
The CloudFlow Infrastructure for Multi-Vendor Engineering Workflows: Concept and

Validation

Håvard Heitlo Holm∗, Volkan Gezer†, Setia Hermawati‡, Christian Altenhofen§, and Jon M. Hjelmervik∗
∗Heterogeneous Computing Group

SINTEF Digital
Oslo, Norway

Emails: havard.heitlo.holm@sintef.no
and jon.m.hjelmervik@sintef.no
†Innovative Factory Systems (IFS)

German Research Center for Artificial Intelligence (DFKI)
Kaiserslautern, Germany

Email: volkan.gezer@dfki.de
‡Human Factors Research Group,

University of Nottingham,
Nottingham, United Kingdom,

Email: setia.hermawati@nottingham.ac.uk
§Interactive Engineering Technologies (IET),

Fraunhofer Institute for Computer Graphics Research IGD,
Darmstadt, Germany,

Email: christian.altenhofen@igd.fraunhofer.de

Abstract—In this paper, we present the CloudFlow Infrastructure,
which aims to provide an independent platform for engineering
workflows, leveraging both cloud and high performance com-
puting. Each workflow can combine software from different
vendors, promoting interoperability through open standards, and
easy access to data and compute resources. Here, we focus on
the technological uniqueness of the infrastructure, and how end
users within the manufacturing industries have validated it for
real world applications. We also describe how high performance
computing and remote desktop applications easily are integrated
in cloud-enabled workflows. The infrastructure provides an easy-
to-use platform for software providers to offer their software in
the cloud and get access to a new distribution channel. At the
same time, small businesses get pay-as-you-go access to advanced
multi-vendor software solutions that will improve their products.

Keywords–Workflows; Cloud computing; HPC; Semantic de-
scriptions; One-stop-shop.

I. INTRODUCTION
Cloud computing is currently becoming a natural part of

the daily life, both for professionals and consumers. Users are
already expecting to have access to all their data independent of
which computer they are using, and they will soon expect the
same behavior for advanced engineering tools. An ideal engi-
neering workflow consists of software from different vendors,
operating on the same data. A cloud platform that provides
efficient and user-friendly workflows by combining different
tools, is therefore needed to meet these expectations.

In manufacturing industries, different software suites are
used across the lifetime of their products, including design,
numerical analysis, quality assurance and maintenance. Fur-
thermore, engineering software solutions are often computa-
tionally demanding and designed for parallel execution in a
high performance computing (HPC) environment. Small and

medium-sized enterprises (SMEs) in this market often find it
too expensive to install the different solutions locally, due to
hardware costs, installation overhead and license costs. This
may cause loss in quality in their products due to insufficient
analysis, and increased time to market and overly expensive
design phases due to inefficient work procedures. For such
companies, having access to a cloud solution that spans
over different clouds and software providers, all integrated in
tailored workflows, will not only save time and cost, but also
improve their final products.

In this paper, we present the CloudFlow Infrastructure [1],
[2], which is a cloud-based solution where users can execute
workflows consisting of software from one or multiple vendors,
providing ubiquitous access to compute resources, software
and data. Workflow orchestration is made available through a
workflow design tool, using semantic information associated
to available software and its input and output data. Workflow
execution is then automatically managed and monitored by a
workflow execution tool, which acts upon these semantic de-
scriptions. Data is passed automatically between the stages of
the workflows, providing a seamless user experience. Through
the use of open standards and cloud interfaces, interoperability
between software from different vendors is obtained. The
workflow is ignorant of the underlying operating systems, and
whether simulations are executed in a cloud or HPC envi-
ronment. The CloudFlow Infrastructure is not only attractive
for end users, but also allows software vendors to reach new
customers through a pay-per-use distribution channel for their
existing or new software solutions.

In contrast to other approaches, the aim here is to inte-
grate existing software solutions into one common platform,
combining them to work together as multi-vendor workflows.
Furthermore, the proposed solution supports installation in

23

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



private clouds, as well as access to multiple cloud and HPC
providers through one common web portal. To facilitate a
broad selection of existing software solutions, the CloudFlow
Infrastructure target cloud providers offering Infrastructure as
a Service (IaaS), where software providers can install their
own operating systems and fully control the virtual machines.

The private cloud option allows for deployment in environ-
ments without network communication to the outside world.
This also opens up for companies that for security reasons
require that data is stored within their computing facilities, can
take advantage of the user-friendly multi-vendor workflows.

The CloudFlow Infrastructure has been continuously tested
and evaluated by SME end-users in the manufacturing in-
dustries. The evaluation results have been used to improve
the usability of the infrastructure, as well as the workflows
developed by the software vendors. The validation has shown
that the infrastructure is particularly useful for engineering
apps. An engineering app is a design centric workflow that is
applied to concrete artefacts such as pumps, structures, wings,
etc., and is easily employed by end-users without domain
knowledge nor experience with dedicated software tools. These
apps makes it feasible for the involved manufacturing end-
users to use more advanced technology than today, reducing
design cost as well as time-to-marked. The involved software
vendors and consultancy companies are given an opportunity
to gain economic benefit through a partnership with an SME
start-up that will offer engineering apps as a service. The tech-
nology behind the CloudFlow Infrastructure is not restricted
to manufacturing industries, and can be applied to any other
computationally intensive domain.

This paper is an extension and improvement of [1] with
respect to end user validation of the infrastructure and its
deployed software solutions; support for more advanced flow
control in the workflows; and workflow integrated remote
access to desktop applications executing in the cloud envi-
ronment.

The paper is organized as follows: An overview of related
work is given in Section II. The CloudFlow Infrastructure is
then presented in Section III, where the focus is on the aspects
and infrastructure components related to workflow orchestra-
tion and execution, resource monitoring, authentication, data
storage, utilization of HPC clusters, and remote access to
desktop applications. Section IV describes the methods for
end user validation and discusses the validation results. A
detailed example of a workflow running in the CloudFlow
Infrastructure is given in Section V, before Section VI gives
some concluding remarks and discusses the future of the
infrastructure.

II. RELATED WORK
Several providers currently deliver cloud-based engineering

and computing solutions. One dedicated software vendor de-
livering such a solution is SimScale [3], offering simulators for
computational fluid dynamics, finite element analysis and ther-
modynamics in the cloud. Based on these simulation tools and
web-based visual pre- and post-processing, SimScale targets
end users only. Combining their cloud solution with software
developed by other vendors is therefore not straightforward.

The cloudSME project [4], [5] combines a business model
targeting both end users and software vendors. Software ven-
dors are offered a Platform as a Service (PaaS) solution, where
they offer Software as a Service for their existing and new end

users. This approach also makes it possible for end users to
combine software from different software vendors to perform
more complex engineering tasks. CloudSME does however not
use any semantic information to orchestrate or combine the
different software, and it lacks the use of HPC.

