International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

11

A Robust Client-Driven Distributed Service
Localisation Architecture

Luke Collins, Ming-Xue Wang, and Claus Pahl
School of Computing
Dublin City University
Dublin 9, Ireland
Email: luke.collins4 @mail.dcu.ie, mwang @computing.dcu.ie, claus.pahl@dcu.ie

Abstract—The fundamental purpose of service-oriented comput-
ing is the ability to quickly provide software resources to global
users. The main aim of service localisation is to provide a
method for facilitating the internationalisation and localisation
of software services by allowing them to be adapted to different
locales. We address lingual localisation by providing a service
interface translation using the latest web services technology to
adapt services to different languages and currency conversion
as an example of regulatory localisation by using real-time data
provided by the European Central Bank. Units and Regulatory
Localisations are performed by a conversion mapping, which
we have generated for a subset of locales. The aim is to
investigate a standardised view on the localisation of services by
using runtime and middleware services to deploy a localisation
implementation. We apply traditional software localisation ideas
to service interfaces. The architecture here is client-centric,
allowing the localisation to be controlled and managed by the
client, ultimately providing more personalisation and trust. It
also addresses robustness concerns by enabling a fault-tolerant
architecture for third-party service localisation in a distributed
setting. Our contribution is a localisation platform consisting
of a conceptual model classifying localisation concerns and the
definition of a number of specific platform services.

Keywords - Service Localisation; Service-oriented Computing;
Service-oriented Architecture.

I. INTRODUCTION

Distributed web services can provide business and private
consumers with computing abilities, which may not be feasible
for them to develop in-house. These web services are currently
in high demand in the context of cloud computing [1]-
[5]. However, the area of services computing introduces new
issues, for example, in areas like Europe, where there is a
wide range of languages spoken, services are very often only
developed for single language and are only supported for
that single language. Equally, adapting services to different
regulatory environments with different legal systems, taxation
and units in place is equally challenging. Often it is the
case that companies do not have the resources or capability
to develop multilingual products. Localisation encapsulates a
large number of issues, which need to be addressed in this
context. These include, but are not limited to:

e Language Translation - conversion of services based
on language. e.g., English — French.

e Regulatory Compliance Constraints - conversion of
services based on information such as taxation and
other regulatory constraints.

e Currency Conversion - conversion of services based
on currency, e.g., EFuro — Dollar.

e Units Conversion - based on standard units measure-
ments, e.g., Metric — Imperial.

Further concerns such as standardised vocabularies and con-
ventions could be added.

Localisation is typically performed on textual content (i.e.,
strings) and refers to either languages only or physical location.
However, the purpose of this work is to develop a method
of localising services by implementing a ’mediator’ type
service, which interacts between the Application Programming
Interfaces (APIs) of the service provider and the requester.
This mediator largely automates the service interface locali-
sation process. We are going to focus on a number of locale
dimensions such as language, taxation, currency and units. An
example of a request that requires localisation can be seen in
Figure 1, which illustrates an example of a financial service
provided to a range of locales (locations or regions requiring
equal conversions).

Stock Exchange
Provider

AlB

~ AlB Haut: 0.0530 ~ AIB
High: 0.0530 L4 High: 0.0664

3 French American

Irish Requester Reguester Reguester

Language: English
Gurrency: Euro
Unit: Metric

Language: French
Gurrency: Euro
Unit: Metric

Language: English
Currency: Dollar
Unit: Imperial

Figure 1: Overview of Requests Requiring Localisation

We look at service-level language translation techniques
to localise services (including APIs) to different languages
as part of a lingual translation idea. Regulatory translation,
which includes currency, units and taxation as legal governance
and compliance rules, will be provided by standards-based
mappings. Regulatory translation is important for applications
to comply with varying regional laws and regulations.

The objectives of service localisation include primarily
the introduction of service-centric localisation techniques. A
specific need is to make localisation techniques available
at runtime for dynamic localisation, which is required for

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

currencies and other variable aspects. A localisation mediator
takes care of this task. Thus, Service Localisation (SL) pro-
vides a mechanism for converting and adapting various digital
resources and services to the locale of the requester. A greater
end-to-end personalisation of service offerings is an aim.
A Localisation Provider act as an intermediary between the
service provider and the requester. In our proposed platform,
this is supported by a mediation service. We will provide a
novel architecture where in addition to the new concept of
service interface localisation, this can even be controlled by
the user at the client-side.

By generating a common platform solution for these locali-
sation issues, we allow the ability to dynamically localise Web
services to be made with little effort. Our key contributions are:

e Software Localisation at Service Level - the main
concern is a standardised mapping within a potentially
heterogeneous environment.

e Adaptation and Integration - the main concern is
the maintenance of service quality after it has been
localised through adaptation.

e Client-side Control - the main concern is a robust,
fault-tolerant coordination solution that allows locali-
sation to be managed client-side.

The novelty of the proposed solution lies in filling a
gap between service adaptation techniques (largely ignoring
the regulatory and lingual aspects) and existing service in-
ternationalisation, which looks into localisation concerns, but
only to a basic extent covering data formats and unit and
currency conversions. An important aspect of this investigation
is a robust coordination platform that not only allows service
consumers to define and manage the localisation behaviour,
this platform also needs to be able to address the challenges of
services provided across a distributed setting with failure and
non-applicability of localisation policies as a consequence. We
aim to show through a concrete example an appropriate use of
service localisation. The example also attempts to illustrate
various benefits and use cases. We also discuss motivating
factors behind using a localisation technique.

In the next section, we discuss the motivation behind
developing a Service Localisation implementation. Section
IIT defines a platform architecture for Service Localisation.
In Section 1V, we introduce aspect-specific localisation tech-
niques, which we investigated and implemented. In Section
V, we investigate the coordination solution for the client-side
management of the localisation settings. Section VI introduces
the implementation and evaluates our solution to the Service
Localisation problem. Section VII contains the related work
discussion. In Section VIII, future directions and possible
extended infrastructures are explored.

II. STATE-OF-THE-ART AND MOTIVATION

Our main focus is a platform for service localisation, which
makes a shift from the typical “one size fits all” scenario
towards a more end-to-end personalised service scenario.
Currently, services computing suffers from localisation and
adaptability issues for multiple users in different regions. These
issues could be overcome if a multi-lingual and multi-regional
solution was developed [6], [7].

