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Abstract— Fracture Robots (FracBots) technology is a game-
changing technology that has, been developed to revolutionize 
upstream operations. FracBots are magnetic induction (MI)-
based wireless sensor nodes that have the inter-node wireless 
communication, sensing and localization estimation capabilities. 
FracBots are miniature devices that can operate as wireless 
underground sensor networks (WUSNs) inside hydraulic 
fractures to collect and communicate important data and 
generate real-time mapping. A large number of FracBots is 
deployed to establish FracBot-to-FracBot connectivity, making 
the technology the first IoT (Internet of Things) to generate and 
exchange data inside the reservoir without human intervention. 
In addition, a novel artificial intelligence (AI) framework is 
designed for the real-time sensor selection for subsurface 
pressure and temperature monitoring, as well as reservoir 
evaluation. The framework encompasses a deep learning 
technique for sensor data uncertainty estimation, which is then 
integrated into an integer-programming framework for the 
optimal selection of sensors to monitor the reservoir formation. 
The results are rather promising, showing that a relatively small 
numbers of sensors can be utilized to properly monitor the 
fractured reservoir structure. 

Keywords- Wireless underground sensor network; magnetic 
induction communication; FracBot network; 4IR; artificial 
intelligence; formation evaluation; robotics; reservoir mapping. 

I.  INTRODUCTION 
Sensing deep in the reservoir has always been a major 

objective to enhance reservoir formation understanding and 
optimize the recovery from the reservoir. In the early days of 
the oil and gas industry, determination of reservoir formation 
properties was based on assumed geological formations and 
structures encountered on the surface [1]. Furthermore, 
retrieved rock cuttings assisted in getting a better 
understanding of the reservoir formation, however, this 
information is limited to a small area and may not be 
representative of the reservoir formation as a whole or taking 
into account the heterogeneity in the reservoir. Another 
challenge for mature reservoirs is to determine the sweep 
efficiency in the reservoir, where besides production 
information and some surface reservoir monitoring, such as 
seismic or electromagnetics, there is no overall in-situ 
reservoir monitoring system available [2, 3]. As the 
reservoirs are dynamic, permanent monitoring of the 
reservoir is crucial to determine the saturation flow and the 
fracture channels. Hence, an in-situ monitoring of the 
reservoir becomes quintessential in order to overcome the 

existing challenges of limited information away from the 
wellbores. 

The 4th industrial revolution (4IR) has become a major 
transformer of the upstream petroleum industry. Major 
advances were already achieved in enhancing production, 
performing real-time monitoring of wells and reservoirs and 
also forecast potential reservoir risks and workover 
requirements [4, 5, 6]. Several advances were also achieved 
in performing maintenance and installation operations 
remotely via the help of 4IR technology [7]. The main 
objective is to improve productivity and cost-effectiveness of 
the operations, as well as enhance safety. This allows to 
conduct maintenance in a much shorter time period and also 
allows to conduct the operations around the clock.  

Enhancing production from and monitoring reservoirs 
are critical components for ensuring the effectiveness of oil 
and gas operations and maintain its sustainability. For this, 
sensing is an essential area that allows to monitor the 
reservoir in real-time and investigate its evolution. 
Continuous sensing further allows monitor the behavior of a 
reservoir over time and forecast its future production 
potential. Conventional surface sensing covers an extensive 
area of the reservoir. However, the resolution and challenge 
connected to the multiple solutions of the inverse problem 
represent a significant problem. The challenge arises 
primarily from the lack of direct measurements and 
observations in the reservoir. Furthermore, challenges arising 
from placing large measurement equipment downhole for an 
extensive period of time may render this approach. While 
surface sensing enables to cover an extensive area and deduce 
easier the correlations between different measurements, as 
well as the causes and effects, subsurface sensing operations 
are significantly more challenging. This is due to the lack of 
direct measurements and observations of the reservoir 
structure and formation, as well as challenge to place 
measurement equipment downhole [8,9]. In order to 
overcome this challenge related to the lack of direct 
measurements, a more direct approach to sensing in the form 
of subsurface reservoir sensors is essential. 

Miniaturized downhole sensors have been developed in 
recent years, allowing to achieve permanent downhole 
sensing that is both robust and efficient [9, 10]. Reference 
[11] presented a temperature insensitive pressure sensor 
based on fiber-optics that has a size of only 125 micrometers. 
The authors demonstrated the ability to measure pressure 
levels over a significant range with minimal temperature 
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effects, which may make these sensors applicable for 
downhole sensing. Similarly, reference [12] presented a 
fiber-optic FabryPerot gas refractive index sensor for high 
temperature applications. The miniaturized sensor allows to 
measure up to 800 degrees Celsius, outlining the feasibility 
of high temperature permanent downhole monitoring with 
low power consumption. 

In general, microseismic and tiltmeter surveys are ones 
of many technologies available to characterize reservoir 
hydraulic fractures but they are expensive, approximate, and 
time consuming. Moreover, they are conceptual approaches 
that do not unfortunately provide useful information 
about   the inner workings of hydraulic fractures. However, 
reference [10] presented innovative wireless sensors for the 
mapping of hydraulic fractures in subsurface reservoirs. The 
results outline the ability to accurately map fractures with a 
hybrid solution of electromagnetic and magnetic conduction 
wireless communication in order to overcome excessive path 
losses within the reservoir environment. Communication 
losses between the sensors represent a major challenge in 
addition to the power requirements of the sensors, requiring 
that there is sufficient proximity between the wireless sensors 
such that the data is adequately transmitted. These 
advancements lead to the feasibility of downhole sensing in 
the reservoir with data transmission being conducted 
wirelessly [6]. Powering these downhole sensors for long 
period to maximize the sensing duration in the downhole 
environment is a major challenge. All sensors do not require 
to operate at the same time due to the connectedness of the 
reservoir and partial redundancy of the downhole sensors. 
This operational feature helps to achieve the objective of 
maximizing data acquisition while minimizing overall power 
consumption. However, this objective leads to the problem of 
selecting the minimal number of sensors while achieving the 
target objective of the most accurate downhole sensing. 
These selection schemes can typically be classified in 
coverage schemes, target tracking and localization schemes, 
single mission assignment schemes and multiple missions 
assignment schemes [7]. Coverage schemes are selection 
schemes that ensure the sensing coverage of the location or 
the targets of interest, while target tracking and localization 
schemes focus on the selection of sensors for target tracking 
and localization purposes. The mission assignment schemes 
focus on the selection of sensors for a single or multiple 
mission that have to be accomplished. 