The Fortissimo and Fortissimo2 projects [6], [7] also offer
a platform that supports business models for both end users
and software vendors. They do however not target the cloud
aspect, and mainly offer a platform where independent soft-
ware vendors provide HPC simulations to end users. Similar
to CloudSME, Fortissimo does not orchestrate combinations
of different software based on semantic information.

There are several initiatives to simplify the process of
deploying software in the Cloud. Ferry et al. [8] propose a
modelling approach, where the cloud deployment is described
by a vendor independent language CloudML. Deployment
models are implemented in this language and can include
descriptions of virtual machines, definitions of network com-
munication, and instructions for service deployments. In addi-
tion to simplifying deployment of interconnected software, the
language aims at helping their users avoid vendor lock-in.

Multiple approaches exist to gain remote access to software
deployed in the Cloud. The platform-independent Virtual Net-
work Computing (VNC) [9] and Microsoft’s Remote Desktop
Protocol (RDP) [10] are widely used to share applications
across a local network or the internet. Both transmit images of
the remotely running software or the remote machine’s entire
desktop, and receive the user’s mouse and keyboard input for
interaction. Network bandwidth and latency are crucial factors
for a good user experience when using these technologies.
Other techniques for remote visualization are, e.g., the Tinia
framework [11] for interactive 3D data, or the Rixels approach
for visualizing simulation results [12].

Stahl et al. [2] proposed the initial work and the main
concepts of the CloudFlow Infrastructure. Among the newly
introduced concepts are a unified way to access HPC resources,
functionality to use external cloud providers, resource moni-
toring, and a graphical tool to define workflows.

Semantic Markup for Web Services (OWL-S) and Business
Process Execution Language (BPEL) are two technologies that
allow web service execution as processes. BPEL is a language
for executing business processes with web services, as stated
by Grolinger [13]. According to its specifications, BPEL
executes web services defined using Web Service Description
Language (WSDL). It supports orchestration of actions within
such services, by structuring them as sequences and supporting
branches and loops. The structure is described using a syntax
based on Extensible Markup Language (XML). OWL-S is a
markup that is built on top of Web Ontology Language (OWL)
and describes web services semantically introducing an XML-
based syntax. It also supports orchestration and due to semantic
technologies, structuring the sequences using OWL-S is both
machine and human understandable. OWL-S and WSDL are
usually used to describe services based on the Simple Object
Access Protocol (SOAP) specification. It allows web services
to send requests in a predefined structure encoded in a XML
format.

BPEL is similar to OWL-S in terms of orchestration and
XML-based syntax, but it lacks utilizing semantic technolo-
gies. Therefore, making web services machine-understandable
and automating them without user interaction is a non-trivial
task using BPEL [14].

24

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Simplified diagram of the system layers with their main
components.

The process execution is usually performed by designing
an execution order and monitoring it with an execution engine.
There are several execution engines designed for this purpose.
Execution engines, or managers, introduce an editor or a syntax
to specify the order and then track the progress. Depending on
the implementations, they can also provide user interface.

One of the available execution engines for BPEL is Process
Manager by Oracle. It provides a graphical interface to manage
cross-application business processes in a service oriented ar-
chitecture (SOA) [15]. It also allows designing workflow steps
and connecting external systems into the workflow. However,
lack of semantic technologies inside BPEL prevents automa-
tion of these design steps. Involving semantic technologies will
therefore increase the productivity by reducing the time needed
to design the task steps, and is hence quite important.

To achieve the goal of CloudFlow, a manager that can
facilitate semantic technologies, integrate web services from
different providers and locations, and provide automation
during the design and execution phase was necessary.

III. ARCHITECTURE OVERVIEW
This section presents key components and concepts of the

CloudFlow Infrastructure. The infrastructure can be described
as a layered architecture, as shown in Figure 1. The lay-
ers represent different abstraction levels, and communication
between layers is most often initiated in a downwards or
sideways direction. In general, each layer consists of several
loosely coupled components, where communication between
the components is done through web services.

The User Layer is the user interface towards the CloudFlow
Infrastructure, and is what the end user sees. This is typically
the CloudFlow Portal, but can in principle be any application
(e.g., web, mobile, desktop, etc.) that communicates with the
components in the Workflow Management Layer. The work-
flow layer consists of components that are strictly needed for
running any workflows in the infrastructure, and these compo-
nents handle workflow management (Section III-A), resource
monitoring (Section III-B), and authentication (Section III-C).
The Vendor Specific Services/Application Layer contains all
services that are executed as part of a workflow. Software pro-
vided and integrated into CloudFlow by independent software

vendors belongs to this layer, and these services can only be
accessed through the Workflow Manager. Components in the
Infrastructure Layer are generic services that expose central
functionality in the infrastructure. Some of the components can
be used by services in the vendor specific service/application
layer to access resources, such as cloud storage through the
Generic Storage Services described in Section III-D. Other
services can be used as individual workflow steps, such as
the HPC and VNC Services described in Section III-E and
Section III-F, respectively. All services mentioned above are
deployed in the Cloud Layer, and the HPC Layer is available
for executing computationally intensive applications. These
layers yet again rely on the hardware found in the Hardware
Layer.

A. Workflow Management
A workflow is an orchestrated and repeatable pattern of

several activities enabled by the systematic organization of
resources into processes that transform materials, provide
services, or process information. Workflows may be as trivial
as browsing a file structure and visualizing a Computer-Aided
Design (CAD) model, or they can be more complex, including
describing the full set of operations used to design, analyse and
prepare a product for manufacturing. Semantic technologies,
such as OWL-S, make it possible to design and automatically
execute workflows.

As described in Section I, one of the main goals of Cloud-
Flow is to host software from different software providers and
chain appropriate parts of them to perform end user tasks in
workflows within one common platform. In the following,
we will describe how web services are integrated into the
CloudFlow Infrastructure, and how workflows are designed
and executed.

1) Services: A set of complementary reusable functional-
ities that are provided by a software for different purposes is
called ”service.” More particularly, a web service is a software
system designed to support interoperable machine-to-machine
interaction over a network [16]. A web service invocation
consists of a single request/response pair and is expected to
execute in a short time.

The CloudFlow Infrastructure defines Application Pro-
gramming Interfaces (APIs) that services have to follow in
order to be integrated into the infrastructure and used within
workflows. The services have to be exposed through a SOAP
interface and defined by WSDL files. The simplest web
services that follow those requirements are called synchronous
services, and are used when their operations only take up to a
few seconds to complete. In contrast, asynchronous services
do not have any restrictions when it comes to execution
times, and are suitable for long-running software executions
without user interaction. For this kind of services, progress
information is expected to be passed to the user through
their service interface during the execution. Common for these
two service types are that they represent operations that take
predefined input parameters and generates output parameters
without user interaction. Software designed for user interaction
are made available as applications. Examples of applications
are 3D CAD visualization software, web forms where users
provide input parameters, and web interfaces to navigate in
the cloud storage. Throughout this paper, the term CloudFlow
service denotes services and applications compatible with the
CloudFlow API.