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

12

A. Motivating Scenarios

The different localisation issues of a service can be illus-
trated. The scenarios described below are used to illustrate
benefits to service localisation:

e End-User Services: Some software-as-a-Service
providers only support one region with one specific
language. There is a possibility to perform localisation
both statically (compile-time) and dynamically (run-
time), which typically involves localising service
values and interacting messages.

e Business Services: Various business centric applica-
tions including applications for documentation and
analysis could be localised to support various legal and
regional locales. Business services typically require
more customisation than end-user consumers.

e Public Sector Services: As governments outsource
their computing infrastructure to external providers,
it is becoming more important for the providers to
supply solutions, which take into account various
regulatory governance aspects such as currency and
taxation and also lingual localisation.

Another scenario, which provides a detailed view of the
benefits of service localisation, could be a service provider,
used to manage company accounts for its customers. This
could be a company that has offices in different global loca-
tions and would like to provide localisation based on customer
region and localisation for its individual offices.

e Regulatory: Conversion of data between standards
and their variants, e.g., based on different units of
measurement Metric — Imperial.

e Currency: Conversion of between currencies, e.g.,
Furo — Dollar.

e Lingual: Translation of service related data between
languages. This could include free text, but also
specific vocabularies based on business product and
process standards such as GS1 or EANCOM.

e Taxation: Different customers have different taxation
requirements, e.g., VAT rates. Localisation of accounts
software can take this into account for each locale.

B. Use Cases and Requirements

In order to demonstrate the need for localisation of Web
services, we chose to demonstrate the issue using a concrete
case of an environment, which utilises service-level access to
a stock exchange interface. Imagine an Irish user who wishes
to access data from the New York Stock Exchange, which is
provided in an English format with the currency in dollars. A
user in France may also wish to access data from the New
York Stock Exchange using a French interface where local
regulations require French to be used for data and/or service
operations. Therefore, there must be a mechanism to convert
the currency to Euro or to another currency that the requester
specifies. There must also be a mechanism to convert the
language to that of the requester.

At application level, two sample calls of a stock exchange
data retrieval service for the two different locales (IE-locale

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with English as the language and EUR as the currency and FR-
locale with French as the language and EUR as the currency)
retrieve the average stock price for a particular sector - in this
case the financial sector as follows:

e Retrieve(20/08/2012, Financial) — 30.50 EUR
o Récupérer(20.08.2012, Financier) — 30,50 EUR

In the US-locale with English as the language and USD as the
currency, the same API call could be the following:

e Retrieve(08/20/2012, Financial) — 38.20 USD
The following elements in this case are localisable:

e Date: in order to preserve regulatory governance, the
date format requires to be changed depending on the
requester locale.

e Language: names of functions from the API are trans-
lated between languages.

e Currency: values are converted as normal and this
would apply to any other units.

This list can vary depending on the environment where dif-
ferent regulatory constraints might apply. In general, it can
be expected that there is always a linguistic element to the
localisation of any product, but elements may also include
taxation and units of measurement. If it was the case that the
requesters were trying to access weather forecasts for their
own region and formatted in their own locale, then it would
be necessary to utilise a conversion for units of measurement:

e Prévision(20.08.2012) — 30°Celsius
e Forecast(20/08/2012) — 15°Celsius

In the US-locale with English and imperial units, the same API
call could be Forecast(08/20/2012) — 87° Fahrenheit.

Note that this scenario takes real-world services into ac-
count. Companies like xignite (provides stock market analysis
services) and Deutsche Boerse (provides access to Frankfurt’s
stock market information services) have published and imple-
mented services underlying the examples here.

III. LOCALISATION FRAMEWORK

Localisation of service interfaces requires a framework to
facilitate various localisation methods. These various methods,
implemented as services in our proposed localisation archi-
tecture, are used to facilitate the localisation of localisable
elements or artefacts. This paper focuses on the dynamic
localisation of service-level interface descriptions.

A. Information Architecture

With every service there are various elements that may be
localised. These elements include:

e Service specifications/descriptions (APIs)
e Models (structural/behavioural)
e Documentation (for human consumption)

e Messages exchanged between services

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

13

Language
Mappings
Service S a— .\
<Output> 4 Llanguage |
A A \ Rules \

Default Localised

Service

Language
Service

Currency
ﬂk Mappings

Service nl

<Input> » Mediator Currency

Service

/\

4- Currency |

A \ Rules \
/
| Units [

/ / / [/ﬂk\ Mappings |

Service “‘ Locale Policy “ Units Service
Mappings || General Rules | \J i
2\ : | Units Rules |

[[[
“ Default Policy “ \

Figure 2: Conceptual Architecture of the Localisation
Platform.

Services are normally written to be independent of locales,
however localisation is often needed to further personalise or
adapt a service to specific contexts. A localisation platform
should be based on attributes that vary from locale to locale,
like time or date format or the language.

A service localisation platform requires a number of el-
ements. These elements can be pre-translated fragments in
static form or can be dynamic translation systems. Figure 2
aims to demonstrate the concept of a policy and mappings
based system architecture, which can be scaled when addi-
tional processes are attached to the mediation process. In the
platform architecture, user-specific locale policies are applied
to service endpoints. For example, in a WSDL file we may
localise messages and operation names. Rules for each type
of translation would be stored in a rules database (General
Rules Repository) [8]. Similarly, mappings between common
translations would be stored in a mappings database (Transla-
tion Memory). Note, that we will discuss the distribution and
management of services between client and provider in Section
V. The central mediator component from Figure 2 requires
localisation adaptation to be facilitated dynamically. In Section
V, a coordination platform for the dynamic interaction between
service clients and providers is defined where the clients can
control the adaptation through the mediator.

B. Systems Architecture

A mediator operates between users (with different locales)
and several service providers (with different locales) by provid-
ing core localisation services, such as currency conversion and
language translation. The architecture supports the following:

e Static Mappings: these could be the mapping of one
language to another or one unit to another, pre-
translated in translation memories.

e Dynamic Localisation: when translation mappings are
not stored, dynamic localisation is required in order
to obtain a correct translation and store the mapping.

e Policy Configuration: in order to configure the various
locale policies, we must generate particular translation
rules, supported by a logical reasoning component.

e Negotiation: this is the exchange of locale policies
through the form of XML and SOAP from a web

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

services point of view.

e Localisation of Services: the mappings between the
remote service and the localised service description
must be stored in a mappings database (Translation
Memory) so the localised service has a direct rela-
tionship with the remote service.

The workflow of the mediator process is Negotiation —
PolicyCon figuration — Localisation — Ezecution.

Some examples shall illustrate the functionality of the
platform. Table I defines two different locales in the format
of XML profiles. A mismatch between the requester locale
and the provider locale needs to be bridged by the mediator
localisation service. The language as a lingual aspect and
country, currency and unit codes are regulatory concerns.