In this work, we review the FacBot technology and 
demonstrate a novel intelligent sensor selection framework 
for the optimization of sensor selection in real-time for flow 
and fracture monitoring. We generated a platform for FracBot 
development including software and hardware elements. To 
this end, we have contributed in five areas as follows: first, 
we developed a novel cross-layer communication framework 
for MI-based FracBot networks in dynamically changing 
underground environments, and thoroughly modeled the 
efficiency and performance of the network. Second, we 
developed a novel magnetic induction (MI)-based 

localization framework that exploits the unique properties of 
the MI field to determine the locations of the randomly 
deployed FracBot nodes in hydraulic fractures. Third, we 
developed an accurate energy model framework of a linear 
FracBot network topology that gives feasible FracBot 
transmission rates while respecting the constraints of a 
realistic energy harvesting paradigm. All together, these 
elements demonstrate that important new capabilities 
including 3D mapping of a hydraulic fracture and on-going 
measurement of reservoir parameters in-situ are possible 
using wireless underground sensor networks (WUSNs). 
Fourth, we designed, developed, and fabricated MI-based 
FracBot nodes. To validate the performance of our solutions 
in our produced prototype of FracBot nodes, we developed a 
physical MI-based WUSN testbed. Finally, we develop a 
novel intelligent sensor selection framework for the 
optimization of sensor selection in real-time for flow and 
fracture monitoring. The objective of the framework is to 
maximize longevity of the operations while maintaining 
measurement accuracy and flow detection ability. 

II. FRACBOTS SYSTEM 
A typical oil reservoir environment with a hydraulic 

fractures has been described in Figure 1 displaying the 
tentative placement of the FracBots. The research challenges 
of current wireless sensor networks (WSNs) are addressed to 
position wireless underground sensor nodes (FracBots) in 
cracks during the hydraulic fracturing procedure in order to be 
capable to work efficiently in underground settings. A short 
system lifetime, trouble in launching wireless signals, and 
high path loss are included in these challenges [13] 

The structure design of the MI-based FracBot network has 
been illustrated in Figure 1, which has two layers: 

• FracBot (sensor nodes): They are small nodes placed 
into the fracture throughout the hydraulic cracking 
process. The nodes positions are roughly uniform 
and linear inside the fracture because the fracture is 
extremely narrow. The FracBots are wireless nodes 
that have powerless source, but they are charged 
from EM radiation transferred wirelessly from the 
base station located at the wellbore. 

• The base station: It is made up of a big dipole antenna 
at the wellbore, is linked to an above-ground 
connection. 

 

 
Figure 1. The structure of the FracBots network. 
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A. FracBot Architecture  
 FracBots are active micro-wireless sensors injected inside 

the hydraulic fracture during the hydraulic fracturing process. 
The FracBot node is furnished with a processor, a transceiver, 
an antenna, a sensing unit and a harvesting unit. It harvests 
energy transmitted from the base station, which permits it to 
execute sensing tasks and to wirelessly communicate 
collected data back to the base station using MI-based 
communication. 

B. Network Architecture  
Fractures dimensions are nominally millimeters wide and 

some meters high, can reach up to 100 m long. The FacBots 
are assumed for current purposes to be almost static and 
uniform in the fractures. Therefore, a static network scheme 
for the FracBot system in the fracture is envisioned as 
described in Figure 2. This indicates that energy is transmitted 
and collected in a single-hop energy method while sensed data 
is communicated in a multi-hop mode. We suggest a three-
stage operational arrangement based on the structure design 
described earlier.  

1) A single-hop emitted energy phase: The base station 
releases energy through a crack and communicates with the 
FracBot sensors. The base station is situated at the wellbore 
and provided with high power communication antenna which 
permits the use of low frequency RF to emit EM waves and 
transmit the energy via the fracture environment to the MI-
based FracBots spread out in the hydraulic fracture.  

2) A multi-hop MI-based transmission phase: The 
FracBots gather essential energy through harvesting, sense 
related reservoir parameters, and use the MI communication 
technique to communicate quantities to the nearby neighbor 
sensor, and by successive repeating, the uplink with the 
multi-hop communication path is utilized to communicate the 
information to the base station. 

3) A backbone communications phase: In this phase, the 
base station collects the sensing information from the 
FracBots in the fracture and then sends the information via an 
aboveground gateway. 

 
Figure 2. The FracBots network. 

III. WIRELESS FRACBOT NETWORKS ENERGY 
A wireless channel model in hydraulic fracture is 

described for both MI communications and energy 
transmission. The suggested FracBot network comprises of 
two types of channels described as follows:  

A. Downlink Wireless Channel Model  
To radiate energy and communicate information to the 

FracBots in the fracture, the base station antenna emits EM 
waves at low MHz frequency. The EM waves are affected by 
harsh environment, and numerous fluids including oil/gas and 
water in the fracture. The key ingredients surrounding the 
fracture are reservoir rocks, as displayed in Figure 1. Thus, the 
fluids and substances influence the downlink path loss as in 
Eq. (1) [14]. 
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Where θ is the angle of the coil positions, N is the coil 
number turns, Rc is the resistance of the coil antenna, and r is 
the radius of the coil. k1, k2 are the wavenumbers inside and 
outside the fracture, l is the length of the base station antenna, 
δ is the skin depth inside the fracture, Ri is the input resistance 
of the base station antenna, µ2 is the reservoir and rocks 
effective permeability, w is the angular frequency, and d is the 
distance between the base station and the FracBot. We use the 
following values throughout this paper. The reservoir rock has 
similar to that of air (i.e., µ2 = µ0 = 4 × 107 [H/m]). As 
explained later using magnetic permeability, the permeability 
µ1 inside the fracture, if occupied with magnetic proppants, is 
assessed in Eq. (3). We used the following parameters to 
calculate the permeability. The ratio of ppara and pferro are 
30% and 10%, respectively, the proportionality constant ĉ is 
0.993, and the magnetic susceptibilities χferro is χFe3O4 ≈ 5 
× 10−4 for temperatures under 853[K]. The material 
employed to yield the high-µ proppants can regulate this 
effective permeability. The effective permittivity inside the 
fracture is set to be ε1 = 3.5ε0 (crude oil) while the permittivity 
of the matrix / reservoir and rock is set to be ε2 = 2ε0 (sand 
and clay mixture). If we primarily suppose absolute oil 
production, the conductivity outside the fracture is set to be σ2 
= 0.001 S/m, while the effective conductivity in the fracture is 
low, on the order of σ1 = 10−4 S/m. A base station 
transmitting power of 50 watts with 20 m dipole antenna are 
used. Ri = 75Ω is the input resistance. The operating 
frequency is 10 MHz for the antennas (the dipole and the 
coils), 5 mm radius and 10 as the number of turns of the coils. 
The coil resistance is Rc = 0.2 Ω. The minimum received 
power is Pr = −100 dBm and the converting rate of the energy 
at the FracBot sensor is η = 80%.  

Figure 3 illustrates the power received at FracBots as a 
function of the distance between the base station and the 
FracBots in the hydraulic fracture. The energy transfer 
framework displays the received power by the FracBots. It 
indicates that the energy model can overcome the hydraulic 
fracture environment restrictions. For instance, at a distance 
of 30 m from the base station, the received power is about -50 
dBm, it is adequate to power the very low power wireless 
FracBots. 
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Figure 3.  Power received by FracBots from the base station. 

B. Uplink MI Channel Model 
To send and transmit collected data by the FracBot sensors 

to the base station in the multi-hop mode, the uplink channel 
between two adjacent FracBots is employed as presented in 
Figure 2. The MI technique, to propagate signals and 
accomplish constant channel settings through the small size of 
the coils, utilize the near magnetic field of coils. MI 
communication is extremely appropriate for underground 
environments. The distinctive MI-based channel formed in the 
fracture medium is covered by the uplink channel capacity. 
Reference [15] attains this capacity:  
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Where fL is the lower frequency of the channel bandwidth, 

fU is the upper frequency of the channel bandwidth, Nnoise is 
the noise power, and Pt is the transmission power. This uplink 
channel capacity demonstrates the impacts of the hydraulic 
fracture environment to calculate a feasible data rate via the 
MI-communication link among the FracBot nodes. 

Through the intermediate FracBot nodes, a multi-hop route 
forms between the FracBot nodes transmitter and the base 
station. A magnetic field is created between the transmitter 
and receiver coils, as proposed in [16]. The quality of the MI 
communication is impacted by the magnetic permeability of 
the medium which is the key environmental element. The 
resistance of copper coil will alter with respect to the variable 
temperatures in hydraulic fracture, particularly, while the 
permeability of matrix and water is similar to that of air (i.e., 
µ0 = 4 × 107 [H/m]) at room temperature. Depending on the 
composites of the underground magnetic content, the medium 
permeability also behaves differently. The effects of medium 
permeability and temperature are governed as [16]: 

 

𝜇 = 𝜇^(1 + 𝑥) = 𝜇^ +1 + 𝑝ab1b
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																										𝑅 = 2𝜋𝑟𝑁𝑅^i𝛼kl(𝑇 − 𝑇 )m																												(4)          
 

Where, µ0 is the air permeability, R is the coil resistance, 
χ and χferro are the magnetic susceptibilities of the medium 
and ferromagnetic contents, respectively. ĉ is a constant, 
pferro and ppara are the ratio of ferromagnetic and 
paramagnetic composites, respectively, T [K] is the actual 
hydraulic fracture temperature, T0[◦K] is the room 
temperature, αCu = 3.9 × 10−3 [K] is the copper coil’s 
temperature coefficient and R0 [Ω/m] is the resistance of a 
unit length of coil at room temperature. Stokes theorem is used 
to obtain the self and mutual inductance is analytically. 

 
                       𝑀(𝑇,𝜎) = /p,-12H(=,q) rst7

9=>?u
																												 (5)   

 
Where, δ(·,·) is attenuation caused by the skin depth effect 

and σ [S/m] is the medium conductivity. Between the two MI 
transceivers, the path loss of MI communication can be 
described as 

																		𝐿N#(𝑑, 𝑓 , 𝜃, 𝑇,𝜎) = 	
2(2𝑅G +𝜔^G𝑀G)

𝜔^G𝑀G 																											(6) 

 
Thus, the estimated uplink channel bandwidth is achieved 

by 

																																						𝐵N#(𝑇, 𝜎) =	
𝑅|√2− 1~
𝜇𝜋G𝑟𝑁G 																																 (7) 

 
The lowest transmitting power amount needed to facilitate 

inter-communication among FracBots over the MI-based 
channel in hydraulic fracture is displayed in Figure 4. The 
required transmission power rises dramatically as the distance 
between the two FracBot nodes rises, as a result of the 
complex transmission medium. To assure the MI-link quality, 
this distance must be optimized. The path loss and the 
frequency response of MI channels at different temperatures 
in the hydraulic fracture environment is exhibited in Figure 5. 
The path loss rises, when the operating temperature and the 
transmission range rise, resulting in degradation of the quality 
of the communication link.  

 
Figure 4.  Required power to transmit data from FracBot to neighbor 

FracBot. 
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Figure 5.  Path loss of magnetic induction at different hydraulic fracture 

temperatures. 

C. Energy Consumption and Energy Harvesting Model 
To charge the whole FracBot network, the downlink 

energy charging functions in one-hope fashion. The size of 
FracBot nodes is very minor which restrict the battery 
capacity due to the very narrow fracture. Hence, the very low 
size battery is not able to keep sufficient power for the 
FracBots to operate the communication and conduct sensing 
tasks. Due to this limitation, to store the harvested energy for 
the FracBot operations, the battery is replaced by ultra-
capacitor. Accordingly, as the size of sensed information 
transmitted by FracBots is determined by the collected energy, 
it is essential to acquire precise energy model for charging and 
consumption process. To model the energy harvesting from 
the base station installed in the oil well, the recent results for 
an energy transfer model were implemented [16]. As a 
function of the distance from the Base station to a particular 
FracBot, the equivalent path loss can be calculated for the 
downlink channel by [14]: 
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Figure 6 shows the collected energy over the distance 

between the base stations and the FracBots in the hydraulic 
fracture in a one-hour charging time. The power received by 
the FracBot nodes overcoming the hydraulic fracture 
conductivity constraints is revealed by the wireless energy 
charging model. For example, the harvested energy is around 
-10 dBmJ at a 25 m distance from the base station that is 
sufficient to charge the very low power MI-FracBots. 

 

 
Figure 6.  Harvested energy in FracBots network. 

IV. FRACBOT FUNCTIONALITIES  
The basic functions have been developed. First, we have 

developed an innovative cross layer communication model for 
Magnetic Induction networks in altering underground 
environments, coupled with selections of coding, modulation 
and power control and a geographic forwarding structure. 
Second, we have developed an innovative MI-based 
localization framework to capture the locations of the 
randomly deployed FracBot nodes by exploiting the 
exceptional properties of the MI-field. 

A. Environment-Aware Cross-layer Communication 
Protocol 

We present a distributed cross-layer framework for MI-
based WUSNs [18]. A cross-layer framework is 
recommended for WUSNs in oil reservoirs as an alternative 
of taking the classical layered protocol method which is the 7-
layer Open Systems Interconnection model (OSI Model). To 
improve MI communication in WUSNs, it is executed in a 
distributed manner to jointly enhance the communication 
functionalities of different layers. Our solution attains optimal 
energy consumption and high throughput efficiency with low 
computational complication, and also fulfills the quality of 
service (QoS) requirements of diverse applications. These 
properties qualify our solution as a valuable for practical 
applications. The cross-layer solution framework includes the 
following: 

1) Evaluation for the major environment facts of 
underground reservoir affecting the transmission 
qualities of MI-based communication. 

2) Three-layer protocol stack for WUSNs in oil reservoir. 
3) Cross-layer framework to conjointly enhance 

communication functionalities of various layers. 
4) Distributed Environment-Aware Protocol (DEAP) 

proposal to realize the projected cross-layer 
framework. 

Figure 7 demonstrates the protocol stack for environment-
aware cross-layer protocol design and its key contributions. 
Firstly, the distributed cross-layer framework accounts for 
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environment information of oil reservoirs that influences the 
MI-based communications qualities. MI channel models are 
established to consider the effects of the physical layer 
functionalities. The effects of temperature, electrical 
conductivity, magnetic permeability, and coil resistance are 
studied. This is to capture their effects on the MI-
communication parameters, such as the path loss, the 
bandwidth, and the interference. Second, the protocol stack 
consists of three-layer stacks: a data link layer, a network layer 
and a physical layer. The communication functionalities for 
each layer of a protocol stack are recognized, for example, 
medium access control (MAC), routing algorithms, 
modulation and forward error coding, and the statistical 
quality of service (QoS) comprising of transmission reliability 
and packet delay. These parameters are analyzed to find out 
their effects on MI-based communications. Third, the 
proposed cross-layer framework addresses all functionalities 
of each protocol layer. To optimize MI communication in 
WUSNs, it is executed in a distributed manner to jointly 
optimize the communication functionalities of various layers. 
Finally, DEAP is recommended to comprehend the cross-
layer framework and solve its optimization problem in a 
disseminated manner. The DEAP process comprises a 
distributed power control, an evaluation of a multiple access 
scheme for a data link layer and a two-phase decision process 
for executing a routing algorithm for the network layer. 

 

 
Figure 7.  Protocol stack of environment-aware cross-layer protocol design. 

Thus, the DEAP achieves both optimal energy savings and 
throughput gain concurrently for practical application and 
provides statistical QoS guarantee. Evaluation findings 
indicate that cross-layer framework outclasses the layered 
protocol solutions with 6 dB throughput gain and 50% energy 
savings. Furthermore, the distributed framework comprises of 
two-rounds per node decisions that involves single-hop 
neighbor data and has uncomplicated computation process. As 
a result, consistent and effective communication is recognized 
by the distributed cross-layer design for MI communication in 
the challenging underground environments.     

B. FracBots Localization Framework 
We introduce a MI-based localization for FracBots in the 

hydraulic fracture [19]. We suggest an innovative MI-based 
localization solution, which uses the spinoff of magnetic 
induction communication (received magnetic field strength 
(RMFS)) and the promising features of MI channel. By using 
RMFS, it guarantees the accuracy, simplicity, and ease of the 
localization scheme. MI-based communication is very 
appropriate for oil reservoirs due to its distinctive multi-path 
and fading-free propagation features. Unknown sensor 
locations are provided by the MI-based localization in 
randomly-deployed wireless sensor systems in underground 
environments. By capitalizing on the unique features of the 
magnetic induction communication including fading-free and 
multi-path propagation features, it generates approximate 
distances, between two neighboring nodes and between nodes 
and base stations, with very accurate RMFS measurements. 
Our solution develops an MI-based localization framework to 
integrate Weighted Maximum Likelihood Estimation 
(WMLE) and Semidefinite programming (SDP) relaxation 
techniques to generate very accurate localization in 
underground environments. It mutually applies both fast 
initial positioning and fine-grained positioning to attain high 
positioning precision in WUSNs to provide a rapid and precise 
positioning in different noise systems (low and high) while 
sustaining high computational efficiency under various 
underground environment situations. Our localization 
framework is summarized as follows: 

1) RMFS measurements for designing localization in 
hydraulic fracture. 

2) Localization framework for WSNs in hydraulic 
fracture. 

3) Quick early positioning by varying Direction 
Augmented Lagrangian Method (ADM). 

4) High resolution positioning from Conjugate 
Gradient Algorithm (CGA). 
 

 
Figure 8.  MI-based localization system. 
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Figure 8 displays the structure of MI-based localization 
system. The first step is to attain the approximate distance 
from received magnetic field strengths (RMFSs) via the 
developed channel models. Next, the localization framework 
is formulated as the problem creation of combined WMLE 
and SDP reduction for precise FracBot positioning from noisy 
distance estimations. Third, an efficient initial positioning is 
gained from a fast algorithm, called ADM, to provide 
approximate but useful location results. According to the 
initial results, a fine-grained positioning obtained from the 
powerful Algorithm (CGA) is finally fed to improve 
localization accurateness in a time-efficient way. 

 

V. FRACBOT NODES AND TESTBED 
The key component of WUSN is the sensor node; mainly 

in reservoirs monitoring and hydraulic fracture mapping. 
Thus, we develop a miniaturized FracBot node to validate the 
feasibility and capability of using MI-based communication in 
underground environments. Particularly, we design and 
realize a FracBot node that can be used to gather useful data 
about hydraulic fracture such as temperature, pressure, 
chemistry composition and other variables. The FracBot is 
designed based on major electronic components including 
Microcontroller (MCU) and RFID/NFC chip. This chip 
launches the communications among the FracBots using Near 
Field/MI-based technique. The key design concepts are: 

1) Low energy requirements (feasibility and 
implementation in aggressive environments). 

2) MI communication (RFID/NFC technology with 
passive/active sensors). 

3) Multi-purpose FracBots (support several sensing 
applications). 

4) Hardware miniaturization (hardware is designed in 
small footprint). 

To implement these key design concepts, we create a 
design roadmap to proficiently develop the FracBot node in 
terms of hardware and software as described in Figure 9.   

 
Figure 9.  Roadmap of the FracBot design. 

The roadmap skeletons the steps of design after 
determining the idea and requirements. Component selection 
is a broad process, requiring picks from a wide-range of 
available products, and it directives how the remaining phases 
proceed. Prototyping and software development is extremely 
constrained, encompassing the development of a model sensor 

node and associated software. Prototype design is first 
achieved in a schematic diagram and then as a printed circuit 
board. Then, the firmware and software are executed. After 
this stage, a completed circuit has been prepared to the final 
step which is testing and verification. 

Restricted characteristics are essential for designing an 
effective node that withstands operations in severe 
environments with high temperature, and pressure, high path 
loss and limited energy. Moreover, to improve every 
component based on their requirements, the very small size is 
needed as it can protect development time, board space, and 
cost. The key features of our proposal are a long operating 
time, ultra-low power, an efficient communication layer, a 
processing function, and sensing capabilities and energy-
harvesting. The concurrent employment of all five 
characteristics allows the node to operate in a perpetual 
powered status. The FracBot node will encompass mainly a 
microcontroller, a temperature sensor, an energy harvesting 
unit and a transceiver. The feasibility of energy harvesting will 
be exhibited using this FracBot node.  

A. FracBot node design and development 
The design and development of FracBot node are based on 

near field communication (NFC) for a physical layer coupled 
with an energy collecting feature and very low power 
requirements [20]. Two types of FracBots are created: a 
FracBot active node and a FracBot passive node. Figure 10 
demonstrates the active FracBot prototype, which entails of a 
microcontroller, an energy management unit (EMU), USB 
communication, a temperature sensor, a NFC transceiver 
(passive and active), and a super-capacitor.  

 

 
Figure 10.  Block diagram and prototype of the FracBot active node. 

The FracBot active node has sophisticated functions and 
consumes minimal energy since the FRAM technology has 
been exploited. The microcontroller features used in the active 
node are very low energy, a high processing speed, and several 
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interfaces. In addition, Figure 10 shows a block diagram of the 
active node featuring the interconnection block of the node, 
which comprises of the microcontroller, the JTAG interface, 
the energy harvesting circuit, USB communication, the 
temperature and the MI transceiver. The JTAG interface 
permits us to program and access all variables of the code and 
stop the code from running at a pre-defined point 
(breakpoints). 

The FracBot passive node is a passive node that does not 
have a transceiver but a transmitter only relaying the data to 
the active node. Its prototype and diagram are shown in Figure 
11. It comprises of the microcontroller, the temperature 
sensor, the USB interface, and the NFC active tag. The NFC 
transceiver of the active node can access, through the 
established link, the NFC tag memory, change the 
configurations of the nodes and generate energy by harvesting 
energy output. As shown in the block diagram, the node is 
capable to launch a bidirectional communication with 
RFID/NFC transceiver. 

 
Figure 11.  Block diagram and prototype of the FracBot passive node. 

B. FracBot Node Software/ Firmware  
Firmware is a special type of computer software used to 

control components hardware of electronic devices at low-
level. Low power firmware is categorized by the capability to 
switch between active and low-power modes with the 
guarantee of the functionalities and operation continuation. 
This feature contributes in significant energy reduction on 
microcontroller unit (MCU). The software is optimized 
according to the advanced control of MCU and all peripherals. 
The most advanced microcontroller considers efficient power 
control, instant wakeup, intelligent autonomous peripherals 
and interrupts in its operation. Inefficient firmware codes are 
not preferred since they slow the function and require a lot of 
energy. There are many examples of inefficient firmware 
properties such as software delay loop, uninitialized ports and 
data format conversions. Other example is math operation set 
as division and floating-point operations which could cause 
critical operation issues. To avoid such issues, the MCU pins 

requisite to be configured with correct function to moderate 
the energy waste. To avoid software delay loop, a timer is 
required in interval mode configuration to enable the MCU to 
enter the sleep mode during the interval time. This help the 
MCU to not run at maximum power during the interval time. 
Division and floating-point operations require large 
computational efforts which consume a lot of the processing 
time and big part of the memory. To avoid that, the math 
operations can be configured at fixed point [21]. The design 
of the FracBot nodes incorporates advanced energy strategies 
to optimize the energy consumption based on the energy 
availability. It also employs very low energy profile to balance 
between the hardware and the software/firmware in all 
components operation. Furthermore, using ULP tools and 
energy tracer permit the development of efficient codes [21]. 

C. FracBots Performance Evaluation 
After thorough studies have been theoretically conducted, 

little work has been devoted to evaluate a sensor node 
(FracBot) in underground-like environments to validate the 
theoretical results. Toward this end, we design and implement 
an experimental testbed simulating a reservoir environment 
that comprises of numerous media such as air, sand, water, 
and stone with few FracBot nodes as demonstrated in Figure 
12. One of the crucial outcomes is that the performance of the 
FracBot is influenced by sand and stone media. They reduce 
the energy transfer, and eventually harm MI signal 
propagation. Hence, the evaluation of hardware enables the 
designers to apprehend the challenges, enhance the electronic 
desgin and minimize essential assets to reduce the hardware 
size. 

1) FracBot Propagation Evaluation: 
The FracBot MI propagation is evaluated at the operating 

frequency of 13.56 MHz. The investigations are done 
according to the received power measured using a signal 
analyzer. We also examine the MI field produced by the 
transceiver with and without modulation. In addition, we 
examine magnetic induction signal propagations in the air. We 
measure and study the effect of the antenna alignment on the 
received power. Figure 13 shows the schematic of the 
experimental arrangement and the real setup in the laboratory. 
In this scenario, MI interaction is measured at distances 
between 0 and 25 cm and angles of 0, 30º, 60º and 90º, 
respectively. 

 
Figure 12.  A model of physical testbed in hydraulic fracture. 
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Figure 13.  FracBot experimental setup. 

2) Angular Analysis: The direction and the alignment 
of the transceiver and the receiver of the FracBots is one of 
the complications in MI-based communication. In the angular 
study, we perform measurements at 0, 30º, 60º and 90º angles. 
The results of distances between 6 and 25 cm, compared to 
those under 6 cm reveal minor variants. Figure 14 displays 
the power analyses of the angular variations. At distances of 
6 cm and beyond, the angle between antennas (the transceiver 
and the receiver) affects the received power slightly, less than 
- 2 dBm. 

 

 
Figure 14.  Angular plots of received power (air, sand/stone). 

The angular study shows that the MI field radiated at 
13.56 MHz is omni-directional. It enabls the Base station to 
assess the location of each sensor and produce a fracture map, 
when this characteristic is incorporated with the received 
signal strength indicator (RSSI) measurement. The FracBot 
MCU needs 50 ms to complete all reading tasks and then 
stock them in the NFC transponder. This task consumes 
33µW of the energy available in the storage system. Based 
on the angular analysis, the node can function constantly by 
harvesting energy of the MI field if the receiver is positioned 
at 23 cm or nearer to the succeeding FracBot node. As an 
outcome, the received power in the area of 6-25 cm is 
approximately -50 dBm that delivers adequate energy to the 
node each hour and allows it to transmit information in a 50 
ms time frame. After 25 cm, the received power is less than -
50 dBm, that is not enough to power the node each hour. As 
a result, the node require to collect the necessitated energy 
and transmit information within a time frame of 50 ms every 
2 hours at minimum. It is worth to mention that the FracBot 
can operate in an intermittent status if the MI signal strength 
is lower than -50 dBm. 

3) FracBot Underground Testbed: To measure the 
FracBot nodes performance, we design and develop a testbed 

similar to underground environment comprising of a plastic 
container containing water, sand, and stone, demonstrated in 
Figure 15. The system involves several underground settings, 
comprising dry soil, wet soil, stone and dry soil with stone. 
The testbed setting permits to position the FracBots at 
different depths until 14 cm with a adjustable distance 
between the nodes. This flexibility enable changes of the 
experimental setup to easily evaluate the FracBot nodes 
performance. Using the spectrum analyzer, we measure the 
MI circuits characteristics such as MI propagation and 
antenna tuning. 

 

 
Figure 15.  Underground testbed of the FracBot. 

To assess the transmission link, we wirelessly link the 
NFC tag of first FracBot to the transceiver of second FracBot. 
The FracBots conduct one communication task every 3 
minutes and one temperature reading per minute in the 
laboratory. For experimental purposes, the data transmission 
of long interval can be simulated by the adjustable interval 
time in a short time. The nodes utilize NFC technique, but as 
they are intended to operate in air, a consistent reference test 
and data analysis in air is essential. The node is examined to 
transmit in air and with a sand obstacle.  

Table 1 displays the experimental performance for OOK 
and ASK modulations with data rates of 26 and 1.6 kbit/s. In 
an underground environment, the modulation OOK at data 
rate of 1.6kbit/s, compared with that at 26 kbit/s, lowers the 
transmission error. However, in stone, ASK modulation does 
not work for both rates due to high attention. On the other 
hand, OOK modulation works but at a higher transmission 
error than that in sand for both rates. Former study in 
underground field claims 10 MHz as an optimum frequency 
with data rate of 1 kbit/s [15]. To estimate the transmission 
link among FracBots, the nodes are located at 5 cm distant 
from each other, as shown in Figure 15 because of the 
restriction posed by the sensitivity of the off-the-shelf 
transponder chip limited to -50 dBm. At 5 cm, the signal 
strength is -50 dBm. Beyond 5 cm, the signal quality will 
degrade as well as the communication becomes impossible.  
 
Table 1.  Experimental performance of the ASK and OOK modulation. 

Environment Modulation Date rate 
(kbit/s) 

Error 
(%) 

Air ASK 26 2 
Air OOK 26 1 
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Sand ASK 26 70 
Sand OOK 26 78 
Sand ASK 1.6 40 
Sand OOK 1.6 32 
Stone OOK 26 87 
Stone OOK 1.6 58 

 

VI. REAL-TIME INTELLIGENT SENSOR SELECTION 
In order to efficiently and long-term deploy subsurface 

sensors, it is crucial to optimize the sensor capability to sense 
as well as extend the lifetime of each sensor as long as 
possible. An essential part of optimizing the sensor capability 
to sense in the reservoir formation is to optimally select the 
best number of sensors. There are several trade-offs that have 
to be taken into account such as the battery utilization of 
sensors as well as need to have multiple close sensors being 
in operation during the same time. Specifically, one aims to 
reduce the number of sensors being in operation at the same 
time, while maintaining sufficient sensing reach. The 
resulting problem can then be transformed into a sensor 
selection problem. The sensor selection problem is 
mathematically defined as given a set of sensors 𝑆 =
	{𝑆A, … , 𝑆6}, then we need to select the best subset with k 
sensors that satisfy one or multiple missions. The challenge 
that arises from this problem is in most instances NP-
complete, which implies that there is no polynomial-time 
algorithm for solving the problem. This represents a major 
challenge for real-time data interpretation and the 
optimization of the sensors as in order to be able to have a 
recommendation available within an acceptable timeframe, an 
approximate solution is only feasible [22]. We will 
demonstrate a novel intelligent sensor selection framework for 
the optimization of sensor selection in real-time for flow and 
fracture monitoring. The objective of the framework is to 
maximize longevity of the operations while maintaining 
measurement accuracy and flow detection ability. 

A. Method 
We have developed an innovative real-time sensor 

utilization optimization framework that incorporates a deep 
learning driven optimization framework connected to a 
subsurface fracture network model. This forms then a crucial 
part of the sensor selection optimization problem that aims to 
optimize in real-time to minimize the number of sensors 
required in order to maintain sufficient data quality. This 
challenge is equivalent to maximize the longevity of the 
sensors deployed while maintaining sufficient reservoir 
coverage in order to limit the uncertainty in the multi-data 
interpretation.  

The framework incorporates a deep learning approach 
for the sensor measurements combined with a fast iterative 
solver for real-time optimization of the sensor selection. The 
framework is outlined in Figure 16. 

 
Figure 16.  Framework representation with the fracture network structure and 
the uncertainty estimates. 

