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Abstract—With the recent uptake in renewable energies, such
as wind and solar, often comes the apprehension of unreliable
energy supply due to variations in the availability of those
energy sources, also resulting in severe fluctuations in the price
of electricity at energy exchange spot markets. However, those
fluctuations in energy costs can also be used to stimulate industry
players to shift energy intense processes to times when renewable
energies are abundant, not only saving money but at the same
time also stabilising the power grid. In previous work, we
presented a software framework that can be used to simulate and
optimise industrial production processes with respect to energy
price forecasts, using a highly generic meta-model and making
use of evolutionary algorithms for finding the best process plan,
and multi-agent technology for distributing and parallelising the
optimisation. In this paper, we want to wrap up our work and
to aggregate the results and insights drawn from the EnEffCo
project, in which the system has been developed.
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I. INTRODUCTION

The transition towards sustainable energy provision must
be regarded as one of the most urgent global challenges of
the upcoming decades. Regulatory and technological solutions
must be developed to pursue the goal of decreasing the envi-
ronmental impact, and supplying reliable, secure and afford-
able energy nevertheless. The amount of integrated Renewable
Energy Sources (RES) on the one hand and the enhancement of
primary energy efficiency on the other are crucial dimensions
for a successful transition. However, without the implemen-
tation of intelligent technological and regulatory mechanisms,
intermittency of regenerative sources will affect primary en-
ergy efficiency of global energy networks and markets.

In this paper, building upon previous work [1], we present a
system for simulating production processes and for optimising
those processes w.r.t. local energy production and variable
energy prices.

From an economic point of view, the energy price in particu-
lar has sparked fierce debates, and its impact becomes apparent
when looking at the most recent incidents in Bulgaria, where
increased energy prices caused political disturbances [2]. Fossil
and nuclear generation technologies currently appear to bear
economic advantages over still emergent photovoltaic and wind

generation. In 2009, 5.8% of the globally produced energy
was generated by nuclear power plants [3]. In industrialised
nations, this share is significantly higher: In the United States
and in the European Union, the amount of energy that was
produced by nuclear power plants ranged between 10.0% and
14.1% [3].

However, the Fukushima Daiichi nuclear incident has
painfully fostered an increasing awareness for the insecurity
of nuclear power and convinced many governments to adopt
phase-out legislations. The German government, for instance,
adopted a similar legislation and intends to shut down all
nuclear power plants before the year 2023. As laudable as
this endeavour is, the complete nuclear phase-out entails dif-
ficulties, not least because the ceasing amount of controllable
base load electricity has to be replaced.

Now, looking at already high energy costs, and having in
mind that 10 to 14 percent of our today energy production will
cease over the next years, it is most likely that energy costs
will increase even more in the foreseeable future.

Regarding the intermittency of generation, especially in the
electricity grid, primary energy efficiency and affordable elec-
tricity can only be provided together with electricity storage
or powerful demand response mechanisms.

The industrial sector in particular will be in need of these
to remain competitive in the presence of significant energy
price increase and price fluctuations. Considering the amount
of energy the industry procures, even slight changes in the
energy pricing may entail large amounts of additional costs.

A. The Industry
In Germany, the industry requires roughly 42% of the overall

energy demand [4]. Industrial players are well aware of the
chances and obstacles related to the ’Energiewende’. One
approach to counter the dependency from energy providers
and energy prices is to install local power generation facilities,
such as gas- or coal-fired power plants or block heating
stations on site. In most cases, energy still has to be procured
from external providers, yet, as opposed to private customers,
industrial players have flexible options in doing so. Energy can
be either procured in the long-term at fixed prices, or short-
term strategies can be applied, procuring energy only hours
before it is actually needed. These short-term purchases of
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energy are done at energy exchanges, such as the European
Energy Exchange AG, EEX [5]. Following the principle of
demand and response, electricity prices at energy exchanges
are highly flexible and time-dependent – at times, the price
can even become negative. Whenever there is a low demand
for energy (e.g., at night times or sometimes right in the
middle of the day), and, at the same time, an usually high
amount of available energy (e.g., as a result to sunny or
stormy weather and energy that is produced by solar panels
or by wind turbines, respectively), the resulting price drops.
Conversely, when there is a high demand for energy and there
is less intermittent energy available, the price increases. The
flexibility in purchasing energy allows industrial players to
optimise their energy costs by means of complex investment
strategies and production planning. Besides, the European
legislation allows industries not only to purchase energy, but
also to offer surpluses of energy at the energy exchange. This
additional option further increases the potential of industries
to minimise energy costs, though it aggravates the production
planning likewise.

B. Production Planning and Energy Costs
Fluctuating energy prices allow industries to significantly

decrease energy costs. To put it simple: In order to utilise
periods with low energy costs, energy consuming parts of
the process have to be shifted. As simple as this sounds,
today production processes comprise a large number of sub-
processes, which are also frequently interconnected and code-
pendent. Thus, shifting parts of a process most likely requires
other parts of the process to be shifted, as well. As an
example, consider the welding of automotive bodies. Welding
is considered an energy expensive production step and to shift
welding processes to periods with low energy prices may yield
significant savings, yet, welding is also one of the first pro-
cesses in automotive production lines and shifting may require
a complete reconfiguration of the entire production schedule,
including material delivery and personnel planning. If one now
considers the shifting of processes not as the only option, but
as one of many options of industrial players to optimise their
energy costs (e.g., to use local energy production, to procure
and to sell energy at flexible prices, to use intermediate storage,
or to reconfigure the production schedule), the complexity of
the optimisation problem becomes apparent.

C. The EnEffCo Project
Within the project EnEffCo (Energy Efficiency Controlling

in the automotive industry), we were confronted with this
exact problem, namely to optimise primary energy efficiency of
industrial production facilities. In a joint project our goal was
to develop an optimisation framework for short term energy
procurement.

We decided to use stochastic optimisation, or more specif-
ically evolutionary algorithms for this problem. We imple-
mented an optimisation routine based on Evolution Strat-
egy [6], considering production schedules as partially opti-
mised phenotypes, which were continuously measured and mu-
tated until some steady state occurred. The approach yielded

good results most of the time; however, as with most stochas-
tic algorithms, it could also get stuck in local optima. To
counter this problem, and at the same time to make use of
today’s distributed computing infrastructure, we extended our
approach by means of multi-agent technology [1]. Instead of
using one single optimiser, we deployed many optimisation
agents simultaneously, and overcame the problem of local
optima by using different initial populations.

