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Abstract—The monitoring activity remains an activity that 

disturbs the system under control. We all try to minimize these 

disturbances in order to observe a behavior as close as possible to 

reality. In IT, this requires the implementation of a specific 

software architecture. Our use case concerns the monitoring of 

embedded applications on mobile devices for which the collected 

data sometimes contain errors that we want to explain. To this end, 

we seek to trace the important events of our calculations in order 

to qualify the anomalies in our processing. We have implemented 

a monitoring layer within mobile applications in order to perform 

intelligent monitoring on a set of mobile devices. We have defined 

a Big Data workflow to collect, index and store log data for 

submission to an artificial intelligence (AI) model. A crucial aspect 

of this collection relies on the use of partitioned topics and thus a 

better distribution of the data. With the increase of the data flow 

to be processed, the performance remains insufficient and we have 

opted for a persistence layer adapted to our data processing. We 

detect behavioral anomalies through the analysis of software logs 

deployed on embedded devices. Based on the patterns recognized 

in the logs, our AI model provides us with a sequence of system 

operations. These operations are then scheduled to redeploy a 

service, change a driver, perform a library update, etc. In the end, 

we build management reports every week for the maintenance 

team. These documents help track maintenance activities. They 

provide a record of important events such as equipment downtime 

or removal of obsolete services. 

Keywords— Big Data; indexing; log analysis; distributed 

application; AI model; storage efficiency; anomaly detection, 

explanatory report. 

I.  INTRODUCTION 

Software monitoring remains without a doubt an active area 
of research. The diversity of situations is great because software 
supports very different deployment constraints. From the 
application installed on an application server, to the component 
running on a micro controller, the situations are very different. 
There is no single platform to monitor them. Therefore, 
everyone tries to specify his or her typical use case and cover a 
relevant sub-domain. The monitoring of mobile applications 
remains complex because it relies on operating systems with 
specific management rules. A crucial principle is to consider 
software administration as a facet of any mobile application. 
Thus, any installed application exposes resources that are used 

to evaluate its state. This one can be judged abnormal or not and 
actions are then implemented. 

In order to have this information, developers use logging 
application programming interfaces (APIs) to transmit all the 
behavioral data. To make the information usable, the log 
messages usually have a format that facilitates information 
extraction. Each message usually has a priority level or severity 
hierarchy and a timestamp associated with an origin. The 
application administrator manages the level of expressiveness 
per module in order not to suffer from an excess of information. 

The applications of log messages are numerous; they 
communicate an internal state to the users, but they can offer 
more like the reconstruction of a state. Database servers like 
Postgresql have log files containing the history of activity, from 
database creation to application connection triggers. Embedded 
applications have the same need. An Android application has 
access to a logging API, whether it is written in Java, Kotlin or 
C++. An Android logger corresponds to a variable in memory. 
It can be stored in a file or sent to a socket. 

Log messages play a key role in the life cycle of a project. 
From the unit, integration, system and functional testing phases, 
logs are used to highlight processing steps. During development, 
they provide a view of the application's progress in terms of 
network, security, activity, etc. In the case of an embedded 
application, this data cannot be displayed because the device 
does not necessarily have a screen and it is useful to redirect the 
information into a persistence unit (memory card, memory stick, 
etc.). During the debugging phase, these same messages have a 
tag that allows them to be filtered, or even to specify a different 
level of severity from one packet to another to configure the 
feedback. In this study, the effort is focused on the analysis of 
the log messages used. For this purpose, we use topics on which 
each device publishes its messages. On the one hand, this allows 
partitioning the messages into categories; on the other hand, the 
processing of the published messages is easily distributed [1]. 

The difficulties linked to the analysis of logs are firstly linked 
to the volume of messages received. Indeed, this volume grows 
rapidly with the number of sources. Thus, in the case of 
monitoring embedded applications, when the number of devices 
increases, it is no longer possible in human terms to analyze the 
logs with serenity. The automation of this process is necessary. 
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A second difficulty is the flow of these messages, which depends 
on the use of the monitored applications. When the number of 
users increases, it is then necessary to set up a sampling of 
information. The third difficulty is that it is not uncommon for 
each embedded application to have its own log format, even if it 
is generated by the same API. In this case, it is necessary to 
consider a standardization of the formats during the collection in 
order to be able to extract information from different sources and 
to put them in a causal relationship. After processing, these log 
messages must also be stored in a persistence system capable of 
supporting variations in volume, velocity and variable format 
(3V of Big Data). This persistence system then becomes the 
underlying information center of the indexing module. 

The set of properties related to the processing of log 
messages naturally leads us to consider this work as a Big Data 
workflow applied on a temporal scale. Indeed, it is essential to 
react to detected problems before they get worse. In this paper, 
we present the results of our work, which started more than two 
years ago with the Big Data prototyping of an anomaly 
prediction solution for Android applications. These mobile 
applications are used to take pictures of biology experiments and 
visualize them. Users can annotate each photo and reorganize 
the photos into a document related to a lab experiment. Users 
export their final document from the mobile device to a web 
server accessible from the Wi-Fi network at the experiment site. 

The rest of this paper is structured as follows. Section II 
describes the works close to our domain. Section III provides a 
precise description of our use case. Section IV addresses the 
software architecture of our distributed platform and more 
precisely the partitioning of log data. Section V goes into finer 
details on our streaming approach, which includes an indexing 
step and a new storage layer oriented distributed document. 
Section VI focuses on our results, the impact on the maintenance 
task and the generation of explanatory report. The 
acknowledgement and conclusions close the article. 

II. RELATED WORKS 

Predictive log analysis is a widely studied topic. Part of the 
work focuses on enhancing the information itself. A second part 
concerns the use of this data to react, alert, and more generally 
automates a process. 

A. Log analysis methods 

Adam Oliner et al. describe, through several use cases, the 
information useful to report during execution for software 
monitoring [2]. They stress, among other things, the importance 
of adopting a consistent format throughout an application. They 
make the analogy between the follow-up of manufacturing on 
one meeting on a production line and the follow-up of the 
software activity, which is the subject of this work. 

T. Yen et al. describe how to leverage distributed application 
logs for the detection of suspicious activity on corporate 
networks [3]. Their work highlights the use of the beehive tool 
for extracting information and producing easily exploitable 
messages. Analysis against a signature database is then possible. 

S. He et al. present six methods for log analysis of distributed 
systems: three of them are supervised and three others are 
unsupervised. The authors make a comparative evaluation of 
these methods on a significant volume of log messages. They 
emphasize the strengths of software monitoring task automation 

[4] but the authors do not take into account the model storage 
regarding the properties of their data. 

In more constrained fields such as real time, log analysis 
systems must be able to detect an anomaly in a limited time. B. 
Debnath et al. present LogLens that automates the process of 
anomaly detection from logs with minimal target system 
knowledge [5]. LogLens presents an extensible index process 
based on new metrics (term frequency and boost factors). The 
use of temporal constraint also intervenes in the recognition of 
behavioral pattern. Therefore, abnormal events are defined as 
visible in a time window while other events are not. This allows 
semi-automatic real-time device monitoring. 

B. Log analysis and machine learning 

The development of machine learning has greatly impacted 
the use of logs. Depending on the work, studies lead to the 
detection of anomalies or the discovery of software attacks. 

Q. Cao et al. presented a work on web server log analysis for 
intrusion detection and server load reduction. The use of two-
level AI model allowed them to increase the efficiency of their 
detection system. In this approach, the use of decision trees 
structures the log data [6].  

W. Li considers that logs are a complement to the software-
testing phase. Since the time allocated to testing is insufficient, 
he presents a failure diagnosis strategy based on the use of an AI 
model [7]. He provides a comparative study between several 
models.   

There is a large body of work on network log analysis for 
various protocols including HTTP [8] or data-centric protocols 
such as Named Domain Networking (NDN) [9]. In all cases, the 
strategy is based on formatted messages where part of the 
information is filtered and then submitted to a model for 
prediction. Once again, the nature of the persistence system is 
not highlighted because the constraints of volume and data rate 
are not important. 

C. Text indexing and storage 

Textual data is widely used in Big Data, especially in 
linguistic analysis. It is mostly unstructured data, not referenced 
in a database. These data are therefore not interpretable by 
machines. S. Melink and S. Raghavan have built a distributed 
full text-indexing algorithm. They propose a storage scheme 
using an embedded database system of the H2 type [10]. Their 
results are promising on data from web browsing. 

S. Melink and S. Raghavan have defined a novel pipelining 
technique for structuring the core index-building system. It 
substantially reduces the index construction time but the data 
and the index are stored in the same persistence layer. They 
provide a storage scheme for creating and managing inverted 
files using an embedded database system [11]. They present 
performance results obtained during experiments on a 
distributed web indexing testbed where we see that the data 
structure has no impact on the type of database used. 

M. A. Qader and S. Cheng gather a very interesting 
comparative study of indexing techniques in the world of 
NoSQL databases. They allow a fast writing flow and fast 
searches on the primary key. Some of these persistence systems 
have added support for secondary indexes. These new indexes 
are useful for queries on non-primary attributes. Each NoSQL 
database usually supports a secondary index type. Their 
conclusion shows that there is no single system, which supports 
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all secondary index types [12]. The authors highlight two classes 
of indexes: embedded indexes that belong to the storage system 
and autonomous indexes that are data structures distinct from the 
stored data. Their results show that none of these indexing 
techniques dominates the others. On the other hand, embedded 
indexes provide higher write throughput and are more memory 
efficient, while standalone secondary indexes provide faster 
response times when querying. In the end, the optimal choice of 
secondary index depends on the workload of the application, 
which is the case when analyzing log messages. 

D. Reporting of artificial intelligence prediction model 

In order to obtain a set of guidelines for the use of predictive 
machine learning models, it is essential to build regular reports 
on the quality of predictions. In the context of clinical 
experiments, W. Luo et al. published a rulebook for AI model 
development [13].  

P. Henderson et al. present a systematic reporting of the 
energy and carbon footprints of machine learning. The authors’ 
goal is to adapt an efficient reinforcement learning strategy and 
explain the reinforcement learning events [14]. Events from the 
environment are associated with their evaluation and recorded. 
The report traces the life cycle of the AI model. 

L.M. Stevens et al. present a recommendation for transparent 
and structured reporting of Machine Learning (ML) analysis 
results specifically directed at clinical researchers [15]. Their 
goal is to convince many clinicians and researchers who are not 
yet familiar with evaluating and interpreting ML analyses. The 
model provides evaluation measures that offer a means of 
comparison between models and underlying strategies. 

D.P. Dos Santos et al. take a similar approach to the analysis 
of radiological images. Their quality is uneven and it becomes 
difficult to provide a reproducible analysis approach. It then 
becomes essential to build reports to explain the state of the AI 
model that led to certain predictions. The authors explain how to 
structure to help build a post analysis explanation [16]. 

The use of AI models relies on data from persistence 
systems. The use of Big Data processing aims to bring data from 
a data lake into a data lab. This data lab usually consists of a 
NoSQL database and events such as insertion and update have a 
strategic role on the life cycle of the associated model. S. Afonin, 
et al. describe an automatic report generation system based on 
the database activity. They use a zero-code solution where the 
underlying software is either Jasper Report [17]. The interest is 
the provision of a report in a format adapted to the use (Web, 
pdf, etc.). 

III. USE CASE DESCRIPTION 

A. Context Description 

In biology trainings, many experiments are done where 
students are asked to prepare, perform and follow up. In this 
context, mobile devices are provided to take pictures, record 
sounds, or even use the device's sensors to collect data. To save 
different documents in the memory of the mobile device, a 
software suite is installed. It allows the authentication of the 
user, the dating of each collected information and the transfer at 
the end of the experiment to a server for validation. 

During an experiment, all the devices are connected to the 
laboratory Wi-Fi network. This connection authorizes data 
exchange with the laboratory server, which will receive all the 

students' data at the end of the experiment for validation by the 
supervisor. This network connection is also used to send log 
messages to monitor the activity of each mobile device. This 
concerns the capture of information: taking a picture or 
recording a single comment or a short video. This type of 
recording is not often used during an experiment because several 
students are monitoring the same experiment and this leads to 
noise pollution for the other participants. 

The analysis of an experiment by a group of twenty students 
takes place over a period of one-day maximum in the same 
experimentation room. This means that the connection is made 
with the same access point for all devices. Even if the batteries 
are initially charged, it is possible at any time to have a 
recharging point in the room. 

Laboratory observation sessions can be short in the early 
grades, such as showing the release of gas bubbles by an aquatic 
plant. Students construct a document to highlight the conditions 
of this phenomenon and then make a video to support their 
comments. Then, they observe the role of light and measure its 
value with the light sensor of the Android tablet. A second video 
will show the release of gas bubbles by an aquatic plant in the 
presence of light. In the absence of light, the students make a 
comparison with pictures. 

In the lab room, a group of students follows an experiment 
with one tablet per student. Each tablet allows a student to take 
pictures or videos in order to build his observations of an 
experiment. The student first saves them locally on the tablet. A 
typical scenario consists of one Wi-Fi access point per room, a 
set of mobile devices and a remote storage server for document 
backups at the end of the session. This scenario is to be 
multiplied by the number of groups, possibly in parallel in 
different lab rooms. Two properties are thus highlighted: on the 
one hand, a local authentication phase on the mobile device, on 
the other hand a centralized storage server (see Figure 1). In 
addition, the lab room has a laptop for the teacher and a shared 
printer. The teacher thus has access to the documents that have 
been saved on the storage server. Furthermore, he can observe 
the tablets connected to the lab network and record the addresses 
of the tablets participating in the study. 

The first router provides a Wi-Fi network to the devices in 
the lab room. The second router provides access to the Big Data 
workflow, which starts with a set of message queues available to 
mobile devices. Without this bridge between the lab room and 

 

Figure 1. Network diagram of a laboratory room. 
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the data center, we would not have a mobile data responsive 
architecture. 

B. Scenario description 

In order to describe a nominal scenario more precisely, let us 
take the case of a student from the beginning of a lab session to 
the submission of a document at the end of the session. 

Figure 2 describes the general flow of the scenario in the 
Unified Modeling Language (UML) notation; it concerns an 
observation session (Lab Session). The biology teacher manages 
this session. Each student manages their own documents locally 
on their local device. Thus, the student takes notes, photos, 
videos and measurements via the available sensors. For 
example, infrared radiation allows the detection of the closest 
objects. This provides appropriate distance measurements 
during experiments. When his work is finished or the teacher has 
closed the session, a student prepares his final document, signs 
it and deposits it on the storage server. 

The storage server receives the work of students for each 
experiment. The teachers will consult the works to make their 
post experimentation evaluation. 

  
Figure 2. Nominal scenario during an experiment in a lab room. 

 

We do not address in this work the management of student-
provided materials throughout the academic year. We focus on 
the aspects related to an experimentation and the follow-up of 
this activity by processing the associated log messages. 

IV. SOFTWARE ARCHITECTURE 

If the software architecture of the business part is very 
simple, it is only the entry point of the information collection, 
which gathers the log data on the storage server. The analysis of 
these logs is more complex because it takes into account 
additional constraints: the arrival of log data continuously, the 

need to impose a data schema to index the information, refine 
the search for information and the detection of anomalies. 

A. Client application 

In order to collect information from the activity of the actors 
in the scenario in Figure 2, the log system of the devices is 
enabled by the students and the teacher. Our goal is to collect 
and cross-reference information from the various sources. Thus, 
it is essential to monitor the events related to the management of 
the laboratory sessions. In addition, any event related to an 
information capture or modification is useful. 

1) Mobile application 

The MobileApp instance in Figure 2 is an Android 
component installed on each tablet. The set of class is written in 
Java using the log API specific to this system. In the business 
part, we have defined a message format in order to easily extract 
the information. The creation of the log messages occurs by 
using the android.util.Log class, which allows not only to prefix 
with a semantic tab, but also to add a severity level. Thus, from 
a set of messages, a regular expression filters the relevant results 
to focus on the essential data. 

In addition to the business events, in this effort, we have 
traced the memory events provided by the garbage collector, the 
transmissions and receptions of information from the http 
network. Moreover, we used the Android Mobility Management 
API to define usage profiles such as Student profile. It allows 
business apps and data to be stored in a separate, self-contained 
space within a device. The teacher has full management control 
over the applications, data, and Student profile settings on the 
device, but has no visibility or access to the device's personal 
profile. This strong separation allows teachers to control 
MobileApp data and security without compromising student 
privacy if they are using applications other than those intended 
for the biology course. 

We have developed a Device Policy Controller (DPC), 
which logs network activity. Network activity logging helps us 
detect and track the spread of malware on tablets. Our DPC uses 
network logging APIs to report the Transmission Control 
Protocol (TCP) connections and Domain Name System (DNS) 
lookups from system network calls.  

To further process the logs on our Big Data cluster, we have 
configured DNS deny lists to detect and alert for suspicious 
behavior. We have enabled Android network logging to record 
every event from the MobileApp application. It uses the system's 
network libraries. Network logging records two types of events: 
DNS lookups and network connections. The logs capture every 
DNS query that resolves a host name to an IP address. Other 
supporting DNS queries, such as name server discovery are not 
logged. The Network Activity Logging API presents each DNS 
lookup as a DnsEvent instance. Network logging also records an 
event for each connection attempt that is part of a system 
network request. The logs capture successful and failed TCP 
connections, but User Datagram Protocol (UDP) transfers are 
not recorded. The Network Activity Logging API presents each 
connection as a ConnectEvent instance. This entire network log 
configuration is complex, but grouped in a specific concrete 
class named DevicePolicyManager. The configuration is taken 
into account asynchronously and it is important to validate it 
before distributing the tablets to students at each software 
update. 
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2) Mobile component 

The component deployed on the teacher's laptop is a 
traditional Java component (version 11) also configured with a 
message format and a log level. This provides a trace of 
important events that take place on this workstation. Log 
analysis is the fastest way to detect what went wrong, which 
makes logging in Java essential to ensure the performance and 
health of our distributed application. The goal is to minimize and 
reduce any downtime, to reduce the mean time to repair. 

We used the slf4j library because it represents a simple and 
highly configurable API. In particular, we have configured the 
directory where the log messages are saved as well as the 
expression to generate the file names with the date. The size of 
the messages is voluntarily limited, so that the subsequent 
collection is always done within a reasonable time. In addition, 
the stack trace is provided for any anomaly. Finally, the structure 
of all logging events follows a pattern consistent with the 
MobileApp component. We have added a log converter to hide 
some information such as student IDs. It is important that 
sensitive information is not traced because this data is then 
transmitted to our Big Data cluster for analysis. 

B. Server application 

The server application part is deployed on the storage server. 
This component, also written in Java (version 11), contains the 
implementation of Web service allowing on the one hand to 
receive the documents of the students but also to acknowledge 
the receptions. This part is developed with the Spring Boot 
library. We use intensively the Spring configuration for the logs, 
it is indeed a simple way to define a different log level from one 
package to another but also for the persistence aspects. The 
database is Postgresql version 10. This database server is used 
for the persistence of data resulting from the work of students 
and teachers. As in the previous section, the location of the log 
files for our server component or for the Postgresql server is 
imposed. As an example, we record the trace of any http request 
received by our Web services. The headers are kept as well as 
the response headers. The version of the http protocol used is 
http/1.1. In the same way as for the Laptop component, we have 
imposed a log message format. 

C. Big Data architecture 

This section focuses on describing our Big Data workflow 
from collection to building our AI model. We wanted to 
automate our approach as much as possible because any human 
intervention leads to blockages or even loss of information. 

In this section, we have made technical choices leading to 
the use of open source software. First, we use the Apache Kafka 
message queue server. Its role is to receive log messages coming 
from mobile devices by classifying them by topic. These topics 
are distributed and Apache Kafka acts as a mediator between two 
worlds: the mobile device and the Big Data workflow. Secondly, 
we use the Apache Flume server, which allows defining routes 
between two or more software. Thus, data can flow from 
software A to software B. In some aspects, it plays the role of an 
ETL (Extract, Transform, Load). Third, we use Apache Spark to 
develop and run our Big Data programs. This library helps build 
in-memory SQL tables that are then stored in a database such as 
MongoDB which is a document-oriented NoSQL database. Its 
strong point is to allow the use of simple foreign keys. Finally, 

Apache Spark contains a sequencer that manages the execution 
of the built programs. It plays the role of a Big Data engine. The 
fourth tool is the Apache SolR server, which plays the role of 
index creator of the data from the previous SQL tables. This 
means that we define our data index calculation algorithm with 
the SolR library. At runtime, Apache SolR only stores the 
indexes while the data is stored in the MongoDB database. The 
searches are thus faster. The fifth and last tool is Jasper Report 
from Tibco. It is a tool for building and automatically generating 
reports. It plays the role of an information distributor for end 
users. 

1) Data collection 

This part deals with the collection of log files in order to send 
them to a Kafka queue. These Kafka files are the entry points of 
our Big Data cluster. Because there are 3 different types of 
components, our best choice was to build an event-based 
collection based on scenario actions. For the MobileApp part, the 
logs are recorded locally on the device. The sending of the 
information to a Kafka topic is done when the student sends his 
final document to the storage server. This approach reduces the 
number of accesses to the Kafka topic server. Thus, the access 
point of the lab room has been used to send an http request with 
an attachment part (the document). This sending is also present 
in the logs so that the next time only a request is sent, not the 
same data but only the new ones. 

The same approach is used for the laptop component. We use 
an event-based approach. When the lab session is closed, the 
logs on the laptop are sent to a Kafka file of the same topic. The 
message volume is lower, but the information is essential when 
associating with the logs of the mobile devices. 

For the storage server, a repetitive task was our best bid 
because this central point does not reveal any particular 
interaction but a continuous flow of data. A cron table was used 
to collect logs from the Postgresql server and the server 
component to a Kafka file of the concerned topic. Data are 
automatