
113

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Analysis of the Generative User Interface Pattern Structure

Stefan Wendler and Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, detlef.streitferdt}@tu-ilmenau.de

Abstract — Current business information systems extensively
rely on graphical user interfaces (GUIs). These sub-systems
enable the interaction between the end user and application
kernel services that are essential for the business process
instances. Due to dynamic and rapid changes of both business
processes and their required services, a strong need for the
quick adaptation of GUIs to the occurring changes arose. As
both efficiency and usability are essential for the GUI
adaptation, model-based development processes that involve
patterns and their instantiation for specific GUI contexts have
been suggested by ongoing research. Being based on human
computer interaction patterns, the new kind of pattern needs
to be formalized in order to enable the automated processing of
configurable instances by generator tools. However, current
research is still at the edge to express the concepts for such
generative user interface patterns. Crucial factors and impacts
of those patterns have not been described sufficiently yet so
that a standardized format for the expression of variability is
still missing. With our work, we briefly review the current
state on modeling user interface patterns and their
requirement aspects. The ultimate objective of this paper is the
development of an analysis model that is able to express both
the structure and variability concerns of user interface
patterns in detail. To evaluate and illustrate the analysis model
concepts, selected user interface pattern instances are modeled
via object models. As result, a detailed description of
generative user interface patterns is achieved, which can be
applied as a basis for the verification of recent approaches of
model- and pattern-based GUI development or even the
synthesis of a dedicated user interface pattern language.

Keywords — user interface patterns; model-based user
interface development; HCI patterns; user interface generation;
graphical user interface.

I. INTRODUCTION

A. Motivation
Domain. Business information systems of our days are

being maintained to upkeep or raise their effectiveness in
supporting users carrying out operative tasks, which are
demanded by the business processes of the respective
company. Being a layer of a given business information
system, the graphical user interface (GUI) is part of a value
creation chain, as it enables the user to access functional,
data and application flow related components of sub-systems
located lower in hierarchy. Accordingly, the GUI allows the

user to select and initiate functional behavior that processes
data relevant to active tasks. As result, value is being created,
which is meaningful to the sequence of the business process
within the value creation chain. Since systems are constantly
matched closer to the set of tasks of the business processes,
users are facing an increase in task scope and complexity.
Ultimately, the need for well designed, adaptive and easy to
maintain GUIs has emerged.

GUI requirements. In this context, a user interface
primarily is required to fulfill both the criteria of
functionality and usability. On the one hand, a GUI has to
reflect the current process definition, and thus, offer access
to the respective activities in order to provide effective
support for the user. On the other hand, for this support to be
efficient, the non-functional requirement of usability, which
embraces the suitability for the task and learning, as well as a
high degree of self descriptiveness [2], plays an important
role for testing and the acceptance for productive runs.

GUI adaptability. As business processes tend to change
over time, the functional requirements based on them, such
as use cases or task models, may change considerably, too.
With those changes taking place, new requirements, having a
significant impact on the GUI artifacts, are being introduced.
Consequently, this part of the system has to conform to a
high demand on adaptability besides the first release-specific
requirements. Especially standard software systems, which
offer a configurable core of functions to support business
models, like applied in e-commerce, see a distinctive
demand for adaptive user interfaces [2][3]. Accordingly, a
user interface of a business information system has to be
based on a software architecture or development process,
which facilitates the transition to new visual designs, dialogs,
interaction designs and flows without causing significant
costs in manpower and time.

Current limitations. Nowadays, the above mentioned
requirements still cannot be accomplished fully by
automation and generative development processes. On the
one hand, available GUI-Generators can only cover certain
stereotype parts of the user interface and may not lead to the
desired quality in usability [3][4]. On the other hand, model-
based development processes, which are able to generate
more sophisticated user interfaces, also cannot support all
variations on interaction and visual designs the changing
business processes may demand for [5]. Finally, concepts
that combine increased reuse and automation in user
interface development and adaptation are being sought of.

User Interface Patterns. Together with other
researchers [2][4][6][7][8][9][10][11], we believe that certain
aspects of the GUI can be modeled independently in order to
be composed and instantiated to their varying application

This is a revised and substantially augmented version of “An Analysis
Model for Generative User Interface Patterns”, which appeared in the
Proceedings of The Fifth International Conferences on Pervasive Patterns
and Applications (PATTERNS 2013) [1].

114

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contexts. As evolution and individualism in GUI
implementations generally induce high efforts, an approach
has to be followed, which enables a higher degree of reuse,
and hence, allows for more common basic parts to be shared
among components. For reuse, the basic layout of a dialog,
its positioning of child elements and navigation flow as well
as reoccurring user interface controls (UI-Controls) and their
data type processing are to be mentioned as candidates for
automated generation. In this context, the occurring
variability needs to be expressed by new artifacts in the
development process chain. The need for a systematic
description of reusable GUI artifacts arose and initially has
found its expression in human computer interaction (HCI)
[12][13][14] or, more recently, in user interface patterns
(UIPs) [7][15]. In this regard, UIPs describe the common
aspects of a GUI system in an abstract way. The developers
concretize them with the required parameter information
suited for the context of their instantiation.

UIP conception. The existing work about UIPs applied
in model-based development processes [8][9][10] has laid
down conceptual basics and milestones towards
experimental proofing. However, no dedicated pattern
definition for user interface development [6][16] has
emerged yet, and so, the motivation of the PEICS 2010
workshop is still of high relevance [17].

Factor model. To progress towards a more detailed and
complete UIP conception, we intensely elaborated
requirements with impacts to architecture, formalization and
configuration of UIPs in reference [5]. A process, which
enables the instantiation of UIPs and their compositions to
form a GUI of high usability and adaptability, altogether,
needs such a clear basis of requirements. However, the
factors we have modeled reside on a descriptive level that is
not favorable to be directly translated to notations or formats
for generative UIPs.

B. Objectives
The results of our work on the factor model in reference

[5] have led us to the strategy to specify an analysis model
for the UIP aspects and their various impacts. This model
shall serve as a medium to close the gap between descriptive
requirements of the factor model and formal notations. With
the analysis model, we are detailing the requirements even
more and progress towards a semi-formal notation for their
description. The analysis model is intended to capture all
essential aspects, properties and required parameters for
context-specific application of UIPs. With this contribution,
an initial version of the analysis model is presented.

We focus on the UIP representation and not its mapping
or deployment process, since other researchers have
advanced in that area, but still lack a proper UIP
representation. This representation is elaborated here along
with related work, criteria, examples and finally an analysis
model. The following questions shall be answered by our
analysis model:

 What information is needed to describe a UIP as a
generative pattern applicable as a GUI architecture
design unit?

 What elements a formal language has to feature in
order to permit the full specification of such UIPs?

C. Structure of the Paper
The following section provides an overview of the

pattern type to be covered in this work. To begin with, origin
and basic definition of UIPs are presented with the aid of
related references from the human computer interaction
community. To address possible formalizations of UIPs,
XML based languages, which enable the platform-
independent specification of GUIs, are introduced. In
addition, an UML-based approach that promises formal
modeling of UIPs on the basis of class models is briefly
described as well.

In Section III, we present an overview of the role UIPs
may assume with respect to the development of GUIs in the
domain of business information systems. In addition, a UIP
based development and modeling concept is briefly
introduced to inspire a comprehensive view on UIPs. Lastly,
requirements related to UIPs are reviewed to draw a
distinction to common user interface development practices.

In Section IV, the problem statement is formulated. We
summarize the outcomes of our previous work on the
examination of model-based development processes and
valuate the current state of related work.

The description of our approach follows in Section V.
Our main achievement is the elaboration of the analysis
model that is presented in Section VI. Object models that are
presented in Section VII will reveal additional details of the
analysis model applied to UIP examples. Therefore, the
object models will evaluate the applicability of the analysis
model. The results of our work are reflected in Section VIII,
before we conclude and suggest future work in Section IX.

II. RELATED WORK

A. Human Computer Interaction Patterns and User
Interface Pattern Definition
To open the discussion of reusable GUI entities, aspects

of patterns related to GUI development are now introduced.
We approach the term “user interface pattern” (UIP), which
will drive the further elaboration of related work. For this
purpose, we ask what the origins for definitions of UIPs in
the context of GUI generation are.

HCI pattern ambitions. The early stages of patterns for
user interfaces were determined by the goal to describe
reoccurring problems and feasible solutions for GUI design
offering high usability. Borchers [14] stated that human
computer interaction (HCI) experts had a hard time
communicating their feats in ensuring a good design of a
system’s GUI to software engineers. Thus, the idea was born
to express good usability via patterns as this was already a
good practice for software architecture design. In this regard,
Van Welie et al. [18] argued that patterns are more useful
than guidelines for GUI design. In addition, they suggested
the term pattern for user interface design along with criteria
how to assess the impact on usability of each pattern.

Research into HCI patterns went on and culminated into
pattern languages such as the one created by Tidwell [19].
Prior to this development, Mahemof and Johnston [12]
outlined a hierarchy of patterns, what already implicated that
there are complex relationships inside HCI pattern
languages.

115

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

No unified pattern notation. Some years later,
Hennipman et al. [20] claimed that available HCI pattern
approaches could be improved as there were still obstacles
for their efficient usage. Their analysis of relevant sources
revealed major issues such as the missing guidelines how to
formulate new HCI patterns, integrate them in tools and how
to apply them. The request for a standard pattern
specification template already was formulated in references
[14] and [18]. In this regard, Borchers mentions early
sources adopting the famous pattern notion by Christopher
Alexander. Finally, Fincher introduced PLML [21] in
reference [22]. However, the issue of a missing standardized
pattern format still persists [17], which eventually is detailed
by Engel et al. [23]. Therein, they analyze the shortcomings
of current HCI pattern catalogs, the intended standard
notation of PLML and its extensions.

UIP definition. Vanderdonckt and Simarro [24] separate
two main representations of patterns based on the intended
usage. Descriptive patterns serve a problem description and
solution specification purpose. In contrast, generative
patterns feature a machine readable format as they are to be
processed by tools and in particular GUI generators. Besides
this rather general segregation, we have not found any
elaborate definition on UIPs.

B. Formal Languages for GUI Specification
Now, we ask if there are languages available that may

permit the formal specification of UIPs.
In our previous work [3][15], we already went into the

possibilities to express UIPs with the means of mature GUI
specification languages UIML [25] and UsiXML [26]. As
these languages are focused on platform-independent full-
fledged GUI specification and intended to be machine
processed, some of their elements may be candidates to be
included in a sophisticated UIP definition model. Both
languages feature common elements to define the visual
layout, interactive behavior and content of a certain GUI
part. For pattern-specific application, UIML and UsiXML
differ in their capabilities: UIML incorporates elements for
template definition and a peer section, which decouples
structures or UI-Controls within the layout from their
technical counterparts. In contrast, UsiXML is based on a
more complex approach, which defines a metamodel
consisting of a model hierarchy and methodology [27]. The
abstract (AUIM) and concrete user interface model (CUIM)
may be of relevance for our objective.

C. UML Class Based Modeling of User Interface Patterns
In our search for UIP aspects and definitions we

discovered an approach towards UIP modeling that relies on
UML. No exact UIP definition was provided either but on
the basis of given examples the individual UIP aspects were
outlined rather clearly.

The UML is a common basis for modeling software
systems. As a notation it is present in major CASE tools and
is applied to express multiple aspects and views of a system
in one comprehensive model. To further complement the
aspects of a system in this model, an approach for modeling
UIPs with UML class models was developed by Beale and
Bordbar [6].

Common motivation. Their motivation is sourced from
several problems. Firstly, they support our claim from
Section II.A that no standard specification for UIPs does
exist. Secondly, available UIP catalogs or collections [19]
[28][29][30] vary in structure as well as their pattern
relations, so that developers would need considerable
expertise to use those resources effectively or train new
development team members. The problem stated by Beale
and Bordbar is that no uniform principles for searching and
identification of suitable patterns for a given context can be
relied upon to raise effectiveness. This applies to the
comparison of patterns between existing catalogs as well.
Thus, pattern languages did not provide support for
comparison between alternative patterns suitable for the
same context and their trade-offs. In the end, the developer
would be faced with a multitude of available options to select
UIPs for the context or system in focus.