In this article, we summarise and conclude our work by
presenting collected experiences in optimising energy costs of
production processes by means of artificial intelligence.

We start with introducing the reader to the concepts used
within this work, describing the domain model used for
representing production processes and schedules in Section II.
Then, in Section III, we describe in detail how the production
processes are simulated and how the process schedule is
optimised in terms of the prospected energy costs. Afterwards,
in Section IV, we present a first evaluation of this optimi-
sation using three different example processes. Subsequently,
in Section V, we elaborate our approach in distributing the
optimisation process among software agents, and how it fares
compared to the centralised optimisation. Finally, we have a
look at related approaches in Section VI and conclude our
work in Section VII, where we also motivate the application
of our framework in other domains.

II. CONCEPT AND PROCESS REPRESENTATION

In our approach, we use evolutionary algorithms to rearrange
individual processing steps to make the best use of times of
cheap energy, for instance due to variations in the availability
of renewable energies, like wind, or solar.

Of course, this approach is only feasible if the production
facilities are not used to their full capacity at all times, but only
if there is potential for variations. This may also be the case
if some machines can be used for multiple tasks, only one of
which can be carried out at a time, or in case of variable shifts
and break times. Another requirement is the availability of
storage area for intermediate products, so that their production
can be brought forward, or be deferred, to make use of times
of low energy costs. Locally installed energy sources, energy
storages and co-generation units can also be taken into account.

In preparation of the optimisation, the first thing to do is
to create a model of the production process, including the
several activities, the machinery, resources, and (intermediate)
products involved. We decided on employing a very simple
model, being inspired by Petri nets and adding only a bit
of domain-specific information on top of that. Basically, the
model consists only of activities, representing the individual
steps in the production as well as supportive processes, and
resources, representing all physical entities in the factory, i.e.,
products and by-products as well as machinery.

This model of the production process – the individual
activities and how they are connected – can then be simulated,
executing the several activities and consuming and producing
resources accordingly. The result of the simulation is used as
a quality measure for the actual optimisation algorithm, which
will eventually return the process plan with the highest quality,
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which can then be used to re-schedule the execution of the
individual activities in the process.

Besides finding the optimal process plan for a given produc-
tion process, the simulation and optimisation can also be used
for investigating the effect of variations in the process model,
e.g., higher storage capacities.

In the following, we will introduce the production process
meta model; in the next section, simulation and optimisation
are explained.

A. Production Process Meta-Model
The production process is modelled as a bipartite graph of

activities and resources, similar to a Petri net [7]: Activities
correspond to transitions, and resources correspond to places.
Consequently, activities are “activated”, or executable, if both
the resources to be consumed by that activity as well as enough
capacities for the resources to be produced are available.
Other than in a classical Petri net, activities are not executed
instantaneously but have a certain duration. Also, there are
different types of resources with specific characteristics.

A slightly simplified diagram of the meta-model is shown
in Figure 1. In the following, the individual elements of the
model are described in detail.
• The ProcessGraph represents the process as a whole,

made up of activities and resources. The attribute
secPerStep specifies the number of seconds each
atomic time step takes.

• An Activity is an individual action in the produc-
tion process, having the given duration (multiples
of the atomic time step). Activities can have input
and output resources and an energyConsumption
(one value per time step), which can also be negative.

• Resources represent items involved in the production,
e.g., raw materials, products, machinery, or even waste
heat. Depending on what they represent, their type is
either primary, secondary, or inventory. Each resource
has an initial stock, a maximum capacity, and may
also have associated costs.

• Linkings represent the input/output relation be-
tween activities and resources. The quantity specifies
the amount to consume or to produce of that resource.
Consequently, they indirectly act as a precedence con-
straint between activities.

• Constraints can be used to handle a variety of additional
conditions that are difficult to check otherwise, like time
windows when activities must (not) be executed, e.g., for
break times.

The classification of resources is based on these rules:
1) Primary Resources are more or less directly integrated

into the final product, e.g., raw materials, pre-fabricated
parts, and intermediate products.

2) Secondary Resources have a role in the production,
without being an actual part of the product, e.g., pres-
surised air and gasoline for machines, waste heat, or a
battery’s state of charge.

3) Inventory Resources are part of the inventory of the fac-
tory, e.g., machines and tools. (Consequently, we think

Fig. 1. Process meta-model, slightly simplified.

of inventory resources as not being actually consumed
or produced, but merely allocated and deallocated.)

Conversely, activities that are producing or consuming one
or more primary resources, and are thus directly involved in
the production, are considered primary activities; otherwise,
we will speak of secondary activities.

Electrical energy, being the main concern of the optimi-
sation, is not regarded as a resource, but treated separately.
Unlike resources, which have to be produced by activities of
the process itself, electrical energy can be retrieved in (for
all practical purposes) unlimited quantities and at any time.
Moreover, the price for electrical energy can vary over the
course of the day, based on the energy market. Surplus energy
can be sold, as well.

When an activity is executed, its input resources are con-
sumed and its output resources are produced, and it adds to
the overall energy consumption of the production process.
Primary and inventory resources are consumed in the first step
and produced in the last step of the activity’s execution; both
secondary resources and energy are consumed and/or produced
in each step of the activity.

Using this simple meta-model, a wide range of production
processes can be modelled. At the same time its generality
also allows for the simulation and optimisation of energy-
related processes in other domains, such as creating charging
schedules for electric vehicle fleets [8].

B. Implementation of Process Model and Modelling Tool

The process meta-model and a simple graphical editor for
creating and configuring process models have been imple-
mented as extensions to the Eclipse development environment.
Following the usual notation for Petri nets, activities are
represented by rectangles and resources by circles, using line
style and colour to distinguish the different types of activities
and resources (Figure 2).

Besides the basic modelling capabilities, the editor provides
means for validating the process graph, for browsing and
importing energy consumption data from a data base, and for
passing the process graph to the optimisation system.
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Fig. 2. Graphical process editor showing an example process.

C. Acquisition of Energy Consumption and Price Prognosis
Data

One important prerequisite for optimising production pro-
cesses with respect to their energy consumption is, of course,
the measurement of the energy consumption of the several
activities making up the production process. To this end, a
number of sensors have to be installed in the production
facilities to measure and record the energy consumption of
the individual machines.

However, while this yields the energy consumption of e.g.,
a certain industrial robot, this does not correspond directly
to any of the activities. For instance, an activity can require
the work of different machines, and one machine can serve
different activities. Instead, an activity’s energy consumption
is usually a section of the combined energy consumption of
multiple machines.

For this purpose, a special data base client has been inte-
grated into the process modelling tool. Using this client, the
user can choose energy consumption profiles for one or more
machines from the data base and select the section correspond-
ing to a certain activity from a diagram. The combined energy
consumption data for that period is then set to be the energy
consumption of that activity.

III. SIMULATION AND OPTIMISATION

The purpose of the optimisation is to find the best possible
production schedule for a given process model [6]. That
schedule is defined by the times the individual activities are
executed.

The optimisation process consists of three major aspects:
1) the simulation of a given production schedule,
2) measuring the quality of that schedule, based on the

result of the simulation, and
3) finding the schedule with the highest quality.
In the following, we will look at each of these aspects in

detail.

A. Simulation
The simulation of a production schedule keeps track of the

resource stocks and the energy consumption in each step of
the process, checking which activities are to be started, which
activities are still running, and which activities are to be ended
in the current step, producing and consuming resources and
energy accordingly:
• For each activity to be started, the given quantity of

primary and inventory input resources are consumed.
• For each activity that is currently running, the given

quantities of both secondary resources (input and output)
and energy are consumed and/or produced.

• For each activity to be finished, the given quantity of
primary and inventory output resources are produced.

Concerning energy consumption and cost, two parameters of
the simulation can be adjusted to reflect different determining
factors: First, an energy price curve can be provided, for
instance based on the prognosis given by the day-ahead energy
market – in the implementation at hand, cost optimisation is
conducted based on day-ahead price forecasts, e.g., for the
EEX electricity spot market. Second, a base energy level can
be specified, being the amount of energy the facility acquires
via a flat fee. Energy consumption up to this level has already
been paid for, so the energy price curve does not apply for
that.

Once the simulation has terminated, it yields a record of the
energy consumption and the resource stocks for each individual
step in the execution of the process. These numbers, combined
with the resources’ capacities, the energy price curve, and other
constraints, can now be used to determine the quality of that
production schedule.

B. Quality Measurement
The quality of a production schedule p is determined by a

sigmoid function of its defect, such that a high defect results in
a quality close to -1, and a defect close to zero gives a quality
close to zero (see Equation 1). A negative defect will result in
a positive quality (this is possible in some situations, e.g., in
case of negative energy prices, or energy-producing activities).

quality(p) =
−defect(p)√
1 + defect(p)2

(1)

The defect of p is the weighted sum of the energy costs
(e(p, i) · we) and the defects (over- and under-shootings) of
the several resources’ stocks (sr(p, i) ·wri) over all steps i of
the simulation (see Equation 2).

defect(p) =
∑

i∈steps

[e(p, i) we +
∑

r∈res.

sr(p, i) wr(i)] (2)

In this equation, the energy consumption, stocks and weights
are represented as functions. Different weights w can (and
should) be used for resource stocks being too low and those
being too high and for the different kinds of resources.

Production schedules that exceed the maximum or minimum
capacities of a resource are not discarded immediately, but
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are merely given a lower quality rating. This is beneficial in
overcoming local optima.

C. Optimisation

Finding an energy- and cost-efficient arrangement of the
several activities in the process for a given energy price curve
is both a constraint-satisfactory problem and an optimisation
problem: on the one hand, there must be no violations of
the resources’ capacities; on the other hand, the production
schedule has to be as cost-efficient as possible.

Due to the large number of degrees of freedom in the process
plans – with many different activities that can be started or
stopped in each step of the process – the search space is much
too big for exhaustive search to be applicable.

In our approach, we make use of Evolution Strategy (ES),
a stochastic optimisation method originally introduced by
Rechenberg [9], which is similar to Genetic Algorithms [10].
Besides Evolution Strategy, both Simulated Annealing and Ant
Colony Optimisation have been tried, as well. However, of the
three algorithms ES yielded by far the best results.

1) The ES Algorithm: As the name implies, Evolution
Strategy is inspired by natural evolution: Using a (µ/ρ + λ)
strategy, an initial “population” of µ individuals is generated.
Based on these µ “parents”, λ “offspring” are created by
recombining and mutating a random selection of ρ parents.
The quality of each of the parents and offspring is determined
and the µ best individuals are selected to be the parents of the
next generation. This process is repeated until the quality of
the best individual does not improve for a certain number of
generations.

Algorithm 1 EVOLUTION STRATEGY(µ, ρ, λ)
current← INITPOPULATION(µ)
repeat
next← ∅
for i ∈ {1..λ} do
parents← rand. select ρ indiv. from current
offspring ← MUTATE(RECOMBINE(parents))
next← next ∪ {offspring}

end for
current← select µ best from current ∪ next

until quality stagnates
return best individual from current

2) Applying ES to Manufacturing Schedules: In the system
at hand, each individual represents a possible production
schedule. To this end, three functions have to be implemented
for production schedules, next to the quality measurement: (i)
How to create the initial population of individuals, (ii) how
to mutate an individual, and optionally (iii) how to recombine
individuals.

The initial population is created by a very simple scheduler,
chaining primary activities as long as and as early as the
primary resources and inventory resources permit, or until a
desired quantity of products has been produced. Thus, the
initial production schedule already constitutes a valid (but

naive) schedule for all the primary activities, but without taking
secondary resources or energy costs into account.

There are several possibilities for mutating an individual,
one of which is chosen at random: (a) a randomly chosen
secondary activity can be inserted into or removed from the
schedule, (b) an activity or a group of activities (primary or
secondary) can be moved to another place in the process plan,
i.e., being executed earlier or later, or (c) the execution times
of two activities can be swapped.

For recombination, one can randomly select activities from
one of the two parents, or take the activities up to some specific
step from one parent, and the rest from another – of course
always taking care that the right number of primary activities
is selected to complete the task at hand. However, due to
the many dependencies among the individual activities of a
production schedule – the ordering of primary activities as
well as secondary activities being executed at times relatively
to some other activities – recombination does not yet work
well for this domain. Thus, in practice, the parameter ρ was
always assumed to be 1.