25

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. The graphical user interface of Workflow Editor displays buttons to append services and to add code snippets for conditional branches, loops, parallel
service execution (split), etc., as well as options for service filtering. It also lets users add inputs and outputs to the workflow with appropriate buttons shown
as I and O. The workflow is shown as a directed graph, where blue boxes represent single CloudFlow services, and dark green boxes are sub-workflows. The
execution order is represented by the dotted arrows, while data flow is visualized by solid lines, which connect output parameters from services to be input

parameters of others.

2) Workflow Definition: In order to transform a web service
into a CloudFlow service, and then to create workflows from
a chain of CloudFlow services, the web services need to be
integrated into the CloudFlow Infrastructure. This integration
is done using a tool named Workflow Editor.

Workflow Editor is a workflow modelling tool provided
through both a graphical and textual interface [17] within
the CloudFlow platform. It is based on XML, SOAP, and
WSDL standards. In order to integrate web services into the
CloudFlow Infrastructure, service providers submit the WSDL
endpoints into a web form in Workflow Editor, and semantic
descriptions are created, describing the services themselves and
their input and output parameters. This information is then
added to a semantic database, and the services can finally be
used within workflow.

Workflows are created and edited through the textual and
graphical editors of Workflow Editor. The data flow between
services is defined by connecting outputs of services with in-
puts of others, using drag and drop functionality. The execution
order is represented using dotted arrows and the data flow is
visualized using solid lines, as shown in Figure 2. Based on
the semantic description of a service, it is possible to find other
services whose input parameters are semantically compatible
with its output parameters. Semi-automatic orchestration of
workflows is made available by letting the system suggest such
compatible services to workflow designers.

All content in the graphical editor is also shown in an
XML-based meta-formatted textual editor. The XML-based
representation is sent to the Workflow Editor back-end, and
contains all information required to save a workflow. This
format is also sometimes preferred by experienced users. The
textual and graphical editors are synchronized, so that each
change made on a workflow in one of them is immediately

Figure 3. A simple example workflow for loop usage. The condition is
modified by double clicking on the until block.

reflected in the other.
In earlier versions of the CloudFlow Infrastructure, all

workflows were executed in a linear and sequential order [1].
However, it is sometimes desirable to design more complex
workflows, where certain services are repeated, and different
execution paths are triggered based on previous states. As non-
sequential workflow execution was required by end users and
software providers, support for conditional branches and loops
have been added in the infrastructure. These functionalities are
represented in the workflow design by the If-Then-Else and
Repeat-Until OWL-S statements, respectively. In Workflow
Editor, these expressions are adapted for simplification and
compatibility with both the graphical and textual editor. The
control of these expressions are handled via logical conditions
such as greaterThan, greaterOrEqual, equalTo, etc., and they

26

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



can be set by double clicking on the if or repeat blocks in
Workflow Editor. Figure 3 shows a very simple workflow
consisting of a loop which iteratively execute a sub-workflow.

In some cases, workflows contain services whose parame-
ters do not depend on each other, allowing them to be executed
in parallel. It is possible to design and execute workflows
containing parallel execution of different services, by using
the split statement of OWL-S. A current limitation, however, is
that the user can only interact with one of the parallel branches,
meaning that the parallel section can only have one branch
which requires user interaction in the form of applications.

Even though each CloudFlow service typically represents
an individual operation with dedicated input and output pa-
rameters, some services naturally belong together. Instead of
having to connect the same sequence of services repeatedly for
multiple different workflows, such services can be modelled
as smaller workflows of their own, called sub-workflows.
Sub-workflows can be added as a single component into
any other workflows, similar to a regular CloudFlow service.
The changes made within a sub-workflow are applied to all
workflows using it, reducing time and effort for the workflow
designer through avoiding a repetitive task.

3) Workflow Manager: The semantic descriptions created
by Workflow Editor contain meta-data and describe how the
data is bound. The component Workflow Manager is an ex-
ecution tool acting on the semantic descriptions. It executes
and monitors all services in a workflow providing the input
parameters, as defined in Workflow Editor, either as constant
values or outputs from previous services. The status of each
asynchronous service is checked at regular intervals in order to
determine if it is finished, and to present the service’s status to
the user. The Workflow Manager itself consists of a back-end,
which is working in a Java Virtual Machine, and a web service
front-end, with which the Portal communicates. A simplified
communication diagram of the components in the Workflow
Management Layer is shown in Figure 4.

The main access point for starting, monitoring and in-
teracting with workflows, is through the CloudFlow Portal.
The workflow execution, however, is independent from the
Portal, and non-interactive CloudFlow services are automat-
ically executed by the Workflow Manager back-end, even if
the user leaves the client that initiated the workflow. If a
workflow reaches an application, Workflow Manager waits
for user interaction before continuing to the next service.
Since workflow execution is independent from the Portal,
users can also re-login on any device and still have access
to all running workflows, continuing from their current stage.
Workflow results are stored in a MySQL database by the
Workflow Manager back-end, and are accessible for the users
at any time.

In order to have access to a workflow, the end user needs
to have valid licenses for all services within that workflow.
Before every workflow execution, license validation is done
by Workflow Manager towards the billing services. Workflow
Manager also tracks execution times by utilizing resource
monitoring components.

B. Resource Monitoring and Billing
To facilitate that CloudFlow becomes a one-stop-shop

where software vendors integrate and offer their software for
new customers, functionality to monitor the resource usage
by each workflow and service is needed. Based on different

Figure 4. Simplified interaction between the components in the Workflow
Management Layer in the CloudFlow Infrastructure.

Figure 5. Communication between components related to billing and
resource monitoring inside the CloudFlow Infrastructure. All components

make additional calls to the Authentication services, which are not depicted.

requirements, the software vendors are able to use different
business models, such as offering their software as pay-per-
use, or for a fixed monthly or annual fee. For computationally
intensive software requiring exclusive access to hardware re-
sources, it is also natural to charge the end users based on the
number of central processing unit (CPU) hours spent.

Each service within CloudFlow belongs to a software
package. All license costs related to the software package
are described in the Resource Catalog component, as either a
time based license requirement, runtime cost, or a combination
of both. The Resource Catalog also holds information about
hardware costs and the vendors who will get paid from the
revenue. Figure 5 illustrates how the different components are
connected.

As a workflow is executed, the resources consumed through
this workflow is gathered, and the related cost for running the
workflow is calculated. Collection of this information and cost
calculation is performed within the resource monitoring and
billing components of the CloudFlow Infrastructure. When an
end user starts a workflow, Workflow Manager lists all software
packages within the workflow and checks with the Accounting
service whether the user has the required licenses to run them.
Later, if the user is allowed to execute the workflow, the
Counting service is used to track the execution times delivered
by Workflow Manager. This service passes these data back to
the Accounting service to calculate the bill for CPU usage, as
well as the software costs within the workflow.

