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Abstract—Robotics in the 21st century will progress from 

scripted interactions with the physical world, where human 

programming input is the bottleneck in the robot’s ability to 

sense, think and act, to a point where the robotic system is able 

to autonomously generate adaptive representations of its 

surroundings, and further, to implement decisions regarding 

this environment.  A key factor in this development will be the 

ability of the robotic platform to understand its physical space.  

In this paper, we describe a rationale and framework for 

developing spatial understanding in a robotics platform, using 

knowledge representation in the form of a hybrid spatial-

ontological model of the physical world.  Further, we describe 

the proposed CogOnto (cognitive ontology) model, which 

enables symbol grounding for a cognitive computing system, 

using sensor data gathered from diverse and heterogeneous 

sources, associated with humanly crafted symbolic descriptors.   

While such a system may be implemented with classical 

ontologies, we discuss the advantages of non-hierarchical 

modes of knowledge representation, including a conceptual 

link between information processing ontologies and 

contemporary cognitive models.  

 Keywords-Human Robot Interaction; Artificial 

Intelligence; Autonomous Navigation; Knowledge 

Representation; Symbol Grounding; Spatial Ontology. 

 

I. INTRODUCTION 

The process of transitioning away from hard-coded 

robotics applications, which carry out highly pre-determined 

actions such as the traditional manufacturing robot, is 

already well underway.  This paper follows our previous 

work [1] in which we describe a methodology for using 

ontological data representation to encode 3D spatial 

information in robotics applications.  With notions such as 

cloud robotics [2] entering the zeitgeist, and highly 

publicized events such as the Defense Advanced Research 

Projects Agency (DARPA) Robotics Challenge (Dec. 19-21, 

2013, Miami FL) bringing public attention to these 

advances, it is foreseeable that robots will be entering the 

mainstream realm of human activity – more than in fringe 

applications (robotic vacuum cleaner; children’s toys), but 

in key areas such as caring for the aged [3], operating 

vehicles [4], disaster management [5], and undertaking 

autonomous scientific investigation [6]. 

The hurdles that must be overcome in reaching these 

goals, however, are neither few nor small.  This can be 

plainly seen, for example in the aforementioned 2013 

Robotics Challenge, in which simple spatial tasks that are 

routine for a human being (open a door, climb a ladder) are 

still critically difficult for even the most advanced and 

highly funded robotics projects.  While the state-of-the-art is 

impressive, it is evident that physical robotics hardware is 

far in advance of the control systems that are in place to 

guide the robot.  The challenge is, thus, to develop systems 

whereby a robot can perceive a physical space and 

understand its position in that space, the components that 

exist within the space, and how it can or should interact with 

these components in order to achieve implicit or explicit 

goals.  This is furthermore impacted by the requirement that 

robotic systems be able to operate in outdoor environments 

where distributed connections may not be available; 

however, describing the development of long-range data 

networks for robotic communication is beyond the scope of 

this paper.  

While there are a number of ways that the problem of 

providing a robot with a spatial understanding can be 

approached (e.g., neuro-fuzzy reasoning [7], dynamic 

spatial relations via natural language [8]) it is our 

proposition that leveraging the current advancements in 

knowledge representation via ontologies [9][10], in 

combination with an understanding of human spatial-

cognitive processing [11][12], and enabled by real-time 

scene modeling [13]  will provide a powerful and accessible 

methodology for enabling spatial understanding and 

interaction in a mobile robotics platform. As argued by  

Sennersten et al. [14], the advantage of using cloud-based 

repositories of perceptual data annotated with ontology and 

metadata information is to take advantage of humanly-

tagged examples of sense data (e.g., images) to overcome 

the symbol grounding problem. Symbol grounding refers to 

the need for symbolic structures to have valid associations 

with the things in the world that they refer to. Achieving 

symbol grounding is an ongoing challenge for robotics and 

other intelligent systems [15]. Using cloud-based 

annotations attached to sensory exemplars takes advantage 

of the human ability to ground symbols, obviating the need 
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for robots to achieve this independently of human symbolic 

expressions. 

This paper provides a conceptual overview of how 

spatial understanding can be developed in a robotics 

platform.  We discuss traditional knowledge representation 

(classical information processing ontologies), describe the 

development and use of “cognitive” ontologies, and how 

this may be transitioned into the development of a physical-

spatial ontology, including a possible system of 

comprehension for spatial position. Finally, we discuss the 

notion that truly non-hierarchical systems such as complex 

chemical structure, and such as the human cortex, may 

require the development of systems of knowledge 

representation that transcend the structural limits of today’s 

systems.   