UML approach. As a solution for both problems, Beale
and Bordbar follow the idea to express UIPs by the same
means as used for the system model. In their approach, a tool
reads a UML system model and suggests appropriate UIPs
for GUI implementation or refinement. As input, the pattern
matching tool analyses the system model’s data structure
provided as UML class model. Additionally, available UIPs
are required as input models.

UIP representation. Each UIP is to be modeled
statically as a class diagram, which incorporates both
presentation and GUI data model elements with appropriate
operations. With that representation “the behavioral and
structural characteristics of an interaction artifact that
provides a solution to an interface design problem” [6] is
indented to be modeled. To complement the structure of a
UIP, a UML sequence diagram is modeled that describes
typical interaction sequences and may include stereotype
functions like data loading and change of presentation states.
For automation proposes, the sequence diagram can also be
expressed via OCL.

UIP selection. During the processing, the UIPs are then
matched to recognized structures within the system’s class
model. In the end, the developer is presented with all
possible matching UIPs, which were found suitable for
displaying the systems data structures. This may result in
multiple choices, but the potential number of applicable UIPs
for a given context is reduced to only matching structures.

Limitations. Beale and Bordbar do not claim to have
found an ultimate solution. Their UIP representation is not
intended to contain detailed pattern descriptions with forces,
trade-offs and implementation hints like a full PLML
specification would offer. In contrast, they limit their
expressed UIPs to certain data structures and selected
interaction elements with no user requirements.

Their primary goal was to analyze a system design model
or a selected part of it in order to find proper UIPs to display
the recognized data structures and to offer an ultimate
selection of UIPs. No “aesthetic aspects” [6] or detailed
visual design is captured with UIP models. To add these and
more implementation related aspects, platform-specific
models were suggested named “Device Profile Model” [6] to
translate UIP models and generate specific instantiations.

116

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

They discuss another issue that stems from system model
complexity and its variations, which depend on the skills and
likings of the developers. Since a developer may model
system design differently, the pattern recognition may
produce different results. This is the same issue of varying
detail of class diagrams where rather atomic units or
composites may be chosen as model elements. Finally, these
issues are to be treated by future work and in particular by an
enhanced recognition algorithm.

However, the approach by Beale and Bordbar is closely
bound to the data structure of a certain context or system.
Therefore, the UIP definition is rather narrow and intended
to fit within their set limitations. Following this approach,
developers will soon seek for a more flexible UIP
representation to fit the contexts of task and business process
based systems. In addition, no implementation details were
given for the data centered UIP concept.

III. DEVELOPMENT OF BUSINESS INFORMATION SYSTEMS
WITH THE AID OF USER INTERFACE PATTERNS

A. General Graphical User Interface System Development
Artifacts
Before we look into the details of the UIP analysis, we

would like to reflect the GUI development process and the
potential role of UIPs therein.

General development steps. For each greater business
information system the developers have to specify an
essential model [31] that captures all necessary functional
requirements. The artifacts of this specification are foremost
kept independently from architectural and technical details.
Therefore, the requirements usually contain no concepts for
the GUI system. The transformation of requirements to a
final user interface is no easy task to achieve [31]. Several
modeling and refinement steps have to be undertaken where
means for transformation rarely consist of automation tools.
In reference [3], we already explored the theoretical
implications of UIPs on these general transformation steps.

Artifact hierarchy. To reflect the role and value of UIPs
in these particular development steps, we look closer at the
involved requirement artifacts that are displayed on the left
hand side of Figure 1. This figure and the following
explanations will be used to argue that UIPs may be
classified by several types, which reside on considerably
different levels in a hierarchy. This UIP structure can be
organized in parallel to the architecture artifacts in the
middle column of Figure 1. Consequently, the matching UIP
types are arranged on the right hand side of Figure 1.

Nowadays, requirements of business information systems
are to be structured in a hierarchy of modular artifact types.
This is due to the increasing complexity and number of
requirements to be implemented. Requirements of higher
level organize the structure and referencing of the lower
level ones. Redundancies are avoided and concerns that form
a modular structure are incorporated. These may lead the
software architecture design and help identifying system
related or implementation artifacts. For comparable reasons,
UIPs should be organized in a similar fashion.

ui UIP artifact associations

Domain data model

Entity

DomainDataType

Association

IncludedService

UseCaseService

EntityManagingService

TaskService

WorkflowService
Business

process model

Task
model

System use case
model

Business object
model

UI-Controls and
elementary or invariant

UIPs

UIPs for managing
entity associations

UIPs for displaying and
grouping data

UIPs for standard and
CRUD dialogs

UIPs for service dialogs

UIPs for navigation and
dialog structuring

UIPs for the analysis of
workflows

Requirements artifacts Software architecture artifacts User Interface Patterns

«trace»

0..*

1

«use»

«trace»

1
«call»

0..*

«use»

«trace»

«trace»

1

«use»

1..*

0..*
1

1«call»
1..*

«trace»

1
«call»

1..*

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

1
«use» 0..*

Figure 1. User interface patterns and software architecutre artifact

relationships.

They should follow the architecture design levels derived
from the requirements structure in order to provide a
collection that is modular and reusable without redundancies.

UIPs related to development artifacts. Beginning at the
highest level of specification, business processes are to be
defined as requirements that guide the flow of events and
tasks from the business goals perspective. They combine the
system’s as well as the company’s resources logically and
chronologically in order to realize certain business goals
[32]. The part of their specification that is considering the
system will be realized via workflows and their services. The
workflow service practically is a technical implementation of
the IT-supported portions of the business process. During its
lifecycle it will interact with several applications at once in
order to call the individual systems and their GUI
implementation that offer access for the user to the
realization of requirements situated in lower hierarchy. That
is why UIPs will have to be considered mostly for these
artifacts. Concerning the workflow itself, there may be UIPs
relevant that enable the editing, monitoring and analysis of
stored and currently running processes.

The next requirements level in the hierarchy is made up
of tasks. One can argue whether tasks may be settled higher
or lower in hierarchy than use cases. But that is not our
concern at the moment. In Figure 1, tasks represent a manual
activity of a business process as it is perceived by a single
user or role. The task model captures structure and flow of
functions or use cases that are combined to achieve the goal
of the respective business process activity. Thus, the model
arranges selected use cases to form a flow of events for a
certain purpose. As these artifacts are mostly flow oriented,
UIPs will be applied here, which determine the navigation
and structure of dialog units the user needs to follow. This
need was already investigated in reference [33] and
acclaimed by other researchers [2][8][9][10] who
incorporated respective task patterns.

117

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Situated right beneath the tasks, use cases (actually
system use cases) describe the interaction between user and
system on a more detailed level incorporating references to
the domain data model. In general, the user’s goals and the
systems provided services are specified in this respect. As
many interaction steps, events and much data handling may
be involved, the UIP type that complements these
requirements will provide templates for dialogs that may be
adapted to the individual context. Nearly the same applies for
included services since they are shared among different use
case services. UIPs may suggest sub-dialog types or portions
of them for this type of shared service.

The last level in requirements hierarchy is represented by
the business object model. The business objects, their
relationships and data types relevant for higher level
requirements are specified herein. Concerning the
architecture, Evans [34] suggested an approach that merges
analysis and design of respective artifacts into one coherent
model, which uses similar stereotypes as depicted in Figure 1
as building blocks. These stereotype classes can be closely
associated to certain UIPs. For instance, entities, which
represent business objects, can be displayed by UIPs that
arrange their data via tables, forms or other data views. Each
time the entity is handled, the respective UIP may be
instantiated and reused. This also applies to the association
types the entities may use. Specialized dialogs that are
applicable for editing certain object associations can be
abstracted to UIP types. This principle can be followed for
standard or CRUD (create, read, delete, update) dialogs,
which are used solely for displaying and editing entity data.
The UIPs only define the similarities of these common and
reoccurring dialogs and adapt to the context by parameters
like the concrete entity or association when instantiated. As
far as the DomainDataType is concerned, there may be only
certain UIP types needed for the objects that require a
specialized view with a number of interaction options like
calendars.

In sum, UIPs may work on different levels of abstraction
and may be composed along this hierarchy of their
associated artifacts. The requirements and their realizing
architecture artifacts use a certain abstraction and structure
for good reasons like handling of complexity and avoiding
redundancy, so the UIPs should follow a similar structuring
for consistent assignment. Finally, the scope for reusable
UIPs is vast for business information systems since they
should support a set of different architecture artifacts as this
is drafted by Figure 1.

User interface development steps. Besides the
structuring and assignment to their complementary artifacts,
employing UIPs for GUI design involves some more
development tasks.

Depending on the level of the considered architecture
artifact, several UIPs must be brought together to form the
user interface. In this regard, the developer has to arrange for
dialog layout, choice and number of UIP instances, UIP
instance positioning, and events as well as individual UIP
instance visual states definition. Concerning the choice of
UIPs, a developer may use the support of any suggestion tool
and follow the principle that was presented in reference [6].
Furthermore, the developer needs to integrate the instantiated

UIPs with the application kernel and its services. To do so,
the UIPs should be able to be configured via parameters for
data and action-binding. The former will be required
beginning at the lowest level in artifact hierarchy when
DomainDataTypes are to be bound to single UI-Controls or
those contained within UIP instances. With respect to service
artifacts, UIP configuration must facilitate the binding to
actions that trigger the further processing and control by
services discovered on top of the domain data model.

To conclude, there are various structures and related
information on each stage to be considered when employing
UIPs as reusable pattern artifacts.

B. User Interface Pattern Development and Modeling
Concept
In this section, we briefly introduce the general

considerations that seem necessary to approach an ideal UIP
concept that can be employed in an artifact structure like
illustrated by Figure 1.

Domain analysis. A development team may first start
with an analysis what parts of the GUI systems are likely to
be reused. They can consult existing descriptive UIP libraries
like [28][29][30] to gather inspiration for future GUI visual
specification. The selection of UIPs may depend on the
domain and hierarchy of requirement artifacts.

UIP requirements model. The next step consists of the
description of UIP capabilities. Due to the missing general
definition of UIPs, there is no consent what are the actual
requirements or features that UIPs must fulfill. In the
previous section, we argued that UIPs should be sub-divided
among several types that reside on a level in hierarchy that
matches certain architecture artifacts. The UIPs have to
feature properties that allow developers to customize their
instances for corresponding artifacts. In addition, reusability
and variability have to be specified in detail to enhance
configuration facilities. Since UIPs will serve as abstractions
for certain parts of the GUI system, they need to enable the
same responsibilities with their specification. For all these
concerns, an UIP requirements model should be established
that fits the intended domain and grade of reuse. In the
following section, we will present such a description model
for UIPs that has been developed in our previous work.

UIP analysis model. When the requirements or features
of UIPs have been pointed out clearly, the development team
has to think about what structures, properties and
relationships can be derived from the UIP requirements
model. The task at hand is about the transformation of those
requirements into detailed structures that prepare an
information model, which will guide the later formalization
of UIPs. This model primarily serves the purpose of a
requirements analysis and is not intended for realization. The
entities and their relationships derived from the UIP
requirements can be modeled via a traditional object-oriented
analysis model. As result, the analysis model should express
all elements, properties, structures and relationships that will
be needed by a language that will be employed to formalize
UIPs for automation.

UIP meta model and formalization. On the basis of the
analysis model, a formalization concept can be sought of. At
this stage, the development team has to decide on the

118

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

abstraction level the UIP will reside on. More precisely, a
decision has to be made how closely UIPs should be bound
to target platforms and GUI frameworks. Vanderdonckt [27]
presented the Cameleon Reference Framework, which can be
consulted for further guidance. In this regard, the abstract
user interface (AUI) level groups tasks into containers and
their structure. Therein, UI-Controls and containers are only
defined generically as abstract interaction objects (AIOs).
These can be shaped very differently with respect to the next
two steps: Concrete user interface (CUI) represents a
common platform-independent basis model and final user
interface level (FUI) embodies the device or platform model
using the specific rendering units of the GUI framework.

We already analyzed this model in reference [3] and
came to the conclusion that UIPs should be modeled on the
CUI level. The CUI employs concrete interaction objects
(CIOs) that refine the AIOs of the AUI. In detail, CIOs
resemble a chosen set of both UI-Controls or containers and
their respective properties sourced from common UI-toolkits
or frameworks. To enable the platform-independent
application of UIPs the CUI level should be chosen.

