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Abstract—In recent years, the automated, efficient and sensitive
monitoring of social networks has become increasingly important
for the criminal investigation process and crime prevention.
Previously, we have shown that the detection of opinion leaders
is of great interest in forensic applications to gather important
information. In the current work, it is argued that state of
the art methods, determining the relative degree to which an
opinion leader exerts influence over the network, have weaknesses
if networks exhibit a star-like social graph topology, whereas
these topologies result from the interaction of users with similar
interests. This is typically the case in networks of political
organizations. In these cases, the underlying topologies are highly
focused on one (or only a few) central actor(s) and lead to
less meaningful results by classic measures of node centrality
commonly used to ascertain the degree of leadership. With the
help of data collected from the Facebook and Twitter network
of a German political party, these aspects are examined and a
quantitative indicator for describing star-like network topologies
is introduced and discussed. This measure can be of great value in
assessing the applicability of established leader detection methods.
Finally, two variations of a new measure– the CompetenceRank –
which is based on the LeaderRAnk score and aims to address the
discussed problems in cases with and without additional network
data such as likes and shares, are proposed.
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I. INTRODUCTION

The detection of opinion leaders in online social networks
has been discussed extensively over the past few years. While
the term “detection” is generally associated with a binary
decision, here – in accordance with other papers in this domain
– it is used to refer to the determination of the degree of
leadership. The scope of application is manifold and reaches
from determining influencers and brand ambassadors up to
finding those who influence the political opinion of a group
of people. Especially the last application can be of interest to
law enforcement and intelligence agencies. In [1] it was shown
that in some situations previous approaches based on the work
by Katz [2], who focused on networks in the offline world, do
not capture the core of the problem and as a result lead to an
inaccurate assessment of opinion leadership.

Measures for opinion leadership on social networks tend
to focus on a single aspect: network contribution. However, it
becomes clear that only evaluating network contribution such

as posting content, commenting it or replying to it does not
capture the full range of interactions social media platforms
have to offer. Besides network contribution or content gener-
ation in the ordinary sense we also find a secondary form of
participation, which solely relies on existing content. Virtually
nodding in agreement by clicking like or extending the reach
of a given post by sharing it, is not creating new content in
a given network. However, measures reflecting such activities
exist on most social media platforms and play a substantial
role in determining ones reach and authority. These secondary
measures do not only shape how people interact but also
influence who rises to the position of an opinion leader.

This section shall give a brief introduction to the field in
which situations may occur, in which the LeaderRank leads to
inappropriate results. Furthermore, it will give an overview of
topology-based approaches and it finishes with the scope and
structure of the paper.

A. General Motivation
Analyzing social networks has become an important tool

for investigators, intelligence services and decision makers
of police services. The information gained this way can be
used to solve crimes by searching for digital evidence that
relates to the crime in the real world. Additionally, methods of
predictive policing can help to organize police missions as was
shown in [3]–[5]. The detection of opinion leaders in social
networks is an important task for different reasons. On the one
hand, owners of influential profiles are often also influential in
the offline world. Knowing these people helps to determine
the direction of an investigation or more concretely to target
persons of interest. On the other hand, as was suggested in
previous work [5], it might be of interest to contact these
profiles by means of chatbots to gain access into closed groups
in an effort to gather important information for intelligence
services. Intuitively, opinion leaders, when considered as nodes
with high structural importance, can be detected with the help
of centrality measures. However, different kinds of influence
in a network have to be distinguished. Nodes can have a
great influence as corresponding actors are able to spread
information fast and widely in a network, or they can have
a great influence because they write something of importance
that attracts many other users in the network to respond.
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B. Leader Detection by means of Network Centrality Measures
In the literature, one can mainly find centrality measures

for the former type of influence. For example, highly active
profiles can be recognized using degree centrality, meaning, the
relative number of outgoing edges of a node. These profiles
are represented by nodes with a high degree centrality and
are especially useful to spread information in a network due
to their high interconnectedness. In this context, the closeness
centrality – the inverse of the mean of the shortest path of a
node to any other node in the network – is even more effective.
It describes the efficiency of the dissemination of information
of a certain node.

Furthermore, the betweenness centrality of a certain node,
which is defined as the number of shortest paths between
two nodes that cross this node, describes the importance of
this node for the dissemination of information in a network.
Therefore, the higher the betweenness centrality of a node,
the greater its importance for the exchange of information in
a network.

Moreover, the eigenvector centrality of a node is defined as
the principal eigenvector of the adjacency matrix of a network.
In contrast to the measures discussed beforehand, PageRank
[6], as one of the best measures of node centrality, does not
only consider the centrality of the node itself, yet also of its
neighboring nodes.

As part of the opinion leader detection research, Leader-
Rank [7] was introduced as a further development of PageRank
in order to find nodes that spread information further and
faster. However, all of these centrality measures consider nodes
that are involved in the dissemination of information mainly
based on their activity. For the purpose of the intended usage,
users who achieve high impact through what they have written
are of much greater interest. Thus, similar to the citation of
papers and books and its impact on the author’s reputation, the
importance of a node has to be higher when it reaches a high
number of references and citations with low activity.

Especially social media platforms provide comparable met-
rics, such as likes and shares that partially reflect the author’s
reputation and credibility. Hence, it is imperative to consider
respective measures of acceptance, expertise and authority
when determining opinion leaders in any digital social net-
work.

Interestingly, Li et al. considered the so-called node spread-
ability as the ground truth for quantifying node importance
in a subsequent study [8]. Subsequently, node spreadability
is based on a straightforward Susceptible-Infected-Removed
(SIR) infection model from which the expected number of
infected nodes upon initially infecting the node in question
is estimated. However, this expected number can only be
estimated from simulation, which, furthermore, is dependent
on the parameterization of the SIR model. In this respect, all
centrality measures can be considered as heuristic approxima-
tions of node spreadability.