 

II. STATE OF THE ART:  KNOWLEDGE 

REPRESENTATION 

The development of specific nomological hierarchies for 

concept representation is currently taking place across many 

fields of academic endeavor (e.g., genetics, medicine, 

neuroscience, biology, chemistry, physics).  Under the guise 

of the philosophical concept of an Ontology, such 

applications seek to outline the knowledge, which exists 

within a domain at three levels of representation: Classes, 

Properties, and Relationships. These nomological 

hierarchies provide a way of describing the precise 

relationship that terms in a given domain have to one 

another. As an information processing construct, the 

definition of an ontology is refined as an “explicit formal 

specification of the terms in the domain and relations among 

them”, or more concisely, “a specification of a 

conceptualization” [16]. 

A system that operates with such knowledge 

representation within its core functionality may be 

considered to be ‘knowledge-based’. A knowledge-based 

system is a computer program that stores knowledge about a 

given domain (also known as an “expert system”, when the 

knowledge is considered to be from a highly specialized 

domain). However, an ontology does not intrinsically 

represent the kinds of truth-functional mappings or 

procedures captured by rules in more complete knowledge 

bases. Hence, an ontology provides classifications and the 

ability to infer associations via subclass/superclass 

relationships. More complex forms of reasoning required for 

most forms of useful cognitive task performance require 

task-oriented rules.  As such, the domain knowledge in a 

knowledge base includes ontology representations, while 

most task-oriented reasoning is achieved by the use of rules 

that refer to ontological constructs in the form of domains 

within rule tuples. 

The system attempts to mimic the reasoning of a human 

specialist by conducting reasoning across rules and in 

reference to a database of atomic facts. Matching sense data 

against metadata/ontology-annotated sense data on the web 

can provide a method of automatically mapping a current 

sensed situation to the annotations of past situations stored 

in the cloud.  This allows the system to retrieve 

representations of the situation in an atomic form, as 

statements formulated using the symbolic forms of 

annotations, which are retrieved by matching against 

associated sense data. Ontologies hold the potential, 

therefore, to provide the constructs for symbolic atomic fact 

expressions that rule-sets can then process for automated 

cognitive task performance. 

 

A.  Cognitive Ontologies 

An increasing number of ontologies are available on-line 

that can potentially support this symbolic structure 

generation process. Knowledge representation via 

ontological structure has been applied to the field of 

cognitive science, both in relation to terminology used 

within the domain (e.g., DOLCE - Descriptive Ontology for 

Linguistic and Cognitive Engineering [17][18]) and for 

concepts relevant to empirical testing paradigms (e.g., 

CogPo [19]).  Indeed, several cognitive ontologies have 

been developed in the recent years, including DOLCE, 

WordNet [20], CYC [21], and CogPo. 

WordNet is an online lexical knowledgebase system, 

whose design is inspired by current psycholinguistic 

theories of human lexical memory, where each cognitive 

artifact can be semantically classified into English nouns, 

verbs, and adjectives, with different meanings and 

relationships in real-world scenarios.  DOLCE is developed 

by Nicola Guarino and his associates at the Laboratory for 

Applied Ontology (LOA) [22].  It captures the ontological 

categories underlying natural language and human common 

sense. DOLCE, however, does not commit to a particularly 

abstract level of concepts that relate to the world (like 

imaginary thoughts); rather, the categories it introduces are 

thought of as cognitive artifacts, which are ultimately 

dependent on human perception, cultural imprints and social 

conventions. 

The Cyc project goal is to build a larger common-sense 

background knowledgebase, which is intended to support 

unforseen future knowledge representation and reasoning 

tasks. The Cyc knowledgebase contains 2.2 million 

assertions (fact and rules) describing more than 250,000 

terms, including nearly 15,000 predicates.   

Finally, the Cognitive Paradigm Ontology (CogPo) is 

developed based on two well-known databases, namely, the 

Functional Imaging Biomedical Informatics Research 

Network (FBIRN) Human Imaging Data base [23] and the 

BrainMap database [24]. The CogPo Ontology has 

categorized each paradigm in terms of (1) the stimulus 

presented to the subjects, (2) the requested instructions, and 
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(3) the returned response. All paradigms are essentially 

comprised of these three orthogonal components, and 

formalizing an ontology around them is a clear and direct 

approach to describing paradigms. This well-formed 

standard ontology guides cognitive experiments in 

formalizing the cognitive knowledge.  

