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Abstract—In this paper, we propose a click simulation model
capable of simulating users’ interactions with a search engine,
in particular in the presence of user censoring. We illustrate
the simulation model by applying it to the problem of detecting
unique users from the session data of a search engine. In real
click datasets, the user initiating the session may be censored, as
unique users are often determined by their cookies. Therefore,
analyzing this problem using a click simulation model, for which
we have an uncensored ground truth, allows for studying the
effect of cookie churn itself. Furthermore, it allows for studying
how well clustering algorithms perform in detecting clusters of
sessions that originate from a single user. To cluster sessions,
we present and compare various constrained DBSCAN*-type
clustering algorithms. From this comparison, we find that even
though the clusters found by the best DBSCAN*-type algorithm
did significantly outperform other benchmark clustering methods,
it performed considerably worse compared to using the observed
cookie clusters. This result remains under different simulation
scenarios, though the results do improve when strengthening the
user signal. While clustering algorithms may be useful to detect
similar users for purposes such as user clustering, cookie tracking
remains the preferred method for tracking individual users.

Keywords–Click models; Session clustering; HDBSCAN*

I. INTRODUCTION

This paper is an extension of our previous work on click
model simulation and (Internet) session clustering, presented in
[1]. In particular, we provide a more detailed description of the
click simulation model and (H)DBSCAN* clustering algorithm
with a maximum cluster size. Furthermore, we present the
performance of the session clustering algorithm on multiple
simulation scenarios. The latter was only briefly discussed in
our earlier work, presented at the 2020 DATA ANALYTICS
conference [1].

The current Internet environment heavily relies on cookies
for the enhancement of our Internet browsing experience.
These cookies are small pieces of data stored in the browser
after being received from a server, along with a requested web
page from that server. If the Internet user pushes subsequent
requests to the server, the cookie is send along, allowing the
server to recognize the user and adjust its response accord-
ingly. Hence, as cookies allow identifying users over multiple
requests, they play a crucial role in session management, the
personalization of websites and ads, and user tracking.

However, the usage of multiple devices, multiple browsers,
and the focus on cookie management has made the problem of

identifying single users over multiple sessions more complex.
One study reports that so much as 20% of all Internet users
delete their cookies at least once a week, whereas this per-
centage increases to 30% when considering cookie churn on a
monthly basis [2]. Not being able to track Internet users may
lead to sub-optimal behavior of search engines and online ads,
as these have less information about previous search and click
behavior to infer the user’s preference for certain items from.
As cookie churn and the usage of multiple devices censor the
underlying user who is generating web traffic, we call this user
censoring.

Following the 2015 ICDM and 2016 CIKM machine learn-
ing challenges [3, 4], cross-device matching has in recent years
received considerable scientific attention. Cross-device match-
ing refers to the problem of identifying individual Internet
users from a set of Internet logs, where Internet users may
have been using multiple devices, and are therefore tracked
as separate users. These studies, however, do have some
limitations. Most approaches mentioned in the literature are
limited to finding pairwise matches, i.e., pairs of sessions that
are likely to originate from the same user. Such inference is
insufficient if one is interested in identifying exclusive session
clusters consisting of more than two sessions.

Furthermore, there seems to be ambiguity in what exactly
is meant by cross-device matching, or by session clustering,
and to what extent successful methods applied to one problem
will also work well on other problems. The ICDM and CIKM
competitions consider the problem from the perspective of
an online advertiser, advertising on multiple websites. Other
approaches (e.g., [2, 5, 6]) consider the problem from the per-
spective of a single website. At this point, it is unclear whether
approaches that work well on a single website are likely to be
successful in the online advertisement case, and vice versa.
Apart from this multi versus single website perspective, most
datasets studied seem to originate from large advertisers or
search engines. This raises the question of how generalizable
these approaches are for websites or advertisers with less traffic
or less heterogeneous searches.

To allow for sensitivity analysis in session clustering, we
consider the single website perspective, and propose a single
query click simulation model that allows for cookie censoring.
Simulation has two main advantages: 1) by adjusting the
simulation parameters, we may study how session clustering
algorithms perform on websites with different user browsing
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characteristics. 2) It provides a ground truth, which, due
to user censoring, is only partially observed in real world
datasets. Apart from the ground truth being useful in evaluating
clustering algorithms, it also allows for studying the effects of
user censoring on typical website statistics, such as the number
of unique visitors on a website. Although several models have
been proposed in the literature that could be used to create a
simulation model, they only capture a specific part of search
behavior and/or censoring. To our knowledge, this paper is the
first to combine these models into one click simulation model
with censoring.

Besides introducing the simulation model, we compare
several clustering approaches on multiple simulated datasets,
where all clustering methods are based on the DBSCAN*
and HDBSCAN* algorithms. To measure their effectiveness,
we not only consider the error in terms of typical supervised
clustering error measures, such the Adjusted Rand Index, but
also in terms of the error in estimating overall web statistics.
These include the number of unique users, distribution of
the number of sessions per user, and the user conversion
distribution.

This paper has the following structure. Section II discusses
relevant literature related to session clustering. Section III
discusses the simulation model, adaptions of (H)DBSCAN*,
and experimental set-up. Section IV discusses the results,
whereas Section V discusses the implications and ideas for
further research.

II. RELATED WORK

A. Click simulation
Simulating click behavior is definitely not a new concept.

Chuklin et al. [7, pp. 75-77] suggests using pre-fitted click
models for this purpose, where the model is pre-fitted to
public click datasets. One risk of using pre-fitted models is
an availability bias: can the characteristics of public click
datasets, commonly provided by large search engines, easily
be generalized over all search engines? Also, these datasets do
not always provide the type of information one is interested
in, such as the device used to initiate a session.

Fleder and Hosanagar [8] provide a generative approach
for modeling user preferences, which we will discuss in more
depth in Section III-A. This model can be used as an alternative
to model users’ preferences for clicking on items. Using pre-
fitted or generative models do have a trade-off in terms of
accuracy vs interpretability. E.g., the former may have an
accurate estimate of users’ item preferences, but it provides
little understanding of why this preference over different
products has a certain shape, whereas for the latter, we expect
this to be vice versa.

Several authors have studied how cookie censoring occurs.
E.g., [2, 9, 10] consider cookie churn, whereas [11] considers
specifically cross-device behavior. Results from these studies
can be used to model cookie churn dynamics in a simulation
model.

B. Identifying unique users from sessions
Identifying unique users from sessions can be seen as

a specific case of the entity/identity resolution problem [6].
Though, what makes this problem special is the nature of the
dataset. This often consists of a large number of sessions, of

which clicks and web page meta-data (such as the URL) are the
main sources of information. Because of these characteristics,
entity resolution algorithms that do not account for these
characteristics are likely to fail in their objective.

Session matching can be applied from an online adver-
tiser’s perspective, as was the case during the 2015 ICDM
and 2016 CIKM machine learning challenges [12, 13, 14,
15, 16, 17, 18, 19, 20, 21], or from the perspective of a
single website [2, 5, 6]. What remains unclear is whether
these two problems can be considered the same. Although
in both cases the main motivation for cookie matching may
be the same, e.g., increasing the click-through rate by means
of personalization, the type of data is bound to be different.
When advertising on multiple websites, the data seems to
consist for a substantial part out of a large variety of visited
URLs. Hence, proposed approaches from the advertisement
perspective tend to rely heavily on natural language processing
techniques [15, 16, 18, 19, 21, 22]. In case of a single website,
the URLs or web pages’ meta-data may be less diverse, and the
“unique fingerprints” [23] users create while browsing a single
website may therefore be less distinctive than on multiple
websites.