TABLE I: Sample Environment Setup

<SLContext>
<Locales>

<RequesterLocale>
<LanguageCode>efr </LanguageCode>
<CountryCode>FR</CountryCode>
<CurrencyCode >EUR</CurrencyCode>
<UnitCode>M</UnitCode>

</RequesterLocale>

<ProviderLocale>
<LanguageCode>en </LanguageCode>
<CountryCode>IE </CountryCode>
<CurrencyCode>EUR</CurrencyCode>
<UnitCode>M</UnitCode>
</ProviderLocale>

</Locales>
</SLContext>

The locale definitions decide how a given service API (in
the Web service description language WSDL) is localised.
Results from a sample execution of the localisation service
(the mediator) is displayed in Tables II and III based on the
XML locale definitions of the environment in Table I. Table II
shows excerpts from an original WSDL file. Table III shows
the localised WSDL after the application of lingual localisation
in this case (translation from English (IE locale) into French
(FR locale) — for simplicity of the example, we have focused
on this single aspect only), compliant with the two locale
definitions from the first listing.

TABLE II: Sample Input - Provider Locale

<wsdl: message name="quoteResponse”™>
<wsdl: part name="parameters”
element="quoteResponse”/>
</wsdl: message>
<wsdl: message name="quoteRequest”>
<wsdl: part name="parameters”
element="quote”/>
</wsdl: message>
<wsdl:portType name="Quote”>
<wsdl:operation name="getQuote”>
<wsdl:input name="quoteRequest”
message="quoteRequest”/>
<wsdl:output name="quoteResponse”
message="quoteResponse”/>
</wsdl:operation>
</wsdl:portType>

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

14

TABLE III: Sample Output - Localised WSDL

<wsdl: message name="quoteReponse”>
<wsdl: part name="parameters”
element="quoteReponse™/>
</wsdl: message>
<wsdl: message name="citerDemande”>
<wsdl:part name="parameters”
element="citer”/>
</wsdl: message>
<wsdl:portType name="Citer”>
<wsdl:operation name="getCiter”>
<wsdl:input name="citerDemande”
message="citerRequest”/>
<wsdl:output name="citerDemande”
message="citerDemande”/>
</wsdl:operation>
</wsdl:portType>

IV. LOCALISATION RULES AND SERVICES

We have outlined the core platform architecture in the
previous section with the central services. In order to provide
the localisation platform services, we need to realise a number
of localisation services to enable a modular service localisation
platform. Their interaction is summarised in Figure 3. Details
of underlying concepts of their operation are explained now.
We will discuss the topology, i.e., where the individual services
are provides and who manages them, behind this interaction
specification in the following Section V.

A. Rule-based Locale Definition and Conversion

At the core of our service localisation platform is a
language to specify the localisation policy rules in relation to
localisations. In most cases, languages like WSDL and other
XML languages provide information regarding the services
that are provided via an APL. However, in order to encapsulate
localisation information, there is a necessity to provide a
language that will contain details in relation to the locales
of the requester and the provider. For the purpose of our
localisation platform, we use a policy language based on the
Semantic Web Rule Language SWRL, which is based on the
propositional calculus.

Remote
Service

Localisation
Mediator

Requester Local
Service

I s I I
| 1:Initialise Locale | |
H .4_
|
|

1.1: Setup Locale

1.1.1.1: Confirm Localg

1.1.1: Confirm

2: Request in Lang x

F———1

2.1: Request Localisation

2.1.1: Request

2.1.1.1: Reply

1.1.1.1: Localised Reply

2.1.1.1.1.1: Reply

L]
| L
| |
| |
[|

Figure 3: A UML Sequence Diagram of the Platform.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A localisation layer encapsulates the various forms of
translations. It describes the relationships between localisable
elements. For example, it contains the details of items that can
be translated. For our localisation model these are documenta-
tion and descriptions, but also API messages and operations.
The rule language is used to define localisation policies of
two types: firstly, locale definitions and, secondly, conversion
(translation) rules. We motivate the rule set through examples.

Firstly, there are a number of locale definition rules
provided, like Loc or hasCur, by which locales for specific
regions are described. A locale can also be described by other
rules such as hasTax, hasLang and hasUnit. Examples of
three region’s locales - IE, US, and FR - are:

IELoc(?) < Loc(?) A
hasLang(?1,72) A hasCur(?l,7¢) A hasUnit(?l, 7u) A
?z = enA ¢ = EURA Tu = metric

USLoc(?l) < Loc(?l) A
hasLang(?l,?z) A hasCur(?l,?c) A hasUnit(?l, 7u) A
7z =enNTc = USDA Tu = imperial

FRLoc(?) < Loc(?) A
hasLang(?l,7z) A hasCur(?l,?c) A hasUnit(?l, 7u) A
7z = frA7c = EURA Tu = metric

The benefit of a formal framework for the rules is that
other rules can be inferred by from partial information. For
example, if we knew that a locale had USD as its currency
we may be able to infer its country from it:

7¢c=USD —?l = USLocale.

These inferred rules do not apply in general - this may not
work if we know a currency is Euro in which case it could be
one of many locales in Europe. However, the purpose of these
rules could be to determine inconsistencies. Preconditions can
clarify the remit of these rules.

Secondly, a generalised conversion between locales, e.g.,
Locale A — Locale B, is given by the following general
conversion rule:

ITELoc2USLoc(?11,712) «
hasLang(?11,7z1) A hasLang(?12,722) A
hasCur(?1,?c1) A hasCur(?12,7¢2) A
hasUnit(?11, Tul) A hasUnit(?12, 7u2) A
722 = convertLang(en, en,?z1) A
?¢2 = convertCur(EUR,USD, ?cl) A
?u2 = convertCur(metric, imperial, Tul)

IELoc2F RLoc(?11,712) +
hasLang(?l1,?7z1) A hasLang(?12,722) A
hasCur(?11,?cl) A hasCur(?12,7¢2) A
hasUnit(?11, Tul) A hasUnit(?12, 7u2) A
?22 = convertLang(en, fr,7z1) A
?¢2 = convertCur(EUR,USD, 7cl) A
?u2 = convertCur(metric, metric, Tul)

Depending on client and provider locale, any combination
of mappings/translations can be generated by the core rules.

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

15

B. Localisation Mediator

Based on these locale policy definitions and conversion
rules, a number of services operate. In order to provide a
transparent localisation system, a central component acts as
a mediator, as visualised in Figure 4, which in turn uses indi-
vidual services for: Lingual Conversion, Currency Conversion,
Regulatory Governance, Units Conversion, and WSDL Parsing
& Generation. Within this mediator architecture, the mediator
methods call the other localisation services of the platform.

During execution of the localisation platform, an XML
filewith the ploicy definition is first passed to the mediator
(we will look at the underlying coordination mechanism for
this in Section V). The Mediator Service then sets up a
localisation environment using the locale details provided in
LocaleConfig.xml, the component performs this via the use of
the respective interfaces. Once the locale is set up, the service
Web Service Description Language (WSDL) file is parsed and
various elements are localised resulting in a localised WSDL
file that can be used to access localised operation mappings.
This component is the work horse of the platform and can
be extended with the introduction of other localisation classes,
i.e., the architecture is modular.

< <COMPONENTs > @
WSDL Service
-
-
< CUSES >
7 < <COMPONENTs > a
il Currency Service
S CUS B
< <COMPONEnts> gl
Med iator Service
ccuse> <<COMpOonents: @
G Language Service
teeuser >
N = -
0 s
< CHSE T
by < <Ccomponents s g
3 Units Service
A"
b
N
< <Components > g
Other Localisation
Service

Figure 4: A Component Diagram Displaying Extensibility.

Linguistic artefacts are one of the most widely localised
elements of software today. We propose machine translation
(MT) to achieve automation. While further research into a
tailored MT solution is required to specifically address limited
textual context and controlled vocabularies for APIs, language
translation within the proposed platform is provided by the
Google Translate APIL. In the interest of performance, our
platform tries to make as few API calls to Google as possible.
Instead it stores translations of popular words and glossaries
within a local language mapping database (a Translation
Memory) for later retrieval. A local machine translation
system may also reduce this latency, as it would no longer
have to depend on TCP/IP performance. The conversion rule
for language translation is given by:

IELoc2F RLoc(?11,712) +
hasLang(?11,721) A hasLang(?12,722) A

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

722 = convertLang(en, fr,7z1)

Regulatory localisation through adaptation to other
regulatory standards is based on localising regulatory
concerns. These concerns include, but are not limited to the
following: Taxation, Currency, and Units of Measurement.
We have chosen to localise a subset of these concerns. For
the purpose of units localisation, we developed an interface
to a repository of unit conversion formulae. These formulae
provide conversions between the metric and imperial units of
measure. The conversion rule for units is given by:

IELoc2U S Loc(?11,712) <
hasUnit(?11, Tul) A hasUnit(?12, Tu2)
A ?¢2 = convertUnits(metric, imperial, Tul)

Due to a large number of currencies used globally, we
propose a separate service to deal with currency conversion.
For the purpose of currency localisation, we use exchange
rates from the European Central Bank. This is in our case
supported by a MySQL database. Currencies are manipulated
based on their rate compared to Euro as the base currency.
The conversion rule for currency is given by:

IELoc2USLoc(?11,712)
hasCur(?11,?c1) A hasCur(?12,7¢2)
A ?¢2 = convertCur(EUR,USD, ?cl)

In order to parse the input in the form of WSDL files, a
WDSL service is used. This contains the methods required to
manipulate both incoming WSDL files of the service provider
and has the ability to generate a localised WSDL file. The
service can be considered as an I/O Manager. XLIFF is an
XML standard for translation that proved useful when it comes
to the localisation of WSDL file.

V. LOCALISTION - COORDINATION AND
INSTRUMENTATION

Figures 2 and 3 define the architecture in abstract terms. A
key feature of our solution is the possibility for clients to define
the localisation constraints and policies and to manage the
localisation themselves to achieve a higher degree of dynamic
personalisation. In Figure 3, the Local Service is a client-side
localised facade to the actual basic service as provided server-
side. The mediator handles the required location as discussed
in the previous Sections III and IV. In order to manage the
client-side definition and enforcement of localisation policies,
a coordination framework is necessary, which is described in
this section. The adaptation needs to be client-side controlled
as there there specific localisation context is defined. It also
relieves the provider from the customisation activities.

For both the mediator and the server side, we assume
BPEL process engines to manage the processes, like the
mediator process Negotiation — PolicyCon figuration —
Localisation — Execution that we introduced earlier. These
generic processes and their constituent services need to be
adapted to the needs specific localisation policies.

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

16

A coordination framework for localisation with protocols
as the implementation of the localisation makes process con-
sumers and providers contribute together to localisation to
ensure that defined policies are enforced. For a localised
service requested by a process consumer, there are a number of
activities including those from subprocesses within a process
that will participate in the coordinated execution (a kind of
transaction is required). The WS-Coordination specifications
are designed for transactions of distributed Web services
rather than transactions of application processes. Adaptive
processes for handling processes transactions lack coordination
mechanisms for our case to guarantee all participants working
together in a unified manner. The coordination framework
we implemented for this localisation context addresses these
limitations. It includes suitable protocols for the participants
for any application process.

The localisation framework uses a mix of local localisation
services (e.g., unit conversion), external services (currency
conversions) and hybrid techniques (e.g., for translation). This
mix of widely distributed services makes a coordination solu-
tion necessary that takes failure into account. Services might
become unavailable. Localisation policies might not be appli-
cable as a consequence. A solution that allows the applicability
of policies to be check prior to localisation execution or post-
execution are therefore required [9].

We first introduce a coordination model that focuses on
message exchange or coordination contexts between clients
and mediators that act as coordinators. A coordination protocol
for localisation policy enforcement in service transactions
is also defined. We use BPEL templates to implement the
protocols with BPEL processes at provider side.

A. The Coordination Model

The underlying coordination model is derived from WS-
Coordination and also the XACML access control policy
framework. We adapted this to the requirements of our coor-
dination mechanism for localisation policy enforcement. The
adapted coordination model uses two types of subcoordinators
for process consumers and providers. In this scenario, a
participant only interacts with its own coordinator type. The
coordination model is defined as < COOR, COOR onteat >
with COOR = COOR® U COORP. Here, coor® €
COOR is a coordinator associated with the consumer and
coor? € COOR? is a coordinator associated with the provider.
€007 context € COO R ontert captures the coordinaton context
(involved services and locale definitions). Figure 5 illustrates
how coor¢ and coor? interact in a coordination conversion.
Protocol X and services X. and X, are instances in this
coordination protocol.

1) The process consumer sends a create coordina-
tion context request to the activation service of
coor®. It will return an initialized localisation context
CcoO0T contezt (Cc) that contains the identification, a
service reference of the coor®’s protocol service and
other information for starting a conversation.

2) The process consumer then sends a process request
to the provider or localisation process containing the
COOT context-

3) The context coor.ontest 18 extracted from the SOAP
message and passed to protocol service X, at coor®.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Now, the protocol service X. service reference is
known to the protocol service X, and theactual
localisation-oriented communication between the par-
ticipating services can be established.

4) The localisation coordination conversation ends with
the completion of the process execution.

B. Process Activity Protocol

The process activity protocol defines a coordination type
for coordination conversations based on the coordination
model. A conversation of a localisation process is established
for the coordination of the activities within the service con-
sumer process. The model behind the coordination protocol
is activity-centric, which means it can be applied to any
localisation process irrespective of specific combination of
localisation techniques applied. This coordination protocol
applies to all activities of the processes to be managed on
behalf of the client/consumer during execution. A coordination
protocol consists of two main elements in (ct € coorcontest):

1) a message schema defines the message structure
needed for services communication between con-
sumer COOR® and provider COORP for the exten-
sion element of the COOR .ontext-

2) a Finite State Machine (FSM) of COOR® and
COOR?P defining the actual localisation behaviour in
an abstract model, described in more detail now.

The activity protocol defines runtime localisation man-
agement for localisation processes and the responsibilities of
service providers and consumers in the acutal management and
execution of localisation as a contract. This runtime mediation
is formulated as an FSM defining the coordination protocol.
There is an FSM for every activity in the processes that
describes the behaviours of consumers and providers, COOR®
and COORP, in the conversations. The idea behind this FSM
design is to instrument the states into the process flow as these
states determine which localisation policies are applicable.

The whole FSM is divided into two parts that are re-
sponsible for COOR® and COOR? separately. The COOR®
FSM is a submachine of the FSM of COORP. Here, process
providers only follow that part of the protocol that is actually
defined for COORP. Similarly, consumers follow the FSM
of COOR®. As the FSM implementation is executed at the
consumer and provider separately to achieve independence
and, as already emphasised, the control of the consumer,
COORF needs sufficient information about process execution
in order to execute process services at the provider side. The
FSM of COORY? is defined for the submachine in the FSM of
COOR?P, isolated from the process. Consequently, the protocol
message schema only covers the activity information instead
of the process state information. The execution of the COOR®
FSM does only require information about the weaving request,
which is instruments the original service with the localisation
techniques to adapt the service. The execution of the COORP
FSM on the other hand does only require information about
the weaving response. A consumer can customize the FSM
of COOR® for itself without affecting the COORP FSM
and other process consumers, which is one of the novelties
and selling points of our solution. Furthermore, this solution
reduces complexity in the state machine execution for both

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

17

sides. Each side does not need to know any implementation
details of other participants for its own implementation.

The design with two separate FSMs reduces the number
of states in the FSM of COORP, hence reducing the message
exchange times required for coordination conversations. This
reduces the performance overhead, which is generally caused
by any communication between the services. Depending on
current network properties between consumer and provider,
the message exchange could reduce in delays and low perfor-
mance, often not acceptable in runtime adaptation situations
as the localisation here. Of course, we need to note here that
this create an additional requirement for the consumer side,
because of the COOR® FSM needs to be implemented at the
client side. On the other hand, this allows different protocols
for different localisation settings to be defined for COORP.

The FSM of COORP? specifies the protocol for COORP.
The FSM of COOR€ is specified in [7], [10]. The states reflect
the status of the execution such as ’executing’ or ’waiting’ or
’completed’. A number of these states such as ’violated’ or
‘replacing’ is necessary to deal with error situations that can
occur in a distributed context where services or infrastructure
can fail. These error states are based on common error handling
strategies, as explained in [7], [10]. The FSM of COOR? is
defined as a 5-tuple (S, sstart, F, T A, J), where

e S = S5,U 8, is a set of states. S is a
set of localisation states {Sman_val,..» Sman_valyoses
Shandlingm‘ea Shandlingpmv Scancelling} direCﬂ)’ in-
volved with process consumers or policies. The
Sy is a set of non-localisation states {Sstarts
Sm'olated,]m’ Sexecuting> Sreplacings Swaiting> Sskipping,

Sviolatedpost’ Scompensating’ Scom+reps Scoerigna
Scompleted> Sendy DOt directly involving consumers.

® Sgart € S_; is an initial state. The coordination
can only be started by the process provider, i.e., not
directly involved with the consumers.

e F C S isa set of final states {Senq}-

o TA=TAUTA_;is aset of input symbols for the lo-
calisation actions. T'A; is a set of localisation transac-
tion actions {taviolates tayalidateds taignorc, tareplacc’

taskips tacancels tacompensates taretryv tacoerigna
tacom+rep) €xpected from process consumers, again
to handle errors. TA—; is a set of transaction ac-
tions, which are not expected from process consumers
{0, 1}. The input stream of the FSM regarding T'A_,
is decided by the process providers based on the
process state information that is not covered by the
FSM (note that FSM is only activity-scoped).

e {isatransition system ¢ : SxXTA — S, see transition
graph in Figure 7.

C. Coordination Implementation and BPEL Instrumentation

The coordination protocol needs to be implemented to
enable coordination. The difficulty is on the provider side,
since all activities within a localisation process need to comply
with the defined protocol during the BPEL execution.

We designed a set of templates for BPEL to avoid platform
dependency, i.e., to allow this to be applied to different BPEL

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2. Process request
Containing Cc

Consumer
«—— 6. Process response:

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

18

Provider

1. Create CoordinationContext 3.passing Cc
Return Cc P i
4 N\ 'a N\
A v
Activation Protocol Protocol Cache
R o e ...5, Protocol Y-+) A
Service Service Xc Service Xp Service

_ Coordinator C D,

4. Query and 6. Update
coordination cache

_ Coordinator P)

Figure 5: Policy Coordination Architecture.

WéavingRequest

WeavingResponse -+«

PG component |

..... > CoordinatorP

\ Coordinator P)

\ BP component

Coordination protocol

Figure 6: Message flow diagram

engines. The protocol needs to be implemented with a BPEL
process as a coor? for activities. The process contains the flow
logic to be executed and can be driven by protocol messages.
A process instance, i.e., not the BPEL process, is associated
with a coordination conversation belonging to a consumer to
enable user-centric customisation.

In order to separate concers, we divide the FSM of
COOR, into two sections. The first is process-independent,
i.e., does not require awareness of the process states. This
part of the FSM implementation is wrapped up in the main
BPEL process. The second part continues the FSM to the end
state of the main process. The first part can be implemented
as BPEL processes, but as processes separate from the main
process. Using such a hybrid approach, we can achieve a
platform-independent approach that also keeps the main BPEL
code simple. As a limitation we need to note that the BPEL
processes here are protocol-specific. We can use the BPEL
transaction scope concept in order to implement the FSMs
with BPEL as long-running transactions (LRTSs). These LRTs
in BPEL focus on scopes and these scopes can even be nested.
That means that when a fault occurs, all previously committed
activities can either be compensated within the faulty process,
or compensated as an activity in the parent process.

A template approach allows for easier management. Two
templates for BPEL process development reduce the protocol
implementation effort. A template defines the abstract skeleton
of an algorithm. One or more of the algorithm steps can be
overridden by subclasses allowing to define differing local-
isation behaviours by the consumer while at the same time
ensuring that the overall protocol is followed. We extract the
first FSM section as the non-transactional requirement FSM
for localisation process activities. The second section is then
an extension for activities to support transactions. The FSM is
divided into two implementation parts with two respective tem-
plates: wrapper service template and main process template.

This process template is an implementation of the second
part of the FSM containing activity states from scompicted tO
the senq state. When the process is in a cancelling state, the
previous successfully executed activities can be compensated
if that is necessary. The template is designed with an activity
scope and a process scope, respectively.

Figure 8 shows the BPEL template for the activity scope
associated with activity states is also needed. The template for
each activity is a separate scope. The two services inside the
template are highlighted by grey boxes. The first service is the
wrapper service for the first part of the FSM implementation.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

19

Violate ’(i / T »/
V' or Manipulatin; \
[Violated o Validati [X Compensat
\ e al Ip:;mg | Replacing |€ — — _ __ - \\ Ing+)
AN \Re\placing
N

N 7y

1 I - N I

- -l |

P Validated \ |

v

;7 Replace | Replace |

/ v ‘

- T — Compensate+Replace
/ // // ,/ \\ |
Handling Pre = — — — —Ignore — — — —»{ Executing 1——{ Waiting | — N

)
/ N

A J—
Moo s)
Skip— — -N\ Skipping |

_ 1]

)@ipulatin

1——{ Validating
Post

/

| -

|
|
|
|
|
|
|
|
|
| . .
Validated
| /

(Completed Cancelling

1

— — “Ingore- —
P 8

participant as activity

|
|
|
|
” of process provider

|
|
|
|
|
|
|
|
|
|
)

participant generated

>
coordinator_p generated

- \

—~.
Compensate]
/

Compensate+Ignore
/

\
|
v /

Ay ,
s .
5’ Compensat _ - -

R’
/

Figure 7: Transition graph for FSM for C'oor?

The required variables are passed into the BPEL process by
a BPEL <assign> activity. With the BPEL <if> control
structure, a <throw> activity throws a defined fault if the
comp variable is set to false. An attached BPEL <catchAll>
handler catches the fault and marks this scope as faulty. The
BPEL <compensationHandler> attachment is only triggered
by a successful scope if the process in a cancelling state. In
this situation, e.g., if the execution state Sezecuting 15 skipped
in the first FSM part, the compensation handler for the activity
scope is then triggered. The scope is marked as faulty instead.
The last <if> conditional control structure marks the process
as being in cancellation status. In these cases throws a defined
fault and to be caught in a <catchAll> handler defined in the
process scope template. Thus, the <compensationHandler>
handler at the corrwesponding activity scope is triggered.
The process activities are executed from state Scompieted (O
State Scancelling if necessary. A utility service within the
<compensationHandler> moves on from the activity state
Scancelling t0 the state Sepq.

Finally, Figure 9 shows the BPEL template for the process
scope. All process activities are within a process scope — this
is associated to a <catchAll> handler. If a defined fault for
process cancellation is caught by the handler with the process

scope, all <compensationHandler>s of activity templates of
fault-free activities are executed in reverse order. Activities
in the Scompieted State will transfer to the cancellation state
Scancelling- In case of nested processes, the parent would
handle the situation. The violation handling would depends
on the fault policy defined in the parent process. We have not
covered these fault aspect here in details, as our focus was on
the core localisation activities. The provision of fault handling
is necessary to provide a credible solution architecture.

VI. IMPLEMENTATION AND EVALUATION

The localisation platform presented here was fully im-
plemented in a Java prototype for the localisation tech-
niques, combined with the coordination solution based on WS-
Coordination and BPEL, that aims at studying the feasibility
of the conceptual solution.

We carried out an experimental evaluation. The objectives
are explanatory aiming to demonstrate and confirm acceptable
usability based on technical criteria. It shall be assessed based
on the following criteria here: Performance and Extensibility.
These criteria have different effects on the end-user experience
of the product. These criteria are key performance indicators

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7N\
[start \\ |

/ A wrapper service
&_/ for fiprst part of

i FSM

comp=response/Comp
canc=response/Canc
sere=response/Sere
resp= response/Resource

CatchAll CompensationHandler

comp==
(] Empty Completed

! throw

/

[
- Cancelling

Compensate

cani==1 Compensat

ing

! throw

Figure 8: Activity scope BPEL template

(KPI) and critical success factors (CSF) of the localisation plat-
form described. We analyse the resulting data quantitatively.

Please note that other relevant aspects of the solutions,
for instance the performance of the coordination solution in
a generic form have been presented elsewhere [7], [10]. These
have established an overhead of around ten per cent for the
coordination framework - however, the ten per cent essentially
come into effect if fault handling is needed, as the templates
in the previous section indicate. As said, the focus here is on
the localisation services themselves that are facilitated through
the coordination platform.

Another aspect is accuracy. This could vary across the
different localisation dimensions. While currency or unit con-
versions, even if dynamically done and not pre-computed
are simple and can expect to be fully accurate, standard-
based mappings depend on the quality of expert input and
language translation on the machine translation quality. As in
particular the language translation aspects have not been deeply
addressed here, a comprehensive analysis is not possible.

Performance. Poor performance often tends to affect soft-
ware exponentially as multiples of users consume a service at

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

20

a CatchALL
Receive

%

Activity scope Compensate

template

Completed
Reply

.

o
o
3
°
)
3
@
4]
2
@
N~

e

Cancellin,

@

Activity scope

)

Completed

.

/

Ve

(
| Canc

Compensate 1

/

ing

©

\

)

Reply

Figure 9: Process scope BPEL template

the same time. The core question here is the overhead created
by adding localisation dynamically to service provisioning.
Our results show an acceptable overhead of 10-15 % additional
execution time for fully localised services (i.e., localisation
involving different localisation aspects). The overhead is still
low compared to network latency and the average service
execution time [7]. As the application deals with multiple
users, the latency would increase due to extra loads placed
on the platforms services. This makes latency one of the key
concerns of the project. Latency is also an area to be assessed
as adding the localisation platform to the workflow of an
existing process has the potential to add to processing delays.
This delay exists due to time required to compute and also
the time to initialise the various variables. The propagation
latency is displayed in Table IV below. The figures are based
on randomly distributed service calls to external and internal
localisation services (e.g., external currency conversion or in-
ternal unit conversion or hybrid conversions as for translations)
based on stock market services (NASDAQ, FTSE). For a
number of localisation policies, the individual response times
have been aggregation and normalised. Note that figures can
be affected by environmental changes or the locale we are
transforming from and the locale we are transforming to.

TABLE IV: Latency Table - Localisation of Service

Service Prior (us) Post (us) At (us)
NASDAQ 132 182 50
FTSE 110 152 42

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As a general strategy, we have aimed to improve per-
formance of the prototype by using pre-translated aspects
through stored mappings, e.g., for currency conversions and
standard translations, which suggests that further optimisations
are possible.

Scalability. A related concern is scalability of software
becomes more important when a service may have large
multiples of users, which can be the case if several clients use
the localisation framework at the same time. The performance
evaluation has been carried out for a single user to determine
the overhead of localisation for a single service call. Scalability
has not been empirically addressed for this phase of research
and will be evaluated in later prototypes that will implement
a more scalable base architecture.

e Some components of the platform would require
modification to effectively allow the infrastructure to
vertically scale-up or scale-out efficiently. Solutions
here are stateless programming and data external-
isation. Through our rule base, and the suggested
pre-translation repositories some suitable architectural
decision in this direction have already been made.

e Horizontal scalability - i.e., the addition of more lo-
calisation concerns - is conceptually easily supported
by the modular mediator architecture, which we will
address further below in the extensibility context from
an implementation view.

An interesting model to investigate the scalability is a tuple
space-based coordination approach [11]-[13], which would
allow a flexible and elastic assignment of localisation services
to multiple requests. Work by Creaner and Pahl [11] suggest a
good scalability poential through tuple-space for coordination.

Extensibility. Extensibility becomes important when deal-
ing with complete platforms like a localisation platform. Dur-
ing an initial development, it is often the case that features
need to be included due to various constraints. In the case
of the localisation platform described here, some localisation
services where not developed, some of which include a service
to handle taxation. However, the platform was designed to be
extendable. At a platform level, this allows for the addition
of further services and the support for more locales. While
we do not have empirical evidence, the extensibility comes
as a common property of ontologies and semantic Web rule
languages as easily extensible frameworks.

VII. RELATED WORK

We provide a different view and perspective on the subject
compared to other publications on service adaptation [6], [14],
[15], [17] that look at adaptation from a technology perspec-
tive. The area of localisation in its wider adaptivity and cus-
tomisation sense has been worked on in various EU-supported
research projects, such as SOA4ALL [18] and 4Caast [19].
These projects address end-user adaptation through the use of
generic semantic models [20], [21]. Areas such as software co-
ordination are also covered. The mOSAIC project adds multi-
cloud provision to the discussion. Our framework however is
modular and extensible and aims to provide a one-stop shop for
all localisation methods. The 4CaaSt contributors have work
on a semantic platform for service adaptions. The semantic

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

21

mobility channel proposed by Cantera et al. links semantic
technologies with recent service platforms. While the platform
technology proposed there is applicable and provides for
instance label-based RDF adaptation, the specific dimensions
we identified go beyond their proposal.

The platform that is described here addresses the need for
dynamic localisation of various artefacts by use of a translation
memory and a set of logical rules. Software Localisation refers
to human consumption of data produced by the software -
namely messages and dialogues. Our focus is on the locali-
sation of the service level. Service internationalisation is sup-
ported by the W3C Service Internationalisation activity [22],
[23]. Adaptation and Integration of services based on locales
and using a translation memory with rules and mappings is
new [17]. The problem of multi-tenancy is a widespread issue
in the area of cloud computing [7]. This is an area where a
lot of research is being invested in order to provide a platform
for different users with different business needs to be kept
separate and their data to be kept private. Semantics involves
the matching of services with various locales using mappings
and rule-based system [15], [16], [24], [25].

There are implementations that can perform localisation
operations on web services [26]. The use of some of these,
however, is restricted due to their nature. Some of the other
implementations require a specific Integrated Development En-
vironment or specific proprietary libraries. They also typically
enable localisation at compile time - the proposed implemen-
tation in this paper is to enable service localisation at run
time. IBM has presented a static localisation solution suitable
for web services using its WebSphere platform [26], which
requires the WSDL files to be generated within the Integrated
Development Environment prior to deployment. This differs
from our proposed localisation platform as our solution aims
to perform transformations between locales dynamically.

VIII. CONCLUSION AND FUTURE WORK

Service localisation falls into the service personalisation
and adaptation context. There are particular engineering meth-
ods and tools that can be employed to allow services to be
adapted to different locales. A Service Localisation implemen-
tation should allow for automatically adjusting and adapting
services to the requesters’ own locales defined by language
or regulatory environment. We have presented a modular
implementation. Localisation hence provides a mechanism to
widen a service provider’s target market by enabling multi-
locale solutions. The easiest solution is for a service provider
to provide a 'mediator’ service that could act as middleware
between a requester and the service provider. In order to
enhance the dynamic evolution of localisation settings, our
coordination infrastructure allows a client-side driven manage-
ment of localisation settings.

By allowing services to be localised, we are enabling
the provision of multi-locale services to create interoperable
service ecosystems (such as clouds). Due to the nature of third-
party services, it is more intuitive for service localisation to be
performed dynamically through the use of a mediator service,
controlled by the client and enacted by the provider. Service
localisation thus enables higher availability of services through
its use of innovative interfacing. This type of localisation

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would be value-add for a company, which may not have
the resources to perform localisation in-house. It also allows
service consumers more influence on the type of localisation
and frequency of localisation changes.

The objectives of Service Localisation have been presented
in terms of three aspects. Firstly, presented was a conceptual
framework, which demonstrated key motivational reasons for
developing a multi-locale support framework. The second
part presented a modular platform, which is extensible to
allow the support of further localisable artefacts. The platform
that was implemented was using Java libraries was discussed
as this programming solution copes well with the problem
of extensibility. The third part introduces the coordination
platform to coordinate conversations between different service
providers and consumers and manage potential failure.

The proposed service localisation fills a gap. Software
adaptation has looked into adapting for instances services
in terms of their user’s interface needs such as data types
and formats. The two focal localisation concerns lingual and
regulatory add new perspectives to this area of research. A
different activity is the Web services internationalisation effort,
which looks into basic localisation concerns such as units,
currency or the format of dates. Our localisation solution
includes these (as we have demonstrated with the currency
aspect), but expands these into a comprehensive framework.

