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Abstract—Outdoor localization will become very essential in the
development of 5G applications. Current localization techniques
mainly relying on GPS and sensors can mostly overcome problems
caused by path loss, background noise and Doppler effects,
but multiple paths in complex indoor or outdoor environments
present additional challenges. In this paper, we propose an
improved adaptive BeamMaP that can instantaneously locate
users in dynamic environment urban after training input data and
steer the beams efficiently in a distributed massive Multiple-Input
Multiple-Output (MIMO) system. We also design an adaptive
algorithm to improve the performance of the model under the
dynamic weather. To simulate a realistic environment, we evaluate
the positioning accuracy with multiple channel fingerprints col-
lected from uplink Received Signal Strength (RSS) data, including
Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS), in the training
data sets. Based on the adaptive beamforming, we employ the Rice
distribution to sample the current mobile users locations in the
testing data sets. Our simulation results achieve Reduced Root-
Mean-Squared Estimation Error (RMSE) performances with
increasing volume of training data, and the performances of
RMSE are very close to the Bayesian Cramer-Rao bounds. We
prove that our proposed positioning model is more efficiency and
steadier compared with kNN and SVM in the dynamic weather
conditions, and also demonstrate the effectiveness of the adaptive
beamforming model in the online testing process.

Keywords–outdoor localization; machine learning; adaptive;
beamforming.

I. INTRODUCTION

The future developing technologies, such as autonomous
vehicles, Virtual Reality (VR), high-speed data center net-
working and the Internet of Things (IoT), are relying on more
efficient bandwidth distribution and higher speed transmission
[2] [3] [4] [5] [6]. Meanwhile, the next generation of wireless
networks 5G should provide more accurate localization of the
connected mobile devices and distribute the limited bandwidth
in a more efficient way. Some new technologies employed
in localization, especially including the massive MIMO and
beamforming technologies, are explored in the 5G system
[7]. The innovative design of massive MIMO disclosed in
some publications utilizes a large number of upgraded array
antennas (more than one hundred) to multiplex messages for
several devices simultaneously. This component, implemented
in future Base Stations (BSs), has been shown to play an
essential role in positioning of Mobile Users (MUs) in cellular
networks, including increased spectral efficiency, improved
spatial diversity, and low complexity [8]. More importantly,
a distributed design for massive MIMO is beneficial for
positioning due to the better spatial diversity, which will be

employed in this paper. Some proposed solutions applying
the MIMO positioning techniques are mainly focused on the
received signal information from the users, such as the Angle-
of-Arrival (AoA), Time-of-Arrival (ToA), and Received Signal
Strength (RSS) [9] [10] [11]. These features, singly or in
combination, can be used in the localization of mobile users
in indoor or outdoor environments.

Even though positioning in cellular networks widely uses
the Global Positioning System (GPS) in urban or rural areas,
the method becomes unreliable when the LoS and NLoS
signals are difficult to distinguish, such as in highly cluttered
multipath scenarios (tens meters error) [12]. In addition, it
consumes the phone battery quickly on GPS. In some conven-
tional method using the two-step localization techniques, the
received LoS signals are processed at different base stations
and AoA and/or ToA of each user can be obtained. Then the
position of the user can be found by triangulation calculation
[10]. However, the LoS path may be damped or obstructed,
leading to large positioning errors, as is often the case in
complex scenarios. Also, [10] is exploiting channel properties
to distinguish LoS from NLoS signal paths, resulting in an
improvement of performance. However, a large data gain with
a combination of LoS and NLoS signal paths will require high
computational complexity.

Our solution is to employ a machine learning regression
technique based on the efficient beamforming transmission pat-
terns to estimate the location of MUs after collecting amounts
of LoS and NLoS data. Our model can instantaneously predict
the locations of MUs after generating the Machine Learning
(ML) regression network model and help the base stations to
distribute beams in an efficient way. Moreover, the proposed
design with improved adaptive algorithm can implement the
real-time detection to update the input data sets including LoS
and NLoS multipath channels. The main contributions of our
work are as follows:

• We employ a supervised machine learning regression
approach to accurately locate the MUs in a single
cellular system.

• We present extensive performance results from simu-
lations exploring the effects of various componential
parameters.

• We prove our proposed machine learning method is
more efficiency and steadier in the positioning system
compared with kNN and SVM.

• We build different testing users models to compare
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adaptive and switched beamforming in proving the
adaption of our ML model.

The new contributions over [1] includes:

• We add the adaptive algorithm to better initialized
before training the input data in the machine learning
process.

• We compare the performance of RMSE under different
size antennas with Bayesian Cramer-Rao bounds and
prove the correction.

• We add the extensive experiments in different weather
environments to prove the better performance in our
adaptive model.

• We compare our machine learning method with dif-
ferent regression models in the dynamic environments
and indicate the better performance as tradeoff be-
tween localization bias and response time.

The rest of this paper is organized as follows: Section
II discusses different kinds of machine learning localization
methods in the wireless network system. Section III presents
the proposed positioning system design, including the input
data sets collected for training, the machine learning model
and testing process. In Section IV, we design our adaptive
algorithm in improving the performance of whole system.
In Section V, we present performance evaluation results to
analyze the impact factors and implement the comparison in
different schemes. Section VI presents our conclusions and
future works.

II. RELATED WORK

In this section, we illustrate the applications of machine
learning used for wireless localization and express our pro-
posed method and contributions.

A. Machine Learning methods used for localization

Big data collections combined with machine learning meth-
ods have been widely mentioned in solving the mobile users
indoor or outdoor localization in some proposed literature
[11] [13] [14]. Similar to our proposed [1], some existing
innovative ML methods are also commonly based on collecting
some signal information as location fingerprints including RSS,
ToA or AoA, and through training, modeling and testing to
implement the localization.

Hossain et al. [15] and Xie et al. [16] introduce an
unsupervised machine learning technique k-Nearest Neighbors
(kNN) or an improved kNN scheme to solve the indoor
localization problem. Through collecting RSS as fingerprint
using Bluetooth and Wi-Fi signals from multiple access points
(APs) in [15], a designed regression method is introduced to
reduce the training time and facilitate under-trained location
systems. The principle behind nearest neighbor methods is to
find a predefined number of training samples closest in distance
to the new point, and predict the label from these samples.
Hossain et al. [15] employ kNN and Bayesian probabilistic
model as the regression algorithms for localization in a lecture
theater environment. Also, an improved kNN as Spearman-
distance-based indoor location system is mentioned in [16],

the spearman rank correlation coefficient being as a label
metric is calculated after obtaining the unknown position
fingerprints (RSS). The spearman distance is acquired based on
the spearman rank correlation coefficient and used to combine
with the original kNN approach, which proves an improvement
performance compared with original kNN.

Tran et al. [17] and Kim et al. [19] proposed a supervised
machine learning technique, that is, support vector machines
(SVM) to estimate the geographic locations of users in a wire-
less sensor network where most sensors are without owning
an effective self-positioning functionality. Even though SVM
is a classification method, it is proved that the localization
error can be decreased after given by an appropriate training
data size and kernel functions in [17] [19]. Tran et al. [17]
assumed that each node is repeatedly positioned as the centroid
of its neighbors until convergence. The training data sets are
collected through beacon nodes information where two nodes
can communicate with each other if no signal blocking entity
exists between them. The kernel function used for training
is defined based on hop counts only. Kim et al. [19] build
the training model based on the raw RSS data sets measured
from each sensor. Then a least-square SVM mechanism is
explored and implemented on a designed kernel function. Both
of them confirmed the estimation performance more accurate
and robust than the conventional method.