D. Implementation of the Optimisation Framework
A generic optimisation framework was created that can be

used for optimising different domains using different optimi-
sation algorithms. The actual Evolution Strategy algorithm as
well as the process model domain have been implemented as
plug-ins for this framework [6].

The optimisation is controlled via a simple graphical user
interface (GUI, Figure 3). Like the rest of the optimisation
framework, the GUI has both generic and domain- or algorithm
dependent parts. For the manufacturing domain, the optimi-
sation GUI features a large domain-specific area, providing
controls for configuring the simulation and optimisation (e.g.,
the energy price curve to use) and for showing the best
production schedule found so far in a Gantt chart-like diagram.
The process chart is continuously updated as the optimisation
proceeds, and also allows to ‘rewind’ to previous steps in the
optimisation.

Once the optimisation has come to an end, additional charts
are available, showing the energy consumption and resource
stocks for each step in the final production schedule, as well
as the development of these numbers over the course of the
entire optimisation as a three-dimensional plot. Finally, the
optimised production schedule can be saved to file.

IV. EVALUATION

In this section, we will discuss a number of application
examples of the process optimisation algorithm. Our first
example describes the ideal manufacturing process, providing
enough capacities – in both time and space – to shift primary
activities so that parts of the production can be handled at times
of cheap energy. The scenario shown in the second example
may be more realistic w.r.t. today’s manufacturing processes:
Here, the production activities can not be changed, but only
secondary activities (such as cooling, co-generation units and
buffer batteries) may be used for shifting energy consumption.
Finally, the third example demonstrates both the flexibility of
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Fig. 3. Prototypical user interface for controlling the optimisation and viewing
the results.

the process model and the prospects of our approach, as we
use the optimisation for creating optimal charging schedules
for large electric vehicle fleets.

A. Example 1: Use of Functional Storage
In this example, a simple, fictional car manufacturing pro-

cess is pictured (see Figure 2).
1) Example Process: The process starts with two energy-

intensive activities that induce high amounts of waste-heat:
welding and painting the car chassis. Once the paint has dried,
some interior works are performed, and finally the doors are
attached to the chassis. For each of the intermediate products,
a specific primary resource was created. The resulting pro-
duction process graph is supplemented with utility activities
and resources such as cooling, on-site electricity storage and
a gas-powered co-generation unit. The latter two elements can
be used to temporarily decrease the energy consumption, but
costs for the consumed gas will in turn add to the production
schedule’s defect.

While the process surely is not too realistic, it demonstrates
many of the aspects that can be realised in the process model,
for example
• modelling the basic production chain,
• inventory resources used by multiple activities,
• resources associated with a cost, and
• cooling facilities and other supporting processes.
2) Optimisation Results: The resulting schedule can be seen

in Figure 3. Here, the process has been optimised against a
hypothetical hill-shaped energy price curve, i.e., with highly-
priced energy in the mid of the day and low-priced energy in
the morning and evening.

As can be seen, most of the energy-intensive activities
(welding and painting) are taken care of in the morning, with
the exception of one instance of the painting activity, which

has been deferred to the afternoon. The high-price period is
spend entirely with the drying activity, which consumes no
electric energy at all. The remaining activities are positioned
as late as possible, to get the lowest possible price for the
required energy. Note also, that among the several instances of
the cooling activity in the morning there are also two instances
of the charging activity, charging the aforementioned in-house
energy storage when energy is cheap, and discharging it again
when the energy price is highest.

B. Example 2: Shifting Secondary Activities
The second example deals with a more realistic setting:

Here, the core manufacturing process is fixed in time; no
primary activities can be shifted. The straightforward mo-
tivation for this scenario is that in most industries, energy
consumption is not the key cost driver. Hence, the goal for
energy cost minimisation is to optimise energy consumption,
given a specific production schedule. In this scenario, no
primary activities are shifted. Instead, secondary activities,
such as ventilation or even the generation of electricity and heat
through combined heat and power stations (CHP) are viable
means to approximate an optimum energy load curve. In fact,
secondary processes may contribute significantly to the overall
energy consumption of industrial sites.

1) Example Process: The example chosen describes a site
configuration, where wind energy will be provided on site and
a 24 hour wind generation forecast is incorporated into the
calculations. Additionally, local energy generation comprises
a combined heat and power station, which can be either
idle or operate with half or full generation capacity. All
primary production processes are combined into a single, day-
long activity with a specific load curve, since, as mentioned
before, modifications are not eligible for them. As a shiftable
secondary activity, ventilation is modelled for load shifting
purposes. It can be operated on standard capacity or can
alternatively be increased or decreased to adjust its load level.
However, a sufficient amount of fresh air must be provided at
all times.

The schedule is now optimised according to a 24 hour day-
ahead electricity price forecast. Local energy production is
assumed to be very cost efficient. Wind generation is merely
characterised by maintenance costs for the turbines, CHP
related costs are calculated from maintenance and gas expenses
and are attributed to heat and electricity proportionally. The
costs for ventilation load shifting are assumed to be higher
than wind generation costs but lower than CHP expenses in
this example.

2) Optimisation Results: Figure 4 shows the resulting load
curves for this optimisation example. The abscissa shows the
time of the optimisation period. The first ordinate on the left
shows electrical load in megawatts. The second ordinate on the
right shows electricity market price forecasts in euro per kWh.
Six different graphs describe the optimisation results. The area
graph shows the wind generation forecast for the site. The
dotted line, which is related to the second y axis on the right,
depicts the external electricity price forecast. The dashed line
and the solid line show the external electricity procurement
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Fig. 4. Load optimisation from shifting secondary activities on an industry site.

of the site before and after the optimisation respectively.
Energy consumption before the automation (dashed line) does
not incorporate any local wind generation and is assumed
to be covered by the external grid only. Shiftable loads are
presented as stem graphs in this figure. Stem graphs with a
solid point marker present the operation of the combined heat
and power station, stem graphs with circle markers present
ventilation. Negative ventilation load occurs when an increase
of operation capacity is enforced to maintain the amount of
fresh air within the predefined boundaries. Positive ventilation
load occurs when operation capacity is reduced to decrease
external electricity procurement.

Since wind forecast, site consumption from primary ac-
tivities, and electricity market price are assumed to be non-
variable, the attention should be drawn to the shiftable ac-
tivities. It can be seen that the combined heat and power
are strictly dependent on the market price and generation is
curtailed when the price drops below about 0.059 Euros per
kWh. Load shedding from ventilation control also depends
upon the electricity market price but is less costly than CHP,
so it is only excluded when the electricity price is at its lowest
point during the high price interval between 8:00 and 21:00. To
keep the amount of fresh air within the necessary boundaries,
additional ventilation is injected from time to time. This occurs
primarily when the electricity price is low.

To sum up these results, the optimisation tool clearly adjusts
load profiles to external electricity price forecast and internal
electricity generation costs to decrease the overall energy
procurement costs.

C. Example 3: EV Fleet Charging Schedules

In the third and final example, the meta-model is applied
to a different domain: creating charging schedules for electric
vehicle (EV) sharing fleets in a micro smart grid (MSG) [8].
Here, the challenge is to schedule long-running charging
activities so that no bookings are at risk while at the same
time making use of locally produced energy and times of
low energy prices. Further, the EVs can be used as temporary
energy storages for load balancing.

1) Example Process: Here, the process graph is not created
by hand, using the graphical editor, but instead is derived
automatically from another model, describing the setup of the
MSG, including among others the various electric vehicles
and their current state of charge, a number of bookings for
those EVs, and different prosumers representing both locally
installed regenerative energy sources as well as the facility’s
own prospected power consumption.

For each prosumer, a day-long primary activity with an
energy consumption curve reflecting the prognosis is created.
Each EV is represented by a small subgraph featuring an inven-
tory resource for the storage (the EV’s battery), a secondary
resource for its current capacity, and one or more charging
activities reflecting the different possibilities for charging and
discharging the battery, dependent on the charging station. Fi-
nally, each booking is represented by another primary activity,
linked to the respective storage resource, and fixed in time
at the booking’s starting time. Figure 5 depicts one of those
segments.

2) Optimisation Results: This optimisation was carried out
two times: Once with the above described process model using
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Fig. 5. Segment of process graph showing activities and resources for a
single electric vehicle and associated bookings.

the meta-model and optimisation described in this paper, and
once using a domain-specific meta-model developed specifi-
cally for this task (still using the same optimisation algorithm).

The results of the optimisation are promising: Charging
activities are scheduled such that all bookings can be fulfilled
(i.e., the storage of the respective electric vehicle is sufficiently
charged) while at the same take making best use of locally pro-
duced energy and periods of low energy prices. The resulting
charging schedules closely resemble those created using the
domain-specific model.

However, we also found some limitations in our meta-model.
For instance, using inventory resources to “lock” electric vehi-
cles while charging or being rented does not allow for bookings
that are not bound to a specific vehicle (e.g., bookings for any
vehicle).

Nevertheless, first results convinced us to extend our ap-
proach to the domains of electro mobility and smart grids.

V. AGENT-BASED OPTIMISATION AND DISTRIBUTION

While evolutionary algorithms yield good results most of the
time, it is also possible, as with other stochastic optimisation
algorithms, that the optimisation gets stuck in local optima.
To increase the chances of arriving at a solution close to the
global optimum, the optimisation should be applied to more
than one “population”, and since the individual populations are
optimised independently from each other, they can easily be
parallelised and distributed.

To this end, the optimisation framework has been embed-
ded into a distributed multi-agent system, allowing for the
transparent and dynamic distribution of an arbitrary number
of optimisation clients and servers.

Admittedly, the strength of the agent paradigm is less
the transparent distribution but rather the comprehensive sup-
port that facilitates the development of autonomous, reactive,
proactive and social competent entities, namely agents. As
mentioned above, our current implementation is focused on
distribution rather than on exploiting the latter attributes of

agency. Yet, we justify the use of agent technology with our
future intentions. The presented optimisation framework was
well planned and its development was subdivided into different
stages. In the first stage it was our intention to implement
a distributed system and to ensure reliable and robust com-
munication between the system’s entities. Right now we find
ourselves at this very point. For the future, however, we plan
to exploit agent capabilities more comprehensively. Based on
the robust and reliable distribution we want to allow agents to
exchange partially optimised process plans and to recombine
these plans for a more effective mutation mechanism. The
recombination process, however, challenges agency far beyond
distributional aspects and for this exact reason we decided to
make use of agent technology right from the beginning. We
consider the current application as first step towards a far more
efficient and complex multi-agent based optimisation software.
For a complete overview of our future intention, however, the
reader is referred to Section VII.

In the following, we describe the interaction protocol, which
makes a number of optimisation servers (“agents” conduct-
ing the optimisation) available to one or more optimisation
clients [1]. Afterwards, we explain how the protocol and the
surrounding multi-agent system have been implemented using
the JIAC V agent framework.

A. Interaction Protocol

Two roles are involved in the protocol:
• optimisation client, requesting an optimisation
• optimisation server, conducting the optimisation
Obviously, there should be more than one optimisation

server agent for the distribution to provide any benefit at all, but
there may be multiple clients, as well, sharing those servers.
An interaction diagram of the protocol is shown in Figure 6.
It is composed of the following steps:

1) The protocol starts with a client broadcasting a RE-
QUEST message to all the servers.

2) Each server receiving the message checks whether it
already has an “employer”, i.e., whether it is currently
running an optimisation. If not, it replies with an OKAY
message.

3) The client receives the OKAY message, and if it still
requires the server (i.e., if there have not been enough
replies from other servers yet), it replies by sending
the actual MODEL to be optimised to that server. The
number of remaining optimisation runs is reduced. (The
full model, including energy consumption curves, price
curves, etc., is not sent until now, to reduce network
traffic.)

4) On receiving the MODEL message, the server will check
again whether it already has an employer, as in the case
of multiple clients, it might have sent OKAY messages
to other clients, which may already have sent their
MODEL messages.
• If so, the server replies with a TOO LATE message.

The client received this messages and corrects the
number of remaining optimisations.
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Fig. 6. Interaction protocol used in the distributed optimisation. Messages
marked with an ’*’ are sent to all servers.

• Otherwise, the server accepts the client as its
new employer and starts the optimisation run, and
finally sends a message holding the RESULT back
to the client.