Finally, the developers have to decide on a language that
facilitates CUI level modeling of UIPs. Depending on the
analysis model, enhancements for existing languages may
have to be developed. The parameters and variability
concerns most likely need a new concept not already
included in languages available in our days. In the end, a
metamodel for UIPs has to be established that defines the
logical elements being available for the formalization
language. The refinement of the UIP metamodel may take
several iterations as both analysis and requirements model
may be changed several times and gain maturity. Moreover,
mandatory and optional elements for UIP formalization have
to be determined in order to prepare for different UIP types
in the sense of a hierarchy symbolized by Figure 1.

Architecture artifacts metamodel. In parallel to the
development of the UIP metamodel, the architecture artifacts
of the domain have to be abstracted for forming a separate
metamodel. This serves the purpose of mapping UIP types to
matching artifact types. The specific artifacts and their
stereotype properties have to be determined. The properties
will be used to associate potential UIPs to architecture
artifacts so that the developers will be presented with choices
what UIPs will be generally applicable for a certain context.
For instance, a date type as a DomainDataType of an Entity
can be associated to a UIP consisting of a textfield and a
connected date selector. Another option could be the
presentation of a calendar UIP whenever this
DomainDataType is encountered. Thus, both metamodels
have to establish connections between architecture artifacts
and UIPs since architecture properties will partly serve as
parameters to enable action- and data-binding when
configuring UIP instances.

Transformation concept. After the conceptual modeling
has been completed, technical concepts for the
transformation of instantiated UIPs into executable dialogs
of the GUI system have to be developed. There are several
options how to compose a solution. We are still considering
these and only mention general directions since they are not
in the scope of this work. Concerning principal architectures

for generation, reference [3] can be consulted. In addition,
there also is the possibility of using interpretation of CUI
models. References [10] and [11] briefly described that
approach for UIML.

C. Requirements Model for User Interface Patterns
Based on our previous work, we progressed towards an

elaborate influence factor model for UIPs that is depicted in
Figure 2. Motivated by missing standards and competing
UIP notations inside modeling frameworks, this model was
intended to establish an independent requirements view on
the formalization and instantiation of generative UIPs: We
took our examples and architecture experiments [3], as well
as criteria, aspects and variability concerns [15], and refined
them. The requirements stand close to the profile of current
approaches in research. For details, reference [5] can be
consulted.

As seen in the previous chapters, UIP and architecture
artifacts should match. Thus, a UIP definition to be sought
after has to introduce a pattern conception, which is backed
by a limited set of types, roles, relationships and
collaborations among GUI related specifications and
components. Because of the complex nature of both GUI
architectures and specifications, a restriction and
specialization of the entities to be involved in the
development environments for pattern-based GUIs have to
be set. Along with this restraint, the GUI specific kind of
pattern still needs to be abstract in order to enable vast
customization and instantiation to differing contexts. The
major share of the patterns vigor has to be sourced from the
similarity in structural (view aspect) and behavioral
(interaction and control aspect) definition of new GUI
entities. In other words, the pattern definition introduces
certain quality aspects in GUI design, which can be altered
quantitatively, when they are respectively complemented
with necessary structure, layout and style details (view
variability parameters) as well as combined with each other
(behavioral and structural composition abilities). This
commonality ensures that no longer specialized solutions or
manually refined structures, which cannot be covered by
mere UIP instantiation, are applied in the same GUI system
architecture.

Differences with UIPs. The question may be risen what
will be the differences or benefits when taking the efforts to
incorporate UIPs in the GUI development process compared
to alternatives like GUI builders or CUI level based
specification of a user interface with XML languages.

With UIPs, greater units of reuse will be employed as this
is the case for CUI level languages and GUI builders. More
precisely, complete dialogs or partly views of them can be
configured as reusable units. Following the GUI builder or
XML CUI specification approach, only small units situated
on the UI-Control level or invariant views can be reused.

Along with the reuse of greater units, their interaction
facilities and visual states may be reused as well. This kind
of reuse is not possible with GUI builders or CUI models.
Reuse would only be possible by copying and pasting large
portions of existing CUI level code. Subsequently, the code
has to be adapted manually to fit the changed context.

119

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

req Influence factors

UIP
definition

View
aspect

Interaction
aspect

Hierarchical control flow
for UIP compositionsControl

aspect

Data-binding

Configuration of UIP
context at design-time

Reusability
of UIPs

Variability
of UIP
instances

Structural
composition
ability

Acceptance of
data types Adaptability of view

structure

Behavioral
composition
ability

Visual element structure
definition

Visual element
structure states

definition

Intercommunication
events definition

Style definition

Layout definition

Encapsulation of UIP
artifacts

Dialog action-binding

Configuration of UIP
context at run-time

Configuration of
UIP instances

Presentation
action-binding

View
definition

View variability
parameters Enumeration of

elements

Ordering of elements

Naming of elements

Layout placement of
elements

Style customization of
elements

Adaption of presentation control
in correspondence to actual visual
structure

Legend

Influence
factor

Impact

dependent
factor

inflicts
impact

nested
factor

operationalized
factor

Figure 2. Influence factor model for generative UIPs described in

reference [5].

By the application of UIPs, only the declaration of
parameters that quantitatively alter the inner structure, states
and behavior of defined UIP instances should be necessary in
an ideal development environment. The quality aspect, and
thus the general structure and behavior, should remain the
same for all instances of the same kind of UIP.

Lastly, UIPs may enable their adaptation even at runtime
when respective parameters have been specified [5].

Trade-Offs. The main issues while employing UIPs are
the high efforts needed to establish a modeling concept or
framework as outlined in the previous section. In addition,
tools have to be developed that effectively support the
developer in the formalization, selection and instantiation as
well as rendering of UIPs. Moreover, most parts of the GUI
architecture have to be prepared for automated processing
with UIPs. In this current work, we only cover one single
step of defining the general structure of UIPs via analysis.

IV. REVIEW OF RELATED WORK AND PROBLEM
STATEMENT

A. UIP Definition
Descriptive UIPs. From our observations concerning

descriptive UIPs, we learned that they are well-understood as
specification elements and supported by the HCI community.
Nevertheless, the research into descriptive HCI patterns has
not yet converged towards a standardization for the structure
and organization of UIPs [17][23].

Generative UIPs. Generative UIPs may be classified as
software patterns, and as those, they need a formal notation,
and thus, are seldom encountered.

From our point of view, the past work on HCI patterns is
concentrated on the descriptive form. As there is no unified
approach in specification and usage of descriptive HCI
patterns, they can hardly be used to source and abstract
common elements of a generative representation. First and

foremost, descriptive UIP sources may be a useful resource
to assemble dialogs that may act as representative examples
for a certain system or domain. On that basis, requirements
or criteria for UIP formalization can be inductively obtained.
Partly, we revert to this approach and sketch some example
UIP instances in Section V.B.

As a consequence, there is a large gap concerning the
detailed definition of generative UIPs. Thus, a format for
UIPs has to be found that is at least able to express most
impacts of view and interaction aspect. Filling the gap with
their own UIP concepts and notations, the UML-based
approach by Beale and Bordbar [6] as well as the recent
model-based approaches will be analyzed in the following
sections.

B. Modeling User Interface Patterns with UML
The approach by Beale and Bordbar introduced in

Section II.C directly associates domain data structures to
already modeled UIPs. This way a UIP can be derived from
the context since the view structure (UIP model) is
somewhat similar to the domain model or similarities can be
identified thereupon.

Abstraction level. Referring to the Cameleon Reference
Framework [27], the UML model of UIPs is situated at AUI
level. There are no CUI or any specific visual details
mentioned at all. Neither abstract nor concrete UI-Controls
to be used for UIP elements are specified. Instead, a final
user interface (FUI) level may be generated with the aid of
the “Device Profile Model” [6]. It is not entirely clear to
what extend the developers have to refine the existing UIP
models for their instantiation.

No UIP metamodel. The modeled UIPs and their
interaction sequences follow the UML metamodel facilities.
There was no specialized UIP metamodel developed. In
contrast, each UIP model represents a separate metamodel
for certain instances to be created for the FUI. Therefore,
they miss a generally applicable UIP description model,
which governs adaptation or variability options. Those
options are implicitly derived from the domain data model to
be supported. The modeled UIP elements will adapt their
child elements in correspondence to the attributes provided
in the domain data model classes. Thus, the resulting FUI
greatly depends on correct and complete modeling of the
domain. In this regard, the “overview plus detail” (OPD)
pattern might lead to false matches when “item” (C part)
may not be detailed enough to justify a full “detail” view.
This would depend on the actual “item” data structure and
currently is not considered in the OPD UIP metamodel.

UIP factor support. A short comparison with our UIP
requirements model reveals that certain aspects cannot be
covered by the UML approach. Only view and interaction
aspects are partly covered.

The control aspect or pattern composition is not directly
considered at all. The structural UIP composition ability may
be implicitly included when greater parts of a domain model
or more classes with a number of relationships are analyzed.
Then either multiple UIPs will be suggested to be applied
together or a greater UIP metamodel has to be incorporated
that matches the complete structure. Nevertheless,
overlapping pattern definitions or composite UIPs that do

120

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

already employ smaller UIPs are not addressed with the
required attention.

There are more restrictions concerning the interaction
aspect. The partitioning or querying of data may not be
prepared. In detail, the domain data must be displayed or
processed on the GUI as modeled in the application kernel,
so certain views or queries that may alter or merge data
structures cannot be used for the original UIP selection.
Otherwise the GUI data model must be specified separately
and in detail so that the pattern recognition may finally work.

Many variability or parameter related impacts are to be
derived implicitly from the domain. This applies for naming,
ordering layout and style specification of UIP instance
elements. Data- and action-binding may only be adapted in
fixed limits of the defined sequence diagrams or OCL
specification. The developers cannot configure non data-
intensive aspects such as navigation, dialog structure and
preparation of data inside views or dialogs and their level of
detail with the reuse of available UIPs. Sometimes only
selected attributes of an entity may be needed for display and
not the entire attribute set of a domain class.

Benefits. Apart from these limitations, the aim of Beale
and Bordbar primarily was to reduce the amount of UIPs to
be taken into consideration for a certain domain data model.
It may be beneficial when UIPs suitable for a certain task are
to be suggested on the basis of a complex data structure
available for analysis.

Supported artifacts. However, this may be a great
restriction since the types of employable UIPs will be limited
to certain levels inside the domain data model of Figure 1.
So far, the UML approach only supports certain levels and
special artifact relationships. UIPs are not subdivided
concerning artifact support. In the next section, model-based
approaches based on modeling frameworks mostly offer a
more subtle classification of pattern types or their structures.

C. Summary of Model-Based Development Processes
involving User Interface Patterns
The enhancement of model-based development by

generative UIPs already found strong reception. In reference
[5], we presented an overview and assessment of the
approaches of Zhao et al. [2], PIM [35], UsiPXML [8],
PaMGIS [9] and Seissler et al. [10]. For a summary, Table I
compares these approaches.

In sum, the model-based approaches are converging
concerning the view aspect, but ultimately failed to convey or
inspire all UIP impacts. A summary of realized (arrow in a
box) or inspired (single arrow) impacts is given by Figure 3.

Since our valuation revealed that there were many open
issues associated with the different approaches, we only
considered the full and no partly or probable realization of an
impact. Notably is that the view aspect was realized by the
most recent approaches. In contrast, the interaction aspect
was only considered for Data-binding. Moreover, the control
aspect was not realized by any approach, but inspired by
PIM. Lastly, the Configuration of UIP instances was
restricted to design-time only, but already inspired by
Seissler et al. in reference [11].

TABLE I. COMPARISON OF APPROACHES FOR MODEL-BASED
DEVELOPMENT EMPLOYING USER INTERFACE PATTERNS

Approach
Zhao et al. UsiPXML PaMGIS Seissler et al.

