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Abstract—This paper is devoted to the analytical investigations of
transversal vibrations of beams, which exhibit discrete, viscoelas-
tic, rotational and translational supports. The special structure
of the beam models is caused by the consideration of animal
vibrissae. Vibrissae are tactile hairs (of a tactile sense organ),
which complement the audible and visual sense. There exist
different types of these tactile hairs, where we do not want to
distinguish the various types, because the tenor of our investiga-
tions is from biomimetics and bionics. Rather, we are interested
in the special design of a vibrissa from the mechanical point of
view. In contrast to many works from literature, which focus on
(quasi-) static bending investigations, we try to investigate and
to determine the effects of the special design of a vibrissa (e.g.,
viscoelastic supports due to the follicle sine complex and due to
the skin) on the dynamic behavior, especially on the spectrum of
(natural) frequencies. The knowledge of dynamical characteristics
is important for the design of artificial sensors. We present
various beams with different supports (clamped and pivoted with
discrete viscoelastic couplings), which are to model the biological
tissues. This is new in literature and is different from existing
researches. We focus on investigations of the natural frequency
spectra of various systems. A close examination of vibrissa-like
beam models with boundary damping exhibits features that are
unlike in comparison to classical vibration systems.

Keywords–Bending beam vibrations; boundary damping; natu-
ral frequency; bio-inspired sensor; vibrissa.

I. INTRODUCTION & MOTIVATION

This paper contributes to the development of intelligent
tactile sensors and extends the results in the INTELLI 2014
paper [1]. There is a great interest in tactile sensors, since they
have advantages in contrast to other sensor types. They are
superior to optical sensors as in noisy environments (e.g., dark,
murky water or in smoky air), and also cheaper in manufacture
and use.

In the technical development, engineers often use
biological systems as an inspiration. A tactile sensor system,
which attracted attention in recent years, is the animal vibrissa
found on, e.g., rats and mice. These hair-like sensors serve
for the exploration of the environment, the animals use them,
e.g., to detect outer objects, to distinguish between different
surfaces, or to recognize surface textures, respectively.

For the functional understanding and analytical investi-
gations, there are already various mechanical models for a

vibrissa to explain the technical acquisition of information. In
contrast to various works from literature [2] [3] [4] [5] [6], we
focus on investigations of the vibrissa dynamics in this paper.
For this, we utilize the classical Euler-Bernoulli beam, which
is often used to analyze systems in technical disciplines like
automotive engineering (e.g., power train vibration) and mi-
crosystems technologies (e.g., cantilever vibration). In recent
years, this classical model is used to model and to understand
effects of vibrissa sensor systems in biomechanics [7]. This is
also the background of the work presented in the paper. Due to
the biological paragon, we set up various mechanical models
and analyze them in an analytical and numerical way.

The scope of the present paper is to contribute to the
mechanical modeling of a technical vibrissa as tactile sensors
for the distance detection. In later application of object local-
ization and distance detection, we try to determine the natural
frequency spectrum due to an obstacle contact (modeled as a
sudden bearing to the beam, hence, sudden change of boundary
conditions) and its shift (compared to the scenario of no
contact) to calculate the distance of the obstacle to the base of
the artificial vibrissa, see also [8] and [9].

But, in contrast to literature, we incorporate spring and
damping elements as in [1], representing the biological tissue
of animal skin and support of the vibrissa. This is rarely done
in literature. Hence, we extend the results in [10].

For this, we start an introduction to the biological paragon,
describing its functionality, presenting the state of art in mod-
eling of hair-like sensor systems, and introduce the analytical
treatment of transverse vibrations of beams due to [11] in the
following and present the investigations of various vibrissa
models.

