figure 5, input variables 

representing our implementation choices are fed into an 

inference engine which, has been loaded with Rules 1-6.  

The inference engine produces values for the fuzzy output 

variables which, represent the results of our calculation.  

 
Figure 5: Process flow of the simulation. 

 

We calculate the design choices made in (7) by assigning 

specific values to the fuzzy input variables      ,        , 

and       .  Because JGroups provides a faithful 

implementation of the Object Group pattern, the       

provides an almost-complete implementation (0.949) of the 

Object Group pattern’s communication mechanisms.  The 

       is a reasonably good approximation (0.762) of the 

Object Group’s node element; but the communication 

strategy provided by the         is not a very good 

representation (0.584) of intent of the Explicit Interface 

pattern. The         object separates from         the 

details of group communication, but, unlike a true explicit 

interface, still requires        to select an appropriate 

instance of         based on the current circumstances. 

The results of the calculation predict that the design 

decisions described in (7) will result in a collaborative 

system that satisfies Req. 1-3 (see Figure 6). The results of 

the calculation are that the system will have good group 

communication (0.833), good fault tolerance (0.815), and 

will operate well in degraded mode (0.807). 
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Figure 6: The results of collaborative system calculation. 

 

If we compare every possible design choice to its 

corresponding calculated result, we get a design space that 

shows how design choices affect the quality of the system. 

Figure 7 shows the design space for achieving the desired 

fault tolerance.  There are a number of design choices for 

the       and        elements (shaded in yellow) that 

will result in acceptable (0.7 or greater) fault tolerance for 

the system.  The design space shows that fault tolerance is 

most dramatically affected (indicated by the surface’s steep 

drop-off) by the design of the       – which, makes sense 

because that portion of the design determines the group 

communication capabilities. 

 
Figure 7: Fault tolerance design space 

 

Figure 8 shows the design space for achieving the desired 

degraded-mode operation for each node in the collaborative 

system.  The number of acceptable design choices for the 

        and        are more limited than the choices 

available in the design space of Figure 7.  The choice of 

design for        seems to be slightly more influential to 

degraded-mode operation than the design choices for 

       . 

 

 
Figure 8: Degraded-mode operation design space 

 

The positive calculation results (which, are also confirmed 

by our analysis of the design spaces) provides the 

justification (  ,    ,  and   ), needed to complete the proof-

of-correctness argument for the design of Figure 2.  

The argument is complete, but is it trustworthy? Can we 

expect the method of argument described here to be 

sufficient to build consensus among practicing software 

engineers that our design meets its requirements?  In the 

remainder of this paper, we perform a critical analysis with 

the goal of answering these questions. 

 

V. ANALYSIS AND CONCLUSIONS 

We have proposed a method of proof-of-correctness for 

software design.  Keep in mind that by proof-of-correctness, 

we mean some method for convincing our audience that a 

design meets its requirements. We started with the real-

world problem of designing a collaborative system. We used 

POAD Theory to create a general argument; we used 

software design patterns to justify the argument; and we 

used calculation to apply the general argument to our 

specific design. Our goal was to introduce a cost-effective 

method for getting consensus among practicing software 

engineers.  We analyze whether or not our method 

accomplishes our goal by considering the following 

questions: is our proposed method trustworthy, is it 

convincing, is it practical? 

Is our method trustworthy? We can consider our method 

trustworthy if we can show that it is sound: given premises 

that can be trusted, our method will produce conclusions 

that can be trusted.  Our method consists of a general 

argument based on POAD Theory and specific calculations 

based on Fuzzy Logic.  POSE transformations – the basis of 

POAD Theory – are sound.  Premise problems can only be 

interpreted as conclusion problems given sufficient 

justification for doing so.   The original problem is 

considered solved only after all leaf-level sub-problems are 

known to be solved.  In POAD Theory a solved problem is 

made only of known-solved sub-problems; and the break-
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down of problems into constituent sub-problems is fully-

justified. Generalized modus ponens – the basis of fuzzy 

inference – is also sound in that its conclusions are true if 

the premises are true [39].  We can trust the results of our 

calculation as long as we trust the rules that we establish for 

governing the simulation.  