Pattern
types

Task
patterns
based on
[28], set of
window
and dialog
navigation
types

Task,
dialog,
layout and
presentation

Task and
presentation
patterns, fine
grained
hierarchy
based on

Task, dialog
and
presentation
patterns

UIP
formal-
ization
notation

Unknown Enhanced
UsiXML

Unknown,
XML based,
<automation>
tag and DTD

Embedded
UIML
supplemented
by parameter
and XSLT
enhancements

UIP
config-
uration

At design At design At design At design and
run-time

Process
output

Target
code

UsiXML,
M6C

Target code Augmented
UIML to be
interpreted

Concerning the architecture artifacts, the approaches

already incorporated pattern types dedicated to certain
abstractions in the hierarchy of their modeling framework.
Thus, the idea of matching UIPs and architectural artifacts or
even patterns inspired by Figure 1 is already incorporated in
those approaches to some extent. However, as they lack a
clear requirements and structural definition of UIPs the
mapping between artifacts cannot be considered as fully
elaborated.

Figure 3. Impacts covered by examined approaches.

D. Formal GUI Languages and Model-Based
Development
Enhancements. As there is still no dedicated language

for UIP formalization, developers have to revert to existing
GUI specification languages like UIML or UsiXML, which
enable the specification of GUI parts on the CUI level. We
will refer to them as XML languages in the following. As a
result, two factions among the model-based approaches
arose, one using UsiXML and the other applying UIML.
Both languages need enhancements to express UIP related
variability. Accordingly, the model-based approaches
incorporated their own parameter and configuration
concepts. In sum, they all failed to publish enhancements

121

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that empower the specification languages regarding the
interaction and control aspects. Currently, the notations are
restricted to the view aspect mostly.

Generation of XML specifications. The XML
languages have been developed to offer a platform-
independent specification of GUI systems. In this context,
they have been based on a metamodel that is somewhat
similar to common universal object-oriented programming
languages, which cannot handle aspects or traits and thus are
incapable of expressing patterns with their abstract form. The
XML languages clearly fail in the fulfillment of the
reusability, variability and composition ability criteria
[3][15].

However, applying the XML languages for their original
purpose, apart from pattern definition, may play out their
strengths. Accordingly, developers could use them for
concrete GUI definition and final rendering to the desired
platform. To integrate UIPs in this procedure, a generation of
XML language code could be a possible solution to
overcome the inabilities as proposed in reference [3]. This
idea was already followed either by generation of UsiXML
[8] or the interpretation of UIML [10]. The XML code would
hold the already instantiated UIPs or the required
information for rendering. The benefit would be the
possibility to use existing tools for the XML languages. In
addition, a more important merit would exist in obtaining a
concrete user interface level (CUI) specification [27], and
thus, the ability to be independent from platform specifics. In
sum, the UIPs and their instantiation would be used to create
CUI level models either based on UIML or UsiXML. The
CUI model could be processed by the tools and transformed
to target platform FUIs.

In any case, a new language or extensions for the XML
languages are to be sought after. Whether UIPs are being
defined concretely in XML or the latter is generated, the
XML languages will surely be a fundamental part of this
solution. Consequently, the new language must facilitate the
expression of UIP instances in rich XML language
specifications. For that purpose, a unified UIP-model has to
be established, which truly holds all information for the
definition of generative UIPs and parameters for their
transformation to UIP instances or instance compositions
forming a concrete GUI model on CUI level.

V. OUR APPROACH

A. Strategy
As mentioned in the objectives, the impacts in reference

[5] resulted in the strategy to develop an analysis model,
which is aimed at further detailing the UIP aspects. We
develop a structural model that is biased towards an
implementation of a dedicated UIP language.

Motivation of an analysis model. Some requirements
such as interaction and control aspects are cross-cutting
concerns and are really hard to achieve for pattern
formalization. Thus, more planning and rationale is required
before we can consider the development of a dedicated
language. We follow the way of traditional modeling of
requirements and ease their transformation to design with an
analysis model. The model is intended to express the domain
terms and concepts with a structure.

With a structural and more detailed model, the tracing of
the influence factor impacts to potential solutions is better
possible than with the pure influence factor model presented
by Figure 2. In the factor model, there exist no separated
entities that are modeled with their attributes and
relationships to reflect a possible solution approach.

Assessment of recent approaches. Although we pointed
out the factor support and issues we could so far discover as
result of our assessment of other available approaches in
reference [5], we also concluded that more details on
examples and the applied notation have to be revealed in
order to refine the assessment. By developing an analysis
model, we seek to overcome the lack of detail and rationale
on the design of notations suitable for UIPs. The notation to
be used for modeling is the UML 2.0 class model.

Why do we propose a semi-formal model? For a
technical architecture design or a generative process for
formal UIPs to be verified, a wide range of requirements
emerging from the initial criteria have to be taken into
account, which cannot comprehensively modeled on a
formal basis. In contrast to other researchers directly pushing
towards a formalization of UIPs, we think this intermediate
step is necessary and helpful. In our opinion, a semi-formal
model is more useful to the developer than a formal model in
first place, hence the mental conception about full scale
generative UIPs has to be inspired first. The understanding of
these complex patterns, their aspects and element
relationships is the primary goal that should not be hindered
by formal media, which cannot be imagined easily. A semi-
formal model enables a better understanding than a grammar,
since it may visualize concepts, their structure and relations
depending on the chosen notation.

In sum, the model has to satisfy the information needs of
the developers first, before they can think of how to employ
the available formalization options or even GUI XML
languages to express the requirements residing inside the
model. Primarily, the model has to capture requirements in
way that is easily understandable for human-beings.

Why do we apply a UML 2.0 class model? The UML
class model lies in between the descriptive nature of the
factor impacts and a formal notation. In this regard, a class
model is already inclined towards a formal implementation.
This is the case for class models serving as a design model
for object oriented programming languages. In analogy, our
analysis model may lead to a design for new language
elements for the definition of generative UIPs. The language
to be sought after also should rely on a structural paradigm,
since the GUI implementations form a structure as well.

Moreover, a class model already proved useful for the
expression of design patterns. The paradigm employed
allows us to model abstract data types, their common
attributes as well as their cardinalities and relationships. As
the model entities all reside on an abstract level and do not
describe already instantiated objects, the class model proves
to be suitable for our task. More precisely, the UIP concepts
can be modeled from a point of view where the abstraction
and instantiation are separated. The class model forces the
developer to express his solutions by abstractions that
concentrate the commonalities of later instantiated objects.
As we seek to express UIPs that feature reusable GUI

122

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solution aspects, a class model may provide a proper
notation.

With the class model, we will be probing the modeling of
required information for UIPs. Currently, developing a
particular language or focusing on a certain architecture
experiment seems to be too specific. In contrast, we
investigate how the information of UIPs and their
configuration can be established in general. To sort out
possible options, trace factor impacts on more detailed
granularity and map them to the final solution, the analysis
class model may prove as a valuable asset. Finally, we may
draft a coupling between a UIP, its configuration and GUI
architecture or at least mandatory prerequisites.

B. User Interface Pattern Examples
By reason that we do not want to claim being able to

establish a UIP analysis model applicable for each domain,
we stick to business information systems as mentioned in the
introduction. More precisely, as stated in Section IV.A, we
rely on common dialogs for e-commerce applications as a
basis. In fact, we subsequently derive the analysis model by
focusing both on the factor model in Figure 2 and the
following example dialogs.

Simple search. For an easy example, we start with a
dialog that has the “Search Box” [28] pattern instantiated.
The simple search illustrated in Figure 4 is mainly composed
by a single panel (ContentPanel), which defines a
GridBagLayout as seen in the upper part of Figure 4. The
UI-Controls are fixed and aligned in respective fashion. For
variability, only the concrete object data types need to be
bound to the combobox and textfield. In fact, this kind of
UIP is mainly invariant.

Advanced search. The next example shall be more
complicated and thus, demand for every aspect described
within the factor model. We decided for an “Advanced
Search” [28] pattern, which alters its visuals and interaction
options depending on user input.

Our example, depicted in Figure 5, mainly consists of
two panels for layout definition as shown on the upper half.
The panel RootPanel defines a GridBagLayout consisting of
three cells (grey borders). Located in the center of this
container, the SearchCriteriaPanel defines a layout of
several rows each containing on cell (solid black borders).
Additionally, the latter may grow or shrink in height to
accommodate or discard search criteria lines to fit inside the
container. Lastly, the SearchCriterionPanel (dashed borders)
defines a layout appropriate for individual search criterions.

The usage of this dialog is as follows: Firstly, the user
selects an object to be searched from the “Type of Object”
combobox. Secondly, he chooses an attribute from the
combobox inside the SearchCriteriaPanel.

Figure 4. Simple search UIP example layout and dialog.

Figure 5. Advanced search UIP example layout and dialog.

Accordingly, the UIP dynamically has to instantiate new
sub-UIPs, which resemble the single search criteria rows. For
each datatype, a pre-defined UIP, which is similar in shape to
the SearchCriterionPanel, is assumed to be available. In the
example, the datatypes String, price, and week are
considered. With the buttons on the right hand side, the user
may add or drop new search criteria rows and so the view
aspect will change. The variability is limited to the object
types and their attributes to be searched with this UIP.
Controller related aspects have to be adapted based on the
UIP definition.

VI. THE ANALYSIS MODEL
In this section, we develop the proposed analysis model.

At first, we review each UIP aspect and its associated
impacts in order to elaborate the decisions in design of the
new model. Afterwards, we present the structure of the
model and finally apply the model to both examples
introduced in Section V.B. The terms in italics refer to
respective analysis model elements.

A. Analysis Model Bias
On principle, there are two options on how to bias the

model. Firstly, the model could be biased towards the
software architecture and thus employ proven design patterns
in its structures. This option would be rather suitable for
generators and the further automated processing of the
model, but it would be tedious to translate it back to the UIP
requirements for the developers. In addition, the formal
XML GUI languages (Section II.B) were not designed to
accommodate architectural knowledge.

Secondly, the analysis model may be biased towards
requirements and thus acting as a traditional analysis model,
which captures, refines and visualizes requirements. This
option would be rather easy for the developers to understand,
but would be costly to be translated to formal languages and
generators. However, the translation to the XML languages
is only a theoretical aspect, since generative UIPs cannot be

123

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

expressed by their facilities as discussed in Section IV.D.
Eventually, we decided for the latter option.

B. General Rationale
Separation of definition and instances. A fundamental

decision was the separation of elements or features that may
be available in a UIP definition and the several element
instances that may appear in a particular UIP application for
a certain context. In other words, we divided the UIP
analysis model into two parts. One part holds the definition
and reoccurring elements (class names in black). The other
part allows the description of instance information (class
names in white) and individual element configurations.
These basics are illustrated by Figure 6.

UIP configuration. Following the general concept of
Figure 6, the main class UserInterfacePattern takes part in
relationships that mostly focus on definition purposes, but
also is connected to UIPConfiguration, which enables the
description of particular UIP instances of the respective kind.
The information used for pattern definition purposes will be
covered in the following sub-sections. The configuration of
UIP instances further branches into Defaults and
Parameters. Both classes resemble containers that hold the
UIControl instance information, which is declared as
UIControlConfigurations, for a particular UIP instance. The
Defaults are intended to omit stereotype configurations of
default UIControl instances, which commonly appear in
most contexts and shall not be re-defined redundantly.

class General rationale

UserInterfacePattern

ViewStructureElement

- ID: String
UIControl

UIPConfiguration
CommonParameters

UIControlConfiguration

ViewStructure

Defaults

Parameters

1

1

0..1

1

1

1

1..*

UIControl default
instances

1

1..*

UIControl
instances

1

+UIP
Instances

1..*

1

1

UIControl
reference

1

1..*

1

Figure 6. Gerneral rationale of the UIP analysis model.

Concerning the example dialogs, the basic or invariant
UIControls needed for user understanding and interaction
like the labels, textfield and combobox of the simple search
should be defined as Defaults, as there is hardly any
variability. This way, already established configurations may
partly be reused among individual UIP instances. That means
a UIP may contain pre-configured elements and parameters
to avoid repetition. Later on, this facility will become useful
for the dynamic adaptation of a UIP instance at run-time.
Both UIPConfiguration and UIControlConfiguration are
primarily used for the “Configuration at design-time” impact
and thus contain the declarations a developer may define in
interaction with an “instantiation wizard” [8] or any other
configuration tool.

The configuration of UserInterfacePatterns and
UIControls has to be separated, since both offer different sets
of attributes, and more important, impact the GUI on
different levels of abstraction or scope. This consideration
also takes the possible artifact relationships of Figure 1 into
account.

C. View Aspect Design
View definition. To begin with “View definition”, this

factor defines the UIControls or UserInterfacePatterns to be
generally contained or allowed in a UIP specification unit as
visual components. Both resemble a ViewStructureElement,
which has a unique ID as identifier inside the pattern used by
UIPConfiguration and UIControlConfiguration to reference
the respective element. In this respect, UIControl is a
classifier for the various visual components or widgets a GUI
framework may possess as types. Figure 7 details the
described relationships.

A UIP is always composed of a ViewStructureElement
set, and thus, may build a varying hierarchical structure of
those graphical elements. However, ViewStructure only
holds each ViewStructureElement to be available to build
instances once. The resulting element structure of a
particular UIP instance is not described by ViewStructure.
Instead, this is the responsibility of the configuration classes.
In other words, from the available ViewStructureElements
the developer may create instances using the respective
configuration facilities. The ViewStructure only defines what
elements are generally available for the particular UIP.
Based on that decision, the ViewStructureElements later may
be exchanged without altering the already defined
configurations. For each UIControl of the resulting
ViewStructure, style and general layout have to be defined.

The style impact is not detailed here, since we have not
came to a result in this regard and focused on the other
impacts. For the sake of uniform views and maintaining
corporate design, style information may be governed
globally and locally by each individual UIPConfiguration. In
addition, there may be constraints for each element, which
determine its allowed minimum and maximum occurrences.

Layout rationale. With respect to “Layout definition”
impact, we ask if there is a need for dedicated layout-patterns
or if the distinction between primitives (UIControl) and
composites (UserInterfacePattern) is adequate.

124

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class View aspect

UserInterfacePattern

ViewStructureElement

- ID: String

UIControl

UIPConfigurationCommonParameters

UIControlConfiguration

ViewStructure

Defaults

Parameters

Style

LayoutManager

Order

Caption

LayoutPosition

Name

- generated: boolean

1..*

1

1

1

0..1

1

#UIPInstanceLayout

1

1

1

1

0..1

1

1

1

0..1

1

1
1

1

UIControl
reference

1

+UIP
Instances

1..*

1

1..*

UIControl
instances

11..*

UIControl default
instances

1

+InstanceName1

1

Figure 7. View aspect concepts of the UIP analysis model.

Referring to UsiPXML [8], layout patterns can be
defined separately from presentation patterns. How they are
integrated at various stages in the hierarchy, and more
important, how they can be handled dynamically at run-time,
remains an open issue, as there were no detailed examples
for pattern composition and specification code given.

In addition, it is arguable whether a layout is assigned
separately to a paralleled UIP composition or if each UIP
models layout partly but explicitly. Partly means that UIPs
need to define attributes for the number of rows and columns
of a grid, their relative width and height, as well as the
alignment. A visual impression of the abstract layout
definition expressed by UIPs is depicted in the upper parts of
Figure 4 and Figure 5. We decided to model this information
by UIPs, as for advanced search, the layout needs to be re-
configured dynamically with respect to SearchCriteriaPanel.
This panel may grow and shrink in row numbers.

Layout definition. Inspired by our examples, we treat
the layout container as a UIP, and thus, a layout pattern is
already merged inside. So, the above mentioned layout
definition parameters have to be associated to each ID of a
UIP-type class, since it is acting as a superior container.
Consequently, the advanced search dialog consists of three
UIPs designated as containers in Figure 5. Translated to GUI
frameworks, this implicates that each UIP will be treated as a
panel or even window frame with a certain LayoutManager
attached. We reason our approach with the fact that every
dialog at some stage needs layout containers and these are
eventually to be mapped to peers in the GUI framework. The
detailed parameters for layout, such as padding, orientation
and size policies, may be governed globally.

View variability parameters. To configure parameters
for an element of the ViewStructure, regardless of what type,
the respective ID of that element is used as a reference.

The UIControlConfigurations assigned to UIPs influence
the instantiated unit in a global way. So, for the view aspect
the general layout of the instances ViewStructure is declared
by LayoutManager, which decides on the actual grid, for
example. This way, the layout and orientation of UIP
instances may be altered, but have to be declared explicitly
for each UIPConfiguration.

 As the elements defined by a UIP are abstract, the
reference to the ID acts in analogy to the class concept for
object-orientation. In fact, the element occurrence is
determined by the number of respective configurations. For
the individual element instances, one or many
UIControlConfigurations can be declared to specify their
characteristics. More precisely, as view aspect parameters we
arranged for Name, Caption, and Order inside a layout grid
cell and Style of each element. Some of these parameters are
even optional. With LayoutPosition, the position of the
element with respect to the declared LayoutManager can be
defined.

Both UserInterfacePattern and UIControl share some
parameters defined as CommonParameters. For both
ViewStrucutreElements the Name and LayoutPosition may
be declared.

D. Basic Interaction Aspect Design
In the factor model of Figure 2, the interaction aspect

was not separated between stereotype definitions and
parameters, as this was done for view aspect. Finally, the
main classes, which model the interaction aspect, all do
resemble parameter types. Since the factors apart from the
view aspect ones mostly embody cross-cutting concerns, the
resulting interaction and control impacts refer to the static
and variable declaration of view impact elements as a basis.
This relationship is outlined with the dependency between
view and interaction aspect in Figure 2. In detail, the
interaction related UIControlConfiguration parameters
comprise of DataType, PresentationEvent and EventContext
as an additional child of the latter.

Coupling points. For a UIP definition to be integrated in
a GUI architecture, there is the need to arrange for coupling
points. These points allow the integration of automated
generated code and manually defined UIP information.
Potentially, these can be comprised of the following:

 Standard events (control - “intercommunication
events definition”, “dialog action-binding”)

 Input and output data (interaction - “data binding”)

The latter point may resemble GUI architecture models

discovered in common MVC architectures. The mentioned
coupling points are either evaluated (events) or processed by
the dialog kernel or logic part of the dialog. It is not
necessary for that component to know where data changes
and events have originated from. So, these suggested
coupling points may be a good starting point. Accordingly,
events (PresentationEvents and OutputActions) and the
“GUI Data Model” have been included in the analysis
model. These features originate from our thoughts about
artifact relationships in Section III.A, and in particular, the
association of domain data model elements and UIPs.

125

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data-binding. The binding of a UIControl to certain data
is accomplished by a UIControlConfiguration parameter. So,
the DataType binds the elements to certain data structures.
As DomainDataTypes may significantly differ from the
types used by the GUI framework, the class GUIProjection
is rather associated as the configured DataType. For the
DataType, it can be configured if the data is to be displayed
only (input) or if the user may conduct changes (output),
which are finally applied to the GUI Model part. The
DataType parameter also may be associated to EventContext,
which configures the data to be submitted by a
PresentationEvent of the respective element. The diagram of
Figure 8 details the interaction aspect data-binding
considerations.

Besides the distinction between input and output, Models
have to be provided as coupling points for both cases to
obtain data for display. The application kernel has to provide
a respective query to obtain Entity data and the GUI
architecture has to implement a certain Model to enable the
presentation of the query with appropriate data types for
UIControls, e.g., data conversion to strings or string lists. In
this regard, aspects like the timing, refresh rate, lazy loading
are no concern of the UIP definition and have to be
implemented by the data sources or queries. The Model has
to rely on the data source and is not responsible of those
technical aspects. In contrast, the Model needs to provide the
navigation inside data structures and the structuring of data
for presentation purposes that may be altered from
application and data layer designs in order to offer a suitable
projection for human processing.

class Interaction aspect

UserInterfacePattern

ViewStructureElement

- ID: String

UIControl

UIPConfiguration

UIControlConfiguration

ViewStructure

Defaults

Parameters

GUI Data Model

PresentationEvent

OutputAction

DataType

- isReadOnly: boolean

EventContext

Model

Entity

DomainDataType

GUIProjection

+OutputActions

0..* 1

1

1

1..*

1

1

UIControl
reference

1

+UIP
Instances

1..*

1

1..*

UIControl
instances

11..*

UIControl default
instances

1

0..1

1

0..*presentation
action-binding

1

1

1..*

0..1

+Trigger1

0..1UIControl
instance
data-binding

1

1

1

0..1

11
event
parameter-binding

0..1

1

0..*

1..*

1

1..*

1

1
1

Figure 8. Interaction aspect data-binding concepts of the UIP analysis

model.

Currently, we are unsure how UIPs specific Model
requirements are to be formalized. However, this information
is essential for the coupling. In addition, it will prove useful
for the checking of the validity of configuration and view
variability of the UIP instance. Concerning the advanced
search, there must be a Model available to provide object
types and their attributes as well as another Model to
accommodate the chosen search criteria as the dialog result.

Events rationale. For PresentationEvents, we
enumerated some typical events implemented in GUI
frameworks that may be triggered. To progress towards a
unified solution for generative UIPs, we think that a
standardization of events, PresentationEvent as well as
OutputAction, and similar types is necessary. Figure 9
displays elements of the analysis model relevant for events.

The integrative and strict type definitions of the GUI
specification language UsiXML on CUI level [27] may be a
valuable resource for that approach. Otherwise, both
specification and tool processing would demand for niche
solutions that are hardly manageable with respect to versions
and dependencies. We wonder how UsiPXML [8] or the
UIML UIP definition by Seissler et al. [10] are defined as a
language to be integrated in tool environments, which are to
handle the generic concept of their variables and assignments
effectively. We have to wait for them to publish detailed
language definitions and code examples.

Presentation action-binding. To bind an element to a
certain PresentationEvent type, the desired event has to be
included in the appropriate UIControlConfiguration. This
event may be declared for various purposes concerning view
structure states as described below.

class Interaction aspect - events

UserInterfacePattern

ViewStructureElement

- ID: String

UIControl

UIPConfiguration

UIControlConfiguration

ViewStructure

Defaults

Parameters

PresentationEvent

ViewStructureAction

AddView
RemoveView

ReplaceView

ViewStateAction

ActivateAction

DeactivateAction

HideAction

UnhideAction

AlterView

OutputAction

0..*presentation
action-binding

1

1

1

+ViewStructureActions 1
Dynamic view
adaptation

0..*

1..*
1

1

UIControl
reference

1

+UIP
Instances

1..*

1

1..*

UIControl
instances

1+TargetElements

1..*

1

1..*

UIControl default
instances

1

0..1

1

+Trigger

1

0..1

0..1

+Trigger 1+Trigger

1

0..1

+ViewStateActions

0..*

1

+OutputActions

0..* 1

1
1

Figure 9. Interaction aspect event concepts of the UIP analysis model.

126

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. General Object Model View
To clarify the basic rationale the UIP analysis model is

founded on, we will explain the general structure of an UIP
artifact viewed from an object model’s point of view. Figure
10 illustrates the basic objects to appear in each UIP
specification. The structure of the analysis model leads to a
hierarchical ordering of elements to be used for UIP
specification.
object General UIP object model

NewUIPType :
UserInterfacePattern

Outputs :
OutputActions

UIPInstance :
UIPConfiguration

RootLayout :
LayoutManager

VisualElementTypes :
ViewStructure

DefaultConfiguration :
Defaults

InstanceParameters :
Parameters

Position11 :
LayoutPosition

NewUIP :
Name

Figure 10. General structure of a UIP artifact based on the analysis model.

In this regard, the first two objects to appear are one
ViewStructure for the definition of available UIControls or
even nested UserInterfacePatterns and one
UIPConfiguration that will be used to adapt the UIP instance
object to the context. A Name and LayoutPosition with
respect to the parent LayoutManager are to be specified as
CommonParameters.

The parameters are shared among UserInterfacePattern
and UIControl objects, so that both kinds of
ViewStrucutreElements may be named and placed
concerning layout.

One UIPConfiguration object with a reference to the
main UserInterfacePattern object is mandatory. There may
be more than one UIPConfiguration object when nested
UserInterfacePatterns do occur within the ViewStructure
object. With the respective UIPInstance object, all instances
based on the available elements from the ViewStructure will
be created. In addition, the general layout or RootLayout and
the OutputActions relevant for architecture integration will
be defined with that object, too.

The UIPInstance object holds two more configuration
objects. On the one hand, a Defaults object will enable the
reuse of the common configuration of that particular UIP.
Therein, stereotype instances created from the available
UIControl elements of the ViewStructure will be configured
for the convenience of reuse. On the other hand, context-
specific instances based on the ViewStructure specifc
UIControl elements can be created with the Parameters
object in parallel.

F. Advanced Interaction Aspect Design
Visual element structure states definition. The first

interaction aspect impact needs to be further detailed.
Depending on the actual structure of the UIP, states that
occur within the scope of the contained UIControls and
states, which alter the view of embedded UIPs have to be
covered. To trigger changes in state for both cases, only
UIControls can be specified as sender of respective events.

UIControl states. For changes in state, we consider the
activation or deactivation as well as hiding and un-hiding of
single UIControls or sets of them. Those abstract events are
to be translated to technical representations and their detailed
implementation. For instance, a checkbox in a sub-form may
deactivate the delivery address (if it is equivalent to billing
address) or in another case, a collapsible panel may be
collapsed. In our model, the ViewStateAction is defined as an
abstract feature for a UIP. By the UIP specification, the
possible actions are defined and associated to affected
UIControlConfigurations, and thus, UIControl instances.
Finally, triggering PresentationEvents can be associated for
these actions.

Embedded UIP states. Since the possible states for
composite UIPs cannot be enumerated or state machines
finitely defined inside pattern specifications, we employ
information, which describes the results of the state change,
and thus, enables a generator to build appropriate state
machines or comparative implementations. In Figure 11,
relevant elements for the specification of dynamic UIP
structures are displayed.

The ViewStructureAction is designed to handle the
change of visual states for UIPs. For the trigger, a respective
UIControlConfiguration is needed, which is aimed at a
certain ID to allocate the UIControl and the type of
PresentationEvent. We considered the addition, replacement,
or removal of UIP instances. This behavior is closely related
to the <restructure> tag of UIML [36] and may be refined
based on its semantics. However, for UIML these facilities
can only be applied with already instantiated UIPs.

class Dynamic structures

UserInterfacePattern

ViewStructureElement

- ID: String

UIControl

UIPConfiguration

UIControlConfiguration

ViewStructure

Defaults

Parameters

PresentationEvent

ViewStructureAction

AddView

RemoveView

ReplaceView

AlterView

Key

DynamicStructures

1
1

1

1

+ViewStructureActions
1

Dynamic
view
adaptation

0..*

1..*
1

1

UIControl
reference

1

+UIP
Instances

1..*

1

0..1

1

1..*

UIControl default
instances

1

1

choice of
view
structures

1

0..*presentation
action-binding

1

+Trigger

1

0..1

1..*

mapping to the corresponding
pre-configured UIP

+pre-configured
UIP

1

+DynamicViews 1..*

selection
criteria

1
1..*

UIControl
instances

1

Figure 11. Interaction aspect embedded UIP states concepts of the UIP

analysis model.

DynamicStructures are used for the addition, removal or
replacement of UserInterfacePattern instances at runtime.
They are selected on the basis of defined Keys, which
enumerate certain DataTypes or EventContext data to assign
pre-configured UIPConfigurations to the triggered
ViewStructureAction. A UIPConfiguration may be used by
more than one Key, which models a certain context situation.
Concerning the advanced Search example, the Model
holding the object and attributes lists must return values that

127

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

match the specified keys. Each time a combobox is changed,
the presentation event handling routine must query the
Model for the selected object’s attribute and its kind or type
of representation. The query result will be embedded in the
EventContext, which is matched to a Key value. This way,
the UIP and its DynamicStructures are based on a canonical
representation of DomainDataTypes.

Moreover, the ViewStructureActions rely on pre-
configured elements, which may only allow for variability
concerning the DataType. They either rely on a self-
reference (removal, replace) or additionally are associated to
available elements of the ViewStructure (add, replace) via
DynamicStructures. However, this mechanism only makes
sense for UserInterfacePatterns, which are specified by
Defaults and always represented by default IDs present
inside the ViewStructure of a UIP definition. In this way, the
DynamicStructures will only affect default or invariant
UserInterfacePatterns inside the given ViewStructure, hence
it is not desirable to replace entire sets of UIP instances
defined on behalf of the developer for a specific context.
Thus, manually defined UIPs portions have to be separated
from DynamicStructures.

Based on the considerations for DynamicStructures, we
decided to associate DataType with GUIProjection rather

than with DomainDataType. A reference to
DomainDataTypes would have meant to define a Key and
appropriate UIPConfigurations for each DomainDataType.
Each change of types would have cascaded to each UIP
relying on DynamicStructures. We believe that
GUIProjections may be more stable than DomainDataTypes
and even be shared among DomainDataTypes.

G. Control Aspect Design
Dialog action-binding. So far, we have not progressed to

feasible results for most control aspects. Only the binding of
UIControls to application actions has been included. Via the
global OutputAction parameter declaration of a UIP, one can
define what events of that kind are raised by the
UIControlConfigurations. These can be bound to a certain
UIControl only by a link with the PresentationEvent.

H. Structure View on the Analysis Model
The resulting analysis model is illustrated by Figure 12.

The classes shaded in medium grey are related to the “view
definition” factor. Configuration related classes are shaded in
dark grey and feature a white caption. Most interaction
aspect impacts are supported by the classes shaded in white.

class UIP analysis model

GUI Data Model

UserInterfacePattern

ViewStructureElement

- ID: String

PresentationEventOutputAction

UIControl

ViewStructureAction

Style
DataType

- isReadOnly: boolean

ConfirmationEvent

CancelEvent

BackEvent

ApplyEvent

InProgressEvent

DataChangedEvent

ActivatedEvent

DeactivatedEvent

AddView

RemoveView

ReplaceView

MoveOverEvent

MoveOutEvent

DragDropEvent

DragOverEvent

LayoutManager

EventContext

Key
DynamicStructures

ViewStateAction

ActivateAction

DeactivateAction

ElementConstraints

- maxOccurence: int
- minOccurence: int

Order

UIPConfiguration

Caption

LayoutPosition

Column

Row

GridBagLayout

FlowLayout

CommonParameters

Name

- generated: boolean

UIControlConfiguration

Model

Entity DomainDataType

GUIProjection

HideAction

UnhideAction

AlterView

ViewStructure

Defaults

Parameters

1

1..*

1

UIControl
reference

1

1 0..*

0..1

+Trigger

1

1..*1

0..1

1

1

1

#UIPInstanceLayout1

1
1..*

1

0..1
1

+ViewStructureActions
1

Dynamic view
adaptation

0..*

0..1
10..1

UIControl
instance
data-binding

1
11

1

event instance name
binding

0..1

1..*

1

+InstanceName

1

1

1..*

1

+Trigger 1

0..1

0..*

presentation
action-binding

1

+Trigger 1

0..1

+OutputActions 0..*

1

1..*
UIControl
instances

1

+TargetElements 1..*

1

0..1

1

1

1

1..*

UIControl default
instances

1

1..*

mapping to the
corresponding
pre-configured
UIP

+pre-configured UIP1

+DynamicViews

1..*

selection
criteria1

1

choice of view
structures

1

+ViewStateActions

0..*

1

1
1

+UIP Instances1..*

1

1

1

1
0..1

1

0..1

1..*

1

1

event
parameter-binding

0..1

0..1

1

Figure 12. User interface pattern analysis model.

128

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. INSTANCE VIEW ON THE USER INTERFACE PATTERN
ANALYSIS MODEL

A. Simple Search Instance View
In this section, we apply the above described analysis

model to the first UIP example entitled simple search. For
that purpose, object models will be presented that are used to
illustrate the different aspects of the UIP instance
configuration. Please note that due to space limitations not
all mandatory associations or objects will be modeled.

Since the simple search is mostly an invariant UIP, there
is a need for a default configuration. Instance parameters will
be limited to the DataTypes associated to the search input
textfield and objects to be searched, which are determined by
the user through the combobox listing available object types.

ViewStructure. To begin our analysis of that example,
we enumerate the UIControls that are to appear as visual
elements in the ViewStructure of the UIP. There are labels
for designating the visual elements for the user, a texfield for
search input, a combobox that holds object data and two
buttons for triggering OutputActions. Each of these elements
was incorporated into the ViewStructure on the left hand side
of Figure 13. The label and buttons only appear once since
their needed instances will be configured as Defaults holding
UIControlConfigurations accordingly.

Defaults. The tree with DefaultConfiguration models the
real UI-Controls that will appear on the screen when simple
search is instantiated. For each UIControl, the caption and
layout position are specified. Some labels have been skipped
for presentation purposes; their configuration is performed in
analogy to the other labels present in the object model. As far
as the buttons are concerned, additional PresentationEvents
are declared that are of the type ActivatedEvent.

UIControlConfiguration. Besides Defaults, the
UIPConfiguration declares a LayoutManger used for
positioning the UIControl instances. The two possible
OutputActions are also specified on the same level.

object Simple search default configuration

SimpleSearch :
UserInterfacePattern

Label :
UIControl

TextField :
UIControl

Combobox :
UIControl

Button :
UIControl

ButtonAdvancedActivated :
ActivatedEvent

ButtonSearchActivated :
ActivatedEvent

Outputs :
OutputActions

SearchConfirm :
OutputAction

AdvancedSearchTransition :
OutputAction

UIPInstance :
UIPConfiguration

ComboboxInstance :
UIControlConfiguration

ButtonAdvSearchInstance :
UIControlConfiguration

ButtonSearchInstance :
UIControlConfiguration

RootLayout :
LayoutManager

Elements :
ViewStructure

LabelSearchInstance :
UIControlConfiguration

DefaultConfiguration :
Defaults

Search :
Caption

Position11 :
LayoutPosition

...

Position22 :
LayoutPosition

Advanced Search :
Caption

Position13 :
LayoutPosition

...

ObjectsList :
Name

Figure 13. Simple search instance default configuration object model.

Lower in hierarchy, they are associated to triggering
PresentationEvents that belong to certain UIControl
instances, and more precisely, their
UIControlConfigurations. This information is typical for that
kind of UIP and can be reused by the Defaults.

Variability parameters. To adapt the UIP instance to
the specific needs of the context, Parameters will be
declared as depicted in Figure 14. The missing information
for the data relevant UIControls is added here. To reference
the same UIControl instance, the same Name has to be used
during specification. For instance, the textfield and
combobox are already present inside the Defaults object.

 For both the texfield and combobox the data-binding is
specified with reference to an existing GUI data model based
on the Entity SearchObjectData. The latter will be processed
by an application kernel service and has no GUI related
responsibilities.

To increase the variability of that UIP, one could think
about adapting the layout via parameters but this is currently
not reflected in our analysis model.

The example is rather simple since the UIP has no visual
states that cannot be handled implicitly by the facilities of the
implementing GUI framework. The complete object model is
provided with Figure 15.

object Simple search UI-Control configuration

SimpleSearch :
UserInterfacePattern

Label :
UIControl

TextField :
UIControl

Combobox :
UIControl

Button :
UIControl

UIPInstance :
UIPConfiguration

SearchFieldParameters :
UIControlConfiguration

SearchString :
DataType

RootLayout :
LayoutManager

Elements :
ViewStructure

InstanceParameters :
Parameters

ComboboxParameters :
UIControlConfigurationSearchModel :

Model

SearchObjectData :
Entity

SearchString :
DomainDataType

ObjectType :
DomainDataType

StringList :
GUIProjection

String :
GUIProjection

ObjectTypes :
DataType

ObjectsList :
NameSearchInput :

Name

Figure 14. Simple search instance UI-Control configuration object model.

B. Advanced Search Instance View
The advanced search is far more complicated than the

simple search object model. Therefore, we begin with a state
chart that displays a set of a few possible alternations of the
view state. In Figure 16, the state chart of the advanced
search example is illustrated.

It is obvious that the visual element structure states are
altered, each time the user performs a relevant input such as
the selection of an object, an attribute or the activation of a
button. The advanced search example involves a complex
structure of nested UIP instances.

129

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

object Simple search complete

SimpleSearch :
UserInterfacePattern

Label :
UIControl

TextField :
UIControl

Combobox :
UIControl

Button :
UIControl

ButtonAdvancedActivated :
ActivatedEvent

ButtonSearchActivated :
ActivatedEvent

Outputs :
OutputActions

SearchConfirm :
OutputAction

AdvancedSearchTransition :
OutputAction

UIPInstance :
UIPConfiguration

ComboboxInstance :
UIControlConfiguration

SearchFieldParameters :
UIControlConfiguration

SearchString :
DataType

ButtonAdvSearchInstance :
UIControlConfiguration

ButtonSearchInstance :
UIControlConfiguration

RootLayout :
LayoutManager

Elements :
ViewStructure

LabelSearchInstance :
UIControlConfiguration

DefaultConfiguration :
Defaults

Search :
Caption

Position11 :
LayoutPosition

InstanceParameters :
Parameters

ComboboxParameters :
UIControlConfiguration

SearchModel :
Model

SearchObjectData :
Entity

SearchString :
DomainDataType

ObjectType :
DomainDataType

StringList :
GUIProjection

String :
GUIProjection

ObjectTypes :
DataType

...

Position22 :
LayoutPosition Advanced Search :

Caption

Position13 :
LayoutPosition

...

Figure 15. Simple search instance complete object model.

To begin with, the main instance will be one object of the
advanced search UIP itself. Moreover, the pattern consists of
a lower ButtonBar and a SearchCriteriaPanel that is built
dynamically during user interaction. These basic UIP
instance objects are arranged in the object diagram of Figure
17. The MainInstance holds configuration information about
the data origin of the object types, so that the user may begin
with a selection of the object to be searched. When the user
has made his selection, a DataChangedEvent will be
triggered as a consequence of the user interacting with the
first combobox of the dialog and its respective
UIControlConfiguration.

stm Advanced search states

Initial
view

First
attribute
selected

Object
selected

Inputs
valid

First criteria
entered

Second
attribute
selector

displayed

Second attribute
selected

Second
criteria
entered

Search triggered

Search criteria
removed

[SearchButton
activated]

[Validation ok]

[SearchButton
activated]

[RemoveButton1
activated]

[RemoveButton2
activated]

[MoneyPanel1
entered]

[AttributeComboBox2
entered]

[SearchButton
activated]

[AddButton1
activated]

[AttributeComboBox1
entered]

[TextField1
entered]

[user input]

[Advanced search dialog
configuration]

Figure 16. A few selected states of the advanced search example UIP.

object Advanced search

AdvancedSearch :
UserInterfacePattern

Outputs :
OutputActions

SearchCriteriaPanel :
UserInterfacePattern

DefaultUIControls :
Defaults

ButtonBar :
UserInterfacePattern

Label :
UIControl

Combobox :
UIControl

ButtonBarInstance :
UIPConfiguration

RootLayout :
LayoutManager

RootLayout :
LayoutManager

Button :
UIControl

ButtonSearch :
UIControlConfiguration

Label :
UIControl

DefaultUIControls :
Defaults

Confirm :
OutputAction

Cancel :
OutputAction

StringCriterionPanel :
UserInterfacePattern

SearchCriteriaPanelInstance :
UIPConfiguration

VisualElementTypes :
ViewStructure

ComboboxDefault :
UIControlConfiguration

VisualElementTypes :
ViewStructure

ObjectTypeSelected :
DataChangedEvent

ObjectAttributeList :
EventContext

SelectedObjectAttributes :
DataType

VisualElementTypes :
ViewStructure

InstanceParameters :
Parameters

AttributesStringList :
GUIProjection

...

...

CriteriaLayout :
LayoutManager

DefaultUIControls :
Defaults

MoneyCriterionPanel :
UserInterfacePattern

CriteriaStructureActions :
ViewStructureActions

MainInstance :
UIPConfiguration

ButtonCancel :
UIControlConfiguration

CancelEvent :
PresentationEvent

SearchEvent :
PresentationEvent

ObjectTypesStringList :
GUIProjection

ObjectTypes :
DataType

ComboboxParameters :
UIControlConfiguration

DateCriterionPanel :
UserInterfacePattern

...DefaultCriterionPanel :
UserInterfacePattern

Figure 17. Advanced search basic object diagram.

The event will be associated with an EventContext to
submit the attribute list of the selected object type to the
lower situated search criteria comboboxes. The
SearchCriteriaPanel constitutes of a number of embedded
UserInterfacePatterns. These UIPs will serve as templates
for the dynamic instantiation of search criterions. Notably is
the DefaultCriterionPanel, which will be instantiated first
when a selection has not been made by the user yet.

A detailed view on the SerachCriteriaPanel reveals the
structure of the embedded DefaultCriterionPanel that is
available in the ViewStructure of the former. The
DefaultCriterionPanel defines a ViewStructureAction that
allows for the replacement of the complete UIP instance with
a pre-configured UserInterfacePattern of the parent
ViewStructure. This replacement will be triggered when the
attribute to be searched is entered by the user. A respective
combobox UIControlConfiguration is present in the
DefaultCriterionPanel default configuration. Depending on
the attribute selected, an appropriate UIPConfiguration is
determined via the evaluation of the EventContext and stored
Keys of the DynamicStructures. Figure 18 provides a
detailed object diagram.

Finally, with Figure 19 a partly object model of the
advanced search example is presented.

130

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

object Advanced search

SearchCriteriaPanel :
UserInterfacePattern

Label :
UIControl

StringCriterionPanel :
UserInterfacePattern

SearchCriteriaPanelInstance :
UIPConfiguration

StringCriterion :
Key

ComboboxAttribute :
EventContext

VisualElementTypes :
ViewStructureCriteriaLayout :

LayoutManager
DefaultUIControls :

Defaults

MoneyCriterionPanel :
UserInterfacePattern

...

CriteriaStructureActions :
ViewStructureActions

AddCriterion :
AddView

Views :
DynamicStructures

DefaultCriterion :
Key

MoneyCriterion :
Key

DateCriterion :
Key

AddRemoveButtonsConfiguration :
UIPConfiguration

ButtonAdd :
UIControlConfiguration

ButtonRemove :
UIControlConfiguration

AddRemoveButtons :
UserInterfacePattern

DefaultUIControls :
Defaults

AddActivated :
ActivatedEvent

RemoveActivated :
ActivatedEvent

ButtonStates :
ViewStateActions

HideAddButton :
HideAction

ShowAddButton :
UnhideAction

DateCriterionPanel :
UserInterfacePattern

...

DefaultCriterionPanel :
UserInterfacePattern

VisualElementTypes :
ViewStructure

Combobox :
UIControl

DefaultCriterionStructureActions :
ViewStructureActions

ReplaceDefaultCriterion :
ReplaceView

RemoveDefaultCriterion :
RemoveView

DefaultUIControls :
Defaults

DefaultCriterionConfiguration :
UIPConfiguration

...

AttributeCombobox :
UIControlConfiguration

AttributeSelected :
DataChangedEvent

AttributesData :
DataType

AttributeString :
GUIProjection

SelectedAttribute :
DataType

Views :
DynamicStructures

MoneyCriterionConfiguration :
UIPConfiguration

DateCriterionConfiguration :
UIPConfiguration

...

Figure 18. Advanced search example SearchCriteriaPanel object model.

131

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

object Advanced search

AdvancedSearch :
UserInterfacePattern

Outputs :
OutputActions

SearchCriteriaPanel :
UserInterfacePattern

DefaultUIControls :
Defaults

ButtonBar :
UserInterfacePattern

Label :
UIControl

Combobox :
UIControl

ButtonBarInstance :
UIPConfiguration

RootLayout :
LayoutManager

RootLayout :
LayoutManager

Button :
UIControl

ButtonSearch :
UIControlConfiguration

Label :
UIControl

VisualElementTypes :
ViewStructure

Combobox :
UIControl

DefaultUIControls :
Defaults

Confirm :
OutputAction

Cancel :
OutputAction

StringCriterionPanel :
UserInterfacePattern

SearchCriteriaPanelInstance :
UIPConfiguration

StringCriterionInstance :
UIPConfiguration

VisualElementTypes :
ViewStructure

ComboboxDefault :
UIControlConfiguration

VisualElementTypes :
ViewStructure

Textfield :
UIControl

ObjectTypeSelected :
DataChangedEvent

ObjectAttributeList :
EventContext

StringCriterion :
Key

ComboboxAttribute :
EventContext

SelectedObjectAttributes :
DataType

VisualElementTypes :
ViewStructure

InstanceParameters :
Parameters

AttributesStringList :
GUIProjection

...

...

CriteriaLayout :
LayoutManager

DefaultUIControls :
Defaults

MoneyCriterionPanel :
UserInterfacePattern

...

CriteriaStructureActions :
ViewStructureActions

AddCriterion :
AddView

RemoveCriterion :
RemoveView

Views :
DynamicStructures

DefaultCriterion :
Key

CriterionStructureActions :
ViewStructureActions

MoneyCriterion :
Key

DateCriterion :
Key

MainInstance :
UIPConfiguration

ButtonCancel :
UIControlConfiguration

AddRemoveButtonsConfiguration :
UIPConfiguration

ButtonAdd :
UIControlConfiguration

ButtonRemove :
UIControlConfiguration

CancelEvent :
PresentationEvent

SearchEvent :
PresentationEvent

ObjectTypesStringList :
GUIProjection

ObjectTypes :
DataType

ComboboxParameters :
UIControlConfiguration

AddRemoveButtons :
UserInterfacePattern

DefaultUIControls :
Defaults

AddActivated :
ActivatedEvent

RemoveActivated :
ActivatedEvent

ButtonStates :
ViewStateActions

HideAddButton :
HideAction

ShowAddButton :
UnhideAction

DateCriterionPanel :
UserInterfacePattern

...

DefaultCriterionPanel :
UserInterfacePattern

VisualElementTypes :
ViewStructure

Combobox :
UIControl DefaultCriterionStructureActions :

ViewStructureActions

ReplaceDefaultCriterion :
ReplaceView

RemoveDefaultCriterion :
RemoveView

DefaultUIControls :
Defaults

DefaultCriterionConfiguration :
UIPConfiguration

...

AttributeCombobox :
UIControlConfiguration

AttributeSelected :
DataChangedEvent

AttributesData :
DataType

AttributeString :
GUIProjection

SelectedAttribute :
DataType

Views :
DynamicStructures

ReplaceCriterion :
ReplaceView

AddRemoveButtons :
UserInterfacePattern

Figure 19. Advanced Search partly object model.

132

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. RESULTS AND DISCUSSION
Achievements. With the elaboration of our analysis

model, we detailed most factor impacts of our previous work
on requirements for generative UIP representations [5][16].
Accordingly, we proposed fine-grained structures, which are
in closer proximity to real applicable pattern notations than
pure requirements can be.

Judgment. The current state of the analysis model is
quite imperfect. However, with this initial iteration we
achieved a better understanding of the information needed to
express UIPs and their instances. A more vivid impression
on requirements, which we have modeled explicitly and are
implicitly supported by current approaches employing UIPs
for model-based development [5], has been gathered.
Furthermore, the model already may be used to verify the
capabilities of notations for generative UIPs.

The object models gave us a good impression on the
current state of the analysis model. Furthermore, the probing
of the expression of selected example UIPs has proven a
quite a good coverage of needed description elements. Much
of the required information already could be modeled.
However, the advanced search example is quite complex and
could not be described here in more detail.

Moreover, the further analysis of the object models will
reveal what impacts are yet to be enhanced. Not before the
analysis model has been improved and object models can
satisfactorily be expressed, we can think about a possible
formalization of UIPs. This approach avoids unnecessary
iterations and trial & error during the design of a dedicated
UIP language.

The potential notation, generator tool-chain and
especially the generated architecture, which may be derived
in the future from the analysis model, most likely will be
somewhat complex, but since they are solely intended for
automated processing without manual interference, this is a
trade-off for a step further to implement generative UIPs.

Again, we would like to invite other researchers to
contribute either critical judgments or improvements for the
presented analysis model or its requirements basis.

Traceabilty. Concerning the realized impacts, we
established traceability-links between the analysis model
classes and the factor impacts of our requirements model.
Figure 20 displays the relationship matrix accordingly.
Please note that only generalized classes are included in the
matrix. This is due to the fact that specialized classes do
inherit the links from their parent classes.

As result, the analysis model almost fully complies with
the elaborated requirements. Currently, “Hierarchical control
flow for UIP compositions” and “Intercommunication events
definition” do remain unsolved from the control aspect
impacts. As far as the view aspect is concerned, the “Style
definition” is an open issue.

Therefore, our analysis model has gained maturity and its
elements may serve for the verification of modeling
frameworks for generative UIPs on the presentation level.
Thereby, the applied concepts, tool in- and outputs and
especially the facilities of UIP formalization notation can be
traced to the elements of the analysis model.