The supervised deep learning techniques are also employed
in the positioning systems due to the higher performance
compared with traditional methods in [21] [22]. Rizk et al.
[21] introduce the data augmentation method to generate
synthetic data with pairs of CID (represents the cell tower
unique ID) and RSS fingerprints and utilize the deep learning
approach to train the received generated data. A neural network
including three hidden layers is designed and processed the
training step. The proposed system can receive the improved
performance in the evaluation of indoor and outdoor scenarios.
Also, another novel deep learning indoor localization system
termed as DeepFi is presented in [22]. DeepFi system archi-
tecture composed of an offline training phase and an online
localization phase utilizes the deep learning method to train
all the weights of a deep neural network. The input training
data as fingerprints are the channel state information (CSI)
collected from some Wi-Fi network interface, which calculated
from many subcarriers in an orthogonal frequency division
multiplexing (OFDM) system. DeepFi scheme was validated
in the representative indoor environments.

However, those efficient supervised or unsupervised tech-
niques still have some limitations in localization of wireless
networks. For example, kNN employed in [15] [16] are able
to provide good performance in uniformly distributed refer-
ences, but we have to choose a better regression depending
on the different k dimension. The changing k process will
generate the large number of input training data and cause
higher computational complexity. Also, supported machine
learning methods, such as Support Vector Machines (SVM)
[17] [19] are easy to cause over-fitting in the regression when
the number of features is much greater than the number of
samples, so it relies on large numbers of sensors to acquire the
data in the wireless sensor network. Thus, when the number
of MUs in the outdoor increases, it will increase the time
computational complexity to distinguish the LoS and NLoS
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signals from multiple different sensors and need more cross-
validation iterations to avoid over-fitting. Additionally, deep
learning method [21], is explored to predict the coordinates of
MUs after collecting amounts of RSSs and/or AoAs through
different base stations. It will cause the estimation to be
degraded when the number of MUs increases and interference
between cellular areas becomes dramatically higher. Even
though DeepFi scheme [22] was validated in two representative
indoor environments, it ignores the complexity of the dynamic
environment if implemented in outdoor network.

In addition, current research in exploiting the machine
learning techniques points out that offline optimization can also
dramatically improve the speed of test processes and the ac-
curacy of estimation through collecting a considerable amount
of multiple channel paths parameters. However, the impact of
realistic aspects such as multiple channels in different paths
sent from MUs are not all considered. It means that only LoS
channels in the cellular networks are considered and some
strong NLoS signals in the urban areas are ignored. Moreover,
[11] considers the magnitude of a channel snapshot represented
in a sparse domain and translates it into a convolutional
neural networks (CNNs) image identification problem, which
is constrained on the fixed data array such as delay and angles
in the static LoS channels. It ignores the real-time channel
variations that are not presented in the training data sets.

Based on the features of raw data sets, such as RSS
information that is easier to be collected and run in our system,
we employ a Gaussian Process Regression (GPR) model to es-
timate the locations of MUs, discussed in [9]. GPR is a generic
supervised learning method designed to solve regression and
probabilistic classification problems. Under this method, an
unknown nonlinear kernel function is assumed to be random,
and to follow a Gaussian Process (GP). In contrast to kNN and
SVM, GPR is able to provide probabilistic output, for example,
the posterior distribution of the MU position, after given an
online measurement and a set of fingerprints with RSS vectors.
Besides, without LoS and NLoS identification, this machine
learning approximation method can efficiently identify MUs
positions after training with limited reference users, and it
significantly decreases the computational complexity as well.

B. Our Approach and Contributions

In this paper, we propose a novel positioning technique,
called Beamforming-based Machine Learning for Positioning
(BeamMaP) to meet the above challenges. BeamMaP employs
a machine learning regression technique based on the efficient
beamforming transmission patterns in order to estimate the
location of MUs. BeamMaP can instantaneously predict the
locations of MUs after generating the Machine Learning
(ML) regression network model and help the base stations
to distribute beams in an efficient way. Moreover, BeamMaP
can implement the real-time detection to update the input data
sets including LoS and NLoS multipath channels, and also
an improved adaptive BeamMaP can adequately satisfy with
dynamic atmosphere in the 5G system.

The BeamMaP design is illustrated in Figure 1. The
beamforming system in each BS installed massive MIMO
antennas serves more than one MU. When a MU transmits
on the uplink, we can obtain a vector of RSS (or a fingerprint)

Cellular Network

Edge Servers
Cloud Servers

Weather changes

MIMORSS RSS

Figure 1. BeamMaP positioning system in cellular networks.

comprising LoS and NLoS multipath measured by the massive
antennas array in the BS. The detected uplink signals or RSS
information are collected and submitted to the edge servers or
cloud servers for calculation. Then the adaptive array systems
can formulate a single or more beams with different weights
to different directions according to the demands of MUs.
Furthermore, MUs can process signals from a single MIMO
base station, provided the BS and users were synchronized,
which can be easily implemented by a two-way protocol by
adding some additional overheads [23]. Besides, in order to
avoid the pilot contamination occurred in massive MIMO
system between cells, some reuse pilot schemes and partic-
ular modulation technology, such as Orthogonal Frequency-
Division Multiplexing (OFDM) or Code-Division Multiple
Access (CDMA) should be applied in our system [24]. Further-
more, massive MIMO systems combined with beamforming
antenna technologies are considered to play a key role in the
next generation wireless communication systems [25]. Optimal
beamforming techniques, such as adaptive beamforming, are
mentioned to be employed in localization and provide energy
saving of the MIMO systems. BeamMaP employs adaptive
beamforming as a candidate in building the testing process.
Compared with switched beamforming, adaptive beamforming
can cover a larger area of MUs when the number of beams
and bandwidths range shared are the same, and it also offers
more comprehensive interference rejection [25]. Therefore,
BeamMaP not only can improve the efficiency of coverage
for users, but can also result in significant reduction in energy
consumption of base stations.

III. BEAMMAP POSITIONING SYSTEM AND ALGORITHM
DESIGN

Driven by the above motivations, the BeamMaP framework
is illustrated in Figure 2.

We firstly need to collect the fingerprints (RSS vectors)
to generate the training data sets. Due to the unknown direc-
tions of MUs, we assume the beams weights in a uniform
distribution trying to cover more MUs in comparison with the
random distribution in the beginning status. Then, BeamMaP



24

International Journal on Advances in Internet Technology, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Start

RMSE>!