Most often, both the single and multiple website perspec-
tives are modeled as a binary classification problem. Here,
a model is trained to identify whether two feature vectors
describing sessions a and b originate from the same user.
Striking is the success of tree-boosting methods for this task,
which also in both the 2015 ICDM and 2016 CIKM machine
learning competitions showed promising results. For a more
in-depth discussion of the different methods applied in cross-
device matching, modeled as a binary classification problem,
we refer to Karakaya et al. [22]. Also worth mentioning is
that many methods proposed to both the 2015 ICDM and 2016
CIKM competitions allow for overlapping user clusters. As the
objective is to find pairs of sessions likely to originate from the
same user, this may result in sessions a, b, c to be classified
as f(a, b) = 1 and f(a, c) = 1, but f(b, c) = 0, f being the
same user classifier. Such result may be undesirable in some
practical applications.

A slight generalization of the cross-device matching prob-
lem is the cookie matching problem. Here we are given a
set of sessions that are already partially clustered into users
via cookies, but only partially due to some form of user
censoring. I.e., cross-device matching and cookie matching
only seem to differ on whether one assumes that user censoring
only occurs because of cross-device usage, or also because
of cookie churn. However, many approaches proposed in the
literature can be applied to both problems. Hence, in these
formulations, this distinction seems irrelevant. Various authors
have considered the cookie matching problem, though under
different names such as: ‘user stitching’ [6], ‘visitor stitching’
[5], or ‘automatic identity linkage’ [24]. Like in cross-device
matching, these studies tend to allow for overlapping clusters.

One approach that does not allow for overlapping clus-
ters is considered by [12], using classical bipartite matching
algorithms such as the Hungarian algorithm. However, it is
questionable to what extent these approaches are scalable, as
the paper works with relatively small datasets. Furthermore, as
users might have more than two cookies, bipartite matching
will only solve a part of the problem.
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Dasgupta et al. [2] also move beyond pairwise clustering.
The authors consider a combination of several similarity mea-
sures to determine whether two cookies originate from the
same user, and apply a greedy graph coloring algorithm to
cluster a session graph into user clusters. However, since multi-
device usage as we observe on websites now was not that much
the case when the paper was published in 2012, the algorithm
strongly relies on the assumption that only one device is used
at a time. This allowed the authors to only consider non-
overlapping cookies in terms of time as candidates for cookie
matching, whereas in the multi-device case, such a constraint
would not be able to identify unique users simultaneously
using multiple devices.

In this paper, we will use the term session clustering to
relate to the problem of identifying unique users from session
data. We prefer this term, as our methods do not per se
require having partial session clusters from cookies, something
that would be the case in cookie matching. Furthermore, we
seek non-overlapping clusters, whereas ‘matching’ relates to
training a classifier to predict whether two sessions originate
from the same user. However, still many of the methods
discussed so far are applicable to this formulation of the
problem.

We take a similar approach as [19] towards session cluster-
ing. This approach first trains a classifier that predicts whether
sessions a and b originate from the same user (that is, share
the same cookie in the data). Next, each session forms pairs
with its K nearest neighbor (K-NN) sessions, after which each
nearest neighbor is re-evaluated using the classifier on whether
the session and neighbor indeed originate from the same user.
All sessions included in the remaining pairs are subsequently
clustered using a greedy clustering algorithm, from which all
sessions in a cluster are also added to the set of session pairs.

This method shows some similarity with DBSCAN [25],
where also K-NN is used to quickly identify similar data
points. However, DBSCAN computes a (possibly approximate)
minimum spanning tree (MST), from which a quick approxi-
mation can be made of the distances between points. Compared
to the greedy clustering approach by [19], this leads to a
considerable speed up. On the other hand, as DBSCAN misses
a constraint on the maximum cluster size, we will turn to
two of DBSCAN’s descendants: DBSCAN* and HDBSCAN*
[26, 27], which can quite easily be adjusted to incorporate a
maximum cluster constraint.

III. METHODS

A. Simulating click data with cookie-churn
We consider a simulation model that models how users

behave when interacting with a search engine. We choose to
simulate behavior on a search engine, and not behavior on
other types of websites, as there is extensive literature on
what type of parametric models are accurate for modeling
user behavior on search engines [7]. Furthermore, apart from
dedicated search engines, a search tool is also a common
feature on websites having other purposes [28]. Hence, we
believe it is likely that this behavior is also found elsewhere.

To avoid overcomplexifying the simulation model, we
only consider the case in which users push one or multiple
homogeneous queries to the search engine. I.e., the query itself
is the same over all users, and one user may repeat this query

a number of times. Users do have different item preferences
for the items the search engine may return. Furthermore, the
item order may be different in each Search Engine Result Page
(SERP). The simulation model consists of three parts. The first
part models how users navigate through the SERP, the second
part models how users’ utility function is determined, while the
third part models how the session generating user is censored
due to cookie churn or the usage of multiple devices. For
reference, Table VI provides an overview of the most important
variables in the simulation model.

1) Simulating SERP interactions: Two types of interactions
between a user and the search engine are considered. First,
users may push the (homogeneous) query to the server, and
receive the SERP in response. Second, users may click on
results in the SERP. At each interaction, the server checks
whether the user has an active cookie. If not, a new cookie
is send along with the server’s response (that is, either the
SERP, or the content page of a particular item in the SERP),
and stored in the user’s browser. We will discuss how cookie
churn is modeled in Section III-A2.

All interactions are stored by the server, which provides
a label for the cookie, device and query-session. This query-
session is defined in terms of a set of interactions with one
SERP. Hence, where in practice a browser session is typically
defined by some period of interaction, we deliberately choose
to model a session as a set of interactions with one SERP,
irrespective of the time between two interactions with this
SERP.

To simulate clicks on a search engine, we employ the
Simplified Chapelle-Zhang Model (SCZM) [29]. Although this
model is known in the literature as the Simplified Dynamic
Bayesian Network model (SDBN), we renamed the model as
it is only a specific case of a Dynamic Bayesian Network. We
choose to use SCZM for two reasons: 1) the model, though
simple, seems to perform reasonably well in comparison with
other parametric click models when predicting clicks [7]. 2)
SCZM captures the ordering effect of items in the SERP. I.e.,
users may not always reflect their preferences correctly in their
clicks, as their behavior is also determined by how items are
ordered. Including this ‘cascade effect’ provides more realistic
results.

To describe the simulation model, the following notation
will be used. Let i ∈ {1, . . . , n} be a query-session, which pro-
duces a SERP of unique items Si ⊆ V , with V = {1, . . . , V }
the set of all items, indexed by v. We assume all SERPs
1, . . . , n to have the same number of items T . Let ui ∈ U
denote the user initiating query-session i, with U = {1, . . . , U}
the set of all users. The user index u is used instead of ui in
case the precise query-session i is irrelevant. ri(t) denotes the
item at position t in query-session i. Likewise, r−1i (v) gives
the position of item v in query-session i, and rmax

i denotes the
largest position of a clicked item in Si, where rmax

i = 0 if no
items were clicked during query-session i.

SCZM considers three latent variables: R
(i)
v denotes

whether user ui is attracted to item v during query-session
i. This variable is also known as the relevance of item v for
the user initiating session i. The probability of item v being
relevant to user u in session i is given by φ(R)

u,v . S(i)
v denotes

whether user ui is satisfied with item v after having clicked the
item, which happens with probability φ

(S)
u,v , and E

(i)
t denotes
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whether user ui will evaluate the item in position t during
query-session i. Whether the item at position t in SERP i is
clicked is denoted by the binary variable y(i)t .