C. Scope and Structure of the Paper
In this work, we discuss problems that can arise when aim-

ing to detect opinion leaders in social networks yielding highly
central topologies similar to star graphs. Examples for such
networks are especially group pages on Facebook or vk.com
where user interactions and activities are mostly triggered by

and focused on posts made by the page owner. In such cases,
the page owner – a trivial leader in the sense of centrality
measures discussed above – acts as a score aggregator and can
thus lead to distorted scoring, which can eventually be adverse
in the context of opinion leader detection. In this case, classic
centrality measures can be considered inappropriate. Based on
interactions of users of the Facebook page of the German
political pary “DIE LINKE” tracked for five consecutive
months (January - May 2017), this problem is illustrated. We
further introduce the LeaderRank skewness as a quantitative
measure of aggregator-induced distorted LeaderRank scoring,
which in experiments show to be superior to network entropy
with respect to expressiveness. Additionally, a simple modified
LeaderRank score, to which we refer to as CompetenceRank,
is introduced. It is proposed to be more suitable for opinion
leader detection in such networks, especially, if additional data
for likes and shares are not available.

For such cases in which these data is available an improved
version of the CompetenceRank is proposed and evaluated
using the Twitter network of “DIE LINKE”. The corresponding
data set contains not only tweets, comments and replies from
the entire year 2018, it also incorporates the accompanying
like and retweet counts for each tweet, comment and reply.
In politically motivated networks, as the one analyzed in
this paper, the improved CompetenceRank shows a substantial
increase in performance compared to the LeaderRank and the
simple CompetenceRank.

The paper is structured as follows: in Section II, a brief
literature overview on the topic of opinion leader detection is
given, followed by a summary of the LeaderRank algorithm. In
Section III two shortcomings of the LeaderRank are discussed:
firstly, the skewness of the rank distribution in star-shaped
network topologies and, secondly, that not all available data of
social media platforms are taken into account. Subsequently, in
the same section the deduction and definition of the normalized
LeaderRank skewness as a metric for an approximation of
a star-shaped topology is discussed and compared with the
normalized graph entropy. In Section IV three datasets are
introduced, which were used to evaluate these metrics, two
of which were also used to develop solutions for the afore-
mentioned problems as proposed in Section V by introducing
the CompetenceRank for taking authority into account as
well as an improvement for cases in which additional data
is available. Subsequently, Section VI contains an evaluation
of both CompetenceRank versions using the Twitter network.
Finally, a conclusion as well as an overview of future work is
given in Section VII.

II. DETECTION OF OPINION LEADERS

Opinion leaders in the context of the intended analysis
of social networks are individuals, who exert a significant
amount of influence on the opinion and sentiment of other
users of the network through their actions or by what they are
communicating. In social sciences the term “opinion leader”
was introduced before 1957 by Katz and Lazarsfeld’s research
on diffusion theory [2]. Their proposed two-step flow model
retains validity in the digital age, especially in the context of
social media.

Katz et al. assume that information disseminated in a social
network is received, strengthened and enriched by opinion
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leaders in their social environment. Each individual is influ-
enced in his opinion by a variety of heterogeneous opinion
leaders. This signifies that the opinion of an individual is
mostly formed by its social environment. In 1962, Rogers
referenced these ideas and defined opinion leader as follows:

“Opinion leadership is the degree to which an
individual is able to influence informally other indi-
viduals’ attitudes or overt behavior in a desired way
with relative frequency.” [9, p. 331]

For the present study, one important question to answer is
what influence means, or rather how to identify an opinion
leader or how the influencer can be distinguished from those
being influenced. Katz defined the following features [2]:

1) personification of certain values,
2) competence,
3) strategic social location.

One approach to identify opinion-leaders is to extract and
analyze the content of nodes and edges of networks to mine
leadership features. For instance, the sentiment of communi-
cation pieces can be analyzed to detect the influence of their
authors, as shown by Huang et. al., who aim to detect the
most influential comments in a network this way [10]. Another
strategy is to perform topic mining to categorize content and
detect opinion leaders for each topic individually, as opinion
leadership is context-dependent [2] [11]. For this purpose,
Latent Dirichlet Allocation (LDA) [12] can be used, as seen
in the work of [13]. Furthermore, Aleahmad et. al. achieved
good results with OLFinder by utilizing both topic mining
methods and centrality measures [14]. Additionally, Chen et
al. proposed D OLMiner, which derives opinion leaders from
dynamic social networks [15].

Another novel approach, the firefly algorithm, a meta-
heuristic optimization algorithm that can deal with especially
large networks, is based on the behavior of fireflies and is used
by Jain et. al. to determine local and global opinion leaders
[16].

For this study, we considered the implementation of
content-based methods problematic, as texts in social networks
mostly lack correct spelling and formal structure which im-
pairs such methods’ performance. Additionally, leaders can be
identified by analyzing the flow of information in a network.
By monitoring how the interaction of actors evolves over time,
one can identify patterns and individuals of significance within
them. To achieve this, some model of information propagation
is required, such as Markov processes employed by [17] and
the probabilistic models proposed by [18]. These interaction-
based methods consider both topological features and their
dynamics over time. DDOL is a recent, dynamic approach
by Queslati et. al. that focuses on social signals (shares,
comments, likes) and terms that are frequently encountered in
the expression of opinions. DDOL does not include centrality
measures and has a slightly lower precision than PageRank but
contrary to PageRank it works on dynamic networks and a has
a lower computational complexity [19].

Parts of this study use methods that are solely based on
a network’s topology, therefore, considering features, such as
node degree, neighborhood distances and clusters, to identify
opinion leaders. One implementation for the former is the
calculation of node centrality. The underlying assumption is

that the more influence an individual gains, the more central it
is in the network. Which centrality measure is most suitable is
dependent on the application domain. We judged eigenvector
centrality to be most adequate. One of the most popular al-
gorithms is Google’s PageRank algorithm [6]. The application
of PageRank for the purposes of opinion leader detection has
seen merely moderate success [20] [21].