Generate	beam	weights	in	a	
uniform	distribution

Collect	uplink	 RSS	as	
fingerprints

Machine	learning	
training	to	do	regression		

Set	up	beams	to	adapt	MUs	
under	their	requirements

Y

Fingerprints	 subset	as	a	
test	for	prediction

Training	sets

Testing	sets

N

Figure 2. BeamMaP’s positioning system framework (adaptive σ chosen)

starts to explore the GPR method to train the collected raw
data arrays, which include the RSSs of LoS and NLoS in the
scenario. Some parameters set up in the ML regression model
are able to be estimated in the training process. Furthermore,
in order to avoid the overfitting in the training process, we
follow the K∗-fold cross-validation to partition a sample of
input data sets into complementary subsets, performing one
subset as the training set (the orange blocks in the figure), and
validating the analysis on the other subset as the testing set (the
blue blocks in the figure). Multiple rounds of cross-validation
are performed using different partitions, and the validation
results are combined (e.g., averaged) over the rounds to give
an estimate of the model’s predictive performance. Moreover,
we choose the Root-Mean-Square Estimation Error (RMSE) as
the metric, which will be introduced in the experiment section.
We set up a threshold σ to analyze the training process of the
ML model. If the RMSE in the model is larger than σ, it will
back up to the beginning of the ML process, requiring that
the ML process continue the training process. If the RMSE
is less than or equal to σ, the parameters in the model have
been generated successfully in the estimation, and we should
adjust the system to set up beams to cover the mobile users
under their requirements. The detailed model is designed in
the following part.

A. Input Data Sets for Training –Uplink Transmission in 5G
MIMO Model

In this section, we build a wireless network model to locate
Mobile Users (MUs) in a single cellular 5G network system.
We assume one Base Station (BS) with K (K >M ) antennas
to serve M single-antenna MUs in the cell. We consider MUs
simultaneously transmit M symbols, s = (s1, ..., sM )T , the
massive MIMO antennas array in the base station can receive
the sum signal strength vectors r = (r1, ..., rK)T :

TABLE I. BASIC NOTATIONS REPRESENTATIVE.

Notation Corresponding meaning
K, k the number of antennas in BS, antenna index
M,m the number of MUs, MU index
ρ the transmission power of each mobile user
S the number of training reference MUs
sm
s

the symbol vector transmitted by the mth mobile user,
the sum symbol vectors transmitted by all MUs

rk
r

the received symbol vector at the kth antenna in BS,
the sum signal strength vectors in BS

hk,m

H
fading uplink channel between mth MU and kth antenna ,

the uplink channel matrix between all MUs and BS antennas
αk,m

qk,m

small-scale fading coefficient between mth MU and kth antenna ,
large-scale fading coefficient between mth MU and kth antenna

nk

n
the additive white Gaussian noise vector received in the antenna k

the sum additive white Gaussian noise vectors in the BS
pk,m

pm

RSS of mth MU at kth antenna in BS
uplink RSS vectors of MU in all antennas of BS

n the Path Loss Exponent (PLE) for LoS or NLoS channel
δs the shadow fading in dB
p̃a

P̃

the uplink RSS vector for the ath training MU

the training data matrix for S coordinates of MUs chosen
p̂m the uplink RSS vector of the mth testing MU
(̂xm, ŷm)

(x̃m, ỹm )

the coordinate of the mth testing user in vector (̂x, ŷ)

the coordinate of the mth training user in vector (x̃, ỹ)
[µx]m

[σx]m

the estimation value of the mth testing user x̂m-coordinate

the variance for errors of user x̂m-coordinate

r =
√
ρHs + n (1)

Here ρ is a constant denoting the transmission power of
each mobile user; H is the K × M channel matrix, with
hk,m = αk,m

√
qk,m,∀k = 1, ...,K and m = 1, ...,M as the

transmission channel element for mth mobile user uplink to the
kth antenna in the base station. αk,m and qk,m are respectively
the small-scale and large-scale fading coefficients. The large-
scale fading qk,m (related to shadowing noise variance) is
assumed to be a constant in the urban or suburban environ-
ment, and the small-scale fading αk,m is considered to be
an independent and identically distributed complex Gaussian
distribution (Rayleigh distribution), with αk,m ∼ CN (0, 1).
In addition, n = (n1, ..., nK)T represents the additive white
Gaussian noise vector given by nk ∼ N (0, 1). We list the
basic notations in Table I.

From (1), we are considering the sum signal strength
vectors from all users to antennas. In order to separate the
multiple users RSS in r, we have different schemes to extract
the kth user RSS rk. In order to capture the effective signals,
the pilot signal vector sk should be modulated as mutually
orthogonal during transmission so that it can satisfy sHi ·sj = 0
(i 6= j) [24]. Particular modulation techniques, such as OFDM
or orthogonal CDMA employed as the coded schemes in
the transmission systems. Minimum MSE (MMSE) being an
appropriate solution, we can simply extract each user signal
strength from the combination signals of all MUs and then
distinguish the signals and noise by setting a threshold in the
receiving part.

sHr =
√
ρH + sHn (2)

Taken all assumptions into account, we can acquire the
single user’s RSS as pk,m in:



25

International Journal on Advances in Internet Technology, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pk,m =
∥∥sHmrk∥∥2

= ρ |hk,m|2 = ρα2
k,m |qk,m| (3)

Also, we accumulate all MU uplink power vectors from
all antennas in BS: pm = [pdB

1,m, p
dB
2,m, ..., p

dB
K,m]. Established

on the received power model, we can acquire the power data
sets by converting (3) to the log distance path-loss model but
they are limited in the lower frequency and small cellular
environment [26]. Additionally, through our experiment, we
observe the COST Hata model (COST is a radio propagation
model that extends the urban Hata model to cover a more
elaborate range of frequencies, which is developed by a
European Union Forum for cooperative scientific research.)
also cannot adapt the different higher frequency 5G network
system, even though it is popularly employed in the urban
cellular network [27]. Also, the path loss models currently
employed in the 3GPP 3D model is the ABG model form
but without a frequency dependent parameter and additional
dependencies on base station or terminal height, and only used
in LoS scenario [28]. Therefore, we are considering to employ
the Close-in (CI) free space reference distance Path Loss (PL)
model, which is noted multi-frequency and covers the 0.5-100
GHz band [28] [29]. The CI-PL model is also transferred from
(3) to adapt LoS and NLoS realistic scenarios through adding
the free space path loss and optimizing the parameters:

Ploss(fc, d)[dB] = FS(fc, 1m) + 10nlog10(
d

1m
) + δs (4)

Here fc is the carrier frequency in Hz, n is the Path Loss
Exponent (PLE) describing the attenuation of a signal passing
through a channel, d is the distance between MU and each
antenna in BS and δs is the shadow fading in dB. The Free
Space Path Loss (FS) in (4) is standardized to a reference
distance of 1 m. FS with frequency fc is given by:

FS(fc, 1m) = 20log10(
4πfc
ν

) (5)

In (5), ν denotes the speed of light. The CI-PL model is
represented as the relationship between propagation path loss
and TX-RX distance based on a straight line drawn on a two-
Dimensional (2D) map, passing through obstructions, and used
in both LoS and NLoS environment. While we are considering
CI-PL in the urban cellular network of 5G system model, the
parameters are measured as n = 2.0, δs = 4.1 dB in LoS and
n = 3.0, δs = 6.8 dB in NLoS using omnidirectional antennas
[28]. Due to the same transmission power assumed for each
MU, we can use the CI-PL model as the RSS parameters
to acquire the training data sets. Additionally, for each MU’s
uplink transmission, multiple antennas can receive multipath
signals, some of them are LoS and the others are NLoS
responses. So we consider the LoS probability model in the
current 3GPP/ITU model in the MIMO receiving part when
setting up the training data. It means the uplink response array
of MIMO antenna includes LoS and NLoS components for
each MU. From [28], in terms of Mean Squared Error (MSE)
between the LoS probability from the data and the models, we
choose the d1/d2 model as follows:

p(d) = min(
d1

d2
, 1)(1− e−

d
d2 ) + e−

d
d2 (6)

Where d is the 2D distance between MU and antennas
in meters and d1, d2 can be optimized to fit a scenario of
parameters (we choose d1 = 20, d2 = 39 because it acquires
minimum MSE in adapting the urban scenario).