While these ontologies are of great value to the 

community of researchers, and while the knowledge-based 

mapping of concepts within particular domains may enable 

robotic systems to rapidly access the linguistic identity of 

physical objects and their relations within the domain, they 

do not provide a means whereby the robot may become 

spatially aware.  To achieve this goal, we will need to 

provide the robot with the ability to identify the spatial 

characteristics particular to an identified object, and the 

physical relations between these objects and the surrounding 

environment.  A robot requires an internal representation of 

3D space. It could access two dimensional images on the 

web, by content-matching those images with contents of its 

own visual system.  This would aid the robot by enabling 

real-time identification of unfamiliar objects, including 

spatial parameters that may not be immediately visible to 

on-board sensors. The matching process, and especially the 

ongoing 3D interpretation of the images, could be greatly 

aided if the ontology/metadata associated with images 

includes representation of the 3D context of image capture. 

The “ontological” schema of knowledge representation for 

images may provide this means if it is extended to include 

3D spatial annotations.  

 

III. REPRESENTING RELATIONSHIPS IN THREE 

DIMENSIONS:  SPATIAL ONTOLOGIES 

We propose here that this same methodology for 

specifying semantic relationships between concepts (the 

ontological structure of knowledge representation, i.e., 

Classes, Properties, and Relationships) may also be useful in 

specifying spatial relationships between physical objects.  

While a traditional ontology will hierarchically represent a 

concept and its relation to other concepts in a domain, a 

spatial ontology (e.g., Fig. 1) will represent an object, 

(class), its spatial properties including a detailed 3D 

representation in a language such as the X3D XML-based 

file format, and its positional relation (x,y,z) to other objects 

existing within the scene by using the datatype properties.  

An entity (the “individual”) in a prototypical ontology is 

comparable to an entity in a spatial ontology, being an 

object in the physical world.  Class indicates the category, 

into which the individual falls, for example “person”, or 

“boat”.  Attributes traditionally describe the individual – 

features, properties, or characteristics of the object: a person 

has arms; a boat has a hull.  In a spatial ontology this 

information will be appended with configural information 

regarding the object, for example the parent-child node 

relationship of a human body, including torso, appendages, 

etc.  The relation between individuals is where the power of 

the traditional ontology arises, by specifying the precise 

ways, in which different individuals relate to one another 

(e.g., “a catamaran is a subclass of boat”).  Once again, in a 

spatial ontology the relation will be a precise indicator (a 

reference, or an ‘object index’) of the relative positionality 

of items in the physical space, as described in the following 

section.  By thus, leveraging the existing functionality of 

ontological representation, augmented with relevant and 

necessary spatial referencing information, we may develop a 

knowledge-based system that enables a level of spatial 

awareness in a robotic platform. 

   

 
 

Figure 1. Example of a simple spatial ontology 

(Note that the relations between objects are represented via “Data 
Properties” here.) 

 

A. A system of comprehension for spatial position 

Following the above discussion about relationships in 

3D space, we look into how coordinate systems can be 

synchronized for objects whose positions and local 

configurations are non-static. The physical scale 

requirement that a robot needs to have can be measured by 

the accuracy the robot needs to operate in via its navigation 

system. An autonomous robot must be able to determine its 

position in order to be able to navigate and interact with its 

environment correctly (e.g., Dixon and Henlich, 1997 [25]). 

When the Class of “robot” navigates from A to B it is a 

basic motion, which is similar to the movement of an in-

game character via a default keyboard set-up where the key 

“W” moves the character forward, turning left using key 

“A”, turning right using key “D” and go backwards using 

key “Z”. The 3D digital world uses the X, Y, Z coordinate 

system called the Cartesian Coordinate Method (CCM) and 

is expressed in meters (m). To measure distance between 

two spherical points; X¹, Y¹, Z¹ and X², Y², Z² we take the 
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Euclidean distance using a Cartesian version of Pythagoras’ 

Theorem (1). The distance is the sum of their individual 

point differences in square. 