Is our method convincing?  Whether or not the particular 

argument given by (5), (7) and the justification from Section 

IV, Subsection C is convincing will depend on the results of 

a social process among practicing software engineers.  The 

argument will have to generate interest and credibility 

among some initial group of engineers.  It will have to be 

circulated among a wider audience, polished and refined.  A 

truly convincing argument will be internalized by engineers. 

That is, practicing software engineers may attempt to use 

parts or all of the argument to justify designs of their own; 

or the design itself will be routinely copied and used in other 

working IT software systems.  We can, however, determine 

if our general proof-of-correctness method is capable of 

producing convincing arguments.  We can compare the 

methods described here to the method of proof used in 

mathematics – the social process of scrutinizing humanly 

understandable (as opposed to purely formal) arguments 

[40]. Therefore, we focus the analysis of whether or not our 

method is convincing by asking, instead: does our method 

encourage the creation and collective scrutiny of 

understandable arguments? 

Our method is, essentially, an application of analogical 

reasoning – one of the basic patterns of human reasoning 

[41]. Our method makes arguments understandable by 

replacing the more difficult task of predicting the 

consequences of a design with the much easier task of 

comparing a design with known software design patterns.   

The calculations of Section IV, Subsection C draw a 

comparison between the design of Section III and the 

interaction of software design patterns given by (5) and (7).  

We reason that the closer our design is to the solutions 

described in the design patterns, the closer our results will 

be to the consequences described in the design patterns.  

Our calculation tells us just how close our design needs to 

be in order to produce satisfying results. POAD Theory 

allows us to record the argument so that it can be read, 

circulated, and scrutinized (as evidenced by this 

publication).  Further, using software design patterns, we 

build on the processes of collective scrutiny and feedback 

already in existence in the pattern community [26].   

Is our method practical? With a relatively small amount 

of effort (roughly the same amount of time it took to create 

the original design), we were able to use math and 

calculation to discover things about the design that are not 

obvious.  With Eq. 1-7 and the associated explanatory text, 

we were able to create a mathematical model that had a 

meaningful correspondence to the collaborative system 

design in Section III. We were able to use those equations to 

structure an argument for the design’s adequacy and to 

predict that: given the argument structure defined by (5) and 

(7); and the engineering expertise contained in the Object 

Group and Explicit Interface patterns; all we needed to 

validate the design of Section III was to find justifications 

  ,    ,  and   . Using Rules 1-6; fuzzy variable membership 

function definitions (the membership function for the Group 

Communication output variable is shown in Figure 4); and 

fuzzy inference; we were able to simulate the effect that the 

design choices of (7) would have on the resulting system 

qualities (shown in Figure 6). 

Although we are able to argue that the method we describe 

here is capable of practical proof-of-correctness, we 

consider it to be a greater accomplishment to demonstrate 

that particular arguments based on this method are 

convincing.  That is, our ultimate goal is to produce 

arguments that are trusted enough to become the 

infrastructure for a particular field of endeavor in software 

engineering.  We recognize that gaining consensus and 

confidence in an argument will likely requirement more 

than just argument creation and discussion.  We recognize 

the need to empirically demonstrate the ability of our 

proposed methods. At CSC, we are currently using this 

method to predict and manage risk in large-scale data center 

migration. Effectively managing risk for such large-scale 

endeavors requires high levels of consensus and 

coordination among migration teams.  The methods 

described in this research are being used to identify ideas 

that are most likely to result in a better understanding and 

mitigation of the risk factors involved.  We are exploring 

whether or not our methods are effective in identifying a set 

of ideas that a community of CSC engineers can rely on to 

improve performance in some of our most complex projects. 
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