The Resource Catalog holds a list of software and hard-

27

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ware/data centers, whereas the User Catalog keeps a list of
organizations or users. The calculations and usage information
at the end of each workflow are gathered by the Billing
component. This component issues bills to the end users and
is the only component which users interact with in order to
get their usage and cost reports.

C. Authentication and Multi-Cloud
Several of the CloudFlow Infrastructure components need

to be available from outside the infrastructure itself. This
includes, but is not limited to, design and execution of
workflows, interaction with the cloud storage, and viewing
how much resources a user has spent. Since only registered
users should be allowed to issue such requests, and since
users should only have access to their own files and resource
usage information, all web services within the CloudFlow
Infrastructure need an authentication parameter identifying the
user. For this, a token-based authentication system is used.
Users obtain a token at login which represents them throughout
the session, and which contains their appropriate permissions.

As a security measure, tokens have limited life spans,
meaning that requests containing old tokens will be unsuc-
cessful. However, workflows (and perhaps especially within
manufacturing industries) can consist of services lasting longer
than any lifespan given to tokens. Since an expired token
cannot be used for, e.g., uploading results to the cloud storage,
CloudFlow needs an authentication scheme that invalidates
tokens after a certain time while allowing workflows of ar-
bitrary lengths to have access to all required infrastructure
components.

In order to support these requirements, the Authentication
services are introduced to CloudFlow. These services build
on top of OpenStack’s Keystone component [18], and extend
it with functionality to handle the challenge related to long
lasting workflows. In addition, vendor lock-in towards Open-
Stack is avoided through these services. Changing the com-
munication with Keystone, or replacing Keystone itself, will
require changes in the implementation of the Authentication
services only, while its API, and all components relying on the
authentication, are kept unchanged.

The problem consisting of tokens expiring during workflow
executions is solved by issuing and storing special workflow
tokens in the Authentication services. Each time a workflow is
started, such a token is created by combining the regular token
with the ID of the workflow execution. This workflow token is
stored in a database, along with other relevant information, and
is passed to all services within the workflow. During validation,
the regular token is checked first, but if it has expired, the
workflow token is checked with the database. As long as the
combination of the regular token and the execution ID is found
and recognized by the database, the token is still marked
as valid. A new regular and valid token, holding the same
permissions as the original token, can then be generated based
on the database entry. When the workflow later is finished
or aborted, the special workflow token is deleted from the
database, and thus invalidated.

As CloudFlow is not tied to any one cloud, it is possible
to use multiple clouds for hosting CloudFlow services. One
reason for doing this might be that customers are physically too
far away from the main CloudFlow cloud, making a local cloud
more attractive in terms of network costs and delays. Other
reasons might be that alternative clouds might be cheaper, or

equipped with hardware not available in the CloudFlow cloud,
for example by offering more powerful processing resources.

The main challenge related to such solutions is authentica-
tion across the different clouds. The external clouds have their
own authentication methods, and they are not necessarily com-
patible with those used in CloudFlow. Services that are written
for multi-cloud settings should therefore be implemented with
an additional external token parameter. The semantic informa-
tion can then describe which cloud the external token should
be authenticated against, and external authentication services
can be added to such workflows. Such a service will provide
a web form where the user can login to the external cloud,
and where the external token is passed to the next steps in the
workflow. The external token can also be stored in a cookie
in the browser, so that if a valid token is already present, this
token will be used and the users are spared from typing their
username and password more often than necessary.

D. Cloud Storage
In order to follow the loosely coupled layered architecture

design of the CloudFlow Infrastructure (see Figure 1), the
interaction with the cloud storage is designed to be vendor
independent. CloudFlow supports various storage solutions
and different cloud storage solutions have different APIs.
Therefore, a set of services exposing a unified API for all
storage solutions available in CloudFlow is required. Further,
in order to avoid unnecessary network cost and to avoid
potential security issues, files need to be transferred directly
between the cloud storage and the client, and not via an
intermediate server. To support these requirements, the Generic
Storage Services (GSS) have been developed.

The GSS exposes an API consisting of both SOAP and
REpresentational State Transfer (REST) web services, and
offers functionality for interacting with all cloud storage so-
lutions available in CloudFlow. In contrast to SOAP, RESTful
web services come with a smaller overhead and are better
suited for transferring large amounts of data. All file transfers
are therefore done through RESTful services. Each available
storage solution is added as a back-end to GSS, and SOAP
services provide information in the form of a pre-defined
recipe, on how to use the native REST interfaces. The client
then follows this recipe to transfer files directly to and from
the cloud storage, with no additional overhead. Through this
design, GSS acts like a lookup service providing information
on how to make requests toward the different back-ends,
where each back-end is treated as an object storage. Beside
transferring files, other functionality such as listing folder
content, checking existence of files, creating folders, etc., are
made directly through the SOAP API.

Unique references to files are obtained by assigning file
IDs to them. A file ID includes a prefix indicating which
storage back-end the files belongs to, and the location of
the file within the native storage. The file ID and a valid
authentication token is sufficient for downloading any file.
As long as all CloudFlow services are implemented using
this API, interoperability and vendor independent file access
is obtained within CloudFlow workflows. Further, any cloud
storage solution with a RESTful API can be made available in
CloudFlow by adding an additional back-end in GSS. Existing
services can then immediately use the new cloud storage
solution without making any changes to their implementation.
A cloud storage can also use external authentication solutions,

28

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 6. The encapsulation of a HPC job within an application specific
HPC sub-workflow.

even though it is not a requirement when the authentication
token used towards the cloud storage is a valid CloudFlow
token.

A web-based file browser application is available for all
workflows. It is configurable through Workflow Editor to
tailor its behavior for each workflow, and has a user-friendly
interface with a context dependent right-click menu. Here, end
users can upload and download files between their computers
and the cloud.

Since the CloudFlow services have SOAP interfaces, their
parameters should consist of short messages rather than entire
files. Because of this, the file browser gives the file ID of the
chosen files as output instead of the content of it. This rule
illustrate best practice and applies to all CloudFlow services.

Currently, four cloud storage solutions are made available
in the CloudFlow Infrastructure through GSS. There are two
OpenStack Swift installations (one internal and one external),
a product lifecycle management (PLM) system, and a native
storage at one of CloudFlow’s HPC providers.

E. HPC Access
Computationally intensive tasks that benefit from running

on HPC clusters are common in many engineering work-
flows. To support this, the CloudFlow Infrastructure facilitates
seamless and secure integration of job scheduling, making
it easy for software vendors to offer their applications on
an HPC cluster as part of a CloudFlow workflow. This is
supported through the design and concept of HPC application
sub-workflows, with the generic HPC service as the central
component.

An HPC application sub-workflow is built from three
CloudFlow services as shown in Figure 6; an application
specific pre-processing service, the generic HPC service, and
an application specific post-processing service. The HPC
service is designed to be generic with respect to both the
application and the type of job scheduling system used by the
HPC provider. Through this design, the HPC providers can
make changes to their queuing systems, or CloudFlow can be
expanded to more HPC centers, without requiring the software
vendors to make changes to their services or workflows.