First, a fracture-flow reservoir model is established using 
a connectivity and sensing data quality determination 
approach. The assumption is that the flow between injecting 
and producing wells is primarily within the fractures with 
only limited flow in the matrix structures. This is in line with 
conventional assumptions when utilizing discrete fracture 
network models, as well as observations on fractured 
carbonate reservoir rocks, where the flow is primarily in the 
fractures. The network flow model is then integrated into a 
deep learning framework for the sensor data estimation and 
the uncertainty in the estimates. The deep learning framework 
utilizes a feedforward network structure for determining from 
the sensor derived flow measurement data based on multiple 
potential scenarios in terms of the reservoir formation 
condition. The estimations relate to whether the sensors are 
close to the matrix or in the fracture, and what the water 
saturation in the vicinity of the sensor is. The main objective 
of the deep learning framework is to have a data-driven 
approach to the estimation of the fracture and water saturation 
in the vicinity of the sensor based on pressure and 
temperature measurements. The sensor selection problem is 
then posed as an integer optimization problem as outlined 
below: 

min𝑓� z																								 
																							𝑠. 𝑡.		𝐶� > 0                                            (9) 

𝑈� ≤ 𝑏l, ∀5	∈ 𝑁																									  
 

The integer optimization problem is solved in real-time 
where the vector 𝑓  is the cost function dependent power 
consumption over time of the sensors. For each update time 
step, the cost function is updated from the previous, implying 
that if the sensor i is operational, then 𝑓5  is gradually 
increasing, while for the inactive sensors, 𝑓5  may remain 
constant or is reduced in case the sensors can be recharged. 
The constraint 𝐶𝑧	 > 0 ensures that there is for each reservoir 
area at least one sensor that covers this area. The matrix 𝐶 is 
the connectivity matrix between the sensors and the area, 
implying that 𝐶5� = 1 if the j-th sensor covers the i-th area. 
This ensures that each area is covered, and that the sensor can 
connect and transfer data between each other. Data 
transmission is a crucial  
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The constraint 𝑈𝑧	 ≤ 𝑏l  implies that the data sensing 
reliability for each node is maintained, implying that the 
sensing uncertainty must be below a threshold value. The 
matrix or vector 𝑈 is the sensing reliability matrix, and 𝑏l is 
the reliability threshold. The last constraint is a binary 
constraint, indicating whether the sensor is active (𝑧5 = 1) or 
inactive ( 𝑧5 = 0) . For solving the integer optimization 
problem, we utilized a fast and efficient branch and bound 
method, via utilizing a feedback approach incorporating the 
solutions of previous optimizations. The framework is easily 
scalable to larger flow network models, allowing in near real-
time to optimize the selection of sensors and maintain 
longevity of the sensor deployments. 

B. Results 
We examined the framework on a complex fracture 

network structure in 2D in order to outline the performance 
of the framework. The 2D model is a graph-based model 
consisting of 500 nodes and 1000 different network structure 
realizations. We have displayed in Figure 17 two examples 
of the different network realizations and connection between 
the fracture network nodes. The realizations illustrate the 
considerable difference between the connectedness of the 
fracture network which reflects the general challenge of 
monitoring and determining the fracture network structure 
and connectedness between the fractures. We then utilized a 
deep learning approach to estimate the uncertainty of the data 
based on the network structure. The data set was divided 
75/15/15 into a training, validation and test dataset, and a 
fully connected feedforward neural network structure was 
used. 

 
Figure 17  Different realizations of the fracture network structure. 

For the optimization, we used a scaled conjugate 
gradient approach given the substantial size of the problem. 
The sensors record pressure and temperature data at each 
location, and for each of the sensors an interpreted 
uncertainty parameter is computed. The uncertainty 
parameter varies from 0 to 1.5, where a higher uncertainty 
parameter indicates stronger uncertainty in the measured 
data. The uncertainty measurement parameters are derived 
from multiple repeat measurements of the sensors that are 
then classified in terms of their accuracy and variation. The 
training, validation and testing results of the deep neural 
network are displayed in Figure 18. The estimation results are 
rather strong, outlining overall accurate estimation of the 
sensor data uncertainty, with the larger number of data points 

for lower uncertainties only marginally affecting the 
estimation quality for higher uncertainties. 

 

 
             Figure 18 a.  Comparison of the neural network estimation of the 

data uncertainty. 

 
           Figure 18 b.  Comparison of the neural network estimation of the 

data uncertainty. 

 
           Figure 18 c.  Comparison of the neural network estimation of the 

data uncertainty. 
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           Figure 18 d.  Comparison of the neural network estimation of the 

data uncertainty. 

Utilizing the deep learning network model, we then 
solved the sensor selection problem in real-time under 
uncertainty. The uncertainty matrix 𝑈  is updated in each 
simulation step to reflect the changing reservoir conditions as 
well as sensing parameters. The cost vector 𝑓 for the sensors 
is increased in each step for the active sensor components, 
reflecting the power utilization of sensor and to penalize 
excessive usage of an individual sensor. In case the sensor is 
not anymore operational 𝑓5 (e.g., lack of power), then 𝑓5 was 
set to positive infinity. The timeframe for the sensor 
optimization was from April 1st, 2019 until January 11th, 
2020, where the sensors were optimized every 15 days. The 
optimization results are displayed in Figure 19 outlining the 
active sensors in green and the inactive in black.  
 

 
          Figure 19 a.  Overview of the selected sensors for different time 

steps. 

 

 
Figure 19 b.  Overview of the selected sensors for different time steps. 

 
Figure 19 c.  Overview of the selected sensors for different time steps. 

 
Figure 19 d.  Overview of the selected sensors for different time steps. 

As observed there are certain sensor clusters that are 
active for longer durations indicating that these sensors are 
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placed in crucial fracture intersection points as well as exhibit 
a low degree of measurement uncertainty. This is confirmed 
via a sensor utilization analysis for the 500 sensors in Figure 
20 and Figure 21. The indication is that most sensor are rarely 
active, or solely active for a short period of time, while there 
are a few sensors that are heavily utilized and operational for 
more than 250 days out of 285 days . 

 

 
Figure 20.  Sensor utilization histogram. 

 
Figure 21.  Sensor utilization in days. 

VII. CONCLUSION 
This paper proposed FracBots systems for monitoring oil 

and gas reservoirs, mapping hydraulic fractures and collect 
other wellbore parameters. We established a platform of the 
FractBots comprising of software and hardware solutions. We 
formulated and developed three key functions. We developed 
cross layer communication model for magnetic induction 
networks in altering underground environments to enable the 
communication in dynamically changing underground 
environments. We developed an innovative MI-based 
localization framework to capture the locations of the 
randomly deployed FracBot nodes by exploiting the 
exceptional properties of the MI-field. We developed an 
energy model framework for a linear FracBot network 
topology to estimates FracBot data transmission rates while 
respecting harvested energy constraints. We designed and 

developed novel prototypes of wireless FracBots for potential 
use as a platform for a new generation of WUSNs for 
monitoring hydraulic fractures and unconventional reservoirs, 
and measuring other wellbore parameters. We developed the 
hardware of the MI-based wireless FracBots for short-range 
communication using near-field communication (NFC) as a 
physical layer combined with an energy-harvesting capability 
and ultra-low power requirements. Finally, to examine the 
functionalities of FracBot nodes in air, sand, and stone media, 
a physical MI-based WUSN test bed was implemented. 
Experiments indicated that the constructed FracBots can form 
a transmission link and transfer data over ASK modulation 
using a data rate of 1.6 Kbit/s and a minimum receiver 
sensitivity of -70 dBm. The hardware development and the 
testbed analyses allow us to better understand the environment 
challenges, improve the electronic sensitivity and optimize the 
minimum resources that are necessary to miniaturize the 
FracBot hardware. 

In addition, we presented a novel AI driven sensor 
selection framework for the optimal selection of subsurface 
pressure and temperature sensors in a fractured reservoir. The 
framework presents the ability to optimize the selection of 
sensors for subsurface sensing in real-time, thereby 
maximizing the overall coverage of the sensors for efficient 
waterfront tracking. The results outline the ability to 
efficiently and long term perform reservoir sensing if the 
sensors are optimally selected and utilized.  

References 
[1] A. Alshehri, “FracBots: The Next Real Reservoir IoT,” The 

Fifteenth International Conference on Systems and Networks 
Communications (ICSNC 2020), Porto, Portugal Oct. 18- 22, 
2020 

[2] K. Katterbauer, I. Hoteit, and S. Sun, "EMSE: Synergizing EM 
and seismic data attributes for enhanced forecasts of reservoirs," 
Journal of Petroleum Science and Engineering, 2014, 122, pp. 
396- 410.  

[3] K. Katterbauer, I. Hoteit and S. Sun, "History Matching of 
Electromagnetically Heated Reservoirs Incorporating Full-
Wavefield Seismic and Electromagnetic Imaging," SPE 
Journal, 2015, 20(5), pp. 932- 94.  

[4] T. Ertekin and Q. Sun, "Artificial intelligence applications in 
reservoir engineering: a status check," Energies, 2019. 12(15), 
P. 2897. 

[5] R. Miftakhov, A. Al-Qasim, and I Efremov, "Deep 
Reinforcement Learning: Reservoir Optimization from Pixels," 
International Petroleum Technology Conference, Dhahran, 
2020.  

[6] P. Panja, R. Velasco, M. Pathak, and M. Deo, "Application of 
artificial intelligence to forecast hydrocarbon production from 
shales," Petroleum, pp. 75- 89, 2018.  

[7] S. Fumagali, "Robotic Technologies for Predictive Maintenance 
of Assets and Infrastructure," IEEE Robotics & Automation 
Magazine, 2018. 25(4), pp. 9-10. 

[8] A Davarpanah, B. Mirshekari, T. Jafari, and M. Hemmati, 
"Integrated production logging tools approach for convenient 
experimental individual layer permeability measurements in a 
multi-layered fractured reservoir," Journal of Petroleum 
Exploration and Production Technology, 2018, 8(3), pp. 743- 
751.  



35

International Journal on Advances in Intelligent Systems, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/intelligent_systems/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

 

[9] F. Sana, K. Katterbauer, T. Al-Naffouri, and I. Hoteit, 
"Orthogonal matching pursuit for enhanced recovery of sparse 
geological structures with the ensemble Kalman filter," IEEE 
Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, 2016, 9(4), 1710- 1724. 

[10] Offshore Magazine Business Briefing, "Miniature downhole 
sensors offer improved shock resistance," Offshore Magazine, 
2013.  

[11] A. AlShehri and A. Shewoil, "Connectivity Analysis of 
Wireless FracBots Network in Hydraulic Fractures 
Environment," Offshore Technology Conference Asia, Kuala 
Lumpur, 2020.  

[12] J. Xu, X. Wang, K. Cooper, G. Pickrell, and A. Wang, 
"Miniature Temperature-Insensitive Fabry-Perot Fiber Optic 
Pressure Sensor," IEEE Photonics Technology Letters, 2006, 
18(10), pp. 1134- 1136. 

[13] M. Akkaş, I. Akyildiz, and R. Sokullu, “Terahertz Channel 
Modeling of Underground Sensor Networks in Oil Reservoirs,” 
IEEE Global Communications Conference, 2012. 

[14] A. Alshehri, S. Lin, and I. Akyildiz, “Optimal Energy Planning 
for Wireless Self-Contained Sensor Networks in Oil 
Reservoirs,” IEEE International Conference on 
Communications, 2017. 

[15] H. Guo and Z. Sun, “Channel and Energy Modeling for Self-
Contained Wireless Sensor Networks in Oil Reservoirs,” IEEE 
Transactions on Wireless Communications, 2014, 13(4), pp. 
2258- 2269. 

[16] Z. Sun and I. Akyildiz, “Magnetic Induction Communications 
for Wireless Underground Sensor. Networks,” IEEE 
Transactions on Antennas and Propagation, 2010, 58(7), pp. 
2426- 2435. 

[17] S. Lin, I. Akyildiz, et al. “Distributed Cross-Layer Protocol 
Design for Magnetic Induction Communication in Wireless 
Underground Sensor Networks,” IEEE Transactions on 
Wireless Communications, 2015, 14(7), pp. 4006- 4019. 

[18] I. Akyildiz, H. Schmidt, S. Lin, and A. Alshehri, 
“Environment-Aware Cross-layer Communication Protocol 
Design in Underground Oil Reservoirs,” U.S. Patent No. 
10,117,042. 2018. 

[19] S. Lin, A. Alshehri, Wang, P. et al. “Magnetic Induction-Based 
Localization in Randomly-Deployed Wireless Underground 
Sensor Networks,” IEEE Internet of Things Journal, 2017, 
4(5), pp. 1454- 1465. 

[20] C. Martins. A. Alshehri, and I. Akyildiz, “Novel MI-based 
(FracBot) sensor hardware design for monitoring hydraulic 
fractures and oil reservoirs,” Th 8th IEEE Annual Ubiquitous 
Computing, Electronic Mobile Comm. Conference, 2017. 

[21] B. Finch and W. Goh, “MSP430™ Advanced Power 
Optimizations: ULP Advisor™ Software and EnergyTrace™ 
Technology,” Application Report SLAA603. Texas 
Instruments, 2014. 

[22] T. Yoo and S. Lafortune, "NP-completeness of sensor selection 
problems arising in partially observed discrete-event systems," 
IEEE Transactions on Automatic Control , 2002, 47(9), pp. 
1495-1499. 


