
Believing Software: A Method of Practical Proof for Software Engineering

Jerry Overton

Computer Sciences Corporation (CSC)

St. Louis, Missouri, USA

joverton@csc.com

Abstract – For years, software engineers have tried to achieve

the same collective confidence in their software specifications

that mathematicians, by way of proof, have in their theorems.

Most attempts have been rooted in deduction and have

produced methods that are too difficult to use in practice. By

borrowing from mathematics its methods of recording,

communicating, and scrutinizing arguments instead of its

methods of deduction, we introduce a method practical proof

in software engineering. The result of this work is a cost-

effective method for getting consensus among practicing

software engineers about the adequacy of a real-world

software design.

Keywords – Consensus, Proof, Software Engineering,

Software Design Pattern, Practical Formal Method,

POAD Theory.

I. INTRODUCTION

This paper is an elaboration of the ideas originally

published in [1]. We expand on the method of practical

mathematical reasoning in software engineering; provide a

more detailed account of how the method can be used to

argue for the adequacy of a real-world software system; and

provide an extended analysis of the significance of this

research.

One of the most distinguishing features of mathematics is

the level of consensus among mathematicians about the

truth or falsehood of their theorems [2]. Mathematicians, by

way of proof, enjoy an unusually high collective confidence

in their theorems. For years, software engineers have tried

to achieve the same collective confidence in their software

specifications [3]. So far, most attempts have been limited

to verifying software using some form of deduction [4] – an

approach rooted in the assumption that proof happens as a

result of deductive calculation [2]. Deductive methods all

have the same drawback: the cost (in time and effort) of

using them to verify a software design is usually an order of

magnitude greater than the cost of creating the design itself

[5]. Deductive methods of verification are so expensive

that, in practice, they are used only to reduce the risk of the

most serious design flaws – flaws that may compromise

human safety, for example [6].

In this work, we borrow proof from mathematics; use it to

argue for the fitness-for-purpose of a software design; and

do so in an amount of time that is within same order of

magnitude that it took to create the design itself. But rather

than assuming that proof is achieved through a series of

deductive calculations, we adopt, instead, the view that

proof is achieved by a gradual process of collective scrutiny

and refinement [3]:

First of all, the proof of a theorem is a message. A proof is not a

beautiful abstract object with an independent existence. No

mathematician grasps a proof, sits back, and sighs happily at the

knowledge that he can now be certain of the truth of his theorem.

He runs out into the hall and looks for someone to listen to it. He

bursts into a colleague's office and commandeers the blackboard.

He throws aside his scheduled topic and regales a seminar with his

new idea. … If the various proofs feel right and the results are

examined from enough angles, then the truth of the theorem is

eventually considered to be established.

We borrow from math its methods of recording,

communicating, and scrutinizing arguments – not its

methods of deduction. First, we use Pattern-Oriented

Analysis and Design (POAD) Theory [7], [8] to structure an

adequacy argument based on software design patterns (the

details of POAD Theory are given in Section IV, subsection

B). Then, we use fuzzy inference to argue that the particular

pattern instantiations in the design makes it fit for purpose.

The result is what we will refer to as practical proof in

software engineering: a cost-effective method for getting

consensus among practicing software engineers about the

adequacy of a real-world software design.

The rest of this paper is laid out as follows. We start by

placing this work within the wider context of existing

research on software design verification. Next, we specify

the design for a collaborative wireless sensor network – the

real-world problem of interest. We use POAD Theory to

structure a proof-of-correctness argument for the design and

calculation (based on fuzzy inference) to complete the

argument. Finally, we close with an analysis of this work

and conclusions about its significance.

II. STATE OF THE ART

The prior art for this research is the body of existing

proof-of-correctness methods for computer programs. In

software engineering, requirements are specifications

proposed in the requirements phase and design is the

specification proposed in the design phase. Proof-of-

correctness happens when it is demonstrated that a design

meets its requirements. Proof-of-correctness techniques

reduce to a step-by-step reasoning for determining whether

or not the design is fit for purpose [9]. Requirements dictate

acceptable systems behavior by defining a mapping between

135

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a set of pre-states and a set of post- states [10]. To satisfy a

set of requirements, a design must take as input each pre-

state and produce as output the prescribed post-state.

Regardless of the specific technique, proof-of-correctness

happens by process of refinement; where the original

specifications of the requirements are replaced by the

equivalent or stronger specifications of the design [10]. The

body of existing proof-of-correctness methods is vast;

however, they all work according to one of the three

fundamental laws of refinement: refinement by steps,

refinement by parts, and refinement by cases [10].