The model follows the cascade hypothesis, that is, it
assumes a user always evaluates the first item (E(i)

1 = 1 for
all i = 1, . . . , n), after which the user decides to evaluate sub-
sequent items in the list according to the perceived attraction
and satisfaction of the previous evaluated items in the list,
according to

E
(i)
1 = 1; (1)

P(R(i)
v = 1) =

{
φ
(R)
ui,v if v ∈ Si

0 otherwise
; (2)

P
(
S(i)
v = 1 | y(i)

r−1
i (v)

= 1
)
=

{
φ
(S)
ui,v if v ∈ Si

0 otherwise
; (3)

y
(i)
t = 0⇒ S

(i)
ri(t)

= 0; (4)

E
(i)
t−1 = 1, S

(i)
ri(t−1) = 0 ⇐⇒ E

(i)
t = 1, t > 1; (5)

y
(i)
t = 1 ⇐⇒ E

(i)
t = 1, R

(i)
ri(t)

= 1. (6)

To come up with reasonable values for φ(R)
u,v and φ(S)u,v , we

used the same approach as in [8]. That is, users are represented
by the vectors ηu =

(
η
(u)
1 , η

(u)
2

)
, u ∈ U , where η

(u)
1 and

η
(u)
2 are drawn from two independent standard normal distri-

butions. Likewise, all items can be represented by the vectors
ψv =

(
ψ
(v)
1 , ψ

(v)
2

)
, where again ψ(v)

1 and ψ(v)
2 are drawn from

independent standard normal distributions. The probabilities
φ
(R)
u,v , and φ(S)u,v are then determined by the multinomial logits

φ(R)
u,v =

eωu,v+ν
(A)∑

v′∈V\{v} e
ω

u,v
′ + eωu,v+ν(A)

, (7)

φ(S)u,v =
eωu,v+ν

(S)∑
v′∈V\{v} e

ω
u,v
′ + eωu,v+ν(S)

, (8)

with
ωu,v = −q log δ(ηu,ψv). (9)

Here δ is some distance function, in our case Euclidean
distance. q ∈ R+ is some constant value that models the users’
preferences towards nearby items, and ν(A), ν(S) are salience
parameters for attraction and satisfaction respectively.

The order in which items are presented is determined as
follows. First, during a warm-up phase, we simulate clicks
for Uwarm-up users, while randomly ordering the items such
that all have equal probability of being positioned at positions
t = 1, . . . , T . Next, we estimate the overall probability of
each item being found attractive, and we use these probabilities
as weights to determine the item order for subsequent query-
sessions. More specifically, for each query-session i, we draw
items Si from a multinomial distribution with parameters
φ̂v/

∑
v∈V φ̂v , v = 1, . . . , V ; without replacement. The es-

timate of overall attraction is given by [7, p. 26],

φ̂v =
1

|Iv|
∑
i∈Iv

y
(i)

r−1
i (v)

, (10)

with
Iu =

{
Si : v ∈ Si, r−1i (v) ≤ rmax

i

}
. (11)

To avoid φ̂v to be (close to) zero, we impose a minimum
probability of 10−5 for all v ∈ V .

2) Cookie censoring: Cookie censoring is incorporated in
the simulation model in two ways: by incorporating time and
letting cookies churn after some random time T , and by
switching from device d to some other device d

′
. First, we

consider the cookie lifetime T cookie
u,o,d for the o-th cookie of user

u on device d, and the user lifetime T user
u . Whenever the cookie

lifetime of cookie o ends, but the current user lifetime is strictly
smaller than T user

u , a new cookie o
′

is created, which lifetime
is drawn from the cookie lifetime distribution F cookie. For a
period of T cookie

u,o′ ,d
, all click behavior of user u on device d will

now be registered under cookie o
′
.

Second, after each query-session a user may switch from
device d to d

′
, which happens according to transition matrix

P . Whenever a user switches devices, we consider whether
the user has used this device before. If not, a new cookie o

′

is created, and we draw a new cookie lifetime from F cookie.
However, the cookie lifetime T cookie

u,o,d does not end prematurely
when the user switches from device d to d

′
. If later on the user

switches back to device d while the cookie lifetime T cookie
u,o,d has

not ended, the behavior of user u is again tracked via cookie
o until another device switch occurs or cookie o churns.

Putting this censoring into practise requires us to provide
five distributions: 1) a distribution F abs for the time between
query-sessions, which following [10] we will refer to as the
absence time, 2) a distribution for the cookie lifetime (F cookie),
3) a distribution for the user lifetime (F user), 4) the device
transition matrix P , and 5) the initial device probability F device.

For the absence time distribution, we use some results
from [10]. Although Dupret and Lalmas [10] fitted a Cox
survival model to user absence data in order to estimate user
lifetimes, we refitted the data mentioned in the paper with
a different model for two reasons. First, there is ambiguity
in the method used to model absence time. The authors fit a
Cox survival model with one covariate. As the (log-)likelihood
of a Cox survival model omits the estimation of the base
hazard, the method for estimating this base hazard should be
provided (e.g., the Breslow estimator). However, the paper
does not report which method was used to fit the baseline
hazard. Second, results from Dasgupta et al. [2] on cookie
churn suggests that, when taking into account longer periods
than 7 days, absence time has a fat-tailed distribution. We
found that a Pareto-I with scale parameter m = 1 and shape
α = 0.11 seems to fit the data from [10] approximately
well. This distribution was therefore used to model F abs. To
allow for absence times smaller than 1 (but still positive), we
subtracted one from all drawn lifetimes.

To model the cookie lifetime, we used the results from [2],
who find that a hyper-exponential distribution with one over
the rate being equal to 50 seconds (with probability .06), 25
minutes (with probability .07), 14 hours (with probability .07),
15 days (with probability .18), and 337 days (with probability
.62), fits reasonably well. Here, cookie lifetime is defined as
the time difference between the first and last observed action
from a single cookie. We consider time at a minute scale,
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and therefore rounded up the first phase (50 seconds) to one
minute.

The user lifetime is obtained by sampling from N cookie
lifetime distributions, where N itself is drawn from a geo-
metric distribution with parameter ρ. As the cookie lifetime
distribution is modelled as a hyper-exponential, we will refer
to this distribution as a repeated hyper-exponential distribution.
Although we sample from the cookie life time distribution, the
user lifetime is independent from the cookie lifetimes: they
only share the underlying hyper-exponential distribution, not
the realizations of that distribution.

To model device transition matrix P , we use the results
from [11], who study device transitions between four devices:
a PC, tablet, smartphone and game console. We adopted the
transition probabilities found in this paper, where we dropped
the game console as the found transition probabilities from
and to this device were negligible. After dropping the game
console, the probabilities were normalized to obtain transition
matrix P . The initial device probability distribution F device is
also obtained using the results from [11], and is modeled as
a multinomial distribution with parameter π = (π1, π2, π3);
π1, π2, π3 being the probability of the PC (Dev. 1), tablet (Dev.
2), and smartphone (Dev. 3) being the first device respectively.
The normalized initial and transition probabilities from [11] are
given by Table I.

TABLE I
INITIAL DEVICE AND DEVICE TRANSITION PROBABILITIES ADOPTED

FROM [11]

π Dev. 1 Dev. 2 Dev 3
Dev. 1 .64 .9874 .0042 .0084
Dev. 2 .11 .00256 .9697 .0046
Dev. 3 .25 .029 .0018 .9773

3) Summary of the simulation procedure: The entire sim-
ulation procedure is given in Algorithms 1 and 2 (see Ap-
pendix). The former describes how user preferences are ob-
tained and how the overall popularity is determined, whereas
the latter describes how clicks and cookie churn are simulated
over a set of users.

For convenience, we have written the set of warm-up users
as Uwarm-up, φ̂ = (φ̂1, . . . , φ̂V ), and yi = (y

(i)
1 , . . . , y

(i)
T ). The

location and scale parameter of the Pareto-I distribution are
written as m and α, whereas the rate and rate probability of
the hyper-exponential distribution are given by the vectors λ
and p. Last, let Id be a 3 × 3 matrix where the d-th column
contains all ones, whereas the rest of the matrix contains all
zeros.

The simulation iterates over all users, where for each user
new query-sessions are simulated until the user lifetime has
elapsed. For each user, first the initial device is drawn, along
with a cookie lifetime for that user on that device, and the
total user lifetime. Next, query-sessions are simulated for each
user in four steps. First, Si is (iteratively) drawn using the
overall item popularity φ̂, and we simulate clicks using the
SCZM model described in Section III-A1, which are stored in
dataset D. Second, we simulate the time until the next session.
Third, the device of the next session is determined. Fourth, we
check whether the last cookie on the new device has churned.

Algorithm 1: User simulation procedure

1 Draw η
(u)
1 , η

(u)
2 , ψ

(v)
1 , ψ

(v)
2 i.i.d. from a standard

normal distribution for all v ∈ V and u ∈ U ;
2 Compute similarities ωu,v according to (9);
3 Compute the probability of attraction and satisfaction,

using (7);
4 Set φ̂v ← 1 for all v ∈ V;
5 Dwarm-up ← SIMULATE CLICKS(Uwarm-up);
6 Recompute φ̂ according to (10);
7 D ← SIMULATE CLICKS(U \ Uwarm-up);
8 return D;

If so, a new cookie is created with a corresponding new cookie
lifetime.

Although Algorithm 2 assumes all users arrive at t = 0,
we shift all times after the simulation to obtain click behavior
spread out over time. Here we assume a Poisson arrival process
with rate γ. I.e., the first query-session of user u starts some
exponentially distributed time after the initial query-session of
user u−1. Note that these inter-first session times only depend
on the time of the first session of the previous user, not on any
other subsequent behavior of that user.

B. Session clustering
1) (H)DBSCAN*:

a) Hierarchical clustering using Minimum Spanning
Trees (MST): Before we discuss the adjustment made to the
HDBSCAN* and DBSCAN* algorithms, we will first briefly
describe the two algorithms. We first discuss the overlapping
part in both algorithms, after which we discuss their differ-
ences. Following the terminology by [26, 27] and [30], let
X = {X1, . . . , Xn} be a set of data points, let κk(Xi) be the
distance from point Xi to its k-th nearest neighbor (for some
given value of k ∈ N), and let δ(Xi, Xi′ ) be some distance
measure between points Xi and Xi′ . Based on this original
distance measure, DBSCAN* considers an alternative distance
measure, which is named the mutual reachability distance, and
is defined as follows:

δmreach
k (Xi, Xi′ ) ={

max{κk(Xi), κk(Xi′ ), δ(Xi, Xi′ )} Xi 6= Xi′

0 Xi = Xi′
.

(12)
Although DBSCAN* does not specify the exact distance mea-
sure δ, we will (like in Section III-A1) assume this is Euclidean
distance. The main motivation for introducing this mutual
reachability distance is to better identify different clusters with
high density of arbitrary shape, as the measure tends to push
different high density clusters further apart.

Given the mutual reachability distance, (H)DBSCAN* rep-
resents each data point as a node in a complete weighted
graph G, where the weights are simply the mutual reachability
distances between data pairs. Using G, the algorithm first
computes a minimum spanning tree (MST), which allows
for fast identification of clusters. The MST is also used to
approximate distances: the distance between two non-adjacent
points Xi and Xi′ in the MST can be approximated by the
path length Xi → Xi′ in the MST. At the same time, this
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distance is a lower bound on the actual distance: otherwise,
Xi → Xi′ would be adjacent in the MST.

From this MST, one can build a dendogram of the
data points in an agglomerative manner. First, (H)DBSCAN*
assigns each data point X1, . . . , Xn to separate clusters
B01, . . . ,B0n. Here the superscript is used to indicate the hier-
archy level of the cluster, which at this stage is zero. Second,
it iterates through the edges in G, increasing in terms of their
weights. For some edge (i, i

′
) having the smallest edge weight,

it finds the two clusters with the highest hierarchy levels hmax
i

and hmax
i′

, to which i and i
′

are assigned to respectively. Next,

it and creates a new cluster B
max{hmax

i ,hmax

i
′ }+1

j , which includes
all data points included in the highest hierarchy clusters to
which Xi and X

′

i were previously assigned to. If this process
is repeated for all edges in G, the last edge will create a cluster
containing all data, which occurs at level H .

b) DBSCAN*: The construction of the dendogram oc-
curs both in DBSCAN* and HDBSCAN* in the same manner.
However, as both methods wish two find non-overlapping
clusters, the two methods split ways from there. In DBSCAN*,
one would take some value ε ∈ R+, and remove all cluster
merges in the dendogram that were merged with a weight
strictly greater than the chosen maximum distance ε. This
would lead to a set of disconnected binary trees T , and a set of
singleton points N . The singleton points are points for which
their k-th nearest neighbor is already at a further distance than
ε, and these points are consequently labeled as noise. All data
points in one tree τ ∈ T are labeled as one cluster.

c) HDBSCAN*: The underlying assumption of cutting
the dendogram at level ε, is that all clusters have (approx-
imately) the same density. This density is in HDBSCAN*
approximated by θ = 1/ε, i.e., close points imply high
density. HDBSCAN* allows for different cut-off levels of ε, or
similarly of θ, where the optimal cut-off level for some cluster
is determined via the notion of relative excess of mass, which
we will introduce in a moment.

More precisely, let M be some given minimum cluster
size. To somewhat simplify notation, we let index j refer to
any cluster, irrespectively of hierarchy h, such that h can be
dropped. HDBSCAN* first creates a condensed tree from the
dendogram in the following way. It starts at the root of the
dendogram, having label j0, and considers its children. These
were merged at some density θj,j′ , merging two clusters with
labels j and j

′
. It then considers three options: 1) if both

children have less than M points, all points in Bj and Bj′ “fall-
out” of the cluster at density θj,j′ , implying that for densities
greater than θj,j′ all points in Bj and Bj′ are labeled as noise.
2) If only one cluster Bj has less than M points, all points in
Bj fall-out at density θj,j′ , while the parent cluster label (j0)
is now continued for all observations in Bj′ . I.e., we replace
label j

′
by j0, and as a result the exact cluster j0 now refers

to depends on whether we pick a density larger or smaller
than θj,j′ . 3) If both children have more than M observations,
clusters Bj and Bj′ keep their labels j and j

′
. I.e., label j0 is

not continued, and clusters Bj and Bj′ are considered separate
clusters for densities larger than θj,j′ . After both children have
been relabeled, this process is repeated using these new labels
until all nodes have been relabeled.

The resulting condensed tree is essentially still the same

as the original dendogram, but with different labels. I.e., by
continuing the parent (option 2), some labels now may refer
to different clusters, dependent on density θ. Let {1, . . . ,m}
be the resulting set of labels from relabeling. For each label
j ∈ {1, . . . ,m}, let Bj be the set of observations labeled j
at the minimum density for which j exists. Furthermore, let
θmax
j (Xi) and θmin

j (Xi) be the densities at which observation
Xi falls off cluster j and the density at which Xi first occurs in
cluster j respectively. Note that θmin

j (Xi) is either zero (when
j is the label continued from the root node), or the density
at which cluster j splits off from its parent, hence it has the
same value for all Xi ∈ Bj .