In order to make the service independent from details
specific to the HPC center, the HPC service communicates
internally with an HPC back-end through a pre-defined API.
Since user credentials defined in CloudFlow are not necessarily

compatible with the user definitions at the HPC center, the
back-end may perform a mapping between the two sets of
user definitions through a method seen fit by the HPC provider.
The two existing HPC providers within CloudFlow currently
use different approaches to solve this challenge:

• The HPC provider assigns a one-to-one mapping be-
tween the two types of users, providing each unique
CloudFlow user with a dedicated user in their HPC
infrastructure.

• The HPC provider has a set up pool of HPC users
reserved for CloudFlow. Each execution of the HPC
service is then assigned an arbitrary available user
from the pool, and that user is then reserved until
the execution is completed. To avoid that users can
access other users’ data, the home directory of each
such HPC user is deleted between each job.

The first approach is particularly suitable to private cloud
installations of CloudFlow, where the same system administra-
tors control both the cloud and compute cluster environments.

The input and output parameters for the HPC service are
designed to be highly generic, and should support the vast
majority of applications that will be run on the compute cluster.
The most important input parameter is the HPC command
lines, which is the set of command lines to be executed
through the HPC job. This typically includes loading required
modules in the HPC system, downloading input files from the
cloud storage, executing the application with the appropriate
arguments, and uploading result files back to the cloud storage.
Since the set of command lines is different for every HPC
application, this parameter is expected to be created in an
application specific pre-processing service. The idea is that
this service has the same input parameters as the application,
and generates a string as output that can be connected with
the input parameter of the generic HPC service. Besides the
HPC command lines parameter, the HPC service has input
parameters such as number of nodes and cores to be used by
the job, license required by the user to be allowed to submit
the job, and maximum execution time used to limit costs and
handle non-converging simulations.

In order to provide good user experience, the HPC ser-
vice allows the application to provide HTML based progress
information to the user. The progress reports provided by cur-
rently integrated services range from simple progress bars to
complete web pages, including embedded 3D rendered models
and plots illustrating the convergence of the computation. The
latter example execute unmodified software, and generate the
HTML based on the log files from an ongoing simulation.
The HPC service continuously monitors a pre-defined status
file within the application’s working directory, and the content
of this file is displayed to the user through the browser. It is
up to the application provider to fill this file with meaningful
content.

When the application is finished, it uploads any output
files to the cloud storage. The name of the output files,
however, and other output parameters needed by services later
in the workflow, are reported back to the HPC Service, and
given as service output parameters. Since a HPC job can
have any number of output parameters, outputs are supported
through a similar design as input parameters. When a job
is finished, the HPC service reads a pre-defined result file
in the job’s working directory. The content of this file is
passed as output from the HPC service as a single string. It

29

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



is then up to the application provider to first write all output
parameters to this file at the end of the job execution, and
then provide an application specific post-processing service.
The post-processing service should take the output from the
HPC service as input, and parse it to separate the different
output parameters. The application specific output parameters
can then be given semantic information and be passed to any
other subsequent service.

The application specific pre- and post-processing services
are naturally related to each other, and they only make sense
together with the generic HPC service. By modelling these
three services as a sub-workflow, the HPC job can be added
to any other workflow as a single block with input and output
parameters natural to the application. The HPC specific param-
eters (number of nodes, number of cores, maximum execution
time) can either be hardcoded within the HPC application sub-
workflow, dynamically defined in the pre-processing service,
or user defined through an application consisting of a web
form. If they are defined in any other way than by the
user, the user experience for a HPC job will be similar to a
simulation running in the cloud environment through a regular
asynchronous service.

Slow data transfers can potentially introduce performance
bottlenecks for HPC jobs. Since each application downloads
input data from the cloud storage, and since GSS (Sec-
tion III-D) is used to handle the file transfers, the software
vendors and HPC centers cannot provide restrictions on which
cloud storage the users are using. In order to maximize
performance, it is recommended that the users make use of
the storage solution that is closest to the HPC centers hosting
their HPC job. Currently, both of the existing HPC centers
in CloudFlow have available cloud storage solutions that are
connected to their HPC cluster with high-speed network. Since
one of the centers is the host of a private CloudFlow installa-
tion, their cloud storage is the only storage available for their
users. For the HPC center in the public CloudFlow installation,
the closest cloud storage is also the default storage solution for
all users. In the current installations, the cost of file transfers
to the HPC cluster is similar to the transfer cost between
virtual machines in the cloud and the cloud storages. Therefore,
data transfers between the cloud and HPC environment do not
impose a bottleneck for the users of CloudFlow.

Even though the HPC service is generic, the application
that is executed through it will be the part of a software pack-
age (as mentioned in Section III-B). The name of the software
package that it is part of will therefore be hardcoded as input
to the HPC service within the application sub-workflow. This
information is then used by the service to check with the
Resource Monitoring component that the user has a license
to run the application, and to ensure that the software vendor
receives the correct license fees. Other resource management
tasks, such as reporting CPU hours spent on the computation,
are also reported from within the generic HPC service.

To conclude this section, the HPC service facilitates
that computationally demanding applications can be executed
within a HPC environment, with an interface consisting of
semantically described input and output parameters, allowing
it to be part of a larger workflow. The service also supports
application specific progress reports to be presented to the user
during execution, opening for a well informed user experience.

Figure 7. The design of the CloudFlow VNC Service. The VNC Broker
handles the requests from the Workflow Manager and manages a set of
virtual machines on which the actual desktop applications and the VNC

servers run. Input and output parameters are forwarded between the
Workflow Manager and the individual VMs.

F. Remote Desktop Applications
Existing engineering desktop applications have typically

been developed over several years, and offer their function-
ality through complex graphical user interfaces. Providing
such an application as a CloudFlow web application by re-
implementing its complete user interface in a web-based
manner, would take a lot of effort and would not be rea-
sonable. Therefore, the CloudFlow Infrastructure offers the
possibility to integrate such software directly through a remote
desktop concept realized by using the VNC technology [9].
This integration is made through the VNC Service. The VNC
Service can be used in a workflow as a building block to
grant remote access to complex desktop applications. In-
stead of re-implementing the application’s user interface with
HTML/JavaScript, the application can be hosted as-is on a
virtual machine (VM) inside the cloud environment and can be
accessed through a VNC connection. The software providers
only have to prepare dedicated VM images for their individual
applications.

The CloudFlow VNC Service consists of two parts:

1) A VNC management service, the so-called VNC
Broker, as part of the core infrastructure.

2) The individual virtual machines that host the actual
software and are spawned and despawned by the
VNC Broker on demand.

The VNC Broker is a CloudFlow service that interacts with
Workflow Manager and manages all incoming VNC requests.
Upon request, it spawns a new VM from a prepared image
via CloudFlow’s OpenStack back-end, and establishes a VNC
connection to it. This VNC connection is then converted into
an HTML canvas and forwarded to Workflow Manager to
be shown in the CloudFlow Portal. When the connection is
set up and the user receives the VNC content through the
Portal, all communication is done directly between the user’s
client machine and the VM hosting the desktop application. No
intermediate stages are involved. The back-end is realized with
an installation of Guacamole [19]. A Guacamole VNC server
is installed and configured on the VNC Broker and connects
to every individual VNC VM. The mapping of the IP address
and port number is done dynamically for each new VM based
on the parameters returned from OpenStack. Authentication is
handled using the CloudFlow session token passed along with
the request from Workflow Manager. The overall architecture
of the VNC Service is shown in Figure 7.

30

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The VNC Broker also handles input and output parameters
to and from the VNC session. In contrast to standard Cloud-
Flow services, the VNC Service suffers from a similar problem
as the HPC integration, as input and output parameters have
not only to be passed from the workflow to the service, but all
the way through the VNC Broker into the individual virtual
machines. To solve this problem, the VMs are equipped with
an additional custom SOAP service that is called by the VNC
Broker to pass these parameters. If there are more than one
input parameter, all inputs have to be serialized into one and
deserialized again inside the VM, similarly as for the HPC pre-
processing service. Most common input and output parameters
however, will be files or folders defined by their GSS file IDs.
Therefore, the service on the VM includes the functionality
to download files or folders via GSS, and upload results to a
dedicated folder in the cloud storage via GSS as well. Once this
pre-processing is completed, the service launches the desktop
application with optionally provided command line parameters.
As the CloudFlow VNC Service is a generic service, billing
has to be done individually, depending on which VM image
that has been spawned. The total uptime of the VM, as well
as usage and license costs of the desktop application, will be
taken into account and assigned correctly to the associated
software provider.

As mentioned in Section II, network bandwidth and latency
are the key factors when operating a VNC session. To reduce
latency as much as possible within the infrastructure, we use
a direct communication between the virtual machine and the
end user. However, in the current setup, spawning the virtual
machine upon request is the biggest performance bottleneck.
Detailed performance measurements, as well as an in-depth
analysis of the additional overhead induced by using an HTML
solution instead of a dedicated VNC client application, will be
looked into at a later stage.

IV. VALIDATION
The development of the CloudFlow Infrastructure is or-

ganized to meet the requirements from end users in man-
ufacturing industries and their software providers. This has
given us the opportunity to arrange validations where the end
users test the platform and the deployed software against these
requirements.

A. Validation methods
To facilitate development and validation, three waves of

experiments have been set up. In the first wave of experiments,
all workflows were tailored towards the needs of one end
user in hydropower engineering. Software from six differ-
ent independent software vendors were integrated with the
infrastructure and accessible through the cloud solution, and
validated with one common end user. For the second and third
wave, European software vendors and end users were invited
to test the infrastructure and develop new workflows based on
the needs of the end user. In total 14 new experiments were
selected, each with one new end user.

At the beginning of each wave of experiments, user re-
quirements analysis was conducted. The user requirements
were gathered from the end user, software vendor, and HPC
provider, each being a stakeholder of the experiment. Initially,
the experiment description provided by each experiment was
analyzed, filtered and transformed into a first set of user
requirements. Then, during group discussion sessions, experi-
ment stakeholders were invited to confirm, add or remove, and

prioritize their user requirements. They were also encouraged
to provide success criteria and methods for measuring the
success that contributed to experiments validation criteria. In
parallel, a discussion related to which services to design and to
combine to workflows in order to address the requirements for
all of the experiments was also performed. In addition to this,
the software vendor in each experiment developed business
plans for how to realize the economical potential benefiting
both the end user and software vendors. This way, not only
the theoretical potential of the software platform is verified, but
also that the final solution can sustain as an attractive option.

Formative and summative evaluations were conducted for
each experiment. The formative evaluation, which was done re-
motely, was aimed to fine-tune the development of experiment
applications to ensure that the final experiment applications
met user requirements. Two activities were performed as part
of formative evaluation, i.e., 1) heuristic evaluation by Human-
Computer Interactions (HCI) experts to analyze the usability
of experiment applications, and 2) assessment of how user
requirements were met by the current state of experiment
applications. Summative evaluation, which was conducted at
end users sites, was aimed to provide final assessment of
experiment applications. Four activities were performed as
part of summative evaluation, i.e., 1) usability evaluation by
end users, 2) recommendation by HCI experts to improve
the usability of experiment applications, 3) assessment of
how the user requirements were met by the final version of
experiment applications, and 4) interview with end users on
various aspects of CloudFlow Infrastructure and experiment
applications. As part of usability evaluation by end users, they
were required to provide complex engineering problems to
solve in order to test the extent of experiment application
and CloudFlow Infrastructure technical capabilities. The two
stages of evaluation meant that the success of both CloudFlow
Infrastructure and experiments were validated.

B. Validation results
The results of user requirements revealed that the motiva-

tion to use the CloudFlow Infrastructure from end users’ point
of view varies among the experiments, including attracting
new customers, reducing license cost, reducing time spent
to create a new product and improving the design of new
products. On the other hand, it was also found that there was
an overall common goal between software vendors and HPC
providers, i.e., to enhance availability of easy to use software
and computational resources through

• user friendly interfaces, and
• easy access to advanced computing resources.

For end-users, the user requirements were then extracted to
identify metrics that can be used to measure and evaluate
the performance of the CloudFlow Infrastructure, e.g., speed,
accuracy and usability.

The assessment of how user requirements were met from
the 13 already finished and seven ongoing experiments have
been processed and shows that the main goals of all experi-
ments have been reached. More importantly, the results showed
that end user requirements in each wave were successfully
achieved. For instance, in the second wave of experiments,
which was composed of seven experiments and involved seven
different end users, 30 of 32 (94%) of end user requirements
were met, as shown in the left image of Figure 8. The
remaining of the user requirements were partially met, and

31

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8. Assessments of end users’ requirements for the second wave experiments (left) and third wave experiments (right).

did not represent any critical weaknesses in the infrastructure.
Meanwhile, in the third wave of experiments, which was also
composed of seven experiments and involved eight different
end users, 66.7% of end user requirements were met, as shown
in the right image of Figure 8. While this figure was much
lower compared to the second wave experiments, on a closer
observation, this was due to the fact that the assessment of
how user requirements were met is still an ongoing process.

Furthermore, the results of interviews with the end users
showed that they would benefit economically from using
more computing resources than today, and that the CloudFlow
Infrastructure can make it economically feasible. For instance,
in the first wave of experiments, by using the experiment
applications provided on the CloudFlow Infrastructure, the end
user (a hydropower manufacturing SME) has achieved, among
others, the following:

• A substantial reduction of time spent (89% faster) on
quality check of sub-assembly parts.

• An improvement of the accuracy of the calculated
results.

Other examples of economic benefits by end users from the
second and third waves can be found in more details on
CloudFlow project website [20].

To summarize, the validation results revealed that the
concept is functional and makes it more attractive to use cloud
computing for various stakeholders. The biggest benefits were
found where computationally intensive workflows are pre-
sented as engineering apps, that models the expert knowledge
for the very concrete artefacts within a unified web-based user
interface. These apps allow end users to perform operations
that would otherwise require computational resources and
human specialists that they do not have access to in-house.

V. EXAMPLE - QUALITY ASSURANCE IN THE CLOUD
This section presents a workflow designed to span the

functionalities of the CloudFlow Infrastructure. The workflow
was originally a first wave experiment, and has been expanded
throughout the development of the platform. The requirements
are provided by the original end user, who also evaluated the
workflow. The workflow is used to align and compare a 3D
scan of a model to its original CAD model. Here, the model
is a turbine blade used in a hydro power plant. The goal is to
confirm that the turbine blade is manufactured according to its
design within given tolerances, and later to control wear on
the blade after it has been in production for some time.

Before the development of the quality assurance workflow
took place, the end user put forward the following five require-
ments to the workflow:

1) The remote rendering of CAD models and point
clouds needs to be provided with low latency, and
with at least a frame rate of 15 frames per second.

2) The workflow and services within it must be easy to
use.

3) Both experts and non-experts needs to be able to run
the workflow. Complex functionality should therefore
be hidden, but still accessible for expert users.

4) Improve the engineering process by providing new
information not accessible for the end user prior to
CloudFlow.

5) Time reduction for the quality assurance process.
Prior to the CloudFlow quality assurance workflow, the end
user aligned the CAD model and point cloud manually. This
process was prone to error and the result was subject to quality
variations.

The quality assurance process consists mainly of three
steps, where each step contains one or several CloudFlow
services. The main challenge is to align properly the 3D
scan data to the CAD model, which usually is a tedious
manual process. A fully automated alignment is not necessarily
feasible, especially if the CAD model has symmetries. The
first step is therefore a coarse manual alignment, which is
performed before an automated alignment process, where an
optimization process iterates to make the point cloud fit as
close as possible to the surfaces of the CAD model. Thereafter,
the result of the alignment is reported to the user in an
informative and user-friendly manner. The entire workflow, and
the four software packages within it, is shown in Figure 9.

A. File selection and conversion
The workflow starts by letting the user choose the CAD

model, 3D point cloud, and location for where to store the
results from the alignment and distance computations. This
functionality is covered by the File Browser, mentioned in
Section III-D.

Since CAD models can be stored in different file formats,
and since the services later in the workflow expect a pre-
defined file format, a file conversion might be needed at
this point. The branching functionality of Workflow Manager
described in Section III-A is used at this point, and a con-
version service is triggered if the chosen file is not on the

32

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 9. A workflow for quality assurance where a 3D scan of a produced
product is compared with the initial CAD model.

pre-defined file format. If triggered, the conversion service
accesses a dedicate virtual machine in the cloud which runs the
conversion. The conversion service is not guaranteed to finish
within a HTTP time out, and is therefore implemented as an
asynchronous service. The service launches the conversion as
a background process, and Workflow Manager polls on the
service to check if the process is finished or not. Before the
conversion finishes, it provides a progress bar along with a text
describing the current status. Note that this conversion requires
no interaction from the user, allowing Workflow Manager to
proceed automatically to the next step of the workflow after
the conversion is completed.

B. Coarse alignment
The manual alignment step, where the starting point for

the automatic alignment is made, is a web application. Here,
the CAD model and the point cloud are shown in separate
canvases and the user selects corresponding points from the
two models. Since the models can be quite large, and to
meet the first requirement set by the end user, a hybrid
rendering is done through the Tinia framework [11]. The
models are rendered server side, generating 3D images that are
sent to the web client. The user can freely interact with the

local model for an interactive experience, without transferring
the CAD model. A drop-down menu is available for expert
users to choose rendering configuration manually, according to
requirement number 3. Using these configurations can improve
the rendering quality, but is not required for a good user
experience. Similarly to the file browser, Workflow Manager
awaits a message from the client to proceed in the workflow,
and this signal is sent when the user has completed the coarse
alignment.

C. Automatic alignment
The automatic alignment is computationally intensive and

to get the best performance, it executes in the HPC envi-
ronment through the HPC service described in Section III-E.
An application specific pre-processing service is implemented
to generate the set of command lines required to run the
alignment based on the file IDs obtained in the file chooser
applications, converter and coarse alignment application. A
post-processing service for the alignment is also implemented
in order to enable semantic descriptions to the result from
the HPC service. In this case, it will be the file ID holding
the aligned point cloud together with the pointwise distance
to the CAD model. These three services are then stored as
an automatic alignment sub-workflow, hiding any complexities
from the HPC service.

The automatic alignment has also been implemented as a
single asynchronous service, where the alignment is run in the
cloud environment instead of on the HPC cluster. Since the
alignment HPC sub-workflow has application specific inputs
and outputs, the sub-workflow can be exchanged with the
single cloud service directly. This can be useful as a cheaper
alternative for users who do not prioritize performance. The
service or the HPC block could potentially also be chosen
dynamically, using the branching functionality in Workflow
Manager. It would even be possible to send the computation
to another cloud / HPC provider if the chosen one has limited
capacity.

D. Distance visualization
The results after the alignment process are visualized by

a WebGL application showing both the CAD model and the
aligned point cloud in the same view. Since the browser has
limited capabilities, it does not receive the CAD model itself,
but rather an approximation more suitable for web rendering.
Since the approximation task is independent of all other steps
of the workflow, it can be executed in a parallel background
service, significantly reducing the start-up time for the post-
processing service.

The distance between the models is illustrated both trough
statistical information and color-coding of the point cloud.
Through the quality assurance approach prior to CloudFlow,
the end user had no access to statistical information on the dif-
ference between the CAD and the point cloud. This statistical
information is therefore provided to meet end user requirement
number 4. The user will typically view and inspect these
results and take screenshots for documentation before exiting
the application. As there are no more next steps, the workflow
is completed with a list of workflow output parameters. This
list can be accessed later through the user’s list of finished
workflows.

33

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



E. Validation of the quality assurance workflow
The validation showed that all five requirements listed in

the beginning of this section was met.
1) Rendering of CAD models was achieved with low

latency and acceptable frame rate through hybrid
rendering with Tinia, and WebGL.

2) The user interaction was limited to selecting files and
destination folder for workflow results, making the
coarse manual alignment, and inspecting the result.
All these steps provide good user experience, and end
users can easily use the quality assurance workflow
without any guidance. The workflow is therefore
considered user friendly and easy to use.

3) Optional menus for improving rendering quality is
available for expert users.

4) Enhanced statistical information was provided to the
end user.

5) Following the use of quality assurance application,
the end user reported that the quality assurance appli-
cation reduced the processing time for the alignment
from 3 hours to less than 20 minutes.