In refinement by steps, proof-of-correctness proceeds by

sequential actions where, in each step, a part of the

requirement specification is replaced by a suitable design.

The refinement continues until all requirements have been

interpreted as sequences of computational steps. In practice,

proof-of-correctness techniques based on refinement by

steps work by using semantic rules for interpreting

requirements, specifying designs, and making comparisons

between the two. For example, [11], [12], and [13] all

develop competing formal semantics that makes it possible

to prove (by steps) the correctness of designs documented in

UML state chart diagrams.

In refinement by parts, an analyst normalizes the

requirements into orthogonal parts, and then independently

replaces each part with a suitable design element. In

practice, proof-of-correctness using refinement by parts

proceeds by normalizing requirement specifications into

domains [14]. The requirements of each domain are

replaced by designs represented by mathematical constructs

– for example, partial functions as in [15]; actor-based

models as in [16]; or by games between the environment

and the system as in [17].

In refinement by cases, requirements are specified in terms

of a correspondence between pre and post conditions. In

Hoare Logic [18], for example, the central construct is the

Hoare Triple that relates a pre-condition to a post-condition

by way of a command. Refinement occurs by replacing a

requirement with a design that achieves the same

correspondence.

Existing proof-of-correctness methods (whether they use

refinement by steps, parts, or case) require that requirements

be replaced by suitable designs and that those replacements

be justified by deductive implication [10]. As mentioned in

the Introduction, deduction is expensive to use in the proof-

of-correctness of real software systems – about an order of

magnitude more expense that the cost of creating the design

itself. Lightweight formal methods [5] are a way of

compensating for the high cost; but instead of reducing the

cost of deduction, lightweight formal methods simply limit

its use. The central problem in the current state of the art

remains – current methods of proof-of-correctness are too

expensive for general use in real-world systems.

This research breaks from the state of the art by rejecting

the restriction that deduction must be used to justify

refinement. Instead, we will propose a proof-of-correctness

technique based on Problem Oriented Software Engineering

(POSE) [19] and software design patterns. The details of

POSE are given in Section IV, subsection A. Deduction is

one of many methods for justifying the substitution of

requirements with engineering designs. We do not evaluate

our method of justification by comparing it to deduction.

Instead, in Section V, we evaluate our method of

justification by determining whether or not it is logically

sound (a standard more general than deduction).

POSE provides a framework for accepting engineering

expertise as justification for replacing a requirement with a

design. We complement POSE by using software design

patterns as ready-made units of justification and engineering

expertise. There are prior works that combine both formal

methods and software design patterns. Most of these works

(for example [20], [21], and [22]) offer proposals for

formally representing software design patterns, but they do

not offer methods for proof-of-correctness. The works that

do offer proof-of-correctness methods (such as [23], [24],

and [25]) do so based on deductive calculation; and,

therefore, have the same drawbacks as the rest of the works

surveyed.

POSE gives us the freedom to choose a more efficient

method of reasoning. Software design patterns allow us to

easily connect our arguments to the processes of collective

scrutiny and feedback already in existence in the pattern

community [26]. In the course of this research, we

contribute to the state of the art a proof-of-correctness

technique that is closer to real-world use of proof in

mathematics [3]: rigorous arguments (but not deductive

arguments) whose truth is established by a social process of

scrutiny and feedback; arguments whose truth could be

demonstrated by formal deduction if it were worth the time

and effort.

III. A COLLABORATIVE SYSTEM DESIGN

In this section we introduce a real-world design for a

software system. This design will be the target of analysis

and proof-of-correctness in subsequent sections.

In collaborative systems, otherwise autonomous

computing nodes cooperate to achieve a common task that

would not be possible with any individual node acting alone

[27]. Although the exact definition of a collaborative system

can vary depending on context, in this paper, we focus on

three defining characteristics:

 Nodes in collaborative systems are autonomous

and spatially distributed.

 Task-execution responsibilities are distributed

across multiple nodes.

 The communication links between nodes are

decentralized and dynamic.

Figure 1 is an example of a collaborative system – a

network of environmental sensor stations. The system is

designed to report the environmental condition of a given

136

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

geographic region. Each sensor is capable of recording and

reporting its local conditions, but to record and report the

condition of the entire region requires all sensor stations to

cooperate.

The nodes in the network are autonomous and spatially

distributed across the region shown. Each sensor is capable

of recording and reporting its local environmental

conditions without the help of any of the other sensor

stations. Task-execution is distributed across multiple nodes

since reporting conditions for the entire region requires the

cooperation of multiple sensor stations. The communication

links between the sensor stations are decentralized and

dynamic. Sensors can enter and leave the network at

anytime. Every station is wirelessly connected to every

other station, so no single sensor failure can disrupt the

overall network connectivity.

Figure 1: Example Collaborative System [28].

In our system, we expect that node failures will be

common and that the wireless communication links will be

prone to frequent interruptions. For example, the sensor

stations are exposed to adverse weather, they are knocked

over and broken easily, and they can be expected to run out

of power. People, cars, and animals passing between two

sensor stations can cause a temporary loss of

communication between them. If any of these things happen

at the right time, a controller in a region may miss a sensor

update and become out of touch with the current conditions

in the region.

A robust design will allow the sensor stations (referred to

from now on as nodes) to both detect and mitigate these

kinds of failures. Each node must be designed to detect

when other nodes become unresponsive; each node must be

designed to perform in degraded mode when disconnected

from the network; and the network must be capable of using

node redundancy to compensate for the loss of any

particular node. A satisfactory design must satisfy the

following requirements.

Req. 1. Group Communication. Each node must be able

to communicate with all other nodes and detect when a node

becomes unresponsive.

Req. 2. Fault Tolerance. The network must be capable of

using node redundancy to compensate for the loss of any

particular node.

Req. 3. Degraded Mode Operation. Each node must be

capable of performing limited functions while disconnected

from the network, and be capable of resuming full function

when network communication is restored.

Figure 2 shows the class diagram of our design for a robust

collaborative system. We consider Figure 2 to be the class

diagram of a real-world design since it was taken from the

design of an actual software system built to provide fault

tolerance in collaborative systems [29]. Each GroupNode

operates in its own thread of execution. Each node gets its

ability to collaborate through an association with a

CommStrategy object. The CommStrategy has an

association back to its GroupNode in case the GroupNode

needs to be notified of events from the CommStrategy. The

PushPullNode (which, represents a sensor or controller) is a

specific type of GroupNode. The PushPullStrategy is a

specific type of CommStrategy. Using the JGroup

communication API [30] the PushPullStrategy gives each

PushPullNode the ability to communicate with other

PushPullNodes.

Figure 2: Class diagram of a design for a robust collaborative system.

Figure 3 is a sequence diagram of how nodes participate in

group operations. Sensors A and B are controlled by the

Controller. Sensors A and B join the same group

representing a single physical zone. The Controller relies on

both sensor A and sensor B to report temperature for a given

region. The controller doesn't care which sensor it uses as

long as at least one of them is always available. When the

Controller wants a temperature reading from the zone, it

joins the zone's group and executes

CommStrategy.groupOperation(). JGroups elects a leader

within the group and calls getState() on that node (let's

assume that sensor A was chosen). The getState() operation

of sensor A takes a temperature reading and sets the reading

as the operation's return value. JGroups then calls setState()

on the Controller, passing it the temperature reading from

sensor A. In subsequent requests for the zone temperature, if

sensor A becomes unresponsive, JGroups will failover to

sensor B.

137

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3: Nodes participating in a group operation

We have a design, but is it a good one? Does it solve our

problem and satisfy our requirements? In the remainder of

this paper, we will construct a proof-of-correctness-

argument for the design.

IV. OUR METHOD FOR PROOF OF CORRECTNESS

A. Our Approach: The Basis

The method that we use in the next section to structure our

proof-of-correctness argument (POAD Theory) is based on

a system of reasoning known as Problem-Oriented Software

Engineering (POSE) [19]. In POSE a software engineering

problem has context (a real-world environment), W; a

requirement, R; and a solution (which, may or may not be

known), S. We write to indicate that we intend to

find a solution S that, given a context of W, satisfies R.

Details about an element of the problem can be captured in a

description for that element; and a description can be written

in any language (UML in our case) considered appropriate.

The problem, , of designing a collaborative system can

be expressed in POSE as:

 (1)

where is the real-world environment for the system

(shown in Figure 1); is the system itself and are

requirements Req. 1, Req. 2, and Req. 3. Equation (1) says

that we can expect to satisfy R when the system S is applied

in context W.

In POSE, engineering design is represented using a series

of problem transformations. Transformation steps can be

arbitrary in size; large steps can be composed of smaller

ones. A problem transformation is a rule where a conclusion

problem is transformed into premise

problems using

justification and a rule named , resulting in the

transformation step

. This means that is a

solution of whenever are solutions of

 . The justification collects

the evidence of adequacy of the transformation step and is

validated by all relevant stake-holders. Through the

application of rule , problems are transformed into other

problems that may be easier to solve or that may lead to

other problems that are easier to solve. These

transformations occur until we are left only with problems

that we know have a solution fit for the intended purpose.

POSE allows us to use one big-step transformation to

represent several smaller ones. We can apply big-step

transformations without having completed justification, with

the understanding that we will complete the justification

later and solve our problem. The progression of a software

engineering solution described by a series of

transformations can be shown using a development tree.

(2)

 In the tree, the initial problem forms the root and problem

transformations extend the tree upward toward the leaves.

There are four problem nodes in the tree: , , , and
The problem transformation from to is justified by ;

the transformation from to and is justified by .

The bar over indicates that is solved. Because

 remains unsolved, the adequacy argument for the tree (the

conjunction of all justifications) is not complete, and the

problem remains unsolved. A complete and fully-

justified problem tree means that all leaf problems (in this

case and) have been solved.

For the sake of clarity, we will show the context, solution,

and requirement of a problem only when necessary to

understanding a given transformation. In many of the

subsequent equations, these details are omitted and only the

problem’s name is shown.

B. Our Approach: Practical Mathematics

In this section, we introduce POAD theory and use it to

structure the argument that the design from Section III is fit-

for-purpose.

A software design pattern is a tool that a software engineer

can use to take a complex, unfamiliar problem and

transform it into simpler, more familiar ones [31]. The basis

of POAD Theory is that software engineering design can be

represented as a series of transformations from complex

engineering problems to simpler ones, and software design

patterns can be used to justify those transformations:

(3)

In (3) the patterns are used to

justify the transformation from the to the

138

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 . The engineering expertise documented

in the Object Group pattern describes how to achieve

reliable multicast communication among objects in a group

[32]. The pattern gives us justification for substituting

 with the easier problems of implementing a

communication mechanism () and implementing an

object that uses the communication mechanism (). We

write this as

(4)

which, means that we used the engineering expertise in the

Object Group pattern (represented as) to justify a

solution interpretation (represented by the rule)
from to and .

But there is a problem. Equation (4) implies that if we

have a solution to and then we also have a

solution to . Having a communication

mechanism that allows for reliable multicast communication

and objects capable of communicating that way may be

sufficient to argue that the solution can satisfy the group

communication (Req. 1) and fault tolerance requirements

(Req. 2); but the solution does not address the requirement

that the objects be capable of degraded mode operation

(Req. 3).

We can add to our solution as many transformations as

necessary. We can add to (4), a transformation justified by

the Explicit Interface pattern [33].

(5)

The Explicit Interface pattern describes how to achieve

separation between an object and its environment [33]. We

can use that separation to argue that the nodes in our design

can function even when disconnected from each other.

Equation (5) is a solution tree with at the root.

Two problem transformations extend the tree upward

toward the leaves , , and . The equation

structures an argument whose adequacy is established by the

conjunction of all justifications – in this case by the

engineering expertise contained in the Object Group pattern

 and the engineering expertise contained in the

explicit interface pattern . A solved problem is

written with a bar over it; for example, if the Object Group

pattern were sufficient to convince us that we have an

adequate communication mechanism, then we could rewrite

(5) as follows

(6)

where the bar over indicates that we have

sufficient justification to consider that problem solved. A

complete and fully-justified problem tree means that all leaf

problems – for (5), the leaves are , , and

– have been solved. We complete the problem tree in (5) by

adding transformations and justifications sufficient to solve

all leaf problems.

(7)

Equation (7) continues the solution from (5) by providing

solutions for all leaf problems in (5). In (7) the problems

 , , and correspond to the Receiver,

PushPullStrategy and PushPullNode (from Figure 2)

respectively. Each leaf problem from (7) is a design

implementation of the patterns chosen in (5). The is

an implementation of the communication mechanism

prescribed by the Object Group pattern, is an

implementation of the interface prescribed by the Explicit

Interface pattern, and is an implementation of the

domain object prescribed by the Explicit Interface pattern.

By considering (5) in combination (7), we can conclude

that, given sufficient justification (, , and), we can

consider our original problem (from (5)) solved.

In other words, once we find , , and , we will have a

complete proof-of-correctness argument for the design

described in Section III.

C. Our Approach: Practical Calculations

So far, we have a general argument for how to use

software design patterns to solve our problem, but it isn’t

clear how this general argument relates to our specific

design. In this section, we introduce a method of

calculation – based on Fuzzy Inference [34] – that connects

our more general argument to the specific design decisions

represented by the Receiver, PushPullStrategy and

PushPullNode elements of Figure 2. We use the calculation

results as the justification (, , and) needed to

complete the proof-of-correctness argument for (5) and (7).

Fuzzy inference is based on a generalized modus ponens

[34] where arguments take the form:

(8)

For example, suppose we accepted the general rule that: if

the Object Group pattern were well implemented as part of

our collaborative system, then the group communication of

139

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

our system would be good. If we knew that, in our system,

the Object Group pattern were implemented poorly, then

fuzzy inference would allow us to conclude that the group

communication of the system would also be poor.

We apply fuzzy inference to statements about the use of

software design patterns to create a technique for calculating

the results of software design decisions. In works such as

[35], [36], and [37] fuzzy logic has been used in

combination with design patterns to reverse engineer a

design from source code. A software design pattern can

have several different implementations. These works use

fuzzy inference to determine if an existing solution, known

to satisfy certain requirements, matches a general design

pattern. We apply this same idea, but in reverse: for a given

design pattern, we use fuzzy inference to determine if a

particular implementation of that pattern will lead to a

solution that we can trust will satisfy particular

requirements. For all fuzzy logic operations (such as

creating fuzzy input variables, performing fuzzy inference,

and visualizing fuzzy output variables), we used

Mathematica’s Fuzzy Logic Environment [38].

We begin our calculation by creating fuzzy rules [34] that

represent the design constraints introduced by (5) and (7):

Rule 1. If the object group pattern is implemented then

group communication will be good

Rule 2. If the object group pattern is not implemented

then fault tolerance will be low

Rule 3. If the explicit interface pattern is not implemented

then degraded-mode operation will not be enabled

Rule 4. If the push pull node communicates statically then

degraded-mode operation will not be enabled

Rule 5. If the push pull node communicates dynamically

and the explicit interface pattern is implemented then

degraded-mode operation will be enabled

Rule 6. If the push pull node communicates dynamically

and the object group pattern is implemented then

group communication will be good and fault tolerance

will be high.

Each rule makes statements concerning input and output

variables. Each variable has membership functions [34] that

allow the inference engine to turn the numeric values of the

variables into the more intuitive concepts used in Rules 1-6.

For example, Figure 4 shows the three membership functions

(Poor, Good, and Moderate) for the Group Communication

output variable. From the shape of the membership

functions, we can see that a Group Communication variable

with a value of 0.7 would be considered mostly moderate,

slightly good, and not at all poor.

Figure 4: Membership function for the Group Communication output

variable

The fuzzy rules capture our understanding of how the

software engineering expertise contained in and

 (from (5)) relates to the original requirements of

(1). In our calculation, , , and (from

(7)) are represented using input fuzzy variables and Req. 1,

Req. 2, and Req. 3 (from (1)) are represented using output

fuzzy variables. As shown in Figure 5, input variables

representing our implementation choices are fed into an

inference engine which, has been loaded with Rules 1-6.

The inference engine produces values for the fuzzy output

variables which, represent the results of our calculation.

Figure 5: Process flow of the simulation.

We calculate the design choices made in (7) by assigning

specific values to the fuzzy input variables , ,

and . Because JGroups provides a faithful

implementation of the Object Group pattern, the

provides an almost-complete implementation (0.949) of the

Object Group pattern’s communication mechanisms. The

 is a reasonably good approximation (0.762) of the

Object Group’s node element; but the communication

strategy provided by the is not a very good

representation (0.584) of intent of the Explicit Interface

pattern. The object separates from the

details of group communication, but, unlike a true explicit

interface, still requires to select an appropriate

instance of based on the current circumstances.

The results of the calculation predict that the design

decisions described in (7) will result in a collaborative

system that satisfies Req. 1-3 (see Figure 6). The results of

the calculation are that the system will have good group

communication (0.833), good fault tolerance (0.815), and

will operate well in degraded mode (0.807).

140

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: The results of collaborative system calculation.

If we compare every possible design choice to its

corresponding calculated result, we get a design space that

shows how design choices affect the quality of the system.

Figure 7 shows the design space for achieving the desired

fault tolerance. There are a number of design choices for

the and elements (shaded in yellow) that

will result in acceptable (0.7 or greater) fault tolerance for

the system. The design space shows that fault tolerance is

most dramatically affected (indicated by the surface’s steep

drop-off) by the design of the – which, makes sense

because that portion of the design determines the group

communication capabilities.