II. THE PARAGON FROM BIOLOGY: VIBRISSAE

A paragon of (biological and artificial) tactile sensor sys-
tems is the animal vibrissae. Vibrissae are tactile hairs, can be
found on, e.g., mice and rats, and complement the audible
and visual sense. Mice and rats use their vibrissae (in the
mystacial pad) to acquire information about their surroundings.
The vibrissa itself (made of dead material) is mainly used as
a lever for the force transmission. But, in contrast to ordinary
hairs, vibrissae are stiffer and have a (assumed hollow) conical
shape [12]. The mystacial vibrissae are arranged in an array
of columns and rows around the snout, see Figure 1.
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Figure 1. Schematic drawing of the mystacial pad, [12].

Each vibrissa is embedded in and supported by its own
follicle-sinus complex (FSC). The FSC is characterized by its
exceptional arrangement of blood vessels, neural connections
and muscles. It is presumed that the rodents can control the
viscoelastic properties of the vibrissa’s support by regulating
the blood supply to the sinus (like a blood sac) [13]. The
functionality of these vibrissae vary from animal to animal
and is best developed in rodents, especially in mice and rats
[14]. The detection of contact forces is made possible by
the pressure-sensitive mechanoreceptors in the support of the
vibrissa (i.e., FSC). These mechanoreceptors are stimulated
due to the vibrissa displacements in the FSC. The nerves
transmit the information through several processing units to
the Central Nervous System (CNS). The receptor cells offer
the fundamental principle ‘adaptation’ [15] [16] [17] [18]. The
muscle-system, see Figure 2 (adapted from [13] [19] [20] [21])
enables the rodents to use their vibrissae in two different ways
(modes of operation):

• In the passive mode, the vibrissae are being deflected
by external forces (e.g., wind). They return to their
rest position passively — thus without any muscle
activation, just via the fibrous band.

• In the active mode, the vibrissae are swung back-
and forward by alternate contractions of the intrinsic
and extrinsic muscles (with different frequencies and
amplitudes). By adjusting the frequency and amplitude
of the oscillations, the rodents are able to investigate
object surfaces and shapes amazingly fast and with
high precision [22].

Vibrissae

skin (Corium)

extrinsic muscle

(M. nasolabialis)

�brous band, connecting 

bases of hair follicles

intrinsic muscles

hair follicles

rostral (anterior)

Figure 2. Schematic drawing of neighboring mystacial follicles [16].

Therefore, this biological sensor system is highly
interesting for applications in the field of autonomous
robotics, since tactile sensors can offer reliable information,
where conventional sensors fail.

But, how the animals convert these multiple contacts with
single objects into coherent information about their surround-
ings is still unclear. And it is not of main interest from
our point of view: the tenor of our investigations is from
bionics. The main focus is not on “copying” the solution from
biology/animality, rather on detecting the main features, func-
tionality and algorithms of the considered biological systems to
implement them in (here: mechanical) models and to develop
ideas for prototypes. We have to proceed in several steps,
where step 1 to step 4 are usually of iterative manner, [18]:

1. analyzing live biological systems, e.g., here tactile hair
system,

2. quantifying the mechanical and environmental be-
havior: identifying and quantifying mechanosensitive
responses (e.g., pressure, vibrations) and their mech-
anisms as adaptation,

3. modeling live paradigms with those basic features
developed before,

4. exploiting corresponding mathematical models in or-
der to understand details of internal processes and,

5. coming to artificial prototypes (e.g., sensors in
robotics), which exhibit features of the real paradigms.

Therefore, we present the state of art in modeling such
sensor systems in the following.

Starting point and motivation of the following investiga-
tions are multiple hypotheses concerning the functionality of
the vibrissa:

• The elasticity and the conical shape of the hair are
relevant for the functionality of the vibrissa [2].

• The viscoelastic properties of the support (see the
FSC) are controlled by the blood pressure in the blood
sinus [13] [23].

• The vibrissae are excited with or close to their reso-
nance frequencies during the active mode [24] [25].

Following these hypotheses, the primary tasks now are:

• to investigate the influence of elasticity and conical
shape on the vibration characteristics of the vibrissa
by analyzing its natural frequency spectrum;

• to analytically examine innovative models of a flexible
vibrissa with a viscoelastic support, which fit the real
object and its support better than models in literature.