 

         
         

         
   (1) 

 

To determine a position in the physical world and 

navigate the robot in map-referenced terms to a desired 

destination point from A to B, Dixon and Henlich use what 

they call 1) Global Navigation. The positioning accuracy 

with a standard consumer Geographical Positioning System 

(GPS) is accurate within a range of 8 feet, which is 

approximately 284 centimeters.  This does not give high 

fidelity position accuracy.  As such, when the robot has to 

operate in a typical indoor manufacturing environment, it 

needs detailed position support in order to create 3D 

reference points within the space. What Dixon and Henlich 

call 2) Local Navigation is to determine one’s own position 

relative to the objects (stationary or moving) in the 

environment, and to interact with them correctly. If we think 

of Human Robot Interaction (HRI) and the robot arm and its 

gripper(s) (hand/s), the gripper(s) must via eye(s) be able to 

recognize the object it will manipulate and how it shall be 

manipulated. The spatial centre points for individual objects 

are of importance, as well as group of objects and the 

robot’s own centre point in relation to actual manipulation 

centre point for gripper.  From a spatial ontology point of 

view, the centre points have to be able to change 

dynamically depending on interaction purpose. 

For example, the Puma robot arm series has three 

different arms with slightly different sophistication and 

these are Puma 200, Puma 500, and the Puma 700 Series. 

These robot arms execute 3) Personal Navigation [D&H], 

which makes the arm aware of the positioning of the various 

parts, its own positioning, and also in relation to each other 

and in handling objects. The Puma 200 Series has been used 

for absolute positioning accuracy for CT guided stereotactic 

brain surgery [26]. The Puma 200 robot has a relative 

accuracy of 0.05 mm. There are already 3D Spatial Vision 

Systems for robots out on the market, which are driven via 

several cameras. This creates a local world solution for 3D 

vision robot guidance, where the software first makes the 

user calibrate the cameras and the robot, and then loads 

standard Computer Aided Design (CAD) files of parts, 

which the system shall track. 

 

IV. THE 3D WORLD 

The ability to scan a real-world environment makes it 
possible to extract digital information about the physical  
world, and the way in which it functions. Three dimensional 
perception is a key technology for robotics applications 
where obstacle detection, mapping and localization are core 
capabilities for operating in unstructured environments. 

Laser scanning creates a surface point cloud of a 3D physical 
environment [34] making it possible to map any environment 
in a rather short time (the Leaning Tower of Pisa was 
scanned in 20 minutes). This technology can be used in a 
robotic intelligence system for Simultaneous Localization 
Mapping (SLAM) and higher level reasoning regarding 
location and position. However, object recognition and 
manipulation requires deriving 3D object information from 
the overall point cloud and building cognitive models with 
task reasoning for using object and scene data in real time.     

Object extraction [35][36][37] makes it possible to know 
what a robot is looking at, supporting manipulation or 
collection actions. This can be achieved by an Environmental 
Scanning-Object Extraction (ES-OE) engine. For human-
robot collaboration, a robot can be enabled to use deictic 
visual references from human gaze by integrating an eye 
tracker with the ES-OE engine.  

A. Background 

In a previous work [38], a 3D simulation engine was 
integrated with an eye tracker. The integrated system allows 
the human point of gaze on 3D objects within a 3D digital 
world projected onto a computer screen to be tracked 
automatically. This development made it possible to log gaze 
in various task-related environments in a simulated world. 
From a Human Factor’s perspective, the simulation and 
human observation can be investigated, including 
collaborative actions performed by groups with various 
workloads, stressors and decisions. There have been several 
studies made using the technological framework with 
different stimuli [39][40][41], but no substantial theoretical 
framework has been developed in relation to this object-
based approach per se. A bottleneck in relation to this visual 
approach has been that 2D image, film and visual stimuli 
have not met the requirements for incorporating a 
knowledge-based approach for dynamic 3D worlds, whether 
the real physical world or a digitized 3D world. The object 
approach needs to address how both modeled and real world 
objects can be perceived and manipulated [42] by a robot, 
allowing the system to sense, think and act in real time: the 
computer needs to understand how to define an object and 
how to ontologically and semantically make sense out of 
such an object in a dynamic spatial world. 

1) 3D objects in a 3D world 
In [38], a simulation engine integrated with an eye 

tracker took a gaze fixation (x and y screen coordinates) and 
ray casted/traced from that position onto the underlying 3D 
virtual object’s collision box, a volume corresponding with 
the shape of a virtual object as recognized and processed by 
a physics engine that is also used to designate objects by 
interface devices, like a mouse. This made it possible to track 
gazed objects in real time every 17 ms (using a 60Hz eye 
tracker). The same principle can be used in a physical world 
context where an ES-OE engine could be integrated with eye 
tracking glasses to allow a computational system to know 
what object a person wearing the glasses is looking at. 
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2) Structuring a noisy world 
The 3D world scenario, simulated or physically real, 

constitutes an event or scene. A scenario includes objects 
that are instances of their classes. A class could be something 
like a CarClass, HumanClass, FlowerClass, etc. 

In a constrained world, we can name all objects 
beforehand so when they are logged we know what they are 

and what position (x, y, z, 1, 2, 3) they are in. In an 
unconstrained environment that is scanned and has extracted 
objects, we must also have a capability to know what the 
objects are and to be able to classify them. A cloud-based 
approach of the kind proposed in this paper presents a middle 
ground, being more open than a highly constrained 
environment, but still being limited to objects of types that 
are represented and labeled within the cloud. 

 

V. INTELLIGENT ACTION IN A STRUCTURED 

WORLD  

Knowledge by definition is “1. Facts, information, and 
skills acquired through experience or education; the 
theoretical or practical understanding of a subject and 2. 
Awareness or familiarity gained by experience of a fact or 
situation” [43]. To gain an understanding of how robots 
might learn and operate on knowledge, we have looked at 
several established models that can fit within an initial 
architecture that enhances these established models by the 
ingestion of information from the web.  Our overall aim is to 
build a computational comprehension system for 3D object 
information, assisted by a hybrid computational ontology 
(i.e., combining several existing and new ontologies). 

A. Existing Models 

Extensive effort has been put into the task of 
understanding and attempting to re-create/simulate the 
processes, by which a human being thinks. Using the 
underlying assumption that intelligence is wholly “the simple 
accrual and tuning of many small units of knowledge” [44], 
production-based models of cognition have had success in 
displaying human-like performance on a number of tasks 
(e.g., visual search [45] and natural language processing 
[46]). While there are debates regarding the similarity of 
what humans actually do to what we have achieved using the 
above assumption [47], there is little doubt that such systems 
can produce intelligent-seeming behavior, which can 
facilitate the development of vitally useful control structures 
in the field of robotics and computational intelligence [46]. 

One of the most influential models of human cognition is 
the ACT-R, or “Adaptive Character of Thought – Rational” 
model [44], developed over many years by John Anderson, 
who was a student of the seminal Cognitive Scientist Alan 
Newell (1927-1992). Anderson’s model is a hybrid 
symbolic/sub-symbolic system that incorporates various 
“modules” that are deemed necessary for rational behavior, 
and are thought to have biological correlates.  These include 
the modules Declarative (manages creation, storage and 
activation of memory “chunks”), Procedural (stores and 

executes productions based on expected utility), 
Intentional/Imaginal (goal formulation for directed 
behavior), and Visual (2D)/Audio (theoretically plausible 
implementation of visual and auditory perception), see Fig. 
2. An internal pattern-matching function searches for a 
production that matches the current state of the buffers. 

 

 
 

Figure 2. A schematic representation of the canonical ACT-R cognitive 
model. 

 
ACT-R is formed as a knowledge model where the 

“chunks” are the elements of declarative knowledge in the 
ACT-R theory and are used to communicate information 
between modules through the buffers. A chunk is defined by 
its chunk type, that is described by its slots (here compared 
with properties), see Table I. Chunk types can be organized 
as a hierarchy of parent (SuperType)-child (SubType) 
relationships. The subtype will inherit all of the slots 
(properties) of the parent node(s).  

Other models that take a similar symbolic approach to 
model human cognition include Soar [48], EPIC (Executive-
Process/Interactive Control) [49], CLARION (Connectionist 
Learning with Adaptive Rule Induction On-line) [50], and 
others (for a detailed review see [51]). While these have been 
successful to varying degrees at modeling specific human 
cognitive task(s) performance, it is becoming evident that 
such models are intrinsically limited by their disconnection 
from the real world, in which humans (or robots) operate. A 
production based system is only as adaptive as its rule set 
allows given the inputs provided to it, which have generally 
been limited to “screen as eye” and “keyboard/mouse as 
hands” mappings.  A new wave of thought surrounding the 
development of cognitive models is embracing the need for 
“embodied” cognition, improving the ability of the system to 
sense and act.  One example of this is the ACT-R/E (“E” for 
“Embodied”) framework, used as an operating system for 
mobile robotics developed by the American Naval Research 
Lab [52], depicted in Fig. 3. 
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Figure 3. The “embodied” (Visual 3D) modifications introduced by Trafton 

et al. 2012.  Additions in the ACT-R/E are highlighted in red. 
 

The Object-Attribute-Relation (OAR) model of Wang, 
2007 [53], specifies the elements of a cognitive model in the 
fashion of an ontology, the logical model of memory.  In an 
attempt to formally describe the mechanism of human Long 
Term Memory (LTM), which he states is the “foundation of 
all forms of natural intelligence” (p. 66), Wang decomposes 
the construct into three elemental components – Objects, 
Attributes and Relations (OAR). This OAR model allows the 
computational specification of the human LTM formation 
and storage process, and is put forth as having sufficient 
explanatory power as to describe the “mental process and 
cognitive mechanisms of learning and knowledge 
representation” (p.72). This model has a strong parallel with 
the specification of knowledge in information processing 
ontologies. This parallel is direct, as described by the 
relations given in Table I. 

 

TABLE I.  COMPARISON OF MODEL TYPE CONSTRUCTS 

 
 
 
 
 
 
 
 

A critical issue for any of these kinds of models is the 
relationship of their constructs to the environments, in which 
they are expected to provide foundations for action. The core 
notion of embodiment is to provide the heretofore 
functionally “disembodied” computational model with 
sensors and effectors that allow its direct interaction with the 
physical world. In such a way, the inherent limitation of 

human-defined input may be overcome. In addition to 
physical sensory perception and manipulative ability, a 
human may have access to a detailed semantic understanding 
of the surrounding world.  In the quest to produce a non-
human intelligent actor within a physical space, we must 
provide the actor with an understanding of underlying 
structures, i.e., specific denotations in the physical world. 

 

VI. PROPOSED MODEL 

In the CogOnto model, we propose a further 
augmentation of the cognitive models discussed above, 
providing the robot with detailed 3D schematic 
representations of objects that it encounters in real time, 
supported via task models, knowledge models and 
ontologies. 

The CogOnto model is composed of five parts     
<Si,Ci,Ai,Oi,Ri> , where i = 1.. N, and where  Si  is a finite set 

of situations,  Ci is a finite set of classes, Ai is a finite set of 
attributes for characterizing a class, Oi is a finite set of 
objects in a class, and Ri is a finite set of relationships among 
the objects.  In the CogOnto model (Fig. 4), we consider the 
following features [54][56]: 

 Situation: represents an interactive (i.e., dynamic) 

real world scenario.  

 ConceptNet: is a network of class-to-class 

relationships applicable in a given situation. 

 ObjectNet: an object is an instance of a class. 

ObjectNet is a network of object-to-object 

relationships. 

 AttributeNet: is a network between properties of 

classes and objects. 

 Relation: is a function associating concepts, 

classes, objects and attributes; e.g., a robot is part-

of an Intelligent Agent (IA), were the “part-of” 

relation connects two concepts. The relations 

(associations) may be modeled or created by an 

autonomous learning process. 

These constructs are not defined in detail here, but 
unlike the other models are not limited to textual/linguistic 
meanings. The CogOnto model illustrated in Fig. 4 has four 
major functional elements that share information: 1) the ES-
OE engine, 2) the eye tracking system interconnected with 
the ES-OE engine, 3) the OAR model functioning as the 
basis of the Cognitive System, and 4) the knowledge cloud, 
including external resources such as WordNet or Cyc. The 
latter is also called the Linked Open Data  and may be used 
to illustrate the intelligent process for sharing and exposing 
information in machine readable form by using uniform 
resource identifiers based on Berners-Lee’s [55][56] 
principles. These principles enable data communication 
guiding perception from procedural memory. 

The knowledge system of the CogOnto model can be 
perceived as a storage system that accesses real world object 
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information and external semantic resource information via 
the existing knowledge cloud [57]. 

 

 
Figure 4. The CogOnto model and its operative states.  The relations are 
build up for the current scene via object gaze tracking, and past stored 

scenes using a match function. 