The quality of the alignment was also improved by at least
10% when compared to the end user’s existing approach, which
involved many manual steps.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have presented the CloudFlow Infrastruc-

ture where software packages from different vendors can com-
bined into seamless workflows that are offered to engineering
end users. It supports, and has the ability to combine, different
HPC and cloud providers, and takes a generic/unified approach
to cloud storage solutions and authentication to ensure inter-
operability. The generic HPC Service allows computationally
intensive software to take advantage of HPC resources, while
still being an integrated part of workflows and providing good
user experience. Similarly, a generic service is presented for
providing access to remote desktop applications, through the
VNC Service. Complex workflow design is supported through
the workflow editor, where conditional branches, loops and
parallel service execution can be modelled. The functionality
to track and monitor resource consumption by end users,
enables that the workflows offered in the infrastructure can
be commercialized and open up new business models for the
companies involved.

The next steps for the CloudFlow Infrastructure will be
to validate the newest additions of the infrastructure. This
includes validation of the VNC Service, and the more advanced
flow control for workflows. The successful validation shows
that the infrastructure is viable, and it is therefore natural to
extend CloudFlow to support more cloud providers and HPC
centers, and increase the amount and complexity of provided
workflows. Another interesting future extension is to combine
data streams directly from the factory floors into CloudFlow
services, according to Industry 4.0.

We have demonstrated that the CloudFlow Infrastructure
can open up the world of advanced multi-vendor software
solutions for engineering SMEs, who can not afford to host a
computing infrastructure in-house. The use of generic solutions
for handling data and utilizing HPC resources, shows the flex-
ibility of our approach, and makes it easy for software vendors
to integrate their software in a cloud environment. CloudFlow
provides a new distribution channel for the software vendors

where they can offer their software based on new cloud-based
business models, either as a pay-per-use license, or by periodic
licenses.

ACKNOWLEDGEMENT

This research was conducted in the context of the Cloud-
Flow project, which is co-funded by the 7th Framework
Program of the European Union, project number 609100. More
information and news about CloudFlow can be found on the
project website at http://eu-cloudflow.eu/.

REFERENCES

[1] H. H. Holm, J. M. Hjelmervik, and V. Gezer, “CloudFlow - an infras-
tructure for engineering workflows in the cloud,” in UBICOMM 2016:
The Tenth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies. IARIA, October 2016, pp. 158–
165.

[2] C. Stahl, E. Bellos, C. Altenhofen, and J. Hjelmervik, “Flexible integra-
tion of cloud-based engineering services using semantic technologies,”
in Industrial Technology (ICIT), 2015 IEEE International Conference
on, March 2015, pp. 1520–1525.

[3] SimScale. Website, retrieved: 2017-05-29. [Online]. Available: https:
//www.simscale.com/ (2017)

[4] cloudSME, simulation for manufacturing & engineering. Seventh
Framework Programme (FP7) under grant agreement number 608886.
Website, retrieved: 2017-05-29. [Online]. Available: http://www.
cloudsme-apps.com/ (2017)

[5] S. J. E. Taylor, T. Kiss, G. Terstyanszky, P. Kacsuk, and N. Fantini,
“Cloud computing for simulation in manufacturing and engineering:
Introducing the cloudsme simulation platform,” in Proceedings of the
2014 Annual Simulation Symposium, ser. ANSS ’14. San Diego,
CA, USA: Society for Computer Simulation International, 2014,
pp. 12:1–12:8. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2664292.2664304

[6] Fortissimo factories of the future resources, technology,
infrastructure and services for simulation and modelling. Seventh
Framework Programme (FP7) under grant agreement number
609029. Website, retrieved: 2017-05-29. [Online]. Available:
https://www.fortissimo-project.eu/ (2017)

[7] B. Koller, N. Struckmann, J. Buchholz, and M. Gienger, “Towards
an environment to deliver high performance computing to small
and medium enterprises,” in Sustained Simulation Performance 2015.
Springer International Publishing, 2015, pp. 41–50.

[8] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “CloudMF:
Applying MDE to Tame the Complexity of Managing Multi-Cloud
Applications,” in UCC 2014: 7th IEEE/ACM International Conference
on Utility and Cloud Computing, R. Bilof, Ed. IEEE Computer Society,
2014, pp. 269–277.

[9] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual
network computing,” IEEE Internet Computing, vol. 2, no. 1, 1998, pp.
33–38.

[10] Microsoft. Remote desktop protocol. Website, retrieved 2017-
02-15. [Online]. Available: https://msdn.microsoft.com/en-us/library/
aa383015(VS.85).aspx (2017)

[11] C. Dyken, K. O. Lye, J. Seland, E. W. Bjønnes, J. M. Hjelmervik,
J. O. Nygaard, and T. R. Hagen, “A framework for opengl client-server
rendering,” in 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, CloudCom 2012, Taipei, Taiwan.
IEEE Computer Society, 2012, pp. 729–734. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2012.6427506

[12] C. Altenhofen, A. Dietrich, A. Stork, and D. Fellner, “Rixels: Towards
secure interactive 3d graphics in engineering clouds,” Transactions on
Internet Research (TIR), vol. 12, no. 1, Jan. 2016, pp. 31–38.

[13] K. Grolinger, M. A. M. Capretz, A. Cunha, and S. Tazi, “Integration
of business process modeling and web services: a survey,” Service
Oriented Computing and Applications, vol. 8, no. 2, 2014, pp. 105–128.
[Online]. Available: http://dx.doi.org/10.1007/s11761-013-0138-2

34

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[14] M. A. Aslam, S. Auer, J. Shen, and M. Hermann, “Expressing busi-
ness process model as owl-s ontologies,” in Proceedings of the 2nd
International Workshop on Grid and Peer-to-Peer based Workflows
(GPWW 2006), 2006, 4th International Conference on Business Process
Management (BPM 2006), Vienna, Austria, September 2006.

[15] Oracle, “Oracle BPEL process manager datasheet,” 2009, [retrieved:
2017-05-29]. [Online]. Available: http://www.oracle.com/technetwork/
middleware/bpel/overview/ds-bpel-11gr1-1-134826.pdf

[16] R. Cyganiak, D. Wood, and M. Lanthaler, “Web Services Architecture,”
W3C Working Group Note, 2004, [retrieved: 2017-05-29]. [Online].
Available: https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[17] V. Gezer and S. Bergweiler, “Service and workflow engineering based
on semantic web technologies,” in UBICOMM 2016: The Tenth Interna-
tional Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies. IARIA, October 2016, pp. 152–157.

[18] Openstack Keystone. Website, retrieved: 2017-05-29. [Online].
Available: http://docs.openstack.org/developer/keystone/ (2017)

[19] The Apache Software Foundation (ASF). Guacamole VNC. Website,
retrieved 2017-05-29. [Online]. Available: http://guacamole.incubator.
apache.org/ (2017)

[20] CloudFlow: Computational cloud services and workflows for agile
engineering. Seventh Framework Programme (FP7) under grant
agreement number 609100. Website, retrieved: 2017-05-29. [Online].
Available: http://eu-cloudflow.eu/ (2017)

35

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