• At any time, the client can send an ABORT
message, stopping the optimisation.

5) The client continues sending out REQUEST messages
until the desired number of optimisations has been
conducted.

Using this interaction protocol, each of the populations
of a (µ/ρ + λ) optimisation can be distributed to another
agent. Since each run of the optimisation, or each population
respectively, is independent from the others, this does not
introduce any noteworthy communication overhead.

B. Implementation using JIAC V
JIAC V (Java Intelligent Agent Componentware, Version

5) is a Java-based multi-agent development framework and
runtime environment [11], [12]. Among others, JIAC features
communication, tuple-space based memory, transparent distri-
bution of agents and services, as well as support for dynamic
reconfiguration in distributed environments, such as component
exchange at runtime. Individual JIAC agents are situated within
Agent Nodes, i.e., runtime containers, which also provide
support for strong migration. The agents’ behaviours and
capabilities are defined in a number of so-called Agent Beans,
which are controlled by the agent’s life cycle.

The protocol has been implemented by means of two JIAC
Agent Beans, namely the Optimisation Client Bean and Op-
timisation Server Bean. Just like the optimisation framework
introduced in Section III, the Agent Beans were kept generic
so that the protocol can just as well be used with domain-
models other than the one presented in this work, and even
with different optimisation algorithms.

The implementation with JIAC (or a similar multi-agent
framework) has some advantages over traditional approaches
using remote procedure calls or web services:
• Both the Client Nodes and the Server Nodes can be

distributed to any computer in the local network, with
no need to configure IP addresses or ports. Consequently,
if one of the server agents drops out, it can seamlessly
be replaced by another one.

• With each JIAC agent running in a separate thread, a
node with multiple agents being deployed to a multi-
core server computer will automatically make best use
of the several CPUs.

• Using asynchronous messaging, optimisations can be
aborted ahead of time. Also, servers can send back
intermediate results, to provide a trend for long-running
optimisations.

Besides agents holding the Optimisation Client and Server
Beans, a number of additional agents have been added to the
system to represent and to connect the different components,
as shown in Figure 7.
• A DB Agent provides an interface to the data base hold-

ing the measured energy consumption values, making
them available to the other agents.

• Integrated into the Eclipse IDE is a Plugin Agent, which
connects to the DB Agent to acquire energy consumption
data to be imported into the current process graph.
Further, this agent can send the process graph created
in the editor to an Optimisation Client Agent.

• The Optimisation Client Agents carries out the dis-
tributed optimisation, sending individual optimisation
jobs to different Optimisation Server Agents.

• The result of the optimisation can then be sent to the
Web GUI Agent, showing the resulting process plan and
its properties in a number of diagrams and graphs.

Using the same optimisation algorithms, the distributed
system performs as well as the local system. It yields good
results in reasonable time and the variability of results quickly
decreases with an increased number of populations.
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Fig. 7. Agent, components, and interactions in the distributed system.

C. Evaluation

Complementary to the evaluation of the optimisation ap-
proach in general, as discussed in Section IV, in this section
we want to evaluate specifically the benefits of the distributed
and parallelised version of the algorithm using the agent-based
setup [1].

We evaluated the benefits of distribution and parallelisation
using the first example process from Section IV, a production
goal of five completed cars, a hill-shaped energy price curve
and an evolution strategy with µ = 3 and λ = 8.

The example process was optimised several times with
different numbers of populations. The number of populations
ranged from one to thirteen, and ten runs of the optimisa-
tion were performed in each case. The results are shown
in the logarithmic plot in Figure 8. Note that at the time
this evaluation was conducted [1], the quality function was
quality(p) = 1

1+defect(p) , resulting in a different range in
quality values. As can easily be seen, the results of the
evaluation are still valid using the new quality function.

As can be seen in Figure 8 (left), using only one popula-
tion, the quality of the optimised process plan varies greatly.
While there are some results with near-optimal quality, many
populations apparently get stuck in local optima and obtain
a low overall-quality. For up to four populations, results start
to look better, but are still noticeably scattered. For five and
more populations, the results become reliable, with almost each
optimisation run resulting in near-optimal quality.

It may be noticed that the maximum quality reached –
around 0.05 – is still far from the theoretically possible. The
reason for this is that energy costs, no matter whether they
could be improved any further, still add to the defect of the
process schedule. Thus, with minimum energy costs of around
20 (in no specific currency), the quality can not be much
greater than 0.05.

Also to be noted is the gap in quality between around 0.015
and 0.045. This gap separates results, which still have resource
conflicts, and those merely suffering from less-than-optimal
energy costs. In the evaluation, the weight of resource conflicts
was set to add greatly to the overall result’s defect, making the

quality look almost discrete.
Further, we discovered that there is little to none correlation

between the time an individual optimisation run takes, and
the resulting quality (see Figure 8, right): the result of a
quick optimisation run can be just as good (or bad) as that
of a longer running optimisation, and vice versa. Thus, one
possibility to improve the performance could be to start a large
number of optimisations in parallel, and to abort the remaining
optimisation runs once the first few results to choose from have
arrived.

VI. RELATED WORK

Industry has long since discovered, that the optimisation
of manufacturing processes is able to significantly increase
revenues. As a result to the continuous demand for opti-
misation frameworks, there are many sophisticated applica-
tions available today. In this section we outline the current
spearhead of optimisation tools and concepts; yet, due to the
broad range of existing approaches it is difficult to present
a comprehensive survey and for this reason we decided to
put emphasis on approaches and concepts that influenced our
own work the most. We open this section with an analysis of
academic approaches that apply evolutionary algorithms for the
optimisation of manufacturing processes and proceed by pre-
senting commercially distributed optimisation software. Here
we distinguish between general purpose frameworks, visual
approaches, manufacturing- and business process optimisation
tools. Finally, we discuss the significance of our work against
the backdrop of contemporary applications.

A. Evolutinary Algorithms and Process Optimisation

The idea to use evolutionary algorithm for the optimisation
of manufacturing processes is not entirely new, as the com-
plexity of many optimisation problems has strongly promoted
their use.