Figure 20. Traceability matrix: Factor impacts realized by analysis model

classes.

Unsolved control impacts. Currently, our model only
supports ViewStructures, which consist of UIPs always being
in close cooperation. Nested UIPs are not yet intended to be
reused outside the specification or their super-ordinate UIP.
Being aware of this barrier, we may need to define facilities
such as pattern interfaces, as this was proposed by both
UsiPXML [8] and Seissler et al. [10]. In this regard, the
OutputAction may be refined to accommodate the events
required for UIP inter-communication. Eventually, the
UIPConfiguration may be supplemented by certain input
types. In the end, the first three control aspect impacts
remain unsolved for now.

Open issues. We are aware that our model needs further
elaboration and especially verification. Further issues to be
solved persist in the classification and delimitation of UIP
specification units. The relationships among UIPs discussed
by Engel, Herdin and Märtin [23] may be considered, too.

IX. CONCLUSION AND FUTURE WORK
Ultimately, we drafted an analysis model for UIPs by

resuming our previous work on requirements towards a
definition for generative UIPs. As result, the analysis model
already covers mandatory structures and expresses variability
aspects of generative UIPs. Together with our factor model,
the analysis model may be taken into consideration for the
verification of the capabilities of other UIP based approaches
or languages mentioned and not mentioned here. Our object

133

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model examples proved that current elements of the analysis
model are required and sound for certain UIP instances.

However, the presented user interface pattern analysis
model has to be reviewed and refined with the aid of other
researchers in the future in order to establish a focused basis
for a sophisticated generative pattern definition. With the
latter, a dedicated notation can be developed that will allow
the modeling of a vast and flexible range of UIPs. On that
basis, a more thoroughly applicable solution concerning the
covered GUI parts will be available in theory. In the long
run, maybe the complete GUI system can be expressed with
generative UIPs and their customized instances, even if this
means to capture system specific or custom UIPs in the same
specification format for the sake of a unified generative
process. As time has revealed, several model-based GUI
generation solutions and processes have emerged and came
to their limits when the need for fully variable UIP instances
came up. For generative UIPs, the path to a mature definition
has been paved by our contributions.

In contrast, design patterns have already evolved over
time and found a common notation and expression. This was
feasible because the shape and aspects for that kind of
patterns concentrated on the general abstraction of object-
oriented paradigm, which is easier to grasp for developers as
its reach in system responsibilities is very general and
universal, and most important, limited to the concepts of a
reduced set of repeating classes or their object instances. In
addition, design patterns are applicable for many domains,
and with reference to Figure 1, vast parts of their respective
architecture artifact levels. For comparison, UIP modeling
concepts tend to be bound to certain artifact levels governed
by specific modeling frameworks. Thus, their UIP
definitions are not flexible to allow for a combination with
artifacts on varying levels. Simply put, the UIP pattern
concepts have not reached a vast and general applicability as
design patterns did.

Concerning the GUI architecture and patterns, there is no
single shared definition or interpretation for MVC that can
be relied upon. The pattern functions as a mental model layer
on object-orientation for developers to classify the complex
responsibilities and flows of GUIs by using atomic universal
components customized for higher architecture
understanding. Looking at our proposed analysis model,
instantiable UIPs with their variable aspects in this abstract
diagram are considerably more detailed and complex
compared the initial MVC representations.

To conclude, we have to strive for a better understanding
of UIPs, and after some iterations, a common UIP concept
resembling the maturity of design pattern will be established
finally. In the end, we have to enhance the available work on
model based GUI development processes with the new UIP
definition. Alternatives do not exist, as the presently
available solutions offer no common generative UIP
definition and thus can only cover a small portion of the GUI
system, do not allow for sufficient variability or architecture
artifact coverage. Again, we do need to strive for a common
generative UIP definition in order to derive a conceptual
basis the technical implementations and tools can be based
on.

Future work. For future work, we see a refining and
correcting iteration for the analysis model with regard to
simplicity and completeness according to all impacts. In
detail, we have to assess the mandatory and optional
parameters on the basis of our listed examples. Furthermore,
we will concentrate on the unsolved control aspect issues.
With the progression towards an improved version of our
analysis model, a more general applicable model-based UIP
development process may be established in the future.

After completion of the UIP analysis and definition, we
plan to consider options how to establish a notation that will
be a realization of our analysis model. As candidates for GUI
specification languages, UIML and UsiXML are likely to be
considered for basic foundations. Eventually, for both
languages enhancements will have to be developed in order
to enable the support of generative UIPs.

REFERENCES
[1] S. Wendler and D. Streitferdt, “An analysis model for

generative user interface patterns,” The Fifth International
Conferences on Pervasive Patterns and Applications
(PATTERNS 13) IARIA, May 27 - June 1 2013, Xpert
Publishing Services, pp. 73-82, ISSN: 2308-3557.

[2] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi, “A business-
process-driven approach for generating e-commerce user
interfaces,” The Tenth International Conference on Model
Driven Engineering Languages and Systems (MoDELS 07),
2007, Springer LNCS 4735, pp. 256-270.

[3] S. Wendler, D. Ammon, T. Kikova, I. Philippow, and D.
Streitferdt, “Theoretical and practical implications of user
interface patterns applied for the development of graphical
user interfaces,” International Journal on Advances in
Software, vol. 6, nr. 1 & 2, pp. 25-44, 2013, IARIA, ISSN:
1942-2628, http://www.iariajournals.org/software/.

[4] G. Meixner, F. Paterno, J. Vanderdonckt, “Past, present, and
future of model-based user interface development,” i-com,
vol. 10, issue 3, November 2011, pp. 2-11.

[5] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt “A
factor model capturing requirements for generative user
interface patterns,” The Fifth International Conferences on
Pervasive Patterns and Applications (PATTERNS 13) IARIA,
May 27 - June 1 2013, Xpert Publishing Services, pp. 34-43,
ISSN: 2308-3557.

[6] R. Beale and B. Bordbar, “Pattern tool support to guide
interface design,” Human-Computer Interaction - INTERACT
2011 - 13th IFIP TC 13 International Conference, Part II,
Sept. 5-9 2011, Springer LNCS 6947, pp. 359-375.

[7] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
support for an evolutionary design process using patterns,”
Workshop on Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[8] F. Radeke and P. Forbrig, “Patterns in task-based modeling of
user interfaces,” The Sixth International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Nov. 2007, Springer LNCS 4849, pp. 184-197.

[9] J. Engel and C. Märtin, “PaMGIS: A framework for pattern-
based modeling and generation of interactive systems,” The
Thirteenth International Conference on Human-Computer
Interaction (HCII 09), Part I, July 2009, Springer LNCS 5610,
pp. 826-835.

[10] M. Seissler, K. Breiner, and G. Meixner, “Towards pattern-
driven engineering of run-time adaptive user interfaces for
smart production environments,” The Fourteenth International
Conference on Human-Computer Interaction (HCII 11), Part
I, July 2011, Springer LNCS 6761, pp. 299-308.

[11] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient generation of ambient intelligent user

134

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interfaces,” The Fifteenth International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Sept. 2011, Springer LNCS
6884, pp. 136-145.

[12] M. J. Mahemoff and L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” The
Third Asian Pacific Computer and Human Interaction
Conference (APCHI 98), 1998, IEEE Computer Society, pp.
25-31.

[13] A. Dearden and J. Finlay, “Pattern languages in HCI; A
critical review,” Human-Computer Interaction, vol. 21, issue
1, special issue: Foundations of design in HCI, 2006, pp. 49-
102,
http://www.tandfonline.com/doi/abs/10.1207/.U4hygHe8C4I.

[14] J. Borchers, “A pattern approach to interaction design,”
Conference on Designing Interactive Systems (DIS 00),
August 17-19 2000, ACM Press, pp. 369-378.

[15] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,
“Specification of formalized software patterns for the
development of user interfaces,” The Seventh International
Conference on Software Engineering Advances (ICSEA 12)
IARIA, Nov. 2012, Xpert Publishing Services, pp. 296-303,
ISBN: 978-1-61208-230-1.

[16] S. Wendler and I. Philippow, “Requirements for a definition
of generative user interface patterns,” The Fifteenth
International Conference on Human-Computer Interaction
(HCII 13), Part I, July 2013, Springer LNCS 8004, pp. 510-
520.

[17] K. Breiner, M. Seissler, G. Meixner, P. Forbrig, A. Seffah,
and K. Klöckner, “PEICS: Towards HCI patterns into
engineering of interactive systems,” The First International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 1-3.

[18] M. van Welie, G. C. van der Veer, and A. Eliëns, “Patterns as
tools for user interface design,” in Tools for working with
guidelines, C. Farenc and J. Vanderdonckt, Eds. London:
Springer, pp. 313-324, 2000.

[19] J. Tidwell, Designing Interfaces. Patterns for Effective
Interaction Design. Beijing: O’Reilly, 2006.

[20] E. Hennipman, E. Oppelaar, and G. Veer, “Pattern languages
as tool for discount usability engineering,” The Fifteenth
International Workshop Interactive Systems. Design,
Specification, and Verification (DSV-IS 08), 16-18 July 2008,
Springer LNCS 5136, pp. 108-120.

[21] S. Fincher, PLML: Pattern language markup language.
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html,
2014.05.30

[22] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J.
Thomas, and P. J. Molina, “Perspectives on HCI patterns:
concepts and tools (introducing PLML),” Extended Abstracts
of the 2003 Conference on Human Factors in Computing
Systems (CHI 2003), ACM, 2003, pp. 1044-1045.

[23] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI pattern
collections for user interface generation,” The Fourth
International Conferences on Pervasive Patterns and
Applications (PATTERNS 12) IARIA, July 2012, Xpert
Publishing Services, pp. 36-44, ISBN: 978-1-61208-221-9.

[24] J. Vanderdonckt and F. M. Simarro, “Generative pattern-
based design of user interfaces,” The First International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 12-19.

[25] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An appliance-
independent XML user interface language,” Computer
Networks, vol. 31, issue 11-16, Proceedings of WWW8, 17
May 1999, pp. 1695-1708.

[26] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and
V. López-Jaquero, “USIXML: A language supporting multi-
path development of user interfaces,” in Engineering human

computer interaction and interactive systems, Joint Working
Conferences EHCI-DSVIS 2004, July 11-13 2004, Revised
Selected Papers, R. Bastide, P. A. Palanque, and J. Roth, Eds.
Heidelberg: Springer LNCS 3425, pp. 200-220, 2005.

[27] J. Vanderdonckt, “A MDA-compliant environment for
developing user interfaces of information systems,” The
Seventeenth International Conference on Advanced
Information Systems Engineering (CAiSE 2005), June 13-17
2005, Springer LNCS 3520, pp. 16-31.

[28] M. van Welie, A pattern library for interaction design.
http://www.welie.com, 2014.05.30.

[29] Open UI Pattern Library. http://patternry.com/patterns/.
2014.05.30.

[30] A. Toxboe, User Interface Design Pattern Library.
http://www.ui-patterns.com, 2014.05.30.

[31] M. Ludolph, “Model-based user interface design: Successive
transformations of a task/object model,” in User interface
design: Bridging the gap from user requirements to design, L.
E. Wood, Ed. Boca Raton, FL: CRC Press, 1998, pp. 81-108.

[32] H. Umbach and P. Metz, “Use Cases vs. Geschäftsprozesse.
Das Requirements Engineering als Gewinner klarer
Abgrenzung,” Informatik Spektrum, vol. 29, issue 6, pp. 424-
432, December 2006, Springer, ISSN: 0170-6012.

[33] A. Wolff and P. Forbrig, “Deriving user interfaces from task
models,” Workshop Model Driven Development of Advanced
User Interfaces (MDDAUI 09), Feb. 2009, CEUR Workshop
Proc. Vol-439.

[34] E. Evans, Domain-Driven Design: Tackling Complexity in
the Heart of Software. Boston, MA: Addison-Wesley, 2004.

[35] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM tool:
Support for pattern-driven and model-based UI development,”
The Fifth International Workshop on Task Models and
Diagrams for Users Interface Design (TAMODIA 06), Oct.
2006, Springer LNCS 4385, pp. 82-96.

[36] UIML 4.0 specification, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=uiml.
2014.05.30.