B. Machine Learning Model

Given the RSS vector pm = [pdB
1,m, p

dB
2,m, ..., p

dB
K,m], our

goal is to find the position of the mth MU in the two dimen-
sional plane, denoted by (xm, ym). We build the functions
fx(.) and fy(.), which take the uplink RSS vector pm of
a given user m as input and provide the user’s location
coordinates (xm, ym) as output, and try to learn as follows:

xm = fx(pm) and ym = fy(pm),∀xm, ym (7)

Derived from CI-PL model for the input training model, the
learning functions can be classified as a nonlinear regression
problem. We follow GPR as a supervised machine learning
approach, with a training phase and a test phase, to learn
fx(pm) and fy(pm). In the training level, we consider RSS
vector pm derived from the CI-PL model in both LoS and
NLoS conditions. Prior to it, we need to acquire the antennas
coordinates, the training users coordinates, and some other
parameters. In the testing phase, the testing users are chosen in
a Rice distribution to satisfy the adaptive beamforming pattern,
whose location coordinates are unknown.

C. Training and Beamforming-based Prediction Phase

GPR uses the kernel function to define the covariance
over the objective functions and uses the observed training
data to define a likelihood function. Gaussian processes are
parameterized by a mean function µx and covariance function
K(pi,pj), which means fx(.), fy(.) ∼ N (µ, σ2). Usually
the mean matrix function is equal to 0, and the covariance
matrix function, also known as kernel matrix function, is
used to model the correlation between output samples as a
function of the input samples. The kernel matrix function
K(., .) contains k(pi,pj),∀i, j = 1, ...,M as the entries to
define the relationship between the RSS of the users. We
usually use a weighted-sum of squared exponential and linear
functions, which servers the stationary component and non-
stationary component respectively, to generate the regression
function:

k(pi,pj) = υ0e
− 1

2 A‖pi−pj‖2 + ν1p
T
i pj (8)

Here A = diag(ηk),∀k = 1, ...K. It will cover the LoS
and NLoS matching with each MU. So the parameters vector
Λ = [υ0,A, υ1] = [υ0, η1..., ηK , υ1] can be estimated from the
training data. In order to learn the target vector Λ, we choose
S coordinates of MUs as the training data matrix P̃ denoted
P̃ = [p̃1, p̃2...p̃S ] and use the maximum-likelihood method
to predict the (x̃, ỹ)-coordinates. According to the property
of a Gaussian process, we can acquire the learned vector Λ
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by employing the maximum-likelihood of the S × 1 training
x̃-coordinate vector:

Λ = argmax
Λ

log(p(x̃|P̃,Λ)) ∼ N(x̃; 0, K̃) (9)

The parameter vector follows as GP, which is a non-convex
function as shown in the [9], and can not be solved well in
the training process. Several methods introduced in [30], such
as stochastic gradient descent, mini-batching or momentum,
can help to solve the non-convex problem. Established on the
ML method in the training problem, we decided to employ
stochastic gradient descent method [30] to obtain the optimum
vector Λ in convergence to a local maximum.

In the prediction phase, the predictive distribution
p(x̂m|P̃, x̃, p̂m) in terms of posteriori density function, is
applied as estimation of the testing user x̂m-coordinate, which
also follows the Gaussian distribution with mean [µx]m and
variance [σx]m, x̂m|P̃, x̃, p̂m ∼ N ([µx]m, [σ

x]m):

[µx]m =

S∑
a=1

k(p̂m, p̃a)[K̃
−1

x̃]a,

[σx]m = k(p̂m, p̂m)−
S∑
a=1

S∑
b=1

k(p̂m, p̃a)[K̃
−1

]ab · k(p̃b, p̂m)

(10)

Where the mean [µx]m indicates the estimation value of
test user x̂m-coordinate and the variance [σx]m represents the
variance for errors of user x̂m-coordinate. p̂m denotes the
received power vector of the mth testing MU, and p̃a denotes
the ath power vector in the received training power matrix P̃.
For the computational complexity of GPR, we observe from
(10), [µx]m needs to sum up S operations for K̃

−1
x̃, which

requires O(S2). In total, [µx]m incurs a time complexity of
O(S3).

Subsequently, we choose the locations of test MUs based
on the beamforming pattern. Beams can be optimized to
distribute and spread with the demand users. In the real
scenarios, some hot spot areas need large bandwidth and some
other areas only need small bandwidth to satisfy with few
mobile users. The locations of MUs always follow a Rice dis-
tribution. Therefore, the coordinates of test users in positions
prediction can be chosen from input fingerprints following a
Rice distribution, which will satisfy with the beams distribution
in an adaptive way. BeamMaP being as a prediction assistant, it
will cooperate with a better beamforming scheme to distribute
the bandwidths in efficiency. During the experiments, we will
compare with switched beamforming patterns, which beams
are distributed uniformly in the system. Furthermore, we
employ the same proposed regression method to estimate the
ŷm-coordinate of test user. Also, we can acquire the mean
[µy]m and variance [σy]m as the predictive parameters.

IV. ADAPTIVE ALGORITHM DESIGN FOR THE SELECTION
OF THE INPUT DATA SETS

In the machine learning design process, both initialization
and momentum are known to be crucial since poorly initialized

network can not be trained well [31]. For the training phase in
the machine learning process, the selection of input data sets
should be of importance in training the ML model. According
to some proposed papers, wireless communications suffers
a RSS loss or degrade in the network quality during bad
weather or climatic change, which can affect the regional
communication. The effects of atmosphere in RSS need to be
considered in the analysis of dynamic outdoor conditions [32]
[33]. So we realize that the rain volume will affect the signal
attenuation in some range especially in the crowd cities. If the
environment of testing data sets is different from the training
sets, it will definitely cause the increase of the estimation
error rate in the testing. Therefore, before starting the training
process, we learn that the selection or classification of input
data sets can better improve the performance.

Even though our previous chapter BeamMaP [1] is con-
sidered in the relatively stable outdoor condition, the effects
of atmosphere in RSS will be considered in the designing the
adaptive algorithm for selection of the training data. In order
to adapt to the different environments in the outdoor urban,
we adopt the different training data sets. In the transmission
of wireless signals, attenuation is due to the scattering and
absorption of electro magnetic waves by drops of liquid
water, temperature and humidity [33]. However, we collect
the data and do the training in the day time cycle, and find
that temperature and humidity have not much fluctuation in
hours. Then rain is shown as a major source of attenuation
for microwave propagation above 5 GHz especially in 5G
system [34] [35] [41]. The signal attenuation increases as its
wavelength approaches the size of a typical raindrop (1.5 mm).
Thus we will employ the different regular weather conditions
such as sunny, drizzle (including cloudy) and rainy (including
showers) in the dynamic environments. In the initialization
process, we will manually choose the different data groups to
do the training process in these different conditions. In order
to realize the dynamic model, the status of weather conditions
will be classified into S[0], S[1] and S[2] depending on the
volume of rain in the time slots. In the practice, we usually add
the rain volume sensor in the antennas to help and decide the
status of weather. For example, when the sensor finds that rain
volume is zero (Sunny status) at that time, we will employ S[0]
data sets in the training process. The selection process is the
initialization step in our ML model. It will help to implement
the localization estimation in adapting with different weather.
Then, we can start the machine learning algorithm and testing
in the following steps.

The pseudocode of the algorithm is shown in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the
performance of BeamMaP as the machine learning method in
estimating the locations of testing MUs. In order to simulate
a realistic environment, we set up the fundamental parameters
of path loss model based on the 5G 3GPP/ITU Micro-Urban
model [28].

A. Parameters Set Up

The parameters used in the simulation are shown in Table
II. According to the analysis of different environment in
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Algorithm 1 ADAPTIVE ALGORITHM FOR POSITIONING

1: Initialize: Initial positions and set up the beams in a
uniform distribution.

2: for i = 1...k(k = 3) do
3: if Rain volume is zero then
4: Choose status S[0]

5: if Rain volume is small or medium then
6: Choose status S[1]

7: if Rain volume is large then
8: Choose status S[2]

9: Input: Measurement data sets in the S[i] condition.
10: Compute K(pi,pj),∀i, j = 1...M ,

[µx]m =
∑S
a=1 k(p̂m, p̃a)[K̃

−1
x̃]a

11: Until | RMSE| ≤ σ
12: Output: Estimated target position x̂m = [µx]m, set up

beams in a specific directions according to the location
distribution.

TABLE II. PARAMETERS FOR SIMULATION.

Description Value

Path loss parameters
(5G 3GPP/ITU Micro-Urban model [28])

n = 2.0, δs = 4.1 dB for LoS,
n = 3.0, δs = 6.8 dB for NLoS,

d1 = 20, d2 = 39
Modulation Scheme OFDM (Orthogonal CDMA)
MU transmit power 23 dBm (200 mW)
Minimum SNR for
channel estimation 1 dBm

Number of antennas in BS 64 (8×8), 100 (10×10),
144 (12×12)

Maximum number of training fingerprints 90000
Number of testing MUs 100

The space between antennas 0.12, 0.3, 0.48 m
The space between training MUs 1 m

Threshold to control the training process (σ) [5, 35] m

Section III-A, the path loss parameters n and δs are chosen
for adapting the crowded urban area. The MU transmit power
is chosen as per LTE standards to be 23 dBm [36]. In
practice testing, the minimum SNR required is determined
by the normalized MSE of the channel estimates [28]. For
our simulations, we set the minimum required SNR to 1 dB.
Considering that currently the number of MIMO antennas
of the BS can be designed from 64 to 156, we assume
K = 64, 100, 144 antennas uniformly distributed as a 8 × 8,
10 × 10 and 12 × 12 squares. We assume that the MIMO
antennas are installed at the center of a cellular network,
which can distribute the beams in each direction with the same
maximum reach. Figure 3 shows an example of the deployment
of the base station antennas and the surrounding reference
MUs consisting of a squared antennas array with 16 antennas
covering x ∈ [5, 30] and y ∈ [10, 70] area (meters in unit).
The fingerprints for MUs are distributed in a grid covering
dimensions x ∈ [50, 130] and y ∈ [20, 140]. We split the
fingerprints into a training part and a testing part, then follow
the K∗-fold cross-validation method (i.e., K∗ = 10) to do the
regression and average the result over several runs.

The coordinates of MUs and antennas are selected as posi-
tive values in the simulation. In order to reduce the interference
between the uplink received signals in the massive MIMO,
spatial separation for antennas is on the minimum order of 2
to 3 wavelengths and usually in 5 to 8 wavelengths (or more)
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Figure 3. The deployment example of MIMO antennas (BS antennas) and
reference MUs (Fingerprint)

[37] [38]. In our simulation, the spacing between antennas
can be selected from 0.12 to 0.48 m, which is based on the
times of 5 GHz OFDM signal wavelength (5 GHz = 6 cm).
If without considering the influence of the other parameters,
we assume the space between antennas be 0.48 m to better
differentiate the RSS vectors in the simulation. In addition,
we choose S = 90000 as the maximum number of fingerprints
with 1 meter spacing between MUs in a grid covering about
300 m × 300 m, which covers 95% of LoS components in
the single cellular system. In practice, for example, we can
install a cellular BS with a 12 × 12 square antennas on the
top roof of our engineering building located in Washington DC
of United States. Each antenna equipped with one transceiver
can receive and/or send the signals from and/or to each MU.
The coordinates of references MUs will be chosen in a grid
around the building, the spaces between MUs are set up as
1 meter. We can use a moving MU in each chosen locations
to send the signals to all the receivers in BS each time. The
computers as a RSS reader in BS will calculate each RSS
vector from the signals of the reference MUs and accumulate
all the uplink RSSs as the training data sets. Due to lack of
hardware support, the RSS vector pm for each MU in antennas
is generated from the CI-PL model in (4) and (5), which has
been proved in the Aalborg, Denmark environment [28].

Meanwhile, each antenna in MIMO can receive LoS or
NLoS from the different direction. In order to model the real-
life scenario including LoS and NLoS, the RSS matrix P̃ as the
fingerprints collected from all antennas follows the LoS and
NLoS distribution in (6). We calculate them through generating
a probability function in the simulation. During the training
phase, while we are learning the parameter vector Λ, we run
the training locations on randomly choosing the start points
(numbers of training references vectors can be chosen in the
different order), so as to avoid the convergence to a bad optimal
solution. We assume the threshold σ ∈ [5, 35] m, which needs
to be feasibly chosen depending on the different training data
sets to fit in the experiment. In the testing phase, we choose the
Rice distribution of test users from the fingerprint RSS vectors
to efficiently steer beams in a flexible way. We follows that
R ∼ Rice (|ν|, σ) has a Rice distribution if R =

√
X2 + Y 2

where X ∼ N
(
ν cos θ, σ2

)
and Y ∼ N

(
ν sin θ, σ2

)
are sta-

tistically independent normal random variables and θ is any
real number. The testing mobile users can be distributed in any
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direction. Considering the testing MUs are around the antennas
array, we assume that the maximum distance between central
of antenna array and test mobile users set up as ν = 150
meters, and the variance distance between adjacent testing
mobile users set up as σ = 1 meter. The Rice distribution
is selected as R ∼ Rice(150, 1) through experiments because
of the maximum 150 meters coverage of a single cell network
and variance of spacing in 1 m.

B. Performance on Metrics in Static Environment

After RMSE is reaching less than σ, we test the accuracy of
the simulation model in using the linear sampling coordinates,
which are convenient to observe. For example, we use a 12
× 12 antenna array located in x ∈ [40, 46] and y ∈ [100, 106]
area as reference locations. In order to observe the tracking
locations in a ‘linear’ status, we initialize to employ a linear
log-function (y = 50logx) to sample the positions of 100
testing mobile users from fingerprints within [0, 100]. The
X coordinates keep the same in the comparison results. We
can then track the MUs and compare with their true positions,
as shown in Figure 4(a). It is simple to find the estimated
position of testing users not far from the linear true positions
’line’, where the interval between them can not exceed 8.5
m. Due to the limitation of test users and sampling, we are
not able to decide other impact factors for the accuracy of
estimation. Additionally, we choose the testing target users in
random route distributed within x ∈ [0, 100] ,y ∈ [0, 210] area
and distributed in sparse distance to predict the X-coordinate
and Y -coordinate at the same time. The red dots represent
the ML estimation position, and the green dots are the true
users position. It is shown in Figure 4(b) that the proposed
ensemble method receives the expected results, which the
average location error is around 5 meters much less than the
conventional methods results.

Furthermore, we use the RMSE as the metric to analyze the
performance of the estimation methods. RMSE is formulated
as:

RMSE =

√∑M̂
m=1(x̂m − [µx]m)2 + (ŷm − [µy]m)2

M̂
(11)

Where [µx]m and [µy]m are the estimation of test user’s
coordinates x̂m and ŷm, respectively. M̂ is the number of
testing MUs.

In Figure 5, we are trying to determine the influence of
training samples for different number of antennas in the base
station. As the antennas are installed in a fixed space, some of
them will receive the LoS signals and others will receive the
NLoS signals. The distribution between LoS and NLoS follows
the probability function of LoS in (6), as assumed previously.
We show 95% confidence intervals from 30 trials for each data
point. As observed from Figure 5, we know when the sampling
in training locations increases, the RMSE keeps decreasing
with fixed antennas size, which means acquiring the higher the
accuracy of estimation. When the sampling is the same, more
LoS signals will be received in the large size antenna array,
which will help to decrease the interference, while fewer NLoS
signals will be identified as LoS in the receiver. For example,
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Figure 4. Position estimation of Testing MUs (a) in a linear distribution, (b)
in random distribution.

RMSE in 12×12 antennas is almost half of 8 × 8 in the same
sampling condition. Also, the higher dimension of fingerprints
for training will acquire more accuracy estimation in the terms
of the increase number of antennas.

In order to know the effect of antenna size in a MIMO
system, we change the spacing between antennas as in Fig-
ure 6. The RMSE for different spacing but the same number
of antennas shows no significant change. When the space is
changed from 0.12 m to 0.30 m, the differential in RMSE
for 8 × 8, 10 × 10 and 12 × 12 antennas is 5 m on
average. However, comparing the spacing in 0.12 m and 0.48
m, the RMSE is dramatically decreased, caused by the ability
of identification between LoS and NLoS, and the size of
sampling.

C. Adaptive Algorithm Implementation in the Dynamic Envi-
ronment

It is well known that Bayesian Cramer-Rao bound (BCRB)
is an optimistic bound in a non-linear estimation problem
where the outliers effect generally appears, leading to a quick
increase of the MSE. This threshold effect is not predicted
by BCRB. The particular value for which the threshold ef-
fect appears is a necessary feature to define the estimator
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Figure 5. RMSE vs. number of training samples for different size of
antennas array

Figure 6. RMSE vs. different spacing between antennas for different size of
antennas array

optimal operating area and tightness becomes a prominent
quality looked in non-linear estimation problems proved in
[39]. Similarly, in order to analyze the RMSE performance of
Gaussian Process method, we employ the BCRB to observe
the tightness with the different noise level for LoS and NLoS
signals:

BCRB =
√

1

M̂
(Tr([σx]m + [σy]m)) (12)

Where [σx]m and [σy]m are the variances for errors of users
in (x̂m, ŷm)-coordinates and M̂ is the number of testing MUs.
We assume LoS and NLoS signals with the same shadowing
noise but different Path Loss Exponent (PLE) to distinguish.

In Figure 7, we plot the BCRBs on the RMSE performance
of the GP methods under study, setting the shadowing noise
level δs for LoS and NLoS to change from 1 dB to 6 dB, which
can be regarded as different scenarios in practice. We employ
the two different antennas sizes K = 8 × 8, K = 12 × 12
to observe. After through the relative large training process in

S = 90000 and testing, the achieved RMSE are very close
to the theoretical BCRBs for K = 64 and K = 144. With
the increase of noise, the RMSE will become larger but in the
accepted range. We also find that the BCRBs are tighter for a
larger K. It is expected in the reason of the receiver sensitivity.
When the number of antennas in the BS becomes larger, the
receiving experience of test RSS values will keep in the high
sensitive level. At the same time, the receiving matrix in RSS
will be generated in higher efficiency. Otherwise, with the
smaller K, a smaller fraction of the total number of antennas
in the base station would experience receiving RSS below
the receiver sensitive level and will cause a small amount of
information loss in the training process.
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Figure 7. RMSE along with their BCRBs in the different number of
antennas, for the different shadowing noise levels

We next evaluate the performance of our improved adaptive
algorithm and compare with proposed BeamMaP in the dif-
ferent environments. According to our analysis in the previous
section, the attenuation of the signal strength is mainly affected
by the rainfall in the outdoor of 5G system. We set up
three different scenarios and parameters according to the rain
volume. We assume the LoS and NLoS signal strength average
attenuation is δrain for 0.5 dB (in drizzle) and for 1.4 dB (in
heavy rain) over 10 GHz link in the 5G wireless network [34]
[35]. The path loss function in (4) becomes Ploss[dB] + δrain
for LoS and NLoS channel in the simulation. The other
parameters are the same following in the Table II and the
number of antennas is chosen as K = 12 × 12. We assume
the hourly training data sets are relatively invariability within
24-48 hours for BeamMaP and set as the benchmark in the
comparison.

Figure 8(a), 8(b) and 8(c) show that our adaptive algorithm
works in the best performance with the increased number of
training samples. For example, in the Figure 8(a), when the
current weather is sunny or without rain drop, the Adaptive-
BeamMaP presents the initiative training input data are cho-
sen in the sunny measurement as status S[0]. At the same
time, the testing data sets in RSS vectors are also chosen
from the fingerprints in the sunny condition. The benchmark
in BeamMaP(Drizzle) and BeamMaP(Rainy) represents the
training input data sets are collected in the drizzle and rainy
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environments while the testing fingerprints are chosen from
the fingerprints in the sunny status. And we also set up
BeamMaP(All) as baseline scheme by collecting and training
the input fingerprints which covers all the weather conditions
(including Sunny, Drizzle and Rainy) without classification.
The selection probability of the three conditions in the input
data sets is assumed the same (1/3), while we set up the train-
ing data sets in BeamMaP(All) scheme. Similarly, Figure 8(b)
and 8(c) show the testing environments are in the Drizzle
and Rainy status respectively, and the training fingerprints are
chosen different under the different schemes.

Firstly, we observe the RMSE of all conditions de-
creases and gradually becomes steady with training samples
increasing from 10 to 90 (× 1000) in Figure 8(a), 8(b)
and 8(c). This is expected because we train the models
with more and more fingerprints, the process will tend to
project the coordinates of testing users onto the output ref-
erence location coordinates space in regression. Secondly, we
observe that the BeamMaP(Drizzle), BeamMaP(Rainy) and
BeamMaP(All) provide the higher values than the Adaptive-
BeamMaP scheme. This is because the first two methods
do not utilize the original testing RSS vectors, whereas the
adaptive scheme utilizes the same environment RSS vectors
for both training and testing. While the bias introduced by the
different shadowing noise levels in the training, the testing data
not belongs to the same weather conditions will degrade RMSE
performance in the different levels. In addition, even though the
BeamMaP(All) tends to close the curve of Adaptive-BeamMaP,
the input RSS vectors will generate the overlap in the same
coordinates within the different weather conditions and it
will cause the increase of the variances for RMSE. Thirdly,
BeamMaP(Drizzle) and BeamMaP(All) in RMSE performance
are more closer to the optimize scheme, it depends on the
less differences on the levels of shadowing noise combined
in input fingerprints. BeamMaP(Rainy) being the worst case
demonstrates the rainfall largely affects RSS receiving in the
higher frequency wireless system and causes the differences
between input and testing data sets. Similar to the condition in
Figure 8(a), 8(b) and 8(c) also reflect the better performance
in RMSE for Adaptive BeamMaP, compared with the other
schemes. The gap in the curves between the different schemes
shown in the Figure 8(b) is minimal, because the propagation
loss generated in Drizzle is close to the Sunny status and also
the Rainy status. In other words, the smaller bias of the training
RSS vectors between Drizzle and other status will cause the
close performances. In addition, even though BeamMaP(All)
shows the relatively good performance in the comparison, it
has to increase the time complexity in the training process
because of the diversity sampling.

D. Comparison with Other Machine Learning Algorithms

We compare performance of the algorithms based on
accuracy in RMSE and running time of machine learning
between different machine learning approaches (BeamMaP,
kNN and SVM) in the dynamic environments. kNN and
SVM algorithms based on RSS fingerprints introduced in
some indoor or outdoor localization techniques [18] [19] are
acquired some improvements in the coordinates estimation.
These fingerprinting-based approaches are all based on the
matching of the online data to the existing database. The
online data with RSSI values are gathered from each WIFI

or beacon in the building or outdoor environment [18] [19],
which can represent the features of a specific location. The
existing database represents the testing data selected from the
fingerprints. However, in order to keep the fairness of the
experiments, we employ the same input training data sets
(outdoor model) in these three models to study the advantages,
disadvantage and effectiveness between them. In general, the
localization with fingerprints can be viewed as a simple
nonlinear equation, in which the values of each parameter
are entered and the outputs are the coordinates of the target
locations. We run the simulations simultaneously on the three
same workstations (Ubuntu 16.04 LTS system on 3.6 GHZ
Intel Core i7-4790 CPU with eight cores). The shadowing
noises for LoS and NLoS are set up to change from 1 dB
to 6 dB. The same training data sets are generated through
CI-PI model. The details of models for kNN and SVM are
designed below.

The k-nearest neighbor algorithm is a simple and effective
classification and regression method in machine learning appli-
cations. [18] introduces kNN scheme to solve the localization
problem. The proposed designed regression method is to find
a predefined number of training samples closest in distance
to the testing point and predict the label from the samples.
In our comparison experiments, the input training samples are
assumed the same. The basic procedure is to initialize k to the
chosen number of neighbors (RSS vectors as fingerprints) in
the beginning. For calculating the similarity between a training
and testing fingerprint we use the Euclidean distance between
RSS vectors, which is a well-established and extensively used
procedure in kNN regression. Our objective is to minimize
the Euclidean distance function between the training RSS
vectors and testing vector

∑
k(pk− p̂k)2. We sort the ordered

collections of distances and indices from smallest to largest
(in ascending order) by the distances. Then the first k entries
from the sorted collection will be collected and calculate the
RMSE of model. Depending on the training mobile users under
outdoor instead of indoor environment [18], we need to choose
a different k to optimize the ML process in the simulation. The
indoor experiment chooses k=4 in the optimized prediction
model [18], but in our outdoor, the RMSE can become much
smaller when k is chosen a larger number in the simulation
below. In the simulation, we start from k = 1 to observe
changes of the RMSE metric. When k is chosen larger, the
accuracy of localization becomes more precision until k = 10,
and then behaves worse after 10. Our mission is to compare
these algorithms in the best optimized model, so we only select
k = 1, k = 4, and k = 10 shown in the results below.

A support vector machine (SVM) is able to analyze ex-
isting data and learn the relations between the input data and
predicted outputs. In the model design, a non-linear kernel
function is used to maximize the margin between classes by
transforming the space into a higher dimension, where the
problem can be solved in a linear way. There are three most
popular kernel functions: polynomial, Gaussian radial basis
function (RBF) and hyperbolic tangent. Since RBF is one of
most popular and proven empirical effective kernel function in
[19], it is adopted in our simulation model. Based on the same
input training samples, the kernel function is showed below.

K(Pi,Pj) = exp(−λ‖Pi −Pj‖2) (13)
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Figure 8. Adaptive BeamMaP VS. BeamMaP: (a) Testing in Sunny. (b) Testing in Drizzle. (c) Testing in Rainy.

Where λ is a free parameter. The training of SVM is to
minimize the structural risk. The most significant parameters
required when working with the RBF kernel of the SVR model
are C and γ. A list of values to choose from should be
given to each hyper parameter of the SVM model. We need
to change these values and experiment more to see which
value ranges give better performance. Grid Search method is
employed in the process of performing hyper parameter tuning,
in order to determine the optimal values for the given model
[20]. Also a K∗-fold cross-validation process (K∗ =10) is
performed in order to determine the hyper parameter value
set which provides the best accuracy levels. Intuitively, the γ
parameter defines how far the influence of a single training
example reaches, with low values meaning ‘far’ and high
values meaning ‘close’. The C parameter trades off correct
classification of training examples against maximization of
the decision function’s margin. Established on the features of
RSSI vectors, we set up γ in [10−4, 10−3, 0.01, 0.1, 0.2,
0.5, 0.6, 0.9], C in [0.001, 0.01, 0.1, 1, 2, 4, 6, 8, 10] and
do the estimation of RMSE to optimize the model. We plot
one RMSE accuracy heatmap as an example in Figure 9 to
observe the optimization process when the shadowing noise
is chosen 2 dB. The blue area in the figure represents the
accuracy of localization is higher when RMSE is smaller. It is
obvious the best parameters are C=1.0, γ= 0.1 with a smallest
RMSE 15.5 m. For larger values of C , a smaller margin will be
accepted if the decision function in Equation 7 of ML model
is better at classifying all training points correctly. A lower C
will encourage a larger margin, therefore a simpler decision
function, at the cost of training accuracy. Also the behavior
of the model is very sensitive to the γ parameter. If γ is too
large, i.e.,γ = 0.6, RMSE is larger, the radius of the area
of influence of the support vectors only includes the support
vector itself and no amount of regularization with C will be
able to prevent overfitting. Finally we can also observe that
for some intermediate values of γ = 0.1 and C = 1, we get
best perform model, while it is not necessary to regularize by
enforcing a larger margin. When the shadowing noise becomes
larger in the simulation, we continue to optimize the model and
acquire the smallest RMSE as the best result.