Figure 7: Fault tolerance design space

Figure 8 shows the design space for achieving the desired

degraded-mode operation for each node in the collaborative

system. The number of acceptable design choices for the

 and are more limited than the choices

available in the design space of Figure 7. The choice of

design for seems to be slightly more influential to

degraded-mode operation than the design choices for

 .

Figure 8: Degraded-mode operation design space

The positive calculation results (which, are also confirmed

by our analysis of the design spaces) provides the

justification (, , and), needed to complete the proof-

of-correctness argument for the design of Figure 2.

The argument is complete, but is it trustworthy? Can we

expect the method of argument described here to be

sufficient to build consensus among practicing software

engineers that our design meets its requirements? In the

remainder of this paper, we perform a critical analysis with

the goal of answering these questions.

V. ANALYSIS AND CONCLUSIONS

We have proposed a method of proof-of-correctness for

software design. Keep in mind that by proof-of-correctness,

we mean some method for convincing our audience that a

design meets its requirements. We started with the real-

world problem of designing a collaborative system. We used

POAD Theory to create a general argument; we used

software design patterns to justify the argument; and we

used calculation to apply the general argument to our

specific design. Our goal was to introduce a cost-effective

method for getting consensus among practicing software

engineers. We analyze whether or not our method

accomplishes our goal by considering the following

questions: is our proposed method trustworthy, is it

convincing, is it practical?

Is our method trustworthy? We can consider our method

trustworthy if we can show that it is sound: given premises

that can be trusted, our method will produce conclusions

that can be trusted. Our method consists of a general

argument based on POAD Theory and specific calculations

based on Fuzzy Logic. POSE transformations – the basis of

POAD Theory – are sound. Premise problems can only be

interpreted as conclusion problems given sufficient

justification for doing so. The original problem is

considered solved only after all leaf-level sub-problems are

known to be solved. In POAD Theory a solved problem is

made only of known-solved sub-problems; and the break-

141

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

down of problems into constituent sub-problems is fully-

justified. Generalized modus ponens – the basis of fuzzy

inference – is also sound in that its conclusions are true if

the premises are true [39]. We can trust the results of our

calculation as long as we trust the rules that we establish for

governing the simulation.

Is our method convincing? Whether or not the particular

argument given by (5), (7) and the justification from Section

IV, Subsection C is convincing will depend on the results of

a social process among practicing software engineers. The

argument will have to generate interest and credibility

among some initial group of engineers. It will have to be

circulated among a wider audience, polished and refined. A

truly convincing argument will be internalized by engineers.

That is, practicing software engineers may attempt to use

parts or all of the argument to justify designs of their own;

or the design itself will be routinely copied and used in other

working IT software systems. We can, however, determine

if our general proof-of-correctness method is capable of

producing convincing arguments. We can compare the

methods described here to the method of proof used in

mathematics – the social process of scrutinizing humanly

understandable (as opposed to purely formal) arguments

[40]. Therefore, we focus the analysis of whether or not our

method is convincing by asking, instead: does our method

encourage the creation and collective scrutiny of

understandable arguments?

Our method is, essentially, an application of analogical

reasoning – one of the basic patterns of human reasoning

[41]. Our method makes arguments understandable by

replacing the more difficult task of predicting the

consequences of a design with the much easier task of

comparing a design with known software design patterns.

The calculations of Section IV, Subsection C draw a

comparison between the design of Section III and the

interaction of software design patterns given by (5) and (7).

We reason that the closer our design is to the solutions

described in the design patterns, the closer our results will

be to the consequences described in the design patterns.

Our calculation tells us just how close our design needs to

be in order to produce satisfying results. POAD Theory

allows us to record the argument so that it can be read,

circulated, and scrutinized (as evidenced by this

publication). Further, using software design patterns, we

build on the processes of collective scrutiny and feedback

already in existence in the pattern community [26].

Is our method practical? With a relatively small amount

of effort (roughly the same amount of time it took to create

the original design), we were able to use math and

calculation to discover things about the design that are not

obvious. With Eq. 1-7 and the associated explanatory text,

we were able to create a mathematical model that had a

meaningful correspondence to the collaborative system

design in Section III. We were able to use those equations to

structure an argument for the design’s adequacy and to

predict that: given the argument structure defined by (5) and

(7); and the engineering expertise contained in the Object

Group and Explicit Interface patterns; all we needed to

validate the design of Section III was to find justifications

 , , and . Using Rules 1-6; fuzzy variable membership

function definitions (the membership function for the Group

Communication output variable is shown in Figure 4); and

fuzzy inference; we were able to simulate the effect that the

design choices of (7) would have on the resulting system

qualities (shown in Figure 6).

Although we are able to argue that the method we describe

here is capable of practical proof-of-correctness, we

consider it to be a greater accomplishment to demonstrate

that particular arguments based on this method are

convincing. That is, our ultimate goal is to produce

arguments that are trusted enough to become the

infrastructure for a particular field of endeavor in software

engineering. We recognize that gaining consensus and

confidence in an argument will likely requirement more

than just argument creation and discussion. We recognize

the need to empirically demonstrate the ability of our

proposed methods. At CSC, we are currently using this

method to predict and manage risk in large-scale data center

migration. Effectively managing risk for such large-scale

endeavors requires high levels of consensus and

coordination among migration teams. The methods

described in this research are being used to identify ideas

that are most likely to result in a better understanding and

mitigation of the risk factors involved. We are exploring

whether or not our methods are effective in identifying a set

of ideas that a community of CSC engineers can rely on to

improve performance in some of our most complex projects.

ACKNOWLEDGMENT

We would like to thank Dariusz W. Kaminski of the

Marine Scotland directorate of the Scottish Government for

his insightful review and commentary.

REFERENCES
[1] J. Overton. Practical Math and Simulation in Software

Design. Proceedings of the Third International Conferences on

Pervasive Patterns and Applications (Computation World 2011).

2011.

[2] R. Hersh. What is Mathematics, Really? Oxford University

Press, New York, Oxford, 1997.

[3] R. De Millo, R. Lipton, and A. Perlis. Social Processes and

Proofs of Theorems and Programs, Communications of the ACM,

Volume 22, Number 5, 1979.

[4] G. Holzmann. Trends in Software Verification. Proceedings

of the Formal Methods Europe Conference (FME’03). 2003.

[5] D. Jackson. Lightweight Formal Methods. FME 2001:

Formal Methods for Increasing Software Productivity, Lecture

Notes in Computer Science, Volume 2021, 2001

[6] J.P Bowen. Formal Methods in Safety-Critical Standards. In

Proceedings of 1993 Software Engineering Standards Symposium

142

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(SESS'93), Brighton, UK, IEEE Computer Society Press, pages

168-177, 1993.

[7] J. Overton, J. Hall, L. Rapanotti, and Y. Yu. Towards a

Problem Oriented Engineering Theory of Pattern-Oriented

Analysis and Design. In Proceedings of 3rd IEEE International

Workshop on Quality Oriented Reuse of Software (QUORS),

2009.

[8] J. Overton, J. G Hall, and L. Rapanotti. A Problem-Oriented

Theory of Pattern-Oriented Analysis and Design. 2009,

Computation World: Future Computing, Service Computation,

Cognitive, Adaptive, Content, Patterns, pages 208-213, 2009.

[9] W. Adrion, M. Branstad, and J. Cherniavsky. Validation,

Verification, and Testing of Computer Software. ACM Computing

Surveys, Vol. 14, No.2, pages 159-192, June 1982.

[10] E. Hehner. A Practical Theory of Programming. Springer-

Verlag, New York, 1993.

[11] D. Latella, I. Majzik and M. Massink. Towards A Formal

Operational Semantics of UML Statechart Diagrams. Third

International Conference on Formal Methods for Open Object-

Oriented Distributed Systems, pages 331-347, Kluwer Academic

Publishers, 1999.

[12] D. Alexandre, M. Moller, and W. Yi. Formal Verification

of UML Statecharts with Real-time Extensions. Fundamental

Approaches to Software Engineering, 5th International

Conference, FASE 2002, volume 2306 of LNCS, pages 218–232.

Springer–Verlag, 2002.

[13] G. Kwon. Rewrite Rules and Operational Semantics for

Model Checking UML Statecharts. Proceedings of the 3rd

International Conference on UML, Lecture Notes Comp. Sci.

1939, pages 528–540, 2000

[14] D. Scott. Domains for Denotational Semantics. In

Proceedings of ICALP, 1982.

[15] R. Keller. Formal Verification of Parallel Programs.

Communications of the ACM Volume 19, No. 7 pages 371-384.

1976

[16] M. Sirjani, A. Movaghar, A. Shali, and F. de Boer.

Modeling and Verification of Reactive Systems using Rebeca.

Fundamenta Informaticae, pages 385–410, 2004.

[17] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L.

Ong. Applying Game Semantics to Compositional Software

Modeling and Verification. In TACAS’04, volume 2988 of Lecture

Notes in Computer Science, pages 421–435, 2004.