With LeaderRank scores, Lü et al. advocate further devel-
opment and optimization of this algorithm for social networks,
and have achieved surprisingly good results [7]. Herein, users
are considered as vertices and directed edges as relation-
ships between opinion leaders and users. All users are also
bidirectionally connected to a ground vertex, which ensures
connectivity as well as score convergence. In short, the al-
gorithm is an iterative multiplication of a vector comprised
by per-vertex scores si(t) at iteration step t with a weighted
adjacency matrix until convergence is achieved according to
some convergence criteria. Initially, at iteration step t0, all
vertex scores are set to s(0) = 1, except for the ground
vertex score which is initialized as sg(0) = 0. Equation (1)
describes the LeaderRank algorithm as a model of probability
flow through the network, where si(t) indicates the score of a
vertex i at iteration step t.

si(t+ 1) =

N+1∑
j=1

aji
eoutvj

sj(t) (1)

Depending on whether or not there exists a directed edge from
vertex j to the vertex i, the value 1 respectively 0 is assigned
to aji. eoutvj describes the number of outgoing edges of a vertex
j. The update rule given in Equation (1) can be rewritten as a
matrix-vector product:

s(t+ 1) = Ãs(t), (2)

where s(t) corresponds to the vector of the N+1 vertex scores
at iteration step t, and Ã is the weighted adjacency matrix of
size (N + 1)× (N + 1) with

Ãji =
aji
eoutvj

. (3)

The final score is obtained as the score of the respective vertex
at the convergence step tc and the obtained ground vertex
score, as shown in (4). At tc, equilibration of LeaderRank
scores towards a steady state is observed.

Si = si(tc) +
sg(tc)

N
(4)

Furthermore, note that

N∑
i=1

Si =

N∑
i=1

si(t) = N. (5)

The advantage of this algorithm compared to PageRank is
that the convergence is faster and, above all, that vertices
that spread information faster and further can be found. In
later work, for example, by introducing a weighting factor, as
in [8] or [22], susceptibility to noisy data has been further
reduced and the ability to find influential distributors (hubs)
of information has been added.
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III. ISSUES WITH LEADERRANK

The LeaderRank algorithm can be understood as a re-
version of a discrete model of diffusion. In that sense, the
initialization si(0) = 1 at t0 can be interpreted as assigning a
uniform concentration distribution of some virtual compound
that, in the processes, is re-distributed according to the model.
In that respect, central actors showing the highest activity in
star-like networks can induce score aggregation and migration
towards their central nodes as well as their adjacent nodes,
whereas nodes in the ’peripheral region’ of the network be-
come inadequately represented by their scores. Therefore, one
can hypothesize that ranked lists obtained from LeaderRank
scores can not be considered meaningful if a given network in
question exhibits a star-like topology.

Another problem of LeaderRank comes into existence
when considering means of communication that differ from
traditional ones in person dialogues. Most social media plat-
forms utilize likes, shares, dislikes and the concept of building
a follower base. The amount of, for example, likes that a post
receives or the frequency with which it is shared indicate its
importance within a network and at least partially reflect the
influence of the respective author. In turn, such data should be
included when determining opinion leadership. Theoretically,
LeaderRank has the capacity to incorporate aforementioned
additional data. However, if this data were to be included in
a network graph, then each like, share or anything similar
would be seen as a unique edge from one node to another,
just like regular forms of communication. This introduces two
major problems, a theoretical one and a practical one. Firstly,
is a like on a post equally as valuable as an actual reply
and then how influential is a share? Evidently, there is a
difference between the interaction activities, such as liking,
sharing, writing or replying to a post, but this discrepancy is
difficult to capture with the LeaderRank. Either one accepts
that likes and shares have similar value to a written reply or
one needs to additionally implement weights for different types
of edges within a network.

Secondly, including likes as edges between nodes poses
a practical problem: partial networks. When considering an
individual post, then ideally the name of every individual who
has liked this post is available in our data set, but in a real
world example this is usually not the case. For example, when
analyzing a twitter network one can discover how many people
liked an individual post quite easily, but recovering the names
of those individuals is highly restricted as twitter only provides
a shortened list of names. It might be possible to recover all the
names for a tweet with only 15 likes, but the list of names for
a tweet with 100 likes can have the same length as the list for a
tweet with 1.000 likes. Clearly, we lose a significant amount of
information with exactly those tweets that are of great interest
for opinion leadership, that is, tweets with seemingly the most
influence over other users. When faced with similar restrictions
on different platforms the total count of likes or shares might
be more useful than a drastically reduced and limited list of
names. In a similar manner it makes more sense to determine
the popularity of politicians by counting the attendees of a
political event compared to getting the names of only the
first hundred attendees. Hence, it makes more sense to define
people posting on social media as “politicians” speaking on a
stage whereas users liking or sharing their content can be seen
as attendees nodding in agreement or sending pictures of the

stage to their friends.
On social media we have many attendees, virtually nodding

their heads by clicking like or retweeting or sharing interesting
content but they do not contribute by producing new posts.
Incomplete data sets may not include the name for every
person that likes a contribution, but these users can still be
influenced and may even shape the network, since likes and
shares present a measure for authority, credibility and approval
in a given network. As a result, accounts partaking in the
network through likes and shares should receive recognition
as they silently enable cognitive biases, like the bandwagon
effect [23] or herding mentality [24], that in turn alter how
well-liked content appears to be, consequently, making it more
or less influential. Ideally, LeaderRank does not only find
opinion leaders in complete networks, but also discovers them
in incomplete data sets. As a result, accounts that cannot be
represented in the graph due to the absence of a name should
still be considered when determining opinion leadership. A
magnitude of nameless accounts cannot be included in a graph
and thus they will not receive LeaderRank-Scores themselves,
but seen as a collective they may help in shaping a network
and identifying truly influential opinion leaders.

In this case study, two different networks are being exam-
ined. Namely, the network around the Facebook page as well
as the Twitter network of the German left-winged political
party “DIE LINKE”. Firstly, the star topology of the Facebook
network is being evaluated and secondly a novel approach to
include likes and retweets is tested on the Twitter network.

In the first case study, the Facebook network under inves-
tigation shows an extreme case of a star topology in which the
owner of the political Facebook page “DIE LINKE” acts solely
as the central actor (for more information see Section IV).
Since the LeaderRank emphasizes the strategic social location
of a user, their competence seems to be improperly valued.
In star-shaped network topologies, high centralities of only a
fraction of nodes leads to a heavily skewed LeaderRank score
distribution.

In contrast, one could argue that someone is more important
if any activity generates a high number of responses. Such
a case is regularly given by political networks which are
dominated by the central node of the page owner. Conse-
quently, a straightforward modification of the LeaderRank
score is proposed in Section V-A addressing the imbalance
the LeaderRank algorithm yields in such networks.