The context of adaptation and translations/mappings used
to facilitate this is a broad field. Our aim here was to integrate
difference concerns into a coherent localisation framework.
This relies on individual mappings. As part of our future
work, we aim to add a semantic layer, which would support
wider localisation concerns in an integrated format. Firstly, it
would allow more reliable translations for non-trivial concerns
if overarching ontologies were present. Secondly, the different
concerns themselves could be integrated by determining inter-
dependencies. Another direction of future research would be to
look into composition and specifically the behaviour of indi-
vidual service localisation in for instance service orchestrations
or other coordination models (e.g., tuple spaces as suggested
above to deal more specifically with scalability problems) [13],
[27]. Translation is an aspect that deserves more attention.
Translation of technical content based on reduced-context
machine translation techniques is an avenue [29]. Furthermore,
techniques are needed to facilitate reliable translations between
technical content representations, e.g., formalised, technical
content like ontologies, service API and service models [28].

REFERENCES

[1] L. Collins and C. Pahl, ”A service localisation platform,” The Fifth
International Conferences on Advanced Service Computing (Service
Computation 2013), IARIA, pp. 6-12, 2013.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, and I. Stoica, ”’A view of cloud computing,”
Communications of the ACM, vol. 53(4), pp. 50-58, 2010.

[3] W. Voorsluys, J. Broberg, and R. Buyya, "Cloud computing: principles
and paradigms.” Hoboken (NJ), USA: John Wiley and Sons, 2011.

[4] K. Chen and W. Zheng, ”Cloud computing: system instances and current
research,” International Conference on Future Networks, ICEN 10, pp.
88-92, 2010.

[5] P. Fingar, "Cloud computing and the promise of on-demand business
innovation,” InformationWeek, July 13, 2009.

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

22

[6] C. Pahl, ”Cloud service localisation,” European Conference on Service-
Oriented and Cloud Computing (ESOCC 2012), pp. 138-153, 2012.

[71 M.X. Wang, K.Y. Bandara, and C. Pahl, "Process as a service distributed
multi-tenant policy-based process runtime governance,” International
Conference on Services Computing (SCC’10), IEEE, pp. 578-585, 2010.

[8] H. Weigand, W. van den Heuvel, and M. Hiel, "Rule-based service com-
position and service-oriented business rule management,” Proceedings of
the International Workshop on Regulations Modelling and Deployment
(ReMoD’08), pp. 1-12, 2008.

[91 Y. Wu and P. Doshi, "Making BPEL flexible and adapting in the context
of coordination constraints using WS-BPEL,” Intl Conf on Services
Computing, pp. 423 - 430, 2008.

[10] M.X. Wang, K.Y. Bandara, and C. Pahl, "Integrated constraint violation
handling for dynamic service composition,” IEEE Intl Conf on Services
Computing, pp. 168-175, 2009.

[11] G. Creaner and C. Pahl, "Flexible coordination techniques for dynamic
cloud service collaboration,” Adaptive Web Services for Modular and
Reusable Software Development: Tactics and Solutions, J. Cubo and G.
Ortiz, Eds. Hershey (PA), USA: IGI Global, pp. 239-252, 2012.

[12] E.-E. Doberkat,W. Hasselbring, W. Franke, U. Lammers, U. Gutenbeil,
and C. Pahl, ”ProSet - a language for prototyping with sets,” International
Workshop on Rapid System Prototyping, IEEE Press, pp. 235-248, 1992.

[13] C. Pahl, "Dynamic adaptive service architecturetowards coordinated
service composition,” European Conference on Software Architecture
(ECSA’2010), pp. 472-475, 2010.

[14] L. Baresi and S. Guinea, “Self-supervising BPEL processes,” IEEE
Transactions on Software Engineering, vol. 37(2), pp. 247-263, 2011.

[15] K. Fujii and T. Suda, ”Semantics-based context-aware dynamic service
composition,” ACM Transactions on Autonomous and Adaptive Systems,
vol. 4(2), pp. 12-21, 2009.

[16] R. Barrett, L. M. Patcas, C. Pahl, and J. Murphy, "Model driven
distribution pattern design for dynamic Web service compositions,”
International Conference on Web Engineering (ICWE 2006), ACM Press,
pp. 129-136, 2006.

[17] H. Truong and S. Dustdar, ”A survey on context-aware web service
systems,” Intl Journal of Web Information Systems, vol. 5(1), 2009, pp.
5-31.

[18] SOA4All Consortium, ”Service oriented architectures for all,” EU FP7
IST Project, 2012.

[19] 4CaaSt Consortium, “Building the PaaS cloud of the future,” EU FP7
IST Project, 2013.

[20] C. Pahl, S. Giesecke, and W. Hasselbring, ”An ontology-based approach
for modelling architectural styles,” European Conference on Software
Architecture (ECSA’2007), pp. 60-75, 2007.

[21] C. Pahl, S. Giesecke, and W. Hasselbring, “Ontology-based modelling
of architectural styles,” Information and Software Technology, vol. 1(12),
pp. 1739-1749, 2009.

[22] A. Phillips, "Web services and internationalization,” W3C Whitepaper,
2005.

[23] W3C, "Web services internationalization usage scenarios,” W3C Inter-
nationalisation, Working Group Note, 2004.

[24] D. Anastasiou, "The impact of localisation on semantic web standards,”
European Journal of ePractice, vol. 12, pp. 42-52, 2011.

[25] K.Y. Bandara, M.X. Wang, and C. Pahl, "Dynamic integration of context
model constraints in web service processes,” International Software
Engineering Conference (SE’2009), IASTED, 2009.

[26] IBM, “Developing internationalized Web services with WebSphere
Business Integration Server Foundation V5.1,” IBM Developer Technical
Journal, 2010.

[27] C. Pahl, "Layered ontological modelling for Web service-oriented
model-driven architecture,” European Conference on Model-Driven Ar-
chitecture - Foundations and Applications (ECMDA’05), Springer, pp.
88-102, 2005.

[28] J.v. Genabith, "Metaphors, Logic and Type Theory,” Metaphor and
Symbol, vol. 16(1/2), pp. 42-57, 2001.

[29] J.v. Genabith and R. Crouch, "Dynamic and Underspecified Semantics
for LFG,” Semantics and Syntax in Lexical Functional Grammar: The
Resource Logic Approach, Cambridge: USA: MIT Press, pp. 209-260,
1999.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