III. STATE OF ART IN MODELING HAIR-LIKE SENSORS

An intensive literature overview of technical vibrissa mod-
els has been given in [16].

In the majority of papers found in literature, the devel-
opment of innovative technical whiskers was poorly based
on mechanical models of the vibrissa. In order to analyze
the mechanical and especially the dynamical behavior of the
vibrissa, the physical principles of the paradigm have to be
identified. Therefore, abstract technical models, which describe
the biological example in detail and are suitable to be analyzed
using engineering and scientific methods, are sought.

Usually, two types of models are used to analyze the
mechanical behavior of the vibrissa:
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• Rigid body models form the vibrissa as a stiff, inelastic
body. Such models have the advantage of a simple
mathematical description and solution. Furthermore,
these models can easily be used to analyze the influ-
ence of varying viscoelastic supports. However, ne-
glecting the inherent elasticity of the vibrissa implies
a questionable oversimplification of the biological
example.

• Continuum models are closer to the biological
paradigm, as the tactile hair is implemented as an
elastic beam. They are thus able to take the inherent
dynamical behavior and the bending stiffness of the
biological vibrissa into account.

Some approaches to the modeling of the biological paragon
vibrissa use rigid body models, in which a rod-like vibrissa is
supported by a combination of spring and damping elements
modeling the viscoelastic properties of the follicle-sinus com-
plex. However, all the rigid body models can only offer limited
information about the functionality of the biological sensory
system. Therefore, we focus on continuum models and deal
with bending problems of continuous beam systems. In the
following, we summarize the relevant models of [16] without
any valuation:

• Birdwell et al. analyzed the bending behavior in [2].
They set up a simple model, which is analyzed in a
linearly way, i.e., the investigations are only valid for
small deflections. An important feature therein was
the incorporation of the conical shape to the bending
behavior. They stated that this fact from biology is not
negligible. Moreover, they found out that the Young’s
modulus of natural vibrissae varies, but they were
still neglecting the support’s compliance. Further on,
they determined the clamping torques for a vibrissa
model, which is only valid for small deflection. In this
context, they found out that influence of the natural
pre-curvature of the vibrissa is negligible, which is
rather obvious from the mechanical point of view.

• Scholz and Rahn set up a model for profile sensing
with an actuated vibrissa in [26]. They realized an
active mode of a vibrissa, scanned various obstacle
contours and reconstructed the shape in the following
way: the one-sided clamped vibrissa was moved along
an object, the clamping reaction were measured and
then used for a numerical integration method the
determine the shape of the deflected vibrissae, which
form a envelope of the object. These results were
improved from, first, a fully analytical way in [5]
and then, secondly, in [6] were the authors present a
reconstruction algorithm, which uses noise corrupted
measurement data to reconstruct the object shape. A
test rig for a experimental verification is presented
in [26] and [27]. All these works focussed a one-
sided clamped technical vibrissa where the support’s
compliance is also neglected.

• The groups of Neimark et al. [24] and Andermann
et al. [25] set up a model for the determination of
the support’s influence on the resonance properties
of natural vibrissae. The present experimental mea-
surements of vibrissae’s resonance frequencies (with
dubious results during numerical evaluations, because

a constant Young’s modulus is used for all vibrissae.
Their finding was a massive influence of the support
on the resonance frequencies. Furthermore, they de-
termined only of the first frequencies of the vibrissae.
Analyzing the transduction and processing of the
frequency provoked stimuli to the CNS, hence the
resonance frequencies contain relevant information.

Most of the models in literature, in particular the rigid body
models, are just results of anatomic investigations. They do not
directly aim at bionic applications. Further on, some models
are very exact, but too complex to gain deeper insight the
system to identify the essential mechanical elements.

On the other hand, in particular, concerning continuum
beam models, the level of mathematical investigations is rather
low:

• linear bending theory with very simple conclusions,
• mixing of linear and nonlinear theories, and
• using boundary-value problems (BVP, the describing

partial differential equation in combination with the
boundary conditions of the analyzed model), which
do not match the real objects sufficiently.

This was the reason that we started to investigate bending
beam vibrations of technical vibrissae exhibiting a support
compliance. First models were analyzed in [16] and presented
in [1]. Focussing on our tenor and in order to do the inves-
tigations in an analytical way, we neglect the conical shape
with respect to the complex structure of the arising partial
differential equation. We focus on cylindrical beams.

First models with various elastic supports are presented in
Figures 3 and 4.

Figure 3. Pivoted vibrissa beam model with modeled skin support (one level
of elasticity), [16].

Figure 4. Pivoted vibrissa beam model with two levels of elasticity (FSC
and skin), [16].
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These models present a cylindrical pivoted beam with
various elastics couplings (modeling the compliance of the
FSC and skin). The arising BVP could be treated analytically
in parts. But, the ‘pivot’ is at the base, this does not match
reality.

Therefore, consider the model in Figure 5. The pivot is
shifted, but the system is still undamped. Finally, we developed
the model given in Figure 6.

Figure 5. Undamped vibrissa beam model with modeled skin and FSC
support, [16].

Figure 6. Damped vibrissa beam model with modeled skin and FSC support,
[16].

In [1], we summarized for these models
⊖ Neglecting the conical shape of the vibrissa
⊕ Consideration of the support’s compliance

· at skin level
· at the level of the FSC

⊕ Finding: massive influence of the support on the
natural frequencies

⊕ Finding: influence of damping elements in the support
↪→ massive for the 1st natural frequency
↪→ but: unlike behavior of the natural frequencies

(increasing frequencies if the system is damped,
this contradicts the classical assertions)

IV. GOAL AND ARRANGEMENT OF THE FOLLOWING
WORK

As mentioned above, we try to make the vibrissa models
more realistic to the biological paradigm, but not too complex
as the models in Figures 3 to 6. We present various approaches
to implement and to determine the basic features of animal
vibrissae as mentioned in Section II. Here, we will focus on

the mechanical properties and the dynamic behavior of the
vibrissa beam models. The processing of the stimulus and the
corresponding analysis of different control strategies are not
discussed here. Furthermore, the investigations are addressed
to a single vibrissa – the interaction between the different
vibrissae in the mystacial pad is not taken into account. We
just want to investigate the unlike behavior of the natural
frequencies of these technical vibrissa as pointed out above.

To do this, we start with the classical differential equation
for small bending vibrations of beams (linear Euler-Bernoulli
theory) in the next Section V. We end up that section with an
illustrating example in deriving the frequency spectrum.

Then, we set up and analyze various vibrissa beam models
with different supports using discrete and continuously dis-
tributed spring and damping elements to mimic tissues of FSC
and skin in Sections VI, VII and VIII. Following [24], we
focus on the determination of the natural frequency spectrum
of such beams analytically and numerically, while varying the
viscoelastic properties of the support to check if some unlike
behavior of the spectrum occurs. We will not focus on static
bending problems in the following.

V. INTRODUCTION TO TRANSVERSAL VIBRATIONS OF
BEAMS

The classical differential equation for small bending vibra-
tions of beams (linear Euler-Bernoulli theory) is the basis of
the investigations. Let us start with the following example: a
one-sided clamped beam with elastic support (spring stiffness
c) at the end, see Figure 7. The beam has length L, Young’s
modulus E, density ϱ, constant cross section area A and second
moment of area Iz . We are seeking for the first five natural
frequencies.

x
y

z
E, I , , A, LZ r

v(x,t)

c

Figure 7. One-sided clamped beam with elastic end support.

Remark V.1. We focus on the first five natural frequencies of
the spectrum because of

1. mathematical reasons: the first three to five natural
frequencies will form a good approximation basis of
the Fourier series of the solution made by the method
of separation of variables; and

2. physical meanings – higher natural frequencies are
too large, whereas only lower ones are perceptible by
means of tactile sense.