In the comparison experiments, we employ K∗-fold cross-
validation method in the experiments, K∗ is set as 10 in all
the three models. Since the number of fingerprints is S =
90000, the testing time in running each model is calculated

Figure 9. Heatmap of the RMSE [m] in SVM scheme as a function of γ and
C when shadowing noise is 2 dB.

after estimating the coordinates of 9000 testing samples each
time. The training time for each model is calculated until the
model is optimized. For example, the training time of kNN
is calculated after receiving the optimization of k value and
RMSE. For SVM, we also need to tune a better γ and C in
the process. All results are shown in Table III. In general, with
the increase of shadowing noise, the RMSE (in meters) for all
approaches gradually becomes larger. Compared with kNN and
SVM, RMSE for the proposed BeamMaP is obviously smaller
and has better accuracy. SVM takes too much time (about
16.2 hours) to train a model, which renders it a poor training
candidate. Although the training time for kNN is much less
than BeamMaP and SVM, the testing time for our proposed
is averaged as 0.35 s which is less than the others.

kNN being as a unsupervised method, is served as posi-
tioning the target MU through collecting and analyzing the
closest k reference neighbors. The time complexity known as
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TABLE III. Comparison between different machine learning models.

Shadowing
Noise

RMSE[m]
BeamMaP kNN (k=1) kNN (k=4) kNN (k=10) SVM

1 dB 3.5 12.1 10.5 8.5 10.2
2 dB 8.4 14.5 12.1 10.2 15.5
3 dB 15.6 16.8 16.2 20.2 20.4
4 dB 20.3 25.2 24.8 23.5 24.7
5 dB 24.3 29.3 28.2 27.5 28.8
6 dB 29.3 34.2 32.3 30.4 32.5
Phase Running time

Training 7.5 hours 58 mins 1.2 hours 2.1 hours 16.2 hours
Testing 0.35 s 0.45s 0.45 s 0.45 s 0.80 s

O(KS + kS) is depended on the S cardinality of the training
data set and the K (the number of antennas) dimension of each
sample. In particular, the optimized kNN (k=10) regression
algorithm on average reduces the prediction error by roughly
20% and 40% compared to the benchmarks for k=4 and
k=1. k=4 in [18] plays a good performance in the indoor
environment, because the compromise is that the distinct
boundaries within the feature space are blurred. However, a
large k value is more precise as it reduces the overall noise in
the outdoor environment.

Despite SVM is mostly used in the linear condition, our
nonlinear problem needs to be transferred into the quadratic
problem directly, which involves inverting the kernel matrix. It
has complexity on the order of O(S3) same with our proposed
model. But in order to tune the parameters in optimizing the
model, it will spend much more time in the training process. In
addition, these two models kNN and SVM employed in [18]
[19] only choose LoS signals in the RSS vectors of training
data sets, the NLoS elements have to be removed and become
0 in the experiments. It will increase the removal algorithm
(dispatch NLoS signals) before the training process and cause
the large increase of running time. In general, the shortest
testing time spent and smallest RMSE in the simulation will
prove that our proposed model is steadier and better optimized
in the much noisy or highly cluttered multipath scenarios, also
the gap of the training time between them can be shortened if
the future advanced hardware employed.

E. Comparison between the Different Beamform Patterns in
the Testing Phase

In this section, we aim to compare the different beam-
forming employed in the localization. In the analysis of
characteristics of beamforming techniques, we realize to model
the different distribution of mobile users in the testing phase
to meet the different beamform patterns, which could de-
cide the direction of antennas transmission and bandwidth
distribution. Beamforming schemes are generally classified
as either switched-beam systems or adaptive array systems.
A switched-beam system depends on a fixed beamforming
network that yields established predefined beams [25]. In
the adaptive beamforming, perfect adaptive beams attempt to
reduce the interference between users and achieve considerably
improved offered power resources [25]. In our model, it can be
expressed that switched beam pattern represents the selection
of actual mobile users follows the uniform distribution and the
testing mobile users are selected in the same distribution from
the fingerprints. Also adaptive beam pattern represents the
selection of actual mobile users follows the Rice distribution
(power consumption in the antennas is fixed but need to

distribute non-uniform in any direction) and the testing mobile
users are selected in the Rice distribution. We choose the
testing mobile users from the input fingerprints due to the
cross-validation process.

In order to compare adaptive beamforming with switched
beamforming, the number of antennas is set up as 12 × 12 to
maximize the sampling ratio in the fingerprints collection. The
other parameters set up is the same with above experiments.
Similarly, we assume that the maximum distance between
central of antenna array and test mobile users set up as ν = 150
meters, and the variance distance between adjacent testing
mobile users set up as σ = 1 meter. The Rice distribution
is selected as R ∼ Rice(150, 1) through experiments to cover
a single cell network and variance of spacing in 1 m. During
the testing phase, we model the switched beamforming as a
uniform distribution with the same mean and variance as the
Rice distribution in adaptive beamforming. It is shown in the
Figure 10, the estimation errors of localization decrease with
the number of training becoming more. We also observe that
adaptive beamforming or Rice distribution in the BeamMaP
system plays a better role, it can reach the 72.8%, 85.3%
and 92.4% of RMSE of uniform distribution with the same
training index (10, 20, 30 × 1000). However, with the increase
of training fingerprints, the gap between them will become
smaller easily, which proves the adaption of our localization
system.

Figure 10. RMSE vs. number of samples for different beamforming patterns

More efficiency for adaptive beamforming is achieved by
randomly selecting the testing users similar to Monte-Carlo
sampling. The reason is that more testing users are gathered
together in one direction for the adaptive pattern, but testing
users in uniform distribution (switched pattern) are separately
localized, which will accumulate the estimation errors and lead
to the increase of RMSE. Adaptive beamforming system in the
base station being as a better candidate in the future wireless
network can be better assisted by our localization method.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we present an improved adaptive BeamMaP
positioning method in massive MIMO systems. It consists of
an adaptive algorithm for the selection of input fingerprints,
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a supervised machine learning approach and an online adap-
tive beamforming testing process, to estimate the position of
mobile users. BeamMaP can estimate the location of the MUs
within 5 meters deviation in milliseconds, which is much better
than some conventional methods like GPS. Numerical results
show the accuracy of positioning, as determined by the size of
training samples, the dimension of antennas and the spacing
of antennas. The achieved RMSE performances are proved
to close to Bayesian Cramer-Rao bounds. In addition, our
improved adaptive BeamMaP exhibits the better performance
than original BeamMaP in different weather during the hourly
time, while achieving comparable performance as other ma-
chine learning schemes such as kNN and SVM in the dynamic
environments. Moreover, we conclude that our BeamMaP
localization method can serve in the different beamforming
systems and performs better in the adaptive beamforming
wireless system. However, the RSS as input data seems more
sensitive established on the limited fingerprints collected, some
steadier features such as channel states information (CSI) and
Time-of-Arrival (ToA), can become the next alternatives in
the future works. In addition, some deep learning or hybrid
machine learning methods can be explored and make more
improvements.
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