In the following paragraph a quantitative measure of Lead-
erRank distribution skewness is proposed that could aid to
ensure proper applicability of the LeaderRank algorithm for
any given network. This measure is further compared to the
classic measure of network entropy. Tests on simulated data
show the LeaderRank skewness to be superior to network
entropy with respect to topological changes.

A. Definition of LeaderRank Distribution Skewness
Let LR = {S1, ..., Si, ..., SN} be the LeaderRank scores of

all nodes. Further, S and sdLR denote the arithmetic mean and
standard deviation of LR. Based on the z-scaled LeaderRank
scores (6), the skewness ν of the LeaderRank distribution is
calculated as shown in (7).

z(Si) =
Si − S
sdLR

(6)

100

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



νLR =

∣∣∣∣∣ 1

N

∑
i

z(Si)
3

∣∣∣∣∣ (7)

As discussed above, score distribution skewness is correlated
with network topology. Yet, normalization of computed skew-
ness is required in order to make a statement about the
topology and whether a star-like topology is present. Hence,
upper and lower bounds, νmin and νmax, are needed. In this
paragraph, derivation of both bounds are given.

Trivially, ν converges to the lower bound – the theoretical
minimum (ν = 0) – in almost-regular graphs. Such graphs are
regular graphs with one edge being removed. With N being
sufficiently large, the supposition that Si ≈ Sj for any pair of
randomly selected vertices of a social network graph vi, vj ∈
V holds true and a limit of limsdLR→0 ν = 0 can be assumed.
In regular graphs however all LeaderRank scores are equal by
definition, resulting to sdLR = 0 and ν being undefined in this
case.

In contrast, ν is equal to the theoretical maximum if the
network graph exhibits a strictly star-shaped topology. Directed
star graphs are graphs with a central vertex vc and N − 1 leaf
vertices connected to vc. One can re-write the set of star graph
vertices as V = {vc, v2, ..., vN} and denote the LeaderRank
score set as LR = {Sc, S2, ..., SN}.The LeaderRank scores
of any randomly selected pair of vertices vi and vj with
vi, vj 6= vc, with vc being the central vertex, are then not
distinguishable, i. e., Si = Sj , according to the LeaderRank’s
definition. Furthermore, the sum of LeaderRank scores equals
N leading to S = 1 for any given graph. Given the central
node’s score Sc, each Si can thus be calculated as shown in
(8).

Si =
N − Sc
N − 1

(8)

Thus if Sc is known, the set of LeaderRank values
{Sc, S2, ...Si, ..., SN} and the resulting νmax can be derived.
In the following text we shall give an explicit relationship
between the number of nodes N in a directed star graph and
the corresponding score set LR. For this, let s be the scores
vector at the steady-state to which s(t) converges according to
the update rule (see Equation (2)). Then the identity given in
Equation (9) holds, since s = s(t+ 1) = s(t).

s = Ãs (9)

Thus equation (9), in conjunction with the relation given in
equation (5), yields a set of N+2 equations from which s can
be (theoretically) obtained for any given graph, if a sufficiently
efficient solver algorithm exists. However, for directed star
graphs solving these equations is straight-forward, and leads
to an explicit formalism for s and the LeaderRank scores LR
accordingly. Solving this set of equations involves that Ã can
be explicitly written as

Ã =


0 1/2 1/2 ... 1/2 1/N
0 0 0 ... 0 1/N
...

...
...

. . .
...

...
0 0 0 ... 0 1/N
1 1/2 1/2 ... 1/2 1/N

 . (10)

for any given directed, extended star graph with vertices
V = {vc, v2, ..., vN , vg}. One henceforth obtains the steady-
state score vector s = (sc, s2, ..., sN , sg)

ᵀ from the resulting

set of equations which can be derived by simply re-arranging
Equations (9) and (5):

sc =
N2

5N − 1
+

N

5N − 1
(11)

si =
2N

5N − 1
,∀i = 2, ..., N (12)

sg =
2N2

5N − 1
. (13)

This explicit formalism of Ã also highlights that the leaf ver-
tices (denoted as vi for textual cleanness in the following text)
are indistinguishable with respect to the weighted adjacency
matrix values Ãi·. Thus, the obtained LeaderRank scores Si
are identical as well. Plugging the computed values of s into
the final update rule (see Equation (4)) yields the LeaderRank
score for the central vertex vc:

Sc =
N2

5N − 1
+

3N

5N − 1
(14)

(15)

Then the equal LeaderRank score Si of the leaf nodes can be
calculated according to Equation (8), from which the upper
skewness bound νmax is readily computed. Subsequently,
for any irregular network graph the LeaderRank skewness
can be calculated and normalized subsequently using a min-
max normalization as denoted in (16), whereas νmin can be
assumed as 0 as discussed above.

ν̂ =
ν − νmin

νmax − νmin
=

ν

νmax
(16)

B. Detection of star topology

LeaderRank skewness ν̂ can be utilized to indicate adverse
leader ranking by means of LeaderRank scores. In this section,
we compare ν to the classic measure of network entropy
(denoted as H in the following text). In order to allow direct
comparison to ν̂ as well as to entropies computed from other
graphs, H is required to be normalized analogously to ν̂ . In
this subsection, we give a brief overview on how normalization
can be conducted.

Let A be the adjacency matrix of a network with N
vertices, where each element aij := 1 if there exists a directed
edge eij between adjacent vertices vi and vj . Each element
of the principal diagonal aii is defined as aii := deg(vi) and
thus corresponds to the degree – the sum of the incoming
and outgoing edges – of vertex vi. The trace of A is de-
fined as the sum of all elements of the principal diagonal:
tr(A) =

∑N
i=1 aii. The formalism for graph entropy used by

Passerini and Severini H(ρ) = −tr(ρ log2 ρ) [25] is based on
the von Neumann entropy and can be adapted as shown in
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(17).

H(ρ) = −tr(ρ log2 ρ)

= −
N∑
i=1

ρi log2 ρi

= −
N∑
i=1

aii
tr(A)

log2

aii
tr(A)

= −
N∑
i=1

deg(vi)
N∑
j=1

deg(vj)

log2

deg(vi)
N∑
j=1

deg(vj)

.

(17)

This formalism, which is the entropy of the density ma-
trix of a graph, describes the distribution of incoming and
outgoing edges. In a randomly generated graph one expects
deg(vi) ≈ deg(vj). In this case, the graph entropy H is close
to the theoretical maximum entropy Hmax. Therefore, the
graph entropy only reaches its maximum if G is a regular graph
where deg(vi) = deg(vj) = D. Because ρi = D/DN = 1/N
in a regular graph, one has H as shown in (18).