 
The knowledge system represents the integration of 

formal symbolic and free text descriptors of an object.  
 

VII. INTEGRATING SEMANTIC WEB CONCEPTS, 

TECHNOLOGIES AND RESOURCES 

CogOnto integrates its own knowledge resources with 
external resources accessible via the web. For example, 
WordNet is a lexical database where nouns, verbs, adjectives 
and adverbs are grouped into sets of cognitive synonyms 
(synsets). To recall an object, the ‘synsets (WordNet 2.1)’ 
[58] and the W3C [59] standard can be used at a text level, to 
describe what an object is when it is text-labeled. Ontologies 
can be expressed by using Semantic Web tools, e.g., Web 
Ontology Language (OWL) [60] and the Resource 
description framework Schema (RDFS) [61]. 

 The OAR model, with its Object, Attribute and Relation 
parts, and the ontological framework, containing 
Class/Instance, Relationship and Properties, can be inter-
mapped so the object world can be comprehended using 
existing resources and using the 3D information represented 
internally within an object model. The 3D object’s internal 
structure and shape can either be structured as Free Form 
Geometry (FFG) with surfaces and curves, or as Polygonal 

Geometry (PG) with points, lines and faces. The objects can 
be extracted and exported into different file formats, such as, 
e.g., .obj files, .stl files. The .stl file format is a triangular 
representation of a 3D object, where each triangle is uniquely 
defined by its normal and three points representing its 
vertices. The format is native to the stereolithography 
Computer Aided Design (CAD) software created by 3D 
Systems (in this kind of format it is also possible to print the 
object out from a 3D printing machine).   

The 3D object file contains different layers cognitively 
(form, volume, size, other descriptive attributes, etc.), 
supporting our senses and perception operating in parallel 
when performing allocated manipulation tasks. A human 
looking at an object can relate to the object both on a 
denotative- and on a connotative level. The denotative level 
is understood as a pure noun level without any cultural 
associations, nor any emotional or associative signifiers to 
the object, it is purely instrumental. The connotative layer is, 
on the other hand, the level of cultural and personal 
associations attached to an object with experience over time.  
Geometrical information within the 3D object can be 
represented using the X3D XML-based file format, an ISO 
standard for representing 3D computer graphics.  

 

VIII. BEYOND ONTOLOGIES – COMPLEX 

RELATIONSHIPS, AND ALTERNATIVES TO 

HEIRARCHICAL DATA REPRESENTATION 

 

As we move from relatively canonical data sets, for 

which the information processing ontology was designed 

(i.e., semantic relations within a particular knowledge base) 

to more complex relationships (such as ad-hoc physical 

relations), in which the hierarchical order is not nearly so 

explicit, or potentially non-existent, will the classical 

ontology suffice?  Or alternately, will something more 

adaptive need to take its place?  Because relationships in the 

physical world are multifaceted and multidirectional, it is 

useful to have a schema that can represent this 

interconnectedness.  The key strength of an ontology is that 

it provides a concrete nomological environment, from which 

to operate within the chosen domain.  Table II summarizes 

the traditional information processing ontology. 

 
TABLE II. TRADITIONAL ONTOLOGY CHARACTERISTICS 

 

- allows a common understanding of the structure of information 
- enables reuse of domain knowledge 
- makes domain assumptions explicit 
- separates domain knowledge from operational knowledge 
- defines a common vocabulary for researchers 
- provides machine readable definitions of basic concepts and the 
relationships among them 

 

However, there are instances (albeit few as of this 

writing), in which it is being recognized that the intrinsic 

limitations of the “ontology” such it is commonly 
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understood in 2014, (e.g., OWL-based) are sufficient as to 

demand a modification whereby the innate complexities of  

real-world phenomenon may be modeled.  That is: complex, 

potentially non-hierarchical relationships. 

For example, it has been noted in the field of chemical 

molecular informatics that while ontologies are able to 

represent tree-like structures, they are unable to represent 

cyclical or polycyclical structures [27].  Similarly, the 

difficulty in building classifications of nano-particles has led 

some researchers to begin to look into taxonomies based on 

“physical / chemical / clinical / toxic / spatial” 

characteristics of an object, supplemented by structural 

information, in order to account for shapes, forms and 

volumes [28].  Other examples of representing complex 

structural relations that stretch the boundaries of ontological 

representation include using Description Graph Logic 

Programs (DGLP) to represent objects with arbitrarily 

connected parts [29], and a hybrid formalism whereby the 

authors propose a “combination of monadic second order 

logic and ordinary OWL”, where the two representations are 

bridged using a “heterogeneous logical connection 

framework” [30].  