The well-known equation of motion for free vibrations of
a beam with small deformations, as in Figure 7, is [11]:

v̈(x, t) + k4 v
′′′′
(x, t) = 0 , with k4 :=

E Iz
ϱA

, (1)

where the function v(x, t) describes the vertical displacement
at point x and at time t.

The partial differential equation (PDE) (1) and the follow-
ing boundary conditions
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j1 : v(0, t) = 0 ∀ t ≥ 0j2 : v′(0, t) = 0 ∀ t ≥ 0j3 : v′′(L, t) = 0 ∀ t ≥ 0j4 : v′′′(L, t)E Iz − c v(L, t) = 0 ∀ t ≥ 0
form a BVP.

Now, we apply the method of separation of variables, i.e.,
we are seeking for special solutions of structure

v(x, t) = X(x) · T (t) ∀ (x, t) . (2)

Substitution into (1) yields two ordinary differential equa-
tions (ODEs)

T̈ (t)

T (t)
= −µ2 , (3)

−k4
X ′′′′(x)

X(x)
= −µ2 . (4)

The general solution of (3) is

T (t) = B1 e
i µ t +B2 e

−i µ t , B1, B2 ∈ C . (5)

The solution of (4) is:

X(x) = C1 cos (λx) + C2 sin (λx)

+ C3 cosh (λx) + C4 sinh (λx) . (6)

with C1, C2, C3, C4 ∈ C and

λ4 := µ2

k4 , k4 := E Iz
ϱA . (7)

This shape solution (6) together with the formulated four
boundary conditions form an eigenvalue problem (EVP) in
the following. We get ∀ t ≥ 0

j1 T (t) (C1 + C3) = 0j2 T (t)λ (C2 + C4) = 0j3 T (t)λ2
(
− C1 cos(λL)− C2 sin(λL)

+C3 cosh(λL) + C4 sinh(λL)
)
= 0j4 E Iz T (t)λ

3
(
C1 sin(λL)− C2 cos(λL)

+C3 sinh(λL) + C4 cosh(λL)
)

−c T (t)
(
C1 cos(λL) + C2 sin(λL)

+C3 cosh(λL) + C4 sinh(λL)
)
= 0

T (t) drops and a system of homogenous linear equations
results with a coefficient matrix (8).

Since we are seeking for non-trivial solutions, we claim the
singularity of the coefficient matrix: det(M) = 0. Introducing
a ratio of elasticity

γc :=
c

cS
=

c
E Iz
L3

=
cL3

E Iz

we obtain the characteristic eigenvalue equation

λ3 L3 (1 + cosh(λL) cos(λL))

+ γc (cosh(λL) sin(λL)− cos(λL) sinh(λL)) = 0 (9)

Remark V.2. Before solving (9) we check it in setting

• c = 0: we get 1 + cosh(λL) cos(λL) = 0,
which forms the eigenvalue equation of an one-sided
clamped / free end beam in Figure 8;

• c → +∞: we get cosh(λL) sin(λL) −
cos(λL) sinh(λL) = 0, which arises for a clamped
beam with bearing in Figure 9.

x
y

z
E, I , , A, LZ r

v(x,t)

Figure 8. One-sided clamped beam with free end.

x
y

z
E, I , , A, LZ r

v(x,t)

Figure 9. One-sided clamped beam with bearing.

Now, we present some numerical calculations. We choose
γc = 1 and derive the natural frequencies of a steel beam and
of a B2 vibrissa, see Figure 1, using the following parameters:

• steel beam: E = 210GPa, ϱ = 7850 kg
m3 ;

• B2 vibrissa: E = 2.3GPa, ϱ = 238.732 kg
m3 ;

• geometric parameters: d = 0.2mm, Iz = π
64 d

4, A =
π
4 d2, L = 40mm.

The following Table I presents the first five eigenvalues λj ,
natural frequencies ωj in rad/s and frequencies fj in Hz for a
steel beam and a B2 vibrissa.

TABLE I. Calculation for γc = 1.

steel beam B2 vibrissa
j λj ωj fj ωj fj
1 2.010 1

L 653.008 103.929 843.189 62.369
2 4.704 1

L 3576.197 569.169 4617.724 341.566
3 7.857 1

L 9977.433 1587.958 12883.248 952.955
4 10.996 1

L 19544.181 3110.553 25236.203 1866.685
5 14.138 1

L 32305.127 5141.521 41713.630 3085.496

Increasing γc leads to increasing ωj , see also [1]. In the
following, we increase the level of complexity.

VI. VIBRISSA MODEL 1: TRANSLATIONAL
VISCOELASTICITY

To clarify the unlike effects of the foregoing subsection,
we deal with a ‘simple’ problem to investigate the influence
of discrete damping elements. We consider a cylindrical, one-
sided clamped beam, which is viscoelastically supported at the
end, see Figure 10, which forms a subsystem of the complex
one presented in Figure 6.

x
y

z
E, I , , A, LZ r

v(x,t)

cd

Figure 10. Clamped beam with viscoelastic end support.
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M(λ) :=



1
... 0

... 1
... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... λ

... 0
... λ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cos(λL)λ2
... sin(λL)λ2

... cosh(λL)λ2
... sinh(λL)λ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E Iz sin(λL)λ3
... −E Iz cos(λL)λ3

... E Iz sinh(λL)λ3
... E Iz cosh(λL)λ3

−c cos(λL)
... −c sin(λL)

... −c cosh(λL)
... −c sinh(λL)


(8)

Equation (1) together with the boundary conditions

v(0, t) ≡ 0

v′(0, t) ≡ 0

v′′(L, t) ≡ 0

E Iz v
′′′(L, t)− d v̇(L, t)− c v(L, t) ≡ 0 ,

forms a BVP.
The handling of the last boundary condition results in

E Iz X
′′′(L)− cX(L) = ± i d λ2 k2 X(L) .

All conditions lead to a coefficient matrix (not listed here
for brevity) of the homogenous systems whose singularity
yields the eigenvalue equation (EVEQ):

det (A(λ)) = −E Iz λ
3

− E Iz cos (λL) cosh (λL) λ3

± i d k2 sin (λL) cosh (λL) λ2

− c sin (λL) cosh (λL)

∓ i d k2 cos (λL) sinh (λL) λ2

+ c cos (λL) sinh (λL) = 0 . (10)

Remark VI.1. At this stage, we could check this equation
in concluding well-known eigenvalue equations: setting {d =
0, c = 0} we get the EVEQ of system in Figure 8, or {d =
0, c > 0} of model in Figure 7, or {d = 0, c → +∞} of model
in Figure 9, all results in the equations presented in [11] or
[28].

Introducing the dimensionless parameters

c∗ :=
c

EIz
L3

d∗ :=
Ld√

ϱAE Iz
,

we determine the first three natural frequencies in varying c∗

and d∗. (From now, we drop the notation ‘∗’ as a mark for
a dimensionless parameter for brevity.) We get the following
Figures 11 to 13.

For fixed c and varying d, there are parameter ranges of c
where we get an expected and unexpected behavior of the first
natural frequency, see Figure 11:

• c ∈ [0, 17]: the natural frequency breaks down to zero
for increasing d;

• c ∈ [18, 23]: first, the natural frequency increases and
then breaks down to zero;

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

k

ω
1

Figure 11. First natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on c and d.

• c > 23: the natural frequency just increases.

On the other hand, for fixed d and varying c, we observe
the following:

• d ∈ [0, 3.5]: increasing c leads to an increase of the
natural frequency;

• d > 3.5: an increase of c results first in a decrease
and then in an increase of the natural frequency.

This may explain the behaviors of the natural frequencies
described above and presented in [1], which contradicts the
classical assertions.

Similar effects can be observed in Figures 12 and 13.

VII. VIBRISSA MODEL 2: ROTATIONAL
VISCOELASTICITY

Since the vibrissa system in Figure 10 forms not really
a bio-inspired vibrissa system, we soften the clamping to
a bearing with a torsional spring and damper element, see
Figure 14.

The boundary condition have changed to

v(0, t) ≡ 0

E Iz v
′′(0, t)− ct v

′(0, t)− dt v̇
′(0, t) ≡ 0

v′′(L, t) ≡ 0

v′′′(L, t) ≡ 0 .
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Figure 12. Second natural frequency of the beam model ω2 in
√

E Iz
ϱAL4 in

dependence on c and d.
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Figure 13. Third natural frequency of the beam model ω3 in
√

E Iz
ϱAL4 in

dependence on c and d.
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Figure 14. Vibrissa model with a bearing and torsional spring-damper
element.

Introducing the dimensionless parameters

ct
∗ :=

ct
EIz
L

dt
∗ :=

dt
L
√
ϱAE Iz

,

we determine the first three natural frequencies in varying ct
∗

and dt
∗. (Once again, we omit the notation ‘∗’ for brevity.)

We get the following EVEQ:

λ (cos(λ) sinh(λ) sin(λ) cosh(λ))

(cos(λ) cosh(λ) + 1)
(
ct ± i λ2 dt

)
= 0 . (11)

Solving this EVEQ in λ and determination of the cor-
responding natural frequencies we get the natural frequency
behavior presented in Figures 15 to 17.
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Figure 15. First natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.
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Figure 16. Second natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.

One can clearly see that only the first natural frequency
exhibit a similar unlike behavior, because some curves break
down to zero. If ct has a special value, then if ct and / or
dt increases to infinity, the natural frequency ω1 tends to the
first natural frequency of system in Figure 8. This behavior
can be seen in observing ω2 in Figure 16 and ω3 in Figure 17
from the very beginning, which is a typical behavior of natural
frequencies.

VIII. VIBRISSA MODEL 3: TRANSLATIONAL AND
ROTATIONAL VISCOELASTICITY

Now, we use the model of Section VII and combine it with
an additional support mimicking a sudden obstacle contact
modeled as a translational viscoelastic support, see Figure 18.
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Figure 17. Third natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.
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Figure 18. Vibrissa model with object contact: torsional
spring-damper-bearing and viscoelastic end support.

We suppose that the vibrissa contacts the object with the
tip, as in [8] and [9], such that model consideration is valid.
Now, the upcoming calculation shall later provide the deter-
mination of the shift of the spectrum of natural frequencies to
determine the distance to the object. For this, we need to have
a reliable determination of the spectrum, still exhibiting unlike
effects described above.

The boundary condition are now

v(0, t) ≡ 0

E Iz v
′′(0, t)− ct v

′(0, t)− dt v̇
′(0, t) ≡ 0

v′′(L, t) ≡ 0

E Iz v
′′′(L, t)− d v̇(L, t)− c v(L, t) ≡ 0 .

Performing the same procedure in deriving the EVEQ as
above, we get

λ3
{
λ (cosh(λ) sin(λ)− sinh(λ) cos(λ))

−
(
ct ± i dt λ

2
)
(1 + cosh(λ) cos(λ))

}
−
(
c± i d λ2

){
λ sinh(λ) sin(λ)

+
(
ct ± i dt λ

2
)
(cosh(λ) sin(λ)− sinh(λ) cos(λ))

}
= 0 .

(12)

Several investigations / scenarios are conceivable. We only
focus on the following two cases:

• Case 1: a parameter dependence of the natural fre-
quencies on the ‘FSC’ support parameters ct and dt
is performed, where we choose c = 1 and k = 1 fix.

• Case 2: a dependence of the natural frequencies on
the ‘contact’ parameters c and d is analyzed, where
we choose ct = 100 and dt = 20.

In Case 1, we get describe a soft object contact with
the chosen parameters. Hence, we have the possibility to do
comparison to Section VII. One can clearly see the similarity
of Figures 15 to 17 with Figures 19 to 21.

Here are more parameter studies necessary to get more
familiar with this system. If we use such a system in later
experiments, we could be able to detect not only the distance
to an object (as done in [9]) but also the compliance of the
object.
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Figure 19. First natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.
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Figure 20. Second natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.

In Case 1, we get describe a soft object contact with
the chosen parameters. Hence, we have the possibility to do
comparison to Section VII. One can clearly see the similarity
of Figures 15 to 17 with Figures 19 to 21.

Here are more parameter studies necessary to get more
familiar with this system. If we use such a system in later
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Figure 21. Third natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.

experiments, we could be able to detect not only the distance
to an object (as done in [9]) but also the compliance of the
object.

In Case 2, we focus on a ‘hard’ bearing (or nearly a
clamping), so that comparison to Section VI can be done. We
have a similar behavior of the natural frequencies if someone
inspects Figures 11 to 13 with Figures 22 to 24.
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Figure 22. First natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.

Summarizing, the unlike behavior appears also in combined
systems and is not a numerical feature. More investigation
should be done, before coming to real prototypes of artificial
vibrissa-like sensors.

IX. CONCLUSION

The goal of this contribution was to present the theoretical
context needed to examine the mechanical and in particular
the dynamical characteristics of the biological vibrissa.
Moreover, these theoretical aspects were to be interpreted
with respect to the biological vibrissa, as well as for a
technical implementation of it. Inspired by this biological
sensory system, several types of mechanical models were
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Figure 23. Second natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.
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Figure 24. Third natural frequency of the beam model ω1 in
√

E Iz
ϱAL4 in

dependence on ct and dt.

developed based on findings in the literature.

The second focus was on the modeling of the vibrissa
as a continuous system: bending vibrations of beams. There,
the main focus of the studies lay on the examination of the
influence of the tactile hair compliance and the viscoelastic
support on the oscillation characteristics of the vibrissa. The
conical form was neglected until now.

The influence of the viscoelastic support of the vibrissa
has been examined using various abstract models, in which
the vibrissa was modeled as a thin, cylindrical, flexible beam.
The viscoelastic properties of the FSC and the skin were
implemented by using spring and damping elements.

The damping element significantly increased the complex-
ity of the differential equations and led to a surprising phe-
nomenon: there exist some natural frequencies, which break
down to zero for a certain range of parameters. This fact is
well-known in 1-DoF systems (i.e., strong damping, creeping
behavior). The study demonstrated that the oscillation behavior
of an elastic beam differs remarkably from the behavior of such
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a classical system:

• The natural frequencies may increase with growing
boundary damping.

• For specific damping parameter values, the natural
frequencies grow for decreasing boundary stiffness.

This behavior also occurred in other developed vibrissa-like
sensor systems, which are much closer to the real paradigm,
also in context of an object contact.

But, theories gained from the simplified linear Euler-
Bernoulli theory are only valid for small deflections and de-
formations. If one considers a vibrissa beam in passive mode,
then it may be questionable if this theory is really qualified for
the investigations, see large bending deformations. Inspecting
these vibrissa configurations, one could clearly observe that the
vibrissa in passive mode suffers large deformations. Hence, the
linear Euler-Bernoulli theory is not qualified to determine the
natural frequencies since it describes the bending behavior for
small deformations. We have to turn to a nonlinear theory –
Timoshenko theory or nonlinear Euler-Bernoulli theory. We
will arrive at more realistic models and description of these
models, which then are closer to the biological paradigm. An
approach is done in [29].

However, we are focussing on long, slender beams,
whereby shear forces may have less influence. So, we shall
focus on the nonlinear Euler-Bernoulli theory in future work.
Additionally, we shall include the conical shape and a pre-
curvature of the beam, neglected until now.

The first works, setting up a prototype of these investiga-
tions, can be found in [9] and [27].
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