Highly interesting for our work is the approach of Santos
et al. [13], as it puts focus on energy related criteria. Yet,
as opposed to our objective, the aim of Santos et al. is to
reduce energy consumption in general, while we try to adapt
our manufacturing schedules to a given energy price curve.
Bernik et al. [14] developed a similar approach, although they
do not account for energy criteria. The approach is capable
to propose manufacturing schedules that are able to satisfy
a given production target. In addition to the manufacturing
schedule, resource requirements are calculated and assigned to
the production depots. Schreiber et al. [15] describe a similar
application, which optimises manufacturing schedules towards
a given production target. As opposed to the work of Bernik
et al., the application is able to calculate so called lot-sizes,
which are defined as the number of pieces that are processed
at the same time at one workplace with one-off (time) and at
the same costs investment for its set up [15].

To summarise, while there are some approaches that account
for energy related factors, dynamic pricing is currently not
covered although the markets offer such possibility.
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Fig. 8. Left: Correlation of number of populations to expected result quality. The graph indicates average quality values. Right: Correlation of time of
optimisation run to result quality. [1]

B. Optimisation Frameworks for Production Processes
Next to frameworks that apply evolutionary algorithms in

order to optimise manufacturing processes, there are of course
applications that apply other methods for the same objective.

The Siemens Plant Simulation Software [16] for instance
facilitates the simulation based optimisation of production
systems and controlling strategies, while business- and logistic-
processes may be supported as well. The SIMUL8 frame-
work [17] (Figure 9), Arena [18] and GPSS/H [19] provide
similar features and are able to simulate entire production
processes, from warehouse capacities and equipment utilisation
to logistics, transportation, military and mining applications.
SIMUL8 additionally accounts for real life requirements, such
as maintenance intervals and shift patterns. Further, SIMUL8
uses an agent-based simulation for the optimisation of produc-
tion processes.

Other types of software packages as for instance Simio [20]
and ShowFlow [21] do not explicitly focus on the optimisation
of production processes, but on their visualisation. For this pur-
pose, most of the mentioned applications apply sophisticated
3D engines.

C. General Purpose Frameworks
Thus far, we have exclusively analysed approaches that

have been developed for the optimisation of manufacturing
processes. Yet, over the last years, the idea of general purpose
frameworks emerged. Instead of focusing on a particular
domain or problem, general purpose frameworks are able to
optimise general processes, such as monetary flow, quality-
and organisation management, allocation scenarios, logistics,
transports and many more. Foundation to these frameworks
is a generic meta-model, which is able to capture process
structures, and which is usually based on established concepts.

The PACE framework of Eichenauer [22] and the work
of Siebers et al. [23] for instance feature an arbitrary level
of detail for process design. While PACE uses hierarchically
arranged High-Level-Petri-Nets for this purpose, Siebers et

Fig. 9. The SIMUL8 production process configuration tool, showing a
palette (bottom left) and a canvas (bottom right) element as well as an
exemplary process structure, including a start-, a queue-, an activity- and an
end object. [17]

al., using AnyLogic, apply an object-oriented meta-model for
its processes and uses a multi-agent based model for the
simulation of process configurations. AnyLogic further com-
prises a graphical user frontend, which provides information
on simulated processes similar to the representation that we
use for our own process configuration tool. However, AnyLogic
integrates information on the current simulation procedure and
allows for the real-time adjustment of simulation parameters,
such as throughput rates or storage capacities. As an example,
this feature can be used in order to simulate and observe the
impact of sudden machine failures. An illustration of the visual
representation of the simulated processes is given in Figure 10.

SLX [24] takes a layered approach to process modelling.
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Fig. 10. The AnyLogic visualisation of simulated processes ([23], cut-out).
Not only displays the tool the current state of simulation processes, but also
allows for the adjustment of simulation parameters, such as throughput rates
and capacities.

Most commonplace processes are handled in SLX’s upper
layers, while more complex problems can be captured with
SLX’s lower layers. The Microsaint [25] package avoids
hierarchical structures and facilitates readability as well as
easy comprehensibility. The framework entirely relies on flow
charts as meta process language. In most analysed frameworks,
process design is usually supported by visual editing tools. The
ADONIS framework [26] for instance provides an impressive
graphical editor for the design and manipulation of the exam-
ined process system.

In summary, we can state that general purpose tools apply
a generic meta-model in order to facilitate a broad range of
problems. For this meta-model, established concepts such as
Petri nets [7] or flow charts are used. The analysed frameworks
facilitate process design by graphical editing tools.

D. Optimisation Frameworks for Business Processes
In addition to applications that explicitly account for the

optimisation of production processes, we want to attend focus
on those that have been developed for other reasons. Business
processes for instance have a striking resemblance to manufac-
turing processes and as there are optimisation frameworks for
business processes, we want to mention the most prominent
members of this realm as well.

To start with, ProcessModel [27] is a business process opti-
misation software, which supports optimisation from problem
analysis to efficiency evaluation. The tool is able to visualise
many aspects such as money savings or the efficiency of
analysed processes to serve customers. A similar application is
SIMPROCESS [28]. In addition to the capabilities of Process-
Model, SIMPROCESS is able to handle hierarchical process
structures and comes with a set of sophisticated tools for the
process design. Both applications apply means of simulation
in order to verify optimised processes and to estimate their
overall quality.

E. Lessons Learned
In this section, we gave a comprehensive overview on state

of the art concepts and applications. We have already men-
tioned, that there are many sophisticated applications available
today. Some of them have been explicitly developed in order
to optimise production processes, others were designed in a
generic fashion and yet feature similar capabilities.

The idea of optimising production with respect to dynamic
energy tariffs is adopted by none of the examined applications,
and energy related criteria in general are currently not com-
prehensively covered by state-of-the-art solutions, as only the
approach of Santos et al. supports such factors.

We learned that evolutionary algorithms can be used to
increase the performance of optimisation algorithms and thus
selected such principle for our own application. For this pur-
pose, we applied an established concept [9] whose performance
we further enhanced by distributing our computation units.

Also, our survey did not indicate distributed computing to
be widely used in process optimisation frameworks. Only the
AnyLogic framework provides an according feature, for which
the developers make use of the agent paradigm.

For our implementation we use the exact same view, only
that we apply a rather comprehensive agent model as we use
our agents as autonomous problem solvers while AnyLogic
agents can be understood as simulated autonomous entities,
such as persons or vehicles.

The analysis of general purpose frameworks inspired us to
use a very simple and generic domain model in order to support
a large number of process structures and also to provide
functionality beyond the scope of optimising manufacturing
processes.

