
Utility Functions in Autonomic Workload Management for DBMSs

Mingyi Zhang†, Baoning Niu§, Patrick Martin†, Wendy Powley†, Paul Bird‡
†
School of Computing, Queen’s University, Kingston, ON, Canada

{myzhang, martin, wendy}@cs.queensu.ca
§
Taiyuan University of Technology, Shanxi, China

niubaoning@tytu.edu.cn
‡
Toronto Software Lab, IBM Canada Ltd., Markham, ON, Canada

pbird@ca.ibm.com

Abstract—Utility functions are a popular tool for achieving self-

optimization in autonomic computing systems. Utility functions

are used to guide a system in optimizing its own behavior in

accordance with high-level objectives specified by the system

administrators. It is, however, difficult to define a new utility

function or evaluate whether an existing utility function is

appropriate for a specific system management scenario. In this

paper, we discuss the fundamental properties of an effective

utility function for autonomic workload management in

database management systems (DBMSs). We present two

concrete examples of utility functions to illustrate the

properties. The utility functions are used for dynamic resource

allocation and for query scheduling in DBMSs. The utility

functions help the systems translate high-level workload

management policies into low-level tuning actions, and

therefore ensure the workloads achieve their required

performance objectives. A set of experiments are presented to

illustrate the effectiveness of the two example utility functions.

Keywords-Self-Optimization; Utility Function; Autonomic

Computing; Workload Management; Database Management

Systems

I. INTRODUCTION

A database workload is a set of requests that have some
common characteristics such as application, source of
request, type of query, priority, and performance objectives
(e.g., response time or throughput objectives) [2]. Workload
management in database management systems (DBMSs) is
a performance management process. The primary objectives
of workload management in DBMSs are to achieve the
performance goals of all workloads (particularly, the critical
ones, such as the workloads for directly generating revenue
for business organizations, or those issued by a CEO or VP
of the organizations), maintain DBMSs running in an
optimal state (i.e., neither under-utilized nor overloaded),
and balance resource demands of all requests to maximize
performance of the entire system.

For both strategic and financial reasons, many business
organizations are consolidating individual data servers onto
a single shared data server. As a result, multiple types of
requests are present on the data server simultaneously.
Request types can include on-line transaction processing
(OLTP) and business intelligence (BI). OLTP transactions
are typically short and efficient, consume minimal system

resources, and complete in sub-seconds while BI queries
tend to be more complex and resource-intensive and may
require hours to complete. Requests generated by different
applications or initiated from different business units may
have unique performance objectives that are normally
expressed in terms of service level agreements that must be
satisfied for business success.

Multiple requests running on a data server inevitably
compete for shared system resources, such as system CPU
cycles, buffer pools in main memory, disk I/O bandwidth,
and various queues in the database system. If some requests,
for example, long BI queries, are allowed to consume a
large amount of system resources without control, the
concurrently running requests may have to wait for the long
queries to complete and release their used resources, thereby
resulting in the waiting requests missing their performance
objectives and the entire data server suffering degradation in
performance. Moreover, the mix of arriving requests present
on a data server can vary dynamically and rapidly, so it
becomes virtually impossible for database administrators to
manually adjust the system configurations to dynamically
achieve performance objectives of all the requests during
runtime. Therefore, autonomic workload management
becomes necessary and critical to control the flow of the
requests and manage their demands on system resources to
achieve their required performance objectives in a complex
request mix environment.

Since autonomic computing was introduced [3], a great
deal of effort has been put forth by researchers and
engineers in both academia and industry to build autonomic
computing systems. An autonomic computing system is a
self-managing system that manages its own behavior in
accordance with high-level objectives specified by human
administrators [3] [4]. Such systems regulate and maintain
themselves without human intervention to reduce the
complexity of system management and dynamically achieve
system objectives, such as performance, availability and
security objectives. In particular, an autonomic workload
management system for DBMSs is a self-managing system
that dynamically manages workloads present on a data
server in accordance with specified high-level business
objectives such as workload business importance policies.

Achieving the goal of autonomic workload management
may involve using utility functions to facilitate the mapping

66

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of high-level business objectives to low-level DBMS tuning
actions in order to guide a database system to optimize its
own behavior and achieve required performance objectives.
Utility functions are well known as a measure of user
preference in economics and artificial intelligence [5]. In
this paper, we illustrate the use of utility functions in
different aspects of database workload management, namely
dynamic resource allocation and query scheduling, to ensure
mixed-type requests on a data server achieve their required
performance objectives. The contribution of this study is a
set of fundamental properties of a utility function used for
building autonomic workload management systems, and the
use of the properties to evaluate whether an existing utility
function is appropriate for autonomic workload management
in DBMSs. The methods and properties were first presented
in our (ICAS’11) paper [1] and have been elaborated upon
and extended with experimental validation here.

The paper is organized as follows. Section II reviews the
background and related work, in which a short review of
workload management for DBMSs, a brief description of
autonomic computing, and utility functions used for
building autonomic computing systems are presented.
Section III discusses the fundamental properties of a utility
function that can be used in realizing autonomic workload
management for DBMSs. Section IV provides two examples
to illustrate the properties of two different types of utility
functions that are used in our studies. Section V presents
experiments to evaluate and compare the two utility
functions in accordance with some given high-level workload
business importance policies. Finally, we conclude our work
and propose future research in Section VI.

II. BACKGROUND AND RELATED WORK

In the past several years, considerable progress has been
made in workload management for DBMSs. New
techniques have been proposed by researchers, and new
features of workload management facilities have been
implemented in commercial DBMSs. These workload
management facilities include IBM

®
 DB2

®
 Workload

Manager [6], Teradata
®
 Active System Management [7],

Microsoft
®
 SQL Server Resource and Query Governor [8]

[9] and Oracle
®
 Database Resource Manager [10]. The

workload management facilities manage complex workloads
(e.g., a mix of business processing and analysis requests)
present on a data server using predefined procedures. The
procedures impose proper controls on the requests, based on
the request’s characteristics such as estimate costs, resource
demands, or execution time, to achieve their required
performance objectives.

Recent research [11] [12] shows that the process of
workload management in DBMSs may involve three typical
controls, namely admission, scheduling, and execution
control. Admission control determines whether or not an
arriving request can be admitted into a database system, thus
it can avoid increasing the load while the system is busy.
Request scheduling determines the execution order of
admitted requests based on some criteria, such as the
request’s level of business importance and/or performance
objectives. Execution control dynamically manages some

running requests to limit their impact on other concurrently
running queries. In this paper, we demonstrate our techniques
used for workload management in DBMSs.

In 2001, IBM presented the concept of autonomic
computing [3]. The initiative aims to provide the foundation
for computing systems to manage themselves according to
high-level objectives, without direct human intervention in
order to reduce the burden on the system administrators. An
autonomic computing system (i.e., a self-managing system)
has four fundamental properties, namely self-configuring,
self-optimizing, self-protecting and self-healing. Self-
configuring means that a system is able to configure itself
automatically to allow the addition and removal of system
components or resources without system service disruptions.
Self-optimizing means that a system automatically monitors
and controls its resources to ensure optimal functioning with
respect to the specified performance goals. Self-protecting
means that a system is able to proactively identify and
protect itself from arbitrary attacks. Self-healing means that a
system is able to recognize and diagnose deviations from
normal conditions and take action to normalize them [3] [4].

In the past decade, autonomic computing has been
intensively studied. Many autonomic computing components
(with some self-managing capabilities) have been developed
and proven to be useful in their own right, although a large-
scale fully autonomic computing system has not yet been
realized [13] [14]. In particular, Tesauro et al. [15] and
Walsh et al. [16] studied autonomic resource allocation
among multiple applications based on optimizing the sum of
the utilities for each application. In their work, a data center
consisting of multiple and logically separated application
environments (AEs) was used. Each AE provided a distinct
application service using a dedicated, but dynamically
allocated, pool of servers, and each AE had its own service-
level utility function specifying the utility to the data center
from the environment as a function of some service metrics.
The authors compared two methodologies, a queuing-
theoretic performance model and model-free reinforcement
learning, for estimating the utility of resources.

Bennani et al. [17] presented another approach for the
same resource allocation problems in the autonomic data
center. They observe that the table-driven approach
proposed by Walsh et al. [16] has scalability limitations
with respect to the number of transaction classes in an AE,
the number of AEs, and the number of resources and
resource types. Moreover, they claim that building a table
from experimental data is time consuming and has to be
repeated if resources are replaced within the data center.
They instead proposed using predictive multi-class queuing
network models to implement the service-level utility
functions for each AE. In this paper, we show the principles
of autonomic computing applied in workload management
for DBMSs, and applications of utility functions in building
autonomic workload management systems.

III. UTILITY FUNCTIONS IN WORKLOAD MANAGEMENT

Achieving autonomic workload management for DBMSs
can involve the use of utility functions. In this section, we
consider the following questions:

67

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Why are utility functions appropriate for autonomic
workload management?

 What utility functions are most suitable (i.e., what
properties does a utility function need to possess)
for autonomic workload management?

The first question can be answered based on the research
of Kephart et al. [5] and Walsh et al. [16], who proposed the
use of utility functions to achieve self-managing systems. In
their work, the authors presented utility functions as a
general, principled and pragmatic way of representing and
managing high-level objectives to guide the behavior of an
autonomic computing system. Two types of policies were
discussed in guiding behavior of a system, namely action
policies and goal policies. An action policy is a low-level
policy that is represented in the form of IF (conditions)
THEN (actions). Namely, if some conditions are satisfied,
then certain actions must be taken by the system. In contrast
with an action policy, a goal policy only expresses high-
level objectives of a system, and the system translates the
high-level objectives into specific actions for every possible
condition. Utility functions are proposed for the translation
as they are capable of mapping system states to real
numbers with the largest number representing a system’s
preferred state. In using utility functions, a computing
system, via maximizing its utilities under each condition,
recognizes what the goal states are, and then decides what
actions it needs to take in order to reach those states. Thus
by maximizing utilities, a computing system optimizes its
own behavior and achieves the specified high-level
objectives.

As introduced in Section I, in a mixed request data
server environment, the concurrently running requests can
have different types, levels of business importance,
performance objectives and arrival rates. These properties
may dynamically change during runtime rendering it
impossible for human administrators to manually make an
optimal resource allocation plan for all workloads in order
to meet their resource requirements. A utility function,
however, is suited for this situation, based on the properties
discussed above. It dynamically identifies resource
preferences for a workload during runtime, and the utility
functions of the workloads can be further used to define an
objective function. A solution to optimizing the objective
function is an optimal resource allocation plan. Autonomic
workload management systems use the resource allocation
plan to allocate resources to the workloads and to achieve
the required performance objectives. Thus, to manage
workloads in DBMSs, using utility functions is naturally a
good choice.

To answer the second question, we begin by discussing
performance behavior of a workload. The performance of a
running workload on a data server depends on the amount of
desired system resources that the workload can access.
Typically, the performance of a workload increases non-
linearly with additional resources assigned to it. As an
example, in executing a workload in an OLTP system, by
increasing the multi-programming levels, the throughput of
the workload initially increases, but at a certain point the
throughput starts to level off. That is, at the beginning when

the workload starts to run with a certain amount of resource
allocated, performance of the workload increases rapidly.
However, with additional resources allocated to the workload,
the performance increment of the workload becomes very
small. This can be caused either by a bottleneck resource
among the system resources, such as too small buffer pools,
which significantly limits the workload performance increase,
or it may be the case that the database system has become
saturated (e.g., system CPU resource is fully utilized).

Utility functions in database workload management
must capture the performance characteristics of a workload
and represent the trend of the changes in performance based
on the amount of assigned resources. A utility function
defined for database workload management should be a
monotonically non-decreasing function, and it should be
capable of mapping the performance achieved by a
workload with a certain amount of allocated resources into a
real number, u.

There is no single way to define a utility function.
However, we believe the following properties are necessary
for an effective utility function in autonomic workload
management for DBMSs:

 The value, u, should follow the performance of a
workload. Namely, it should increase or decrease
with the performance.

 The amount of change in the utility should be
proportional to the change in the performance of a
workload.

 The input to a utility function should be the amount
of resources allocated to a workload, or a function of
the resource allocation, and the output, u, should be a
real number without unit.

 The value, u, should not increase (significantly) as
more resources are allocated to a workload, once the
workload has reached its performance objective.

 In allocating multiple resources to a workload, a
utility function should capture the impact of the
allocation of a critical resource on performance of
the workload.

 For objective function optimization, a utility function
should have good mathematical properties, such as
an existing second derivative.

The first two properties describe the general
performance behavior of a workload that a utility function
needs to capture, and the third property presents the domain
and codomain of a defined utility function. These three
properties are fundamental for a utility function that can be
used in building autonomic workload management in
DBMSs. The fourth and fifth properties represent the
relationships among workload performance, resource
provisions, and performance objectives. Namely, if a
workload has met its required performance objective, the
value produced by the utility function would not increase
(significantly) as additional resources are allocated to the
workload. So, by checking the marginal utility (the value is
very small), the database system can know it should stop
allocating additional resources to the workload. If there is a
critical resource for a workload, then the utility function

68

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

should reflect the impact of changes to the allocation of that
resource. The database system then knows to provide the
resource to the workload for meeting its performance
objective. The last property provides a way of effectively
optimizing objective functions.

IV. UTILITY FUNCTION EXAMPLES

Two examples from our work of the use of utility
functions in autonomic workload management for DBMSs
are presented in this section. The first example demonstrates
Dynamic Resource Allocation, which is driven by workload
business importance policies [18]. The second example
shows a Query Scheduler managing the execution order of
multiple classes of queries [19]. The two utility functions are
discussed with respect to the properties listed in Section III.

A. Dynamic Resource Allocation

In workload management for DBMSs, dynamic resource
allocation can be triggered by workload reprioritization (a
workload execution control approach) [6] [18]. That means
a workload’s priority may be dynamically adjusted as it runs,
thereby resulting in immediate resource reallocation to the
workload according to the new priority.

Two shared system resources are considered in the study,
namely buffer pool memory pages and CPU shares, as they
are key factors in DBMS performance management. The
DBMS concurrently runs multiple workloads, which are
classified in different business importance classes with
unique performance objectives. A certain amount of the
shared resources is allocated to a workload according to its
business importance level. High importance workloads are
assigned more resources, while low importance workloads
are assigned fewer. The resource allocation is based on an
economic model [18]. Namely, the DBMS conducts
“auctions” to sell the shared system resources, and the
workloads submit “bids” to buy the resources via an
auctioning and biding based trade mechanism. All the
workloads are assigned some virtual “wealth” to reflect their
business importance levels. High importance workloads are
assigned more wealth than low importance ones.

The dynamic resource allocation approach consists of
three main components, namely the resource model, the
resource allocation method and the performance model. The
resource model is used to partition the resources and to
determine an available total amount of the resources for
allocation. We consider that each competing workload is
assigned its own buffer pool, so buffer pool memory pages
can be directly assigned to a workload. The CPU resources,
on the other hand, cannot be directly assigned to a workload,
so we partition CPU resources by controlling the number of
database agents that are available to serve requests on a
database server. In our study, we use a DB2 DBMS and
configure it such that one database agent maintains one client
connection request from the workloads. We conducted
experiments and verified the relationship between the
number of database agents and system CPU utilization of a
workload, and observed that the more database agents that
are allocated to serve requests for a particular workload, the
more CPU resources the workload receives [18]. The

available total amounts of resources are parameters in the
resource allocation approach, so it can adapt to different
system configurations.

The resource allocation method determines how to
obtain an optimal resource pair of buffer pool memory pages
and CPU shares for a workload in order to maximally benefit
the workload performance. Namely, a workload needs to
capture the resources in an appropriate amount such that
none of the resources become a bottleneck resource. In our
approach, a greedy algorithm is used for identifying resource
preferences of a workload in a resource allocation process.
The resource allocation is determined iteratively. In an
iteration of the algorithm, by using its virtual wealth, a
workload bids for a unit of the resource (either buffer pool
memory or CPU) that it predicts will yield the greatest
benefit to its performance. Figure 1 shows a representation of
the search state space for the allocation of buffer pool memory
and CPU to a workload in our experiments, as described in
Section V. The starting node, n1,1, represents the minimum
resource allocation to a workload, namely one unit of buffer
pool memory and one unit of CPU, at the beginning of a
resource allocation process. The workload then traverses the
directed weighted graph to search for the optimal <cpu,
mem> pair in order to achieve its performance objective.

The performance model predicts the performance of a
workload with certain amount of allocated resources in order
to determine the benefit of the resources. In our approach,
queuing network models (QNM) [20] are used to predict
performance of a workload at each step of the algorithm, that
is, to assign the weights to the edges of the graph in Figure 1.
We consider OLTP workloads and use throughput as the
performance metric to represent the performance required
and achieved by the workloads. We model the DBMS used
in our experiments for each workload with a single-class
closed QNM, which consists of a CPU service center and an
I/O service center. The CPU service center represents the

Figure 1. Resource Pair Search State Space

69

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system CPU resources and the I/O service center represents
buffer pool and disk I/O resources. The request concurrency
level of a workload in the DBMS is the number of database
agents (i.e., CPU resources) assigned to the workload. The
average CPU service demand of requests in the workload can
be expressed as a function of the CPU shares allocated to the
workload, using equation (1).

We experimentally defined the relationship between the CPU
service demand and the number of database agents used in a

DBMS. In the equation (1), n is database agents, nN, and a

and d are constants, aR+, dR+, that can be determined
through experimentation.

For an OLTP workload, the average I/O service demand
can be expressed as a function of buffer pool memory size,
which can be derived from Belady’s equation [21]. The I/O
service demand is:

where c and b are constants, cR+, bR-, and m is buffer

pool memory pages assigned to the workload, and mN. In
the equation the constants c and b can be determined through
experimentation.

Performance of a workload with some allocated
resources, <cpu, mem>, can be predicted by solving this
analytical performance model (i.e., the QNM) with Mean
Value Analysis (MVA) [20]. The predicted throughput of a
workload can be expressed as a function of its allocated
resources, using equation (3).

where, X is the predicted throughput of a workload by using
MVA on the QNM for a workload with its allocated resource
pair, <cpu, mem>; n is the number of requests from the
workload concurrently running in the system (i.e., the
number of database agents assigned to the workload);
 is the average CPU service demand determined in
equation (1); is the average I/O service demand
determined in equation (2); and Z is think time.

To guide workloads to capture appropriate resource pairs,
utility functions are employed in the approach. We define a
utility function that normalizes the predicted throughput
from the performance model relative to the maximum
throughput that the workload could achieve when all the
resources are allocated to it. The utility function is given by:

where, MVAthroughput is the predicted
throughput determined in equation (3), and Xmax is the
maximum throughput achieved by a workload with all the
resources allocated, which can be determined through
experimentation.

This utility function, as shown in Figure 2, maps
performance achieved by a workload given a certain amount

of resources into a real number u, u [0, …, 1]. If the utility
of resources allocated to a workload is close to 1, it means
the performance of the workload is high, while if the utility
of resources allocated to a workload is close to 0, it means
the performance of the workload is low. Workloads employ
the utility function to calculate marginal utilities, that is, the
difference in utilities between two possible consecutive
resource allocations in a resource allocation process. As the
utility function is non-decreasing, the value of a marginal
utility is also in the range [0, …, 1].

The marginal utility reflects potential performance
improvement of a workload. For some resources, if the
calculated marginal utility of a workload is close to 1, then it
means these additional resources can significantly benefit the
workload’s performance, while if the calculated marginal
utility is close to 0, then the additional resources will not
greatly improve the workload’s performance. By examining
the marginal utility value, a workload can determine the
preferred resources for bid. The bid of a workload is the
marginal utility multiplied by current available wealth of the
workload, and indicates that a workload is willing to spend
the marginal-utility percentage of its current wealth as a bid
to purchase the resources. Wealthy workloads, therefore, can
acquire more resources in the resource allocation processes.
A workload ceases bidding for additional resources when it
has reached its performance objective.

B. Query Scheduling

Our query scheduler [19] is built on a DB2 DBMS and
employs DB2 Query Patroller (DB2 QP) [6] (a query
management facility) to intercept newly arriving queries.
Information about the queries is then acquired, and the
scheduler determines an execution order for the queries. The
query scheduler works in two main processes, namely the
workload detection and the workload control. The workload
detection process classifies arriving queries based on their
service level objectives (SLOs), and the workload control
process periodically generates new plans to respond to the
changes in the SLOs of arriving requests.

In the query scheduler’s architecture shown in Figure 3,
DB2 QP is set to inform the query scheduler’s monitor
when an arriving query has been intercepted. The monitor
collects information about the query from the DB2 QP
control tables, which includes query identification, query
costs and query execution information, and passes the
query’s information to the classifier and the scheduling
planner. The classifier assigns the query to a service class
based on its performance goals and puts the query in a
queue, which is associated with the service class and
managed by the dispatcher. The dispatcher receives a

0

0.2

0.4

0.6

0.8

1

1.2

 U
ti

lit
y

Resource Pair [# of Database Agents, Buffer Pool Size (MB)]

Figure 2. Sample Curve of Utility Function in Resource Allocation

70

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scheduling plan from the scheduling planner and releases
the queries in the queues according to the plan’s
specifications. The scheduling planner, given SLOs,
receives query information from the monitor, and consults
the performance solver to make a scheduling plan for all the
queued queries.

We consider a system with n service classes for arriving
requests, each with a performance goal and a level of
business importance, denoted as

 , where

 is the

performance goal of the i-th service class, and is the class
business importance level. The pair

 is a service level

objective. We denote as the predicted performance
of the n service classes given a resource allocation plan
 (i.e., multi-programming levels in our case). The
performance of the i-th service class, , can be predicted by
using a performance model (queuing network models [20]
are used in our study) given , the amount of resources
allocated to the service class. The utility of the i-th service
class, , can be expressed as a function of

, and

 namely
 and the n SLOs can be

encapsulated into an objective function Thus,
the scheduling problem can be solved by optimizing the
objective function f.

We specifically consider business analysis requests, such
as those found in decision support systems. In emulating the
environment, we use the TPC-H benchmark [22] as the
database and workloads in our experiments. Since queries in
decision support systems can widely vary in their response
times, we employ the performance metric query execution
velocity, which is the ratio of expected execution time of a
query to the actual time the query spent in the system (i.e.,
the total time of execution and delay), to represent the
performance required and achieved by the queries. Query
execution velocity captures both the performance goals and
the business importance levels of queries.

Through our experiments we found the following general
form of utility functions satisfies our requirements:

where, is the performance goal of a service class to be
achieved, m is the importance level of the service class,

mN, is the lowest performance allowed for the service
class, is the actual performance, and a is an importance

factor that is a constant, aN, and can be experimentally
determined or adjusted to reflect the distance between two
adjacent importance levels. In using a, we control the size
and shape of the utility function, as shown in Figure 4.

The objective function, f, is then defined as a sum of the
service class utility functions, using equation (6):

In query scheduler, the performance solver employs a
performance model to predict query execution velocity for a
service class. That is, given a new value of service class cost
limit, the performance of the service class can be predicted
for the next control interval, which is based on its
performance and service class cost limit at the current
control interval. The performance at the next control interval
is predicted by:

where,
 and

 are query execution velocity of service
class i at (k-1)-th and k-th control intervals, respectively;

 and

 are cost limits of service class i at the (k-1)-th
and the k-th control intervals, respectively.

Therefore, a scheduling plan can be determined. From
equations (5), (6) and (7), we have:

replacing
 in equation (9) with equation (10) and

 in
equation (8) with equation (9), the solution for maximizing
the objective function,

 , is the query scheduling
plan for k-th control interval, where the object function must
maintain the constraint,

 , and C is the
system cost limits.

Figure 3. Architecture of Query Scheduler

Figure 4. Sample Curves of Utility Function in Query Scheduling

71

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. EXPERIMENTS

The experimental objective was to validate the utility
functions defined in our studies of autonomic workload
management for DBMSs. We developed a dynamic resource
allocation simulator and implemented a prototype of the
Query Scheduler to examine whether the utility functions can
effectively guide the dynamic resource allocation and query
scheduling actions in accordance with a given high-level
workload business importance policy. We present the results
of experiments run using the simulator and the prototype in
Subsection A and B, and discuss the two utility functions in
Subsection C.

A. Experiments for Dynamic Resource Allocation

To allocate the buffer pool memory and CPU resources,
we first experimentally determined the appropriate amount
of total resources for a given data server as well as set of
workloads. Our experiments were conducted with DB2
database software [6] running on an IBM xSeries

®
 240 PC

server with the Windows
®
 XP operating system. The data

server was equipped with two Pentium
®
 processors, 2 GB of

RAM and an array of 11 disks. The databases and
workloads were taken from the TPC-C benchmark [22]. The
size of the database was 10GB. The three workloads were
similar to TPC-C OLTP batch workloads.

We consider the case of a single DB2 instance with three
identical databases for three competing workloads from
different importance classes. Each database has one workload
running on it, thus each workload has its own buffer pool
and CPU shares while still having accesses to all the same
database objects. Our dynamic resource allocation technique
allocates buffer pool memory space and CPU (i.e., database
agents) resources across the three identical databases based
on a given workload business importance policy.

We selected a minimum amount of each resource (i.e.,
buffer pool memory and CPU) where maximum system
performance was achieved. We experimentally determined
32,768 buffer pool memory pages as the total buffer pool
memory and 25 database agents as the total CPU resources
[18]. We use 1,000 buffer memory pages as one unit of
buffer pool memory and 1 database agent as one unit of
CPU resources in our resource allocation experiments (as
discussed in the following paragraphs) as these granularities
give a reasonable workload performance increment and
make the resource allocation process efficient.

We developed a simulator of our dynamic resource
allocation approach to generate the resource allocations for
competing workloads on a DBMS based on a given
workload business importance policy. The simulator was
written in Java

TM
 and the three workloads (i.e., the TPCC-

like OLTP batch workloads) were used as the simulator
input. The output of the simulator was resource allocations,
that is, a list of the number of buffer pool memory pages and
database agents for each of the workloads.

A set of experiments was conducted to determine
whether our approach generates the resource allocations
which match a given workload business importance policy.
The workloads were assigned one of three different
importance classes, namely the high importance class, the
normal importance class, and the best effort class. The
relative importance of the classes was captured by a set of
importance multipliers for the base wealth assigned to the
classes. We experimented with three different sets of
importance multipliers that were of the form [best effort,
normal importance, high importance]: [1, 1, 1], [1, 5, 6], and
[1, 5, 10]. The multiplier sets were chosen to demonstrate
the effect of business importance policies on the resource
allocations.

Figures 5 and 6 respectively show buffer pool memory
page and database agent (representing system CPU
resources) allocations produced by the simulator using the
three workload business importance multiplier sets. The
workload importance multiplier set [1, 1, 1] represents the
case where the three competing workloads are from three
different business importance classes of equal importance.
In this case, the three workloads are allocated approximately
the same amount of buffer pool memory and CPU resources
as shown in Figures 5 and 6. Using the importance
multiplier set [1, 5, 6], the high importance and the normal
importance classes are much more important than best effort
class, and the high importance class is also slightly more
important than the normal important class. When the
simulator is used to allocate resources in this case, the high
importance and normal importance workloads are allocated

Figure 5. Buffer Pool Memory Allocation for Different Business
Importance policies

Figure 6. Database Agent Allocation for Different Business

Importance policies

0

5000

10000

15000

20000

25000

[1, 1, 1] [1, 5, 6] [1, 5, 10]

Importance Multiplier Set

B
u

ff
e
r

P
o

o
l

M
e
m

o
ry

 P
a
g

e
s

Best Effort Normal Importance High Importance

0

2

4

6

8

10

12

14

16

[1, 1, 1] [1, 5, 6] [1, 5, 10]

Importance Multiplier Set

D
a
ta

b
a
s
e
 A

g
e
n

ts

Best Effort Normal Importance High Importance

72

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

significantly more resources than the best effort workload,
while the high importance workload is allocated slightly
more resources than the normal importance workload. The
set [1, 5, 10] represents the case where the high importance
class is much more important than the normal importance
class, and the normal importance class is much more
important than the best effort class. In this case, the high
importance workload is allocated more resources than the
normal important workload, and the normal importance
workload wins significantly more resources than the best
effort workload.

By observing the experimental results shown in Figure 5
and Figure 6, we have that the defined utility functions (the
key components of the dynamic resource allocation) can
effectively guide the resource allocation processes and
generates resource allocations for the competing workloads
which match the given workload business importance
policies (that is, more important workloads assigning more
resources than less important ones).

B. Experiments for Query Scheduling

The same data server, as described in Subsection A, was
used in the experiments. Our experiments were conducted
with DB2 database software as well as DB2 Query Patroller
as a supporting component [6]. The database and workloads
were taken from the TPC-H benchmark [22]. The size of the
database was 500MB, and two workloads that consisted of
TPC-H queries were submitted by interactive clients with
zero think time [20]. Each workload was assigned to a
service class described in Section IV-B, namely either class
0 or class 1, with a different business importance level and a
unique performance goal, where we considered class 0 is
more important than class 1. The intensity of a workload in
the data server was controlled by the number of clients used
by the workload. Each experiment was run for 12 hours that
consisted of 6 2-hour periods (as shown in Figure 7, 8 and
9).

To evaluate whether our Query Scheduler can manage
multiple classes of workloads towards their performance
goals based on given workload business importance policies,
we first need to determine the total cost limits, as mentioned
in Section IV-B, for the DBMS and workloads. Thus, we
experimentally determined 300,000 timerons, a measure

unit for the resources required by the DB2 database manager
to execute the plan for a query [6], as the total cost limits in
our query scheduling experiments [19].

The first experiment was conducted to show
performance of the workloads without control and served as
the baseline measure to observe how the performance of the
workloads changes as they run. The performance goals of
query execution velocity, as described in Section IV-B, for
the workload (belonging to class 0) and the workload
(belonging to class 1) were set as 0.65 and 0.45,
respectively. The results are shown in Figure 7. It shows
that the “class 0” workload missed its performance goal in
periods 2 and 3, and the “class 1” workload over performed
almost all the time in the experiment.

The experiments were then conducted using our Query
Scheduler to control the workloads. The performance goals
for class 0 and class 1 were still 0.65 and 0.45, respectively.
The results are shown in Figure 8. The dynamic adjustment
of service class cost limits to achieve the performance goals
is shown in Figure 9. The experimental results show that our
Query Scheduler can provide differentiated services for
competing workloads. As shown in Figure 8, for the Query
Scheduler, the “class 0” workload could better meet its
performance goal than the “class 1” workload, which was in
accordance with the given importance policy. Although the

Figure 7. No Service Class Control for Competing Workloads

Figure 8. Query Execution Velocity for Multiple Competing
Workloads

Figure 9. Dynamically Assigned Service Class Cost Limits for

Multiple Competing Workloads

73

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Query Scheduler gave preference to the important class,
class 0, it never allocated too many resources (i.e., multi-
programming levels, discussed in Section IV-B) class 0 to
prevent class 1 from meeting its performance goal. When
the workloads were too heavy to meet both performance
goals as shown at periods 3 and 4 in Figure 8, Query
Scheduler was still able to help both classes approach their
goals. From Figure 9, we can observe that our Query
Scheduler dynamically adjusts the service class cost limits
according to the workload changes. The amount of
resources allocated to a class is based on its need in order to
meet its performance goal, as shown in Figure 9.

By observing the experimental results shown in Figures
7, 8 and 9, we have that our Query Scheduler is able to
respond to query changes and give preference to the queries
assigned to an important service class, and to the service
class whose performance goals are violated. These results
also validate the utility functions as they are key
components defined in the Query Scheduler. The results
show that the utility functions effectively guide the Query
Scheduler to dynamically generate query scheduling plans
for competing workloads bases on a given workload
business importance policy with more important workloads
receiving more shared system resources than less important
ones.

C. Discussion

In dynamic resource allocation, the utility function was
defined based on a single-class multi-center closed QNM,
while in query scheduling, the utility function was chosen
based on an exponential function. These two types of utility
functions are different in their forms and research
requirements, but both strictly maintain the same fundamental
properties listed in Section III.

The input to the dynamic resource allocation utility
function is an amount of allocated resources (i.e., the
resource pair, <cpu, mem>), the output is a real number in the
range [0, …, 1], and the applied QNM properly predicts
performance behavior of the workload. A workload ceases
bidding for additional resources using assigned virtual
wealth when it has reached its performance objective.

In query scheduling, the input to the utility functions is
the query execution velocity of the service classes predicted
by the performance model given a level of allocated
resources and the output is a real number in (-∞, +∞). Based
on the exponential function properties, as the input of the
utility function increases, the output (i.e., the utility)
increases and at a certain value, it begins to level off. That
means, when the service class approaches its performance
goal, the utility increase is less, and it indicates that the
database system should not assign more resources to the
service class.

If an objective function is continuous, the Lagrange
method can be applied to solve it [19], otherwise searching
techniques may be used. In query scheduling, the second
derivative of the utility function exists and this allows
mathematical methods to be applied to optimize the
objective function. In dynamic resource allocation, instead of
defining an objective function based on the utility functions,

economic models (the use of virtual wealth and auctions and
bids) [18] are applied to coordinate the utility functions to
allocate the shared system resources to competing
workloads.

In evaluating the two types of utility functions (using the
set of properties listed in Section III), both utility functions
preserve the fundamental properties, that is, a) the utility
increases as a workload performance increases, and
decreases otherwise; b) the marginal utility is large as a
workload performance increases quickly, and is small
otherwise; c) the input and output are in the required types
and values. In comparing the two utility functions presented
in Table 1, we observe that the utility function used in
dynamic resource allocation has the property of identifying
critical resources for a workload, but it does not have
mathematical properties for optimizing objective functions
(as there is not an objective function defined in the
approach). The utility function used in query scheduling
possesses a good mathematical property for optimizing its
objective function, but it does not have the property of
identifying system critical resources (as it is not necessary to
identify critical resources in the problem). In Table 1, Utility
Increasing Normally means whether the utility increases as
a workload performance increases, and decreases otherwise,
and Marginal Utility Increasing Normally means whether
the marginal utility is large as a workload performance
increases quickly, and is small otherwise.

Since the utility functions were strictly defined based on
their research requirements, the specific research problems
shaped the utility function’s properties. So, we conclude
(based on the properties listed in Section III) that the two
types of utility functions are good in terms of their specific
research requirements and considered acceptable based on
the set of properties listed in Section III.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented two concrete examples
to illustrate how utility functions can be applied to database
workload management, namely dynamic resource allocation
and query scheduling. Based on the examples, we
generalized a set of function properties that are fundamental
for defining utility functions in building autonomic

TABLE I. COMPARISION OF THE TWO UTILITY FUNCTIONS

Utility functions in

Dynamic Resource

Allocation

Utility functions in

Query Scheduling

Utility Increasing

Normally
yes yes

Marginal Utility

Increasing Normally
yes yes

Utility Function Input allocated resources
a function of the

allocated resources

Utility Function

Output
a number in [0…1]

a number in (-∞,

+∞)

Critical Resource

Identifying
yes no

Having Mathematical

Property
no yes

Utility Increase Stops

as Goals Achieved
yes yes

74

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

workload management for DBMSs in future practice and
research. Through experiments, we validated the utility
functions defined in our studies of autonomic workload
management for DBMSs.

As more workload management techniques are proposed
and developed, we plan to investigate the use of utility
functions to choose during runtime an appropriate workload
management technique for a large-scale autonomic
workload management system, which can contain multiple
techniques. Thus, the system can decide what technique is
most effective for a particular workload executing on the
DBMS under certain particular circumstance.

ACKNOWLEDGMENT

This research is supported by IBM Centre for Advanced
Studies (CAS), IBM Toronto Software Lab, IBM Canada
Ltd., and Natural Science and Engineering Research Council
(NSERC) of Canada.

TRADEMARKS

IBM, DB2 and DB2 Universal Database are trademarks
or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

DISCLAIMER

The views expressed in this paper are those of the authors
and not necessarily of IBM Canada Ltd. or IBM Corporation.

REFERENCES

[1] M. Zhang, B. Niu, P. Martin, W. Powley, P. Bird, and K.
McDonald. “Utility Function-based Workload Management for
DBMSs”. In Proc. of the 7th Intl. Conf. on Autonomic and
Autonomous Systems (ICAS’11), Mestre, Italy, May 22-27, 2011, pp.
116-121.

[2] D. P. Brown, A. Richards, R. Zeehandelaar and D. Galeazzi,
“Teradata Active System Management: High-Level Architecture
Overview”, A White Paper of Teradata, 2007.

[3] IBM Corp., “Autonomic Computing: IBM’s Perspective on the State
of Information Technology”. On-line, retreieved in June 2012.
http://www.research.ibm.com/autonomic/manifesto/autonomic_comp
uting.pdf.

[4] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing”, Computer, Volume 36, Issue 1, January 2003, pp. 41-
50.

[5] J. O. Kephart and R. Das, “Achieving Self-Management via Utility
Functions,” IEEE Internet Computing, Vol. 11, Issue 1,
January/February, 2007, pp. 40-48.

[6] IBM Corp., “IBM DB2 Database for Linux, UNIX, and Windows
Information Center”. On-line, retreived in June 2012.
https://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp.

[7] Teradata Corp., “Teradata Dynamic Workload Manager”, On-line,
retrieved in June 2012.
http://www.info.teradata.com/templates/eSrchResults.cfm?prodline=

&txtpid=&txtrelno=&txtttlkywrd=tdwm&rdsort=Title&srtord=Asc&
nm=Teradata+Dynamic+Workload+Manager.

[8] Microsoft Corp., “Managing SQL Server Workloads with Resource
Governor”. On-line, retrieved in June 2012.
http://msdn.microsoft.com/en-us/library/bb933866.aspx.

[9] Microsoft Corp., “Query Governor Cost Limit Option”, On-line,
retrieved in June 2012. http://msdn.microsoft.com/en-
us/library/ms190419.aspx.

[10] Oracle Corp., “Oracle Database Resource Manager”, On-line,
retrieved in June 2012.
http://download.oracle.com/docs/cd/B28359_01/server.111/b28310/d
brm.htm#i1010776.

[11] S. Krompass, H. Kuno, J. L. Wiener, K. Wilkison, U. Dayal and A.
Kemper, “Managing Long-Running Queries”, In Proc. of the 12th Intl.
Conf. on Extending Database Technology: Advances in Database
Technology (EDBT’09), Saint Petersburg, Russia, 2009, pp. 132-143.

[12] A. Mehta, C. Gupta and U. Dayal, “BI Batch Manager: A System for
Managing Batch Workloads on Enterprise Data-Warehouses”, In
Proc. of the 11th Intl. Conf. on Extending Database Technology:
Advances in Database Technology (EDBT’08). Nantes, France,
March 25-30, 2008, pp. 640-651.

[13] J. O. Kephart, “Research Challenges of Autonomic Computing”. In
Proc. of the 27th Intl. Conf. on Software Engineering (ICSE’05). St.
Louis, MO, USA, 15-21 May, 2005, pp. 15-22.

[14] D. A. Menasce and J. O. Kephart, “Guest Editors'
Introduction: Autonomic Computing”, In IEEE Internet Computing,
Volume 11, Issue 1, January 2007, pp. 18-21.

[15] G. Tesauro, R. Das, W. E. Walsh and J. O. Kephart, "Utility-
Function-Driven Resource Allocation in Autonomic Systems", In
Proc. of the 2nd Intl. Conf. on Autonomic Computing (ICAC’05),
Seattle, Washington, USA, June 13-16, 2005, pp.342-343.

[16] W. E. Walsh, G. Tesauro, J. O. Kephart and R. Das. “Utility
Functions in Autonomic Systems”, In Proc. of the 1st Intl. Conf. on
Autonomic Computing (ICAC’04), New York, USA, 17-18 May,
2004, pp.70-77.

[17] M. N. Bennani and D. A. Menasce, “Resource Allocation for
Autonomic Data Centers using Analytic Performance Models”, In
Proc. of the Intl. Conf. on Autonomic Computing, (ICAC’05),
Seattle, Washington, USA, 13-16 June, 2005, pp. 229-240.

[18] M. Zhang, P. Martin, W. Powley and P. Bird. “Using Economic
Models to Allocate Resources in Database Management Systems”, In
Proc. of the 2008 Conf. of the Center for Advanced Studies on
Collaborative Research (CASCON’08), Toronto, Canada, Oct. 2008,
pp. 248-259.

[19] B. Niu, P. Martin and W. Powley, “Towards Autonomic Workload
Management in DBMSs”, In Journal of Database Management,
Volume 20, Issue 3, 2009, pp. 1-17.

[20] E. Lazowska, J. Zahorjan, G. S. Graham and K. C. Sevcik
“Quantitative System Performance: Computer System Analysis Using
Queueing Network Models”, Prentice-Hall Inc., Englewood Cliffs,
New Jersey, 1984.

[21] L. A. Belady. “A Study of Replacement Algorithms for a Virtual-
Storage Computer”. IBM Systems Journal, Volume 5, Issue 2, June
1966, pp. 78-101.

[22] Transaction Processing Performance Council. On-line, retrieved in
Feb. 2012. http://www.tpc.org.

75

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