Clusters {B1, . . . ,Bm} may still be overlapping. To find
non-overlapping clusters, HDBSCAN* introduces the relative
excess of mass of cluster j as σ(j), which is defined by:

σ(j) =
∑
Xi∈Bj

[
θmax
j (Xi)− θmin

j (Xi)
]
. (13)

The relative excess of mass has an intuitive argument for
clustering. Large values for σ(j) imply that when increasing
the density, the cluster remains more or less intact (apart from
some noise points splitting off at higher densities). As a result
θmax
j (Xi) − θmin

j (Xi) becomes large. I.e., the relative excess
of mass can be used as a measure of cluster quality. Hence,
HDBSCAN* optimizes the sum of relative excess of mass over
a subset of clusters {B1, . . . ,Bm} such that this subset is non-
overlapping.

2) Introducing maximum cluster sizes to HDBSCAN* and
DBSCAN*: To return to the problem at hand: identifying
small session clusters from the set of all sessions that may be
originating from the same user, HDBSCAN* and DBSCAN*
can obviously be used for this purpose. Apart from the earlier
discussed benefit of speed by clustering via MST, incorporating
noise points would also intuitively make sense in identifying
potential users from sessions: we would expect that quite a
large (though unknown) percentage of all sessions might still
be from users only initiating a single session.

By tweaking parameters k, (the k-th nearest neighbor in
nearest neighbor distance κk), ε (dendogram cut-off point in
case of DBSCAN*), and M (minimum number of points
before a cluster is considered noise in HDBSCAN*) one
can obtain session clusters that obey a maximum cluster size
β ∈ N. However, some early experiments with DBSCAN* and
HDBSCAN* showed that the resulting clusters tended to either
very large clusters, or labeled (almost) every point as noise.
For that reason, we chose to adjust both algorithms, in order
to obtain more small clusters having a size smaller than β.

To impose the clusters to be more fine grained, we
impose a restriction on the maximum cluster size of the
clusters found by (H)DBSCAN*. We do so in three different
ways: max-size DBSCAN* (MS-DBSCAN*) imposes this
restriction on DBSCAN*, whereas MS-HDBSCAN*− and
MS-HDBSCAN*+ are two ways to impose the restriction on
HDBSCAN*.

First we consider MS-DBSCAN*. This algorithm is only
a slight adaptation to the DBSCAN* algorithm described in
Section III-B1. Given the binary trees T , obtained by removing
all nodes and edges in the dendogram above distance ε, we
further remove all cluster nodes j for which |Bj | > β. Doing so
results in two new sets: Ñ and T̃ , again representing singleton
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points that we assume to be noise, and all points in a tree
τ ∈ T̃ receive the same cluster.

Second are the adaptations of HDBSCAN*. The first steps
of these two adaptations are the same. First, all clusters
Bj ∈ {B1, . . . ,Bm} having |Bj | > β are removed from the
dendogram. This, like in DBSCAN*, gives two sets: noise
points N and trees T . Second, for each sub-tree τ ∈ T ,
we again optimize the the total relative excess of mass
subject to non-overlapping clusters. The difference between
MS-HDBSCAN*− and MS-HDBSCAN*+ arises when a
leaf node of the condensed tree (that is, a label that does
not split at some larger density into two new labels, though
noise points may split off) of some condensed sub-tree τ
is in the set of optimal non-overlapping clusters. In case
of MS-HDBSCAN*−, all observations in Bj are given the
same label, whereas in case of MS-HDBSCAN*+, these are
considered noise.

3) Session cluster re-evaluation: As one might have no-
ticed, so far we have not used any information from the
cookies. I.e., knowing which sessions have the same cookie
could provide valuable information about the underlying user.
In particular, we wish to train a model that can function as an
alternative to standard distance measures δ, such as Euclidean
or Manhattan distance, which we then again can plug into the
adapted (H)DBSCAN* algorithms described in Section III-B2.

Obtaining session clusters with re-evaluation is done as
follows. Assume we have a trained classifier f̂(Xi, Xi′ ), which
returns the probability of Xi and Xi′ originating from the same
user. First, like in [19], we find for each point Xi the K nearest
neighbors, which gives us a set X of all nearest neighbor
session pairs. Second, we compute − log(f̂(Xi, Xi′ )) for all
(Xi, Xi′ ) ∈ X , and fill this into a (sparse) n×n distance matrix
W . For all pairs (Xi, Xi′ ) /∈ X , we assume the distance is
some large value δmax, which allows us to store W efficiently,
and greatly speeds-up computations compared to evaluating
all pairwise same user probabilities. Distance matrix W can
subsequently be used as distance measure δ in the algorithms
discussed in Section III-B to obtain new session clusters.

To train classifier f̂ , we first cluster a training set accord-
ing to one of the models discussed in Section III-B, using
Euclidean distance for δ. Second, for each cluster we add all
unique session pairs into some training set Xclust. Next, we
start using the observed cookies: we treat each cookie as a
cluster and determine all session pairs in these cookie clusters,
where this set of pairs is denoted by Xcookie. To determine
for each session pair (Xi, Xi′ ) the correct label, we use the
information from the observed cookie. If Xi and Xi′ have
the same observed cookie, we set the target variable to one,
whereas it equals zero otherwise. The final training set Xtrain
is obtained by undersampling from Xclust ∪ Xcookie.

Note that obtaining negative labeled training pairs from
a point its K nearest neighbors follows the assumption that
these are indeed more likely to be negatives than positives.
If this assumption holds, sampling negatives from the nearest
neighbors would intuitively help the classifier to learn more
subtle patterns. I.e., the K nearest neighbors are close in terms
of the common distance measure, but not according to the
classifier.

4) DBSCAN* with random clusters: To benchmark the
clustering approaches just discussed, we consider the following

benchmark. We first cluster the sessions using the ordinary
DBSCAN* algorithm, in which way we obtain initial clusters
B01, . . . ,B0m. Next, for each cluster Bhj (h ∈ N, with initially
h = 0), if |Bhj | > β, we iteratively select min{sj,h, |Bhj |, β}
points uniformly at random from Bj to form a new cluster
B̃, and update Bh+1

j ← Bhj \ B̃. Here, sj,h is drawn from a
geometric distribution with p = 0.5. This process continues
until for all j ∈ {1, . . . ,m}: |Bhj | ≤ β for some h, at which
the remaining points in Bhj are labeled as one cluster.

Intuitively, we selected this benchmark as it captures the
higher level hierarchy clustering of DBSCAN*, but not the
low level clusters (as these clusters are picked at random).
Therefore, comparing the previous methods with this random
clustering approach allows us to assess whether the smaller
size clusters reveal more information than the larger ones.

C. Experimental setup
1) Simulation parameters: Our experimental design consist

of two steps. First, we consider a simulation base case on
which we evaluate the clustering approaches discussed in
Section III-B. In this base case, users’ first query arrival
follows a Poisson process with rate γ = 0.2 (minutes), after
which subsequent behavior over time of a particular user is
modeled according to F abs, F cookie, F user, F device, P , and π,
of which the parameters were already given in Section III-A2.
We used U = 20, 000 users with Uwarm-up = 2, 000 (10%).
Furthermore, we removed the first 250 sessions (not part of the
first Uwarm-up users, who were only used to estimate the overall
item popularity), as these would likely all be first sessions from
new arriving users, and therefore including them may lead
to a bias in the data. Likewise, we removed all observations
after 43, 200 minutes (30 days) to avoid the opposite bias: not
having any new users. Users could pick from V = 100 items,
and we choose as maximum list size T = 10.

For parameters that could not be adopted from the lit-
erature, we tried several parameter values and looked at
three characteristics. First, we considered whether the click
probability is decreasing in list position. Second, whether the
attraction/satisfaction is centered around 0.5, with a standard
deviation of approximately 0.1 to 0.2. Third, whether all
sessions are somewhat spread out over time. This lead us
to choosing users’ preference for nearby items q = 1, user
lifetime phases geometric parameter ρ = 0.5, and salience
parameters ν(A) = ν(S) = 5. Figure 1 shows the three base
case characteristics for the resulting simulated base case used
in further inference. In the second step of the experimental
design, we made adjustments to the latter parameters, that is,
those not adapted from the literature. These adjustments will
be discussed in Section IV-B.

2) Features and MS-(H)DBSCAN* hyper-parameter set-
tings: The simulated dataset was split into a training and test
set according to a 70/30 split over the users. I.e., users always
are entirely in the training set, or entirely in the test set. For
each session, we used the session’s start time, observed session
count (as observed by the cookie), number of clicks, and
whether the session’s SERP has at least one click as features.
Furthermore, to obtain a vector representation of the items
and interactions with the SERP, we first computed a bin-count
table. This table contains per item the total number of clicks,
skips (no click), and the log-odds ratio between clicks and
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Figure 1. Summary of base case simulation.

skips over 30 percent of all sessions, which combined were
used as item vector representations.

Next, for each session i, we concatenated all item vectors
ψv , v ∈ Si, in order of their position, resulting in some
vector ai with 3T elements. Additionally, we created four
more session vectors. The first of these vectors is obtained by
multiplying ai with a vector containing ones at those positions
where a click occurred, whereas for the second vector, ai is
multiplied with a vector containing ones at positions where
the item was skipped (=not clicked). The third vector is
obtained by multiplying ai with a vector containing ones at
the last clicked position. To obtain the fourth vector, ai is
multiplied with a vector of list positions for each item. In all
cases, the vector multiplication is element-wise. Next, all five
session vectors were concatenated to obtain one session vector
representation.

The resulting concatenated session vector was further
treated by computing all second order polynomial features,
after which we normalized and applied the Yeo-Johnson [31]
power scaler to make the distribution of each feature more
Gaussian-like. We reduced the vector’s dimension using a prin-
ciple component analysis using seven principle components,
the latter was chosen using the elbow method.

For each method, we experimented with k ∈ {1, 3, 5} (here
k as in κk, the distance to the k-th nearest neighbor). For
DBSCAN*-like algorithms, we tried

ε ∈
{(
qmax (qmin/qmax)

`/N
) ∣∣` ∈ {1, . . . , N}} , (14)

with N = 9 and qmin, qmax the minimum and maximum
Euclidean distance, obtained by computing all pair-wise dis-
tances over 1,000 sampled session vectors. For HDBSCAN*-
type algorithms, we set minimum cluster size M = 2.

For re-evaluation models, we took the approach already
explained in Section III-B3. To train classifier f̂(ai,ai′ ), we
first run MS-DBSCAN* with the best found values for k and
ε from earlier validation of MS-DBSCAN* on the training
set to, together with the cookie clusters, obtain Xtrain. Next,
we computed the Manhattan, Euclidean, and infinity norm
between ai and ai′ , (i, i

′
) ∈ Xtrain that were used as feature

vector to train a logistic regression model. Although also
other classifiers could be used, we considered that using a
logistic regression model on a compressed input (the three

distance measures) would be a proper trade-off between model
complexity and accuracy.

We selected for each point the K = 1, 000 nearest
neighbors to evaluate classifier f̂ on. All non-evaluated pairs
received distance δmax = − log

(
10−6

)
. Next, the MS-

(H)DBSCAN algorithms were evaluated using the new dis-
tance matrix W , where we experimented again with k ∈
{1, 3, 5}, and

ε ∈
{
qmin +

`(qmax − qmin)

Nre-eval

∣∣` ∈ {1, . . . , Nre-eval}
}
, (15)

where Nre-eval = 5.
All algorithms excluding HDBSCAN* (i.e., including DB-

SCAN*) were trained using the sklearn package in Python
[32] (version 0.22.1). sklearn was also used to compute er-
ror scores (see Section III-C3). We used the hdbscan package
[33] (version 0.8.26) to obtain the dendogram and condensed
tree, based on which we could impose the maximum cluster
size in the way described in Section III-B2. For both packages,
the default parameters were used unless indicated otherwise.

3) Error metrics: We considered error metrics from two
perspectives. First, we consider error measures with respect to
overall website performance. More precisely, given some final
clustering {Bfinal

1 , . . . ,Bfinal
m }, the following error measures are

computed. 1) We compute the APE (absolute percentage error)
between the real and estimated number of unique users (the
latter being equal to m), 2) the Kullback-Leibler divergence
(KL-divergence) between the real and estimated user session
count distribution (the latter being equal to the cluster size
distribution), and 3) the KL-divergence between the real and
estimated user conversion distribution. Here, user conversion
is defined as the fraction of items clicked per user over all
shown (but not necessarily evaluated) items.

The second perspective is on the level of the clusters
themselves, where we consider two error measures. To de-
termine the quality of the clusters, we computed the adjusted
Rand index (ARI) [34] between computed and real session
clusters. Besides ARI, we also measure how well the model
distinguishes whether each new session originates from an
existing or already observed user, which is measured using
the accuracy score.

Since ARI measures the overlap between the computed and
real session clusters, we consider ARI to be our main error
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measure, using the other error measures to study possible side-
effects when optimizing for ARI.

IV. RESULTS

A. Results on base simulation case
Table II shows how the different models perform in terms

of several error measures on both the training and test set. For
each method, the shown results are the best results obtained
under the different hyper parameters tried for that method
under that dataset. I.e., in theory the hyper parameters might be
slightly different between training and test, though in practice
we found this was rarely the case.

The OBS model in the table are the scores one would
obtain if the observed cookies would be used as clusters.
Models using the classifier as distance measure are indicated
using subscript p. What immediately becomes apparent is that
compared to these observed cookie clusters, all methods per-
form considerably worse. Hence, in the scenario we consider:
a single query where the true location

(
η
(u)
1 , η

(u)
2

)
is only

revealed by clicked and skipped item locations, our approaches
do not come near what one would obtain if one would simply
take the observed cookies.

However, the scores do reveal some interesting patterns.
First, approaches using a probabilistic distance measure seem
to overfit the data: they perform relatively well (compared to
the other approaches) on various measures on the training
set, but on the test set these results are mitigated. Here,
MS-DBSCAN* seems to work best when considering multi-
ple error measures. Looking at the results from different hyper-
parameter settings for MS-DBSCAN* (Table III), we observe
that selecting k = 1 performed best. Furthermore, due to our
maximum size constraint the clusters did not alter for ` ≥ 4
(ε ≥ 6.33).

Furthermore, methods without a probabilistic distance mea-
sure do outperform the DBSCAN*-RAND method on most
measures. I.e., they perform better at picking sessions originat-
ing from the same user from a given cluster Bj produced by
DBSCAN*, than if we would pick session pairs at random.
Although it is difficult to draw a firm conclusion, these findings
might be an indication that the same user signal we try to infer
from the click data is somewhat weak: if our methods would
not pick up a signal at all, we would expect them to have the
same result as the DBSCAN*-RAND method.

B. Results on multiple simulation scenarios
In order to judge the sensitivity of our findings on the

parameter settings of the simulation model, we permuted the
simulation settings to see if this would alter our results.
In particular, we considered user distance sensitivity q ∈
{1, 2, 5, 10, 25, 50} (denoted by USER DIST SENS [q]), num-
ber of items V ∈ {10, 100} (denoted by ITEM COUNT [V ]),
lifetime phases ρ ∈ {.15, .29, .43, .5, .57, .71, .85} (denoted by
LIFETIME PHASES [ρ]), and salience (φ,φ

′
) ∈ {1, 2, 5, 10}2

(denoted by
SALIENCE [φ] [φ

′
]). Whenever one parameter was per-

muted, the rest of the parameters was left at its value in the
base case.

As re-running all models on all simulation settings would
be computationally rather expensive, we only re-evaluated the
best performing models on the simulation cases. Since in

our base case we found that the parameters k = 1, ε =(
qmax (qmin/qmax)

2/3
)

worked reasonably well, these param-
eters were used for MS-DBSCAN* and DBSCAN*-RAND.
The maximum cluster size remained the same as in the base
case.

Figure 2 shows how the models perform over the differ-
ent simulation settings in terms of ARI, which is our main
response variable of interest. The figure suggests that all clus-
ter models do stochastically dominate DBSCAN*-RAND.
Furthermore, MS-DBSCAN* seems to outperform the other
clustering methods in terms of ARI. As assumptions like
homogeneity of variance or normality do not hold in this
case, we used a Kruskall-Wallis test, which rejects in this
case that all median ARI scores over the different methods
are the same (using significance level α = .01, p < 10−4).
Pairwise (between MS-DBSCAN* and all other methods)
one-sided pairwise Wilcoxon signed rank tests also indicate
MS-DBSCAN* performed significantly better than the other
methods (all p-values are smaller than 10−4).

Table IV shows how MS-DBSCAN* performs on the
various simulation cases. The rows in boldface have ARI ≥
0.0025. The results suggest that when strengthening the signal,
that is increasing click probabilities, leads to some improve-
ment in ARI. The most obvious way to do so is by decreasing
the number of items (which, as we use bin counting, ensures
each item has sufficient data for bin counting). However, these
improvements remain small.

Table V shows how the different error measures correlate,
using the error scores from all clustering algorithms on the
various simulation cases. ARI seems to be weakly correlated
with most other error measures, with the sign being in the
desired direction (i.e., decrease in KL-divergence for both
session count and conversion, but an increase in the new user
accuracy). However, both ARI and the new user accuracy show
a positive correlation with the percentage error in the number
of unique users.

DBSCAN*-RAND

MS-DBSCAN*

MS-HDBSCAN*−

MS-HDBSCAN*+

0.000 0.001 0.002 0.003
ARI

M
od

el

Figure 2. Scores over all simulations.

V. CONCLUSION AND DISCUSSION

In this paper, we presented a homogeneous query click
simulation model, and illustrated its usage to the problem
of uncovering users from their web sessions. The simulation
model is composed of several models from which previous
literature suggests that these models work well in explaining
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TABLE II
RESULTS ON THE BASE CASE.

Dataset ARI KL-div. KL-div APE unique New user
Model session count conversion user accuracy
MS-DBSCAN* train 0.0012 0.55 0.13 15 0.56
MS-DBSCAN*p train 0.14 0.74 0.092 77 0.5
DBSCAN*-RAND train 0.0002 1 0.096 0.011 0.42
MS-HDBSCAN*+ train 0.0007 0.75 0.15 10 0.52
MS-HDBSCAN*− train 0.0007 0.75 0.15 10 0.52
MS-HDBSCAN*+

p train 0.092 0.9 0.11 0.011 0.46
MS-HDBSCAN*−p train 0.1 0.9 0.11 0.011 0.46
OBS train 0.91 0.017 0.0032 15 0.95
MS-DBSCAN* test 0.0022 0.11 0.0026 60 0.56
MS-DBSCAN*p test 0.0015 1.4 0.13 6.8 0.4
DBSCAN*-RAND test 0.0004 0.32 0.015 40 0.5
MS-HDBSCAN*+ test 0.002 0.16 0.0042 53 0.55
MS-HDBSCAN*− test 0.002 0.16 0.0042 53 0.55
MS-HDBSCAN*+

p test 0.0015 1.4 0.13 7.2 0.4
MS-HDBSCAN*−p test 0.0015 1.4 0.13 7.2 0.4
OBS test 0.91 0.1 0.0076 51 0.95

TABLE III
ARI OF MS-DBSCAN* ON THE TRAINING SET OF THE BASE CASE.

k
` ε 1 3 5
1 0.013 < 10−4 < 10−4 < 10−4

2 3.44 0.0008 0.0004 0.0001
3 4.84 0.0011 0.0005 0.0004
4 6.33 0.0013 0.0006 0.0004
5 8.20 0.0013 0.0006 0.0004
6 10.76 0.0013 0.0006 0.0004
7 14.57 0.0013 0.0006 0.0004
8 20.94 0.0013 0.0006 0.0004
9 30.45 0.0013 0.0006 0.0004

typical patterns observed in click data, while remaining rela-
tively simple. Such patterns include the position bias, cookie
censoring, and users’ utility over multiple products. Further-
more, we illustrated the simulation model on the problem
of (partially observed) session clustering, that is, identifying
unique users from their query-sessions. To solve the latter
problem, we tested several mutations of (H)DBSCAN*, where
these mutations differ from HDBSCAN*, or DBSCAN*, as
they allow for incorporating a maximum cluster size. Further-
more, we consider both a Euclidean and probabilistic distance
measure to determine whether a pair of sessions originated
from the same user. The probabilistic distance measure was
obtained using a pre-trained classification model.

Given a simulated dataset, we considered solving the
problem of uncovering users from their web sessions by
using (H)DSCAN*-type clustering algorithms. Comparing
(H)DSCAN*-type algorithms with clusters one would obtain
by using cookies, we found the accuracy of using cookies
largely outperformed that of not using or partially using cookie
data. This considerable difference seems to be due to two
reasons. 1) The simulated censored cookies turned out to
be rather accurate, implying that, assuming the parameters
used for cookie censoring adapted from previous literature are
accurate, censoring in cookie data does not impose that much
of a problem in accurately measuring the metrics studied in
this paper. These metrics being the number of unique users,
user sessions count distribution, user conversion distribution,

the quality of session clusters (in terms of adjusted Rand index
(ARI)), and estimating whether the next session originates
from a new or existing user. 2) As we only consider a homoge-
neous query, the users’ preferences are only revealed from the
items users clicked, a signal the various (H)DBSCAN*-type
algorithms find difficult to detect. Strengthening this signal,
e.g., by increasing the number of clicks, leads to a small but
significant improvement in ARI.

Other interesting observations include the difference be-
tween using Euclidean distance and a probability distance
measure in the (H)DBSCAN*-type algorithms, the latter being
obtained from training a classifier on detecting whether session
pairs originate from the same user. The results show that the
probabilistic classifier tends to overfit. Where some methods
using probabilistic distance measures performed reasonable on
the training set, they were outperformed by methods using
Euclidean distance on the test set.

By studying the correlations between the various error
metrics considered in this paper, we observe that some error
measures show contradictory correlations. In particular, the
positive correlation between cluster ARI and average percent-
age error in the number of unique users (.38), and between
the accuracy in estimating whether the next session originates
from a new user and the new user average percentage error
(.95), indicate that optimizing for one of these error measures
may lead to decreased performance in the other.

Although our findings suggest that the practicality of
session clustering from single query click data is limited,
the usage of the simulation model did allow for studying
the sensitivity of the clustering algorithms on different click
behavior, something that would not easily have been possible
with real click data. It also allowed us to study the effects of
user censoring caused by cookie churn or the usage of multiple
devices. This showed that if we adopt models for cookie churn
behavior found in the literature, this censoring only has a small
effect on the accuracy of the website metrics discussed in this
paper, with an exception for estimating the number of unique
users.

Given our findings, a number of questions remain. First, it
would be interesting to extend the simulation model to allow
for multiple queries. As the solutions to the (multi-query)
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TABLE IV
RESULTS MS-DBSCAN* ON OTHER SIMULATION CASES.