It is evident that the potential applications of a 

formalism such as the ontological method of information 

representation far outreach the initial conceptualizations of 

the language. While it may be possible to model 3D spatial 

information within the constraints of a hierarchical 

ontology, it is also to be considered that this notion, as well 

as applications such as those described above, may require 

the development of progressive, flexible alternatives, which 

capture the strengths of the ontology (i.e., the points from 

Table II), while managing to represent arbitrary or non-

hierarchical relationships. 

 

A. Cognitive Models and Ontologies 

One information system where a non-hierarchical 

organization may be necessary, when attempting to map the 

internal structural relations, is the human brain.  For more 

than half a century, researchers across many fields (e.g., 

Cognitive Psychology, Neuroscience, Cognitive Science) 

have been using models to posit and test hypothetical 

interpretations of how the human brain is structured.  These 

range from the very simple (e.g., Baddely’s working 

memory model, [31]) to complex neurological models (e.g., 

[32]), though no current model has even begun to approach 

the actual complexity of the human brain.  On a neuronal 

level, and certainly even on a functional level such as 

between brain regions, this is a non-hierarchical system.  It 

is once again remarkable that, at a superficial level, the 

development of ontologies draws a strong parallel with 

theoretical interpretations of how the human cognitive 

system might be structured (refer back to Table I).  This 

relation is further discussed in Sennersten et al. [13]. 

In OAR (Object, Attribute, Relation), Wong [10] 

develops a model that most certainly shares conceptual roots 

with ontological knowledge representation.  Likewise, 

parallels may be drawn with Anderson’s ACT-R model [11] 

and Trafton’s “embodied” version [32] ACT-R/E.  In each 

model, Objects in the real world possess characteristics (i.e., 

attributes, or properties) and also relations with one 

another.  If we can augment these heretofore largely 

semantic components with a functional representation of 3D 

space (e.g., at the 3 levels Global, Local, and Personal), we 

may have the fundaments of a system of Spatial 

Understanding for a robotic platform.   

 

IX. CONCLUSION AND FUTURE WORK 

The CogOnto model with support from the technological 
implementation of the eye tracker system with the ES-OE 
engine can represent cognitive relations that can be 
processed by a robot operating in a spatial world [62].    

Formal knowledge structures within CogOnto face 
similar challenges to other knowledge representation 
formalisms, and this paper has shown isomorphism with a 
number of examples. However, the primary advance 
proposed is to use cloud-based resources that are not limited 
to formal representations to enhance the robustness of 
knowledge processing by the integration of similarity-based 
search. Those cloud-based resources may use text and 
images. But more interesting extensions for future work 
include new forms of cloud content, such as multi-spectral 
images, point clouds and behavior tracks. The main ongoing 
research challenge is to provide suitable similarity metrics 
for these data forms, integrating search results with formal 
structures, and developing methods for integrating them in 
unified search, or meta-search, results.  

One of the few certainties regarding the immediate 

future is that robotic control technology will advance from 

systems that are coded for specific applications, to systems 

that are designed with an innate adaptability to unexpected 

environmental situations.  This will require new methods of 

providing on-the-fly relational information to the robot, in 

order for it to gain an understanding of both its spatial 

position, and the position of other objects in the vicinity, 

their characteristics, and the ways that it can relate to them.  

A reworking of the traditional OWL-based ontology, with 

an eye for 3-dimensional spatial relations on 1) Global, 2) 

Local, and 3) Personal levels of specificity may be sufficient 

to this end. 

It is also noted that as data sets become more complex, 

and especially as we begin to consider that most complex of 

biological control systems, the human cognitive system, it 

may very well become necessary to develop hybrid 

ontological-type systems of knowledge representation, 

which 1) encompass the full realm of advantages provided 

by the use of specific nomologial hierarchies, and 2) enable 

the encoding of arbitrary or non-hierarchical relationships. 
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The development knowledge-based systems that can 

account for abstract, non-hierarchical relations could 

potentially facilitate the next generation of spatially aware 

robotics applications. 
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