To sum up, we can say that currently there are neither
concepts nor frameworks, which account for the optimisation
of manufacturing processes with respect to variable energy
prices.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an optimisation framework that
was developed within the government- and industry funded
project EnEffCo. The main objective of the EnEffCo project
was to develop software that facilitates to increase the primary
energy efficiency in production and to evaluate the software
with the involved industry partners.

The optimisation framework exploits the fact that industrial
users are able to purchase energy with a short lead and at
highly flexible prices, e.g., at the European Energy Exchange,
EEX. The energy prices at the energy exchange comply with
the principle of demand and response. As such, time periods
with surpluses of energy (e.g., caused by an increase in wind
or sunshine and the resulting energy from wind engines or
solar collectors) and low grid demand (e.g., right in the middle
of the day or during night times) result in low and possibly
negative energy prices, while periods with only little energy
from renewable energy sources and an increased grid demand
result in high energy prices.

In order to capture the arrangement of production lines,
we have developed a suitable domain model. The model is
similar to a Petri net and comprises only two main types,
namely activities and resources. A link type is used to indicate
a connection between activities and resources. The generic
design of the domain model allowed us to consider scenarios
beyond the originally intended scope of the project. As an
example, we were able to optimise charging procedures of
electric vehicles.
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An instance of this model, representing the different ma-
chines and tasks found in a production process, is then passed
to the optimisation framework, together with an energy price
forecast obtained from the energy exchange.

Due to the many options in optimising production processes
(e.g., randomly shifting, adding- or removing individual activi-
ties within extensive timeframes), we decided to use stochastic
optimisation. Besides other approaches, such as Simulated
Annealing and Ant Colony Optimisation, the best results were
achieved using Evolution Strategies, where a population of in-
dividuals (process plans) is gradually mutated and (optionally)
recombined until a satisfying quality is reached.

While the quality of the results may vary, the optimisation
process generally produces reliable results in a timely manner,
allowing industries to quickly act even on short-term energy
price fluctuations. Making use of today’s distributed computing
architectures, the optimisation can be distributed to multiple
clients and servers, using the JIAC V multi-agent framework.
This way, the reliability of the outcomes increases further,
while on average taking no longer than a single run of the
optimisation. Additional JIAC agents are used to integrate the
optimisation with other components of the system, e.g., the
process modelling tool and the user frontend.

The EnEffCo Project officially ended in December 2012.
Nevertheless, we intend to further refine our approach and to
extend the capabilities to other domains.

Currently, we are transferring our findings from the EnEffCo
project to ongoing projects, for instance for load-balancing in
micro smart grids and for optimising the charging schedules
of large electric vehicle car sharing fleets [8]. While some ex-
tensions to the domain model and the optimisation framework
had to be introduced, so far, the results look promising.

Furthermore, it is our intention to enhance the optimisation
process by allowing agents to exchange and recombine par-
tially optimised production schedules. This requires agents to
autonomously query intermediate results from other optimisa-
tion agents and to select suitable parts from these results for the
mutation process. Where our current implementation is focused
on distributional aspects only, this extension will exploit the
agent paradigm more comprehensively and pave the way for
a high-performance agent-based optimisation framework.
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[12] M. Lützenberger, T. Küster, T. Konnerth, A. Thiele, N. Masuch,
A. Heßler, M. Burkhardt, J. Tonn, S. Kaiser, J. Keiser, and S. Albayrak,
“JIAC V – a MAS framework for industrial applications,” in Proc. of the
12th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2013), Saint Paul, MN, United States of America, T. Ito, C. Jonker,
M. Gini, and O. Shehory, Eds., 2013.

[13] A. Santos and A. Dourado, “Global optimization of energy and pro-
duction in process industries: a genetic algorithm application,” Control
Engineering Practice, vol. 7, no. 4, pp. 549–554, 1999.

[14] I. Bernik and M. Bernik, “Multi-criteria scheduling optimization with
genetic algorithms,” in Proceedings of the 8th WSEAS International
Conference on Evolutionary Computing. Stevens Point, Wiscon-
sin, USA: World Scientific and Engineering Academy and Society
(WSEAS), 2007, pp. 253–258.

[15] P. Schreiber, P. Vazan, P. Tanuska, and O. Moravcik, “Production
optimization by using of genetic algorithms and simulation model,” in
DAAM International Scientific Book 2009, B. Katalinic, Ed. DAAM
International, 2009.

[16] Siemens, “Plant simulation – plant, line and process simulation
and optimization,” Project Broschure, 2010, accessed: 21.5.2013.
[Online]. Available: http://www.plm.automation.siemens.com/en us/
Images/7541 tcm1023-4957.pdf

[17] K. Concannon, M. Elder, K. Hunter, J. Tremble, and S. Tse, Simulation
Modeling with SIMUL8, 4th ed. Visual Thinking International Ltd.,
2003.

[18] M. D. Rossetti, Simulation Modeling and Arena, 1st ed. Wiley, 2009.
[19] R. C. Crain, “Simulation using GPSS/H,” in Proceedings of the 29th

Winter Simulation Conference, December 1997, pp. 567–573.
[20] J. A. Joines and S. D. Roberts, Simulation Modeling with SIMIO: A

Workbook. Simio LLC, 2010.
[21] I. S. Solutions, “The ShowFlow website,” 2011, accessed: 21.5.2013.

[Online]. Available: http://www.showflow.com/
[22] B. Eichenauer, “Optimizing business processes using attributed petri

nets,” in Proceedings of the 9th Symposium about Simulation as
Commercial Decision Help, March 2004, pp. 323–338.

[23] P.-O. Siebers, U. Aickelin, H. Celia, and C. W. Clegg, “Understanding



40

International Journal on Advances in Intelligent Systems, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

retail productivity by simulating management practices,” in Proceedings
of the Eurosim 2007, Ljubljana, Slovenia, 2007, pp. 1–12.

[24] J. O. Henriksen, “SLX: The X is for extensibility,” in Proceedings of
the 32nd Winter Simulation Conference, 2000, pp. 183–190.

[25] D. W. Schunk, W. K. Bloechle, and K. R. L. Jr., “Micro saint: Micro
saint modeling and the human element,” in Proceedings of the 32nd
Winter Simulation Conference, 2002, pp. 187–191.
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