Simulation case ARI KL-div. KL-div. APE New user
conversion session count unique accuracy

user
base case 0.0021 0.0044 0.095 62 0.53

item count 10 0.0025 0.0006 0.049 67 0.57
item count 100 0.0015 0.0053 0.098 59 0.54

lifetime phases .15 0.0014 0.014 0.14 56 0.56
lifetime phases .29 0.0016 0.0076 0.1 59 0.55
lifetime phases .43 0.0021 0.008 0.11 58 0.56
lifetime phases .5 0.0021 0.0044 0.095 62 0.53

lifetime phases .57 0.0019 0.0049 0.11 61 0.55
lifetime phases .71 0.0019 0.0054 0.084 60 0.56

lifetime phases .85 0.0028 0.005 0.092 61 0.53
salience 1 1 0.0012 0.0018 0.07 64 0.58
salience 1 2 0.0022 0.0019 0.059 65 0.57
salience 1 5 0.0014 0.0015 0.085 62 0.59

salience 1 10 0.0026 < 10−4 0.084 62 0.58
salience 2 1 0.0011 0.0026 0.15 53 0.55
salience 2 2 0.002 0.0033 0.19 51 0.55
salience 2 5 0.0027 0.0005 0.12 56 0.57

salience 2 10 0.0018 < 10−4 0.094 60 0.58
salience 5 1 < 10−4 0.011 0.25 44 0.52
salience 5 2 < 10−4 0.021 0.2 51 0.53
salience 5 5 0.0021 0.0044 0.095 62 0.53

salience 5 10 0.002 < 10−4 0.079 62 0.57
salience 10 1 0.0016 0.0049 0.051 64 0.57
salience 10 2 0.0014 0.0034 0.065 66 0.57
salience 10 5 0.0018 0.0045 0.1 60 0.56

salience 10 10 0.0012 0.0001 0.042 71 0.63
user dist sense 1 0.0021 0.0044 0.095 62 0.53
user dist sens 2 0.0029 0.012 0.17 49 0.54
user dist sens 5 0.0033 0.0092 0.15 49 0.53

user dist sens 10 0.0026 0.002 0.12 57 0.56
user dist sens 25 0.0024 < 10−4 0.13 59 0.57

user dist sens 50 0.0032 0.0002 0.09 64 0.56

TABLE V
CORRELATION MATRIX ERROR MEASURES.

ARI KL-div. KL-div APE unique New user
conversion session count user accuracy

ARI 1.00
KL-div. -0.15 1.00
conversion
KL-div. -0.16 0.60 1.00
session count
APE 0.38 -0.52 -0.92 1.00
unique user
New user 0.39 -0.59 -0.85 0.95 1.00
accuracy

CIKM 2016 and ICDM 2015 cross-device matching compe-
titions were quite successful, a logical hypothesis would be
that incorporating multiple queries into the simulation model
would improve the results obtained from (H)DBSCAN*-type
algorithms. On the other hand, more diversity also causes
clicks to be more spread across items that may lead to
decreasing clustering performance.

Second, in this study, we only used a logistic regression
model to approximate the probability of two sessions origi-
nating from the same user. Given the limited success of this
approach so far, it would be interesting to consider other
approaches. As the limited results seem to be due to overfitting,
including regularization or using bagging could lead to better
results.

Third, there is still limited knowledge on how cookie
censoring occurs. Currently, multiple models exists in the
literature, but most models only consider a specific type of
censoring (e.g., only censoring by cross-device usage or cookie

churn), from which one cannot infer how these different types
of censoring interact. Also, as discussed in Section III-A2,
literature providing parametric models for cookie churn, user
lifetime and absence time (the time between two sessions)
seems to be contradictory in terms of tail probabilities. Hence,
click simulation models that incorporate cookie censoring
would benefit from studies taking a more holistic view on
cookie censoring.
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APPENDIX

TABLE VI
LIST OF NOTATION.

Variable Description
{1, . . . , n} Set of query-sessions, indexed by i
Si = {1, . . . , T} Set of items in SERP of session i, indexed by t
V = {1, . . . , V } Set of all items, indexed by v
U = {1, . . . , U} Set of all users, indexed by u
ri(t) Item v ∈ V at position t in the SERP of query-session i
r−1
i (v) Position of item v in the SERP of query-session i, zero if

v /∈ Si
rmax
i Largest position of a clicked item v ∈ Si, zero if no

items were clicked
R(i)

v ; φ(R)
u,v Attraction of user i for item v, with

P(R(i)
v = 1) = φ(R)

u,v given v ∈ Si
S(i)
v ; φ(S)

u,v Satisfaction of user i for item v, with
P(S(i)

v = 1) = φ(S)
u,v given v ∈ Si

E
(i)
t Whether item at position t in SERP i was evaluated

y
(i)
t Whether item at position t in SERP i was clicked
ηu Vector denoting the position of an user u in the user-item

space
ψv Vector denoting the position of an item v in the user-item

space
ν(A), ν(S) Salience parameters for attraction and satisfaction
q Users’ preference for nearby items
ωu,v Distance between user u and item v in the user-item space
φ̂v Overall estimated popularity of item v ∈ V
F cookie Cookie lifetime distribution (hyper-exponential) with

parameters λ and p

T cookie
u,o,d ∼ F

cookie R.v. denoting the cookie lifetime for the o-th cookie of
user u on device d

F abs User absence distribution (Pareto-I) with parameters α
(shape) and m (scale)

T abs
i,u ∼ F

abs R.v. denoting the time between the i-th and i+ 1-th
session of user u

F user User lifetime distribution (sum of Nu hyper-exponentials)
with parameters λ, p and ρ (geometric parameter for Nu)

T user
u ∼ F user R.v. denoting the user lifetime of user u
P , π Device transition matrix and initial device probabilities

Algorithm 2: SIMULATE CLICKS

1 Simulate clicks (U )
2 for u ∈ U do

/* Draw initial device and cookie
lifetime, and draw the user’s
lifetime */

3 D ← dic(); i← 1; o← 1; t← 0;
4 Draw device d from MULTINOM(π); D[d]← o;
5 Draw T cookie

u,o,d from HYPEREXP(λ,p); T user
u from

REPHYPEREXP(ρ,λ,p);
6

/* Simulate new query-sessions while the
user’s lifetime has not elapsed */

7 while t ≤ T user
u do

/* 1) Simulate clicks */
8 Draw Si in its respective order by repetitively

drawing from
MULTINOM(φ̂v/

∑
v
′∈V φ̂v′ ; v ∈ V \ Si);

9 Draw R
(i)
v , S(i)

v from BERNOULLI(φ
(R)
u,v ) and

BERNOULLI(φ
(S)
u,v) resp. for all v ∈ Si;

10 Compute E(i)
t , y

(i)
t , and recompute S(i)

v according
to Equations (1) to (6);

11 Append (i, u, o,Si,yi) to D;
/* 2) Draw the time until the next

session and update t accordingly
*/

12 Draw T abs
i,u from PARETO-I(m,α);

13 t← t+ T abs
i,u ; i← i+ 1;

/* 3) Update the device for the next
session */

14 Draw d
′

from MULTINOM(IdP );
15 if d

′ 6= d then
16 if not D.exists(d) then
17 o← o+ 1;
18 Draw T cookie

u,o,d from HYPEREXP(λ,p);
19 T cookie

u,o,d ← T
cookie
u,o,d + t;

20 else
21 o← D[d

′
];

22 d← d
′
;

/* 4) Simulate cookie churn */
23 if t > T cookie

u,o,d then
24 o← o+ 1;
25 Draw T cookie

u,o,d from HYPEREXP(λ,p);
26 T cookie

u,o,d ← T
cookie
u,o,d + t;

27 D[d]← o;

28 return D