[18] C. Hoare. An Axiomatic Basis for Computer Programming.

Communications of the ACM, Volume 12, No. 10, pages 576-583,

1969.

[19] J. G. Hall, L. Rapanotti, and M. Jackson. Problem-Oriented

Software Engineering: Solving the Package Router Control

Problem. IEEE Trans. Software Eng., 2008.

doi:10.1109/TSE.2007.70769

[20] T. Taibi and D. Ngo. Formal Specification of Design

Pattern Combination Using BPSL, Information and Software

Technology 45, Elsevier, pages 157–170, 2002.

[21] N. Soundarajan and J. Hallstrom. Responsibilities and

Rewards: Specifying Design Patterns, Proceedings of the 26th

International Conference on Software Engineering (ICSE’04),

pages 666-675, May 2004.

[22] P. Alencar, D. D. Cowan, and C. J. P. Lucena. A Formal

Approach to Architectural Design Patterns, Proceedings of the 3rd

International Symposium of Formal Methods Europe, pages. 576-

594, 1995.

[23] D. J. Ram, P. J. K. Reddy, and M. S. Rajasree. An Approach

to Estimate Design Attributes of Interacting Patterns.

http://dos.iitm.ac.in/djwebsite/LabPapers/JithendraQAOOSE2003.

pdf, Last Accessed: 30 January 2011.

[24] J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A.

Verkamo. Software Metrics by Architectural Pattern Mining. In

Proceedings of the International Conference on Software: Theory

and Practice (16th IFIP World Computer Congress), peges 325–

332, 2000.

[25] P. Tonella and G. Antoniol. Object Oriented Design Pattern

Inference. In Proceedings of the IEEE International Conference on

Software Maintenance. IEEE Computer Society Washington, DC,

USA, 1999.

[26] N. Harrison. The Language of Shepherds.

http://hillside.net/plop/plop99/proceedings/harrison/shepherding4.p

df, Last Accessed: 06/21/2012.

[27] T. Clouqueur, K.K. Saluja, and P. Ramanathan. Fault

Tolerance in Collaborative Sensor Networks for Target Detection.

IEEE Transactions on Computers. Vol. 53, No. 3, pages 320-333,

March 2004.

[28] http://www.citysense.net, Last Accessed: 1/27/2012

[29] J. Overton. Collaborative Fault Tolerance using JGroups.

Object Computing Inc. Java News Brief, 2007,

http://jnb.ociweb.com/jnb/jnbSep2007.html, Last Accessed

02/05/2012.

[30] The JGroups Project. http://www.jgroups.org/. Last

Accessed 06/21/2012

[31] F. Buschmann, K. Henney, and D. Schmidt. Pattern-

Oriented Software Architecture: On Patterns and Pattern

Languages, Volume 5. John Wiley & Sons, West Sussex, England,

2007.

[32] S. Maffeis. The Object Group Design Pattern. In

Proceedings of the 1996 USENIX Conference on Object-Oriented

Technologies, (Toronto, Canada), USENIX, June 1996.

[33] F. Buschmann, K. Henney, and D. Schmidt. Pattern-

Oriented Software Architecture: A Pattern Language for

Distributed Computing (Wiley Software Patterns Series), Volume

4. John Wiley & Sons, 2007.

[34] K. Tanaka. An introduction to Fuzzy Logic for Practical

Application. Berlin: Springer, 1996.

[35] J. Niere. Fuzzy Logic Based Interactive Recovery of

Software Design. Proceedings of the 24th International Conference

on Software Engineering, Orlando, Florida, USA, pages 727-728,

2002.

143

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[36] C. De Roover, J. Brichau, and T. D’Hondt. Combining

Fuzzy Logic and Behavioral Similarity for Non-strict Program

Validation. In Proceedings of the 8th Symposium on Principles and

Practice of Declarative Programming, pages 15–26, 2006.

[37] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann.

An Approach for Reverse Engineering of Design Patterns.

Software Systems Modeling, pages 55–70, 2005.

[38] http://www.wolfram.com/products/applications/fuzzylogic/,

Last Accessed: 06/23/2012

[39] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Englewood Cliffs, NJ: Prentice Hall, 1995.

[40] W. Thurston. On Proof and Progress in Mathematics.

Bulletin of the American Mathematical Society. Volume 30, pages

161-177, 1994.

[41] G. Polya. Mathematics and Plausible Reasoning: Volume II,

Patterns of Plausible Inference. Princeton University Press. 1968.

144

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