H = Hmax = −
∑

ρi log2 ρi = log2N (18)

In contrast, the minimum graph entropy Hmin is observable
in networks showing star topology. The trace tr(A) of such
a graph corresponds to 2N − 2 and the degree of its central
vertex is deg(vc) = N − 1. Consequently, the entropy of the
central vertex Hc is calculated as shown in (19).

Hc = − N − 1

2N − 2
log2

N − 1

2N − 2
= −1

2
log2

1

2
= 0.5. (19)

The degree of any other vertex is deg(vi) = 1. Hence, the
entropy of a graph constituted as a star is calculated as follows:

H = Hmin

= 0.5 +
∑
V \vc

− 1

2N − 2
log2

1

2N − 2

= 0.5 +
1

2
log2(2N − 2)

= 1 +
1

2
log2(N − 1).

(20)

The normalized network entropy can be finally computed
according to (21):

Ĥ =
H −Hmin

Hmax −Hmin
, Ĥ ∈ [0, 1] (21)

In order to illustrate expressiveness of Ĥ and ν̂ with respect
to the underlying network topology, a straightforward experi-
ment was carried out in which synthetic networks exhibiting
star topologies were continuously mutated over time, resulting
in almost regular graphs after numerous generations.

This simulated process consequently yields a continuous
change of network topology for each graph. Ĥ and ν̂ were ac-
cordingly computed for every generation and tracked. The time
series of both measures are shown in Figure 1. More precisely,
simulations of topological change were conducted by starting
with star graphs of fixed sizes (N = 16, 32, 64, 128, 256 and
512 vertices). In every generation, edges between every pair
of vertices were randomly added and respectively removed.
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Figure 1. Simulation results of networks with various sizes N , whereas the
red line represents Ĥ , the blue line ν̂ and vertical bars indicate standard

deviations.

For each graph size, six runs were conducted in an effort to
estimate variance.

As shown in Figure 1, both measures converged after 100
generations. All entropy trajectories show fast convergence
compared to ν̂ trajectories, with the convergence time de-
creasing with increasing N . Although ν̂ yield larger variances
(especially for N ≤ 32), its slower convergence and qual-
itatively similar trajectories for all graph sizes N illustrates
greater sensitivity to topological changes. In that respect,
matrix entropy loses significance with increasing graph size.

IV. DATASETS

In this study, two different networks, namely Facebook and
Twitter, of the German party “DIE LINKE” were analyzed,
because both exhibit a star-like topology, yet to a different
degree. As a comparison, a part of the Epinions social network,
as an example for a nearly regular graph, was also included.

A. Facebook Dataset
Figure 2 depicts the network of the Facebook page “DIE

LINKE” from January 2017 as a graph in which the size of
each node corresponds to the out-degree (number of out-links).
As can be seen, the network is dominated by the central node
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of the page owner and, therefore, closely resembles a star-
shaped topology.
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Figure 2. The network of the facebook page “DIE LINKE” of January 2017.

The central node often has the highest activity, meaning
the most in- and out-links. The communication on the page
was explored over a period of five months, from January 2017
up until May 2017, whereas all posts, comments and replies
were taken into account as can be seen in Table I.

TABLE I. SUMMARY OF THE DATA INCLUDING NORMALIZED ENTROPY
AND SKEWNESS OF THE CONSIDERED NETWORKS.

month actors posts comments replies Ĥ ν̂LR

January 2,878 26 2,955 3,471 0.19 0.98
February 2,146 33 2,196 2,062 0.24 0.98
March 3,196 40 3,501 3,245 0.17 0.97
April 2,432 26 2,558 3,295 0.22 0.98
May 4,765 31 4,130 5,674 0.10 0.98

Furthermore, it shows the normalized entropy and Leader-
Rank skewness of the “DIE LINKE” network, separately cal-
culated for each month. It can be clearly seen that obtained Ĥ
values fluctuate over time, whereas the LeaderRank skewness
ν̂LR remains stable.

During the initial analysis of the dataset, it was observed
that 12, 031 individuals were active throughout the five months.
However, as shown in Figure 3, only 104 of these individuals
were active in every single month. In general, it can be stated
that users showed rather sparse and sporadic activity, with
only a minority being recurrent users. Thus, yet again, this
supports the assumption this network has a star-like topology.
Additionally, this may indicate that the activity of users and,
subsequently, the degree of opinion leadership, depends on
the topics being discussed in a certain time period. However,
in order to support this claim, further analyses need to be
undertaken, which will be covered in a future study.

January 2017: 

February 2017: 

March 2017: 

April 2017: 

May 2017: 

n = 2,878 

n = 2,146 

n = 3,196 

n = 2,432 

n = 4,765 

continuous actors: n = 104

Figure 3. Sunburst chart of actor activity in the Facebook network consisting
of one radial segment for each user, whereas a user’s segment in a time

layer is left out if said user was observed to be inactive in that time period.

B. Twitter Dataset
In a subsequent analysis the Twitter network of “DIE

LINKE” was evaluated.
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Figure 4. Twitter network of ”DIE LINKE” of January 2018.

As can be seen in Figure 4 the star topology is less
predominant for this network in comparison to the Facebook
dataset. Consequently, a star topology is recognizable but at
the same time some accounts besides “DIE LINKE” emerge.

The Twitter data set consists of tweets authored by “DIE
LINKE”, tweets addressing “DIE LINKE” and replies to the
respective tweets. Aforementioned data was collected for the
entire year of 2018 and on average twice as many actors where
involved in the network compared to the Facebook data.

With an ¯̂ν = 0.73 the statistical analysis of the data shows
that even though the star-like topology is not as distinctive as
for the Facebook network it is still relatively strong as could
already be seen in Figure 4. Furthermore, in comparison to the
Facebook network the values for the skewness in the Twitter
network show a greater fluctuation or to be precise cover a

103

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II. SUMMARY OF THE TWITTER DATA INCLUDING NORMALIZED
ENTROPY AND SKEWNESS.

month actors tweets Ĥ ν̂LR

January 5,966 10,695 0.39 0.74
February 6,194 11,466 0.40 0.79
March 7,677 14,820 0.44 0.86
April 7,179 12,711 0.38 0.84
May 7,529 14,349 0.36 0.77
June 8,864 21,407 0.14 0.86
July 6,612 13,951 0.22 0.67
August 6,834 13,033 0.24 0.79
September 8,072 16,631 0.33 0.79
October 6,943 13,974 0.26 0.87
November 5,757 10,249 0.32 0.76
December 5,642 9,119 0.38 0.75

greater range (RFBν̂ = 0.1, RTν̂ = 0.2). However, they are
still more stable than the corresponding values for the entropy
(RĤ = 0.3).

continuous actors:

January 2018:         

February 2018:      

March 2018:

April 2018:

May 2018:

June 2018:

July 2018:

August 2018:

September 2018:

October 2018:

November 2018:

December 2018:

n = 384

n = 5,966

n = 6,194

n = 7,677

n = 7,179

n = 7,529

n = 8,864

n = 6,612

n = 6,834

n = 8,072

n = 6,943

n = 5,757

n = 5,642

Figure 5. Sunburst chart of actor activity in the twitter network consisting of
one radial segment for each user, whereas a user’s segment in a time layer is

left out if said user was observed to be inactive in that time period.

As can be seen in Figure 5, similar to the Facebook
network, only a small amount of users is active throughout the
entire year, yet rather their activity is concentrated on certain
months.

C. Epinions Dataset

Figure 6 shows part of the Epinions social network [26]
which, in contrast to the previous datasets, tends to be regular.
Subsequently, there is no node, which dominates all others
in terms of its degree. In this figure, due to the size of the
network, it was necessary to arbitrarily limit the depiction by
applying k-core ≥ 80 [27] showing only the most active nodes.

In comparison to the other networks, the Epinions social
network [26] consisting of 75,879 actors shows a normalized
network entropy Ĥ = 0.65 and a normalized leader rank
skewness ν̂LR = 0.07, indicating a considerably less skewed
LeaderRank score distribution.

The three discussed real world examples support the results
of the simulation experiment discussed in Section III, whereas
the normalized network entropy is less expressive in regards
to an evaluation of the network topology than the LeaderRank
skewness.
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Figure 6. Part of the Epinions social network [26] (filtered by k-core ≥ 80).

V. COMPETENCE BASED RANKING APPROACHES

To address the issues discussed in Section III, we present
a modification of the original LeaderRank referred to as
CompetenceRank as well as some additional heuristics as
improvements to incorporate specific features found in social
networks.

A. CompetenceRank
In order to counteract the skewness of the LeaderRank

in graphs with a star-like topology, the LeaderRank score of
actors with a high degree of interaction, who at the same time
only receive minimal attention by others, needs to be penalized.
Similar to a citation network the relevance of a vertex does
not only depend on the number of its interactions, yet it rather
depends on a balanced ratio of own interactions and references
by others. If this ratio is used as a weighting of the LeaderRank
only those actors remain in the top ranks whose influence is
based mainly on their competence.

Therefore, let V be the set of all vertices representing the
actors of a social network and E be the set of all directed edges
representing the relationship between vertices for example the
communication or followers. The CompetenceRank CRi of
a particular actor vi ∈ V lowers the LeaderRank score Si
depending on the ratio of out-going and in-coming edges.

CRi =
Si

1 +
eout
vi

|E|
∑
v∈V Sv

(22)

The CompetenceRank as shown in (22) is subsequently cal-
culated by dividing the original LeaderRank score Si by a
fraction of the cumulative sum of LeaderRank scores defined
by the vertex’s share of network activity, with eoutvi being
the number of its outgoing edges. By definition, the sum of
LeaderRank scores of all vertices in the social network graph
is equal to the number of actors N . When considering regular
graphs, one observes LeaderRank distribution skewness ν̂ = 0
as well as eoutvi = eoutvj = D for any pair of randomly chosen
vertices vi and vj . Thus, |E| = ND. From this, (22) can be
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rewritten as
CRi =

Si

1 + D
NDN

=
1

2
Si. (23)

We finally define the CompetenceRank based on the assump-
tion that Si = CRi in regular graphs which is thus simply
achieved by multiplying the expression in (23) by 2 as given
in (24).

CRi =
2Si

1 +
eout
vi

|E| N
(24)

As shown in (25) one can calculate the discrepancy between
the CompetenceRank and the LeaderRank in terms of the root-
mean-square deviation RMSD (note: vertical line denotes
average sum). In turn that value can be seen as a further
function of network regularity besides the measures discussed
in Section IV.

RMSD =

√√√√ N∑
i=1

[CRi − Si]2 (25)

On average one receives an RMSD of 11.3 for the Facebook
network, of 5.7 for the Twitter network and of 4.9 for the
Epinions network.

B. Improved CompetenceRank
Especially social networks include many additional fea-

tures that support the idea of a competence based ranking.
In particular likes and shares play a special role in social
media and reflect the acceptance of an expressed opinion and,
as a consequence, should be considered when assessing the
competence. Neither the LeaderRank nor the CompetenceRank
as reported in [1] take these features into consideration or are
even designed to include additional features. In the following
paragraphs heuristics of the most important features of social
network are designed and step by step combined in a weighted
manner in order to reflect the relevance of different features
regarding the competence in various types of social media
platforms.

1) Pivoted post frequency normalization: As already dis-
cussed, if an actor posts messages with a high frequency
without receiving much response from the network, their
activity becomes less valuable and their LeaderRank score
needs to be lowered. This means, when looking at it from
another point of view, the fewer messages an actor posts,
while at the same time receiving great response from the
rest of the network, the more valuable this actor becomes.
Consequently, their score needs to receive a higher rank. How
much the rank needs to be lowered or raised has to depend
on how much the individual’s posting frequency deviates from
the average posting frequency of all actors in the network. A
similar behavior was described by Singhal et al. in 1995/1996
[28] with the pivoted length normalization for the text retrieval
problem.

normalizer = 1− b+ b
PFi∑N
i=1 PFi

(26)

Its original core idea is to reward or penalize a document based
on the document length in relation to the average document
length within a given collection of documents. For social
networks this easily adapts to rewarding or penalizing actors

when their total activity is either above or below the average
activity in a given network. This leads to the equation as shown
in (26), whereas the total activity is measured by the post
frequency PFi of the individual actor vi and b controls how
much an actor’s activity is rewarded or punished. Depending
on the network, the extent to which the activity is rewarded
or penalized differs. In general, achieving a high degree in
opinion leadership within a network requires individuals to
understand and conform to its code of conduct. For example,
when comparing a network of scientific publications and
citations to a twitter network, then the former is defined by a
rather low publication or post frequency but with a high quality
whereas the latter favors a high activity but limits the depth
and quality with a length limitation on each tweet. Moving
from twitter to the scientific domain and vice versa inevitably
requires an adaption to the new circumstances and only if this
transition in behavior is achieved will one be able to maximize
their influence in the respective area. In summary, the pivoted
post frequency normalization rewards individuals that maintain
a post frequency in line with or higher than average.

2) Sublinear post frequency transformation: Especially in
networks that tend to have a star-like topology, few very
active actors dominate the entire network. In the field of
information retrieval a similar problem is addressed with a
sublinear term frequency transformation, whereas one of the
most popular approaches is Robertson’s BM25 [29]. Here, the
gain is lowered with an increasing term-frequency, while, at the
same time, an upper bound of the term frequencies is defined.
When adapted to the problem of highly active actors in social
networks the impact of increasing posting frequencies can be
lowered and with k + 1 an upper bound can be defined as
shown in (27).

gain =
(k + 1)PFi
k + PFi

(27)

As previously discussed, the degree of opinion leadership par-
tially relies on respecting the circumstances. While the pivoted
post frequency normalization ensures that low activities are
being penalized it also offers the chance of a disproportionate
reward for users that are drastically more active than aver-
age. Therefore, the sublinear post frequency transformation
diminishes returns that result from high activity and introduces
an upper limit that prevents actors from extensively receiving
a disproportionate gain. This concept allows users to benefit
from being slightly more active than average while at the same
time approaching the upper boundary requires a significant
increase in activity.

3) Post frequency normalized LeaderRank: Using a com-
bination of the pivoted post frequency normalization and
the sublinear post frequency transformation as a weight for
the LeaderRank score leads to a post frequency normalized
LeaderRank nSi as shown in (28).

nSi = Si

[
1− b1 + b1

(k1+1)PFi

k1+PFi∑N
i=1 PFi

]
(28)

Using this equation the original LeaderRank is weighted
by a fraction of an actor’s activity in the entire activity of all
network actors, whereas with k1 the dominance of extreme
activity over all other activities is minimized. Furthermore,
with b1 it is possible to control how much the degree of
activity above or below the average is punished or rewarded,
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respectively. The normalized LeaderRank as shown in (28) has
a similar effect as the CompetenceRank in (24). However,
with the parameters it is possible to adjust the normalized
LeaderRank to the conditions of a specific network. For
example, for a platform that focuses on posts with a high
quality one may chose a low value for b1, because of the low
importance of the post frequency. Contrarily, for a platform
like Twitter, which focuses more on activity, a higher a value
can be chosen.

4) Incorporating likes and shares: likes are a key aspect of
social media platforms as they show the acceptance of an actor
by other actors and are, thus, an expression of competence.
Therefore, they need to be taken into account when evaluating
the impact of any given individual on such a platform and
the post frequency normalized LeaderRank is combined with
the average number of likes LFi

PFi
a user receives per post,

whereas LFi denotes the like frequency of a certain actor.
Averages are used since a user could, for example, have an
especially high number of 300 posts and only acquire one like
per posted message. Contrary, a user posting three times could
be receiving 100 likes per message. The total like count might
be similar, yet the impact of the former appears to be marginal
while the content of the latter seems to be well received and
quite influential. In contrast to other activities in a network,
such as creating posts, normally likes are connected to a post
or message and not a certain actor. This means that everyone
who can read the post can like it, even though they might not be
part of the observed network and it is impossible to ensure that
only those likes are considered that are from actors also active
in this network. For example, in the “DIE LINKE” Twitter
network, a tweet from a member of a right-winged party could
appear in the network if it is directed to “DIE LINKE”. This
tweet might receive a lot of attention from other actors, active
in the right-winged party network, yet not much attention from
actors of the twitter network “DIE LINKE”. Nonetheless, the
tweeting actor would receive a high number of average likes
for the “DIE LINKE” Twitter network. A similar effect could
be achieved if likes are received through bots or are bought.
Therefore, the normalized like score nLSi of an actor vi is
calculated as the average number of likes this actor’s posts
receive weighted with the fraction of the actor’s activity in the
overall activity of the network as shown in (28).

nLSi =
LFinSi

PFvi
∑N
i′=1 nSi′

(29)

Another important aspect of social networks is the number of
posts by an actor that have been shared by other actors. In
comparison to the number of likes a post receives, a highly
shared post/tweet extends its reach significantly, consequently
allowing the individual to influence more actors than they
normally could. Similarly to (28) concepts like pivoted shares
frequency normlization and sublinear shares frequency trans-
formation are utilized together with their parameters k2 and
b2 to maintain a controlled environment without too heavily
benefiting extreme cases, resulting in a normalized share score
nSSi as shown in (30), whereas SF i denotes the average share
frequency an actor vi receives.

nSSi = 1− b2 + b2

[1+k2
∑N

i′=1
SF i′ ]SF i

k2
∑N

i′=1
SF i′+SF i∑N

i′=1 SF i′
(30)

Finally, all components are combined resulting in the improved
CompetenceRank CRi as shown in (31) with α being the
parameter that weights the normalized like score depending
on the importance of likes in the observed network.

CRi = [nSi + αnLSi]nSSi (31)

VI. RESULTS

Since the required additional data, i.e., likes and shares,
were not available for the Facebook dataset, only the Twitter
network of “DIE LINKE” for the year 2018 was analyzed
with the new improved CompetenceRank and compared with
the results of the LeaderRank. In the analysis, the parameter b
was set to 0.7, k1 was defined as the average tweet frequency
in the entire network, k2 as double the amount of the average
tweet frequency and α was set to two assuming that liking is
twice as important for competence as activity in the considered
network.

An overview of the five highest opinion leader scores, indi-
cating the discrepancy between the results for the LeaderRank
and the improved CompetenceRank, is shown in Figure 7. As
can be seen, the five accounts with the top scores are for the
LeaderRank less diverse over the entire year as compared to
the improved CompetenceRank. Lacking diversity in itself is
not necessarily negative, however, when looking at the results
for the LeaderRank it can be noticed that the accounts in
Figure 7 include several political parties. Over the duration
of 12 months, excluding the account of “DIE LINKE” (the
owner of the network), with the LeaderRank it was possible to
identify 19 accounts of possible opinion leaders, of which 9 be-
long to political parties (e.g. “afd”, “cdu”, “fdp”, “linke sh”).
In comparison, a total of 23 accounts were identified using
the improved CompetenceRank of which only 5 belonged to
political parties.

It is not surprising that political parties appear in the top
ranks, as they are a quintessential part of political discourse
and thus it is their aim to shape the political opinion of the cit-
izens. However, political parties reflect the consensual opinion
of their members. Nevertheless, the ideas shaping the opinion
of others and thus the political discourse as such often come
from individuals. These opinions and ideas are not necessarily
conform with the congruent opinion of the party. Still, they
inspire the discussion and have the potential to influence the
consensus. When only considering the activity of an account,
as does the LeaderRank, such accounts, cannot compete with
the accounts of political parties that are used to inform the
public about the activity of the party and are thus highly active
within a network. The improved CompetenceRank is able to
raise the ranking of these accounts and to lower the ranking of
those accounts that only receive a high rank because of their
activity.

Deeper insight was provided by a thorough analysis of
the monthly datasets. The LeaderRank and the improved
CompetenceRank were calculated, providing us a total of two
different ranked lists. Subsequently, to minimize the potential
of performing well by chance on the first five accounts, the
analysis of a list of five accounts per month was extended
to the 20 highest ranking accounts per month. Ranked lists
need to be evaluated in a way that reflects increased or
decreased performance. Hence, the identified accounts were
divided into six different categories: Individuals, Journalists,
News, Political Parties, Politicians, Other and Unknown.
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Figure 7. Comparison of the fivea accounts with the highest LeaderRank (upper graph) and improved CompetenceRank (lower graph) scores for the year 2018
for the Twitter Network of “DIE LINKE” .

Each of the 20 accounts per month received a label that
was derived through manual evaluation of their Twitter profiles.
Ordinary Twitter accounts, seemingly run by individuals with-
out an obvious political office or a position in journalism were
labeled as “Individual”. Following this procedure individuals
with an obvious background in the field of the news industry
were labeled as “Journalists”, whereas accounts tweeting on
behalf of a news organization, accordingly do not represent
the opinion of a single individual hence giving them the

label “News”. In the same manner “Politician” refers to a
single individual being either active in a political party or in-
volved in a political office. Analogously to “News”, “Political
Party” refers to an account tweeting on behalf of a political
party. “Other” includes everyone not fitting into previously
mentioned categories (e.g. companies, bands, NGOs etc.) and
finally “Unknown” includes suspended and deleted accounts.
The total results are displayed in Table III.

In the given network, it becomes evident that political
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TABLE III. SUMMARY OF TYPE OCCURRENCES FOR MONTHLY DATA
SUMMED UP ACCORDING TO THE USED MEASURE

Type LR Improved CR

Individual 10 25
Journalist 2 26
News 11 30
Politician 99 115
Political Party 104 36
Other 11 4
Unknown 3 4

parties are down-ranked according to their influence by the
improved CompetenceRank, whereas individuals, journalists
and news outlets receive higher ranks. This result confirms the
assumption that the improved CompetenceRank counteracts
the skewness of star-shaped topologies, as can be found for
example in political networks, and further allows to distinguish
the real initiators that trigger the intraparty pattern of opinions
from the mass of other unimportant accounts in the network.

Furthermore, an account identified as an opinion leader
should be associated with a small group or even a single
person. This can be brought back to Katz’ original thesis
that large parts of society are not influenced by mass media
or in our specific case by organizations and political parties
but rather by trustworthy, influential opinion leaders. In turn,
identifying 36 instead of 104 political parties is a considerable
improvement, because it allows to identify more individuals,
more journalists and more politicians. Moving away from
pointing out the general importance of political parties and
instead selecting specific individual accounts exerting their
influence over a given social network is of tremendous value.

In this experiment the improved CompetenceRank outper-
forms the LeaderRank as it returned fewer political parties,
fewer accounts of category ”Unknown” and fewer suspended
or deleted accounts. The analyzed Twitter network is less
skewed than the Facebook network, as shown in Section IV.
Therefore, it can be assumed that the improvements become
even more distinctive when analyzing a highly skewed net-
work.

VII. CONCLUSION AND FUTURE WORK

The analysis of social networks, and in particular identi-
fying influential and opinion-influencing profiles, is of great
interest in forensic research for a variety of reasons. In the
present study, it was shown that the usual centrality-based
approaches, and in particular the LeaderRank, produce erro-
neous results in star-like networks, such as Facebook pages
of political parties. Furthermore, LeaderRank skewness was
presented as an appropriate measure to quantify the degree of
distortion of a network or in other words its proximity to a
star-shaped topology.

Subsequently, CompetenceRank was introduced as a mea-
sure to overcome the shortcomings of the popular LeaderRank
in star-like network topologies.

Additionally, an improvement of the CompetenceRank was
provided incorporating fundamental interaction data such as
“likes” and “shares”. This methodology was tested on the
Twitter network of “DIE LINKE”. Identifying political parties
as dominant and influential accounts on social media does
not yield significant new insight into a political network since

the importance of such accounts can be derived prior to any
analysis as political discussions are frequently centered around
political parties. However, pointing out influential individual
politicians or individuals in general aligns more with the
goal and image one has in mind when talking about an
opinion leader. It was shown that the new measure outperforms
the LeaderRank by identifying considerably more individual
Twitter accounts and attributing less importance to accounts
run by political organizations.

In following studies, it would be interesting to analyze
the observed phenomena in more fine-grained time ranges.
Additionally, it is necessary to take more and different network
topologies into account. Furthermore, it was noticed that
the texts in the Facebook data used were surprisingly well
written. This provides an opportunity to conduct further textual
analyses especially to answer the question whether there is a
correlation between topics and opinion leaders and if so, how
both develop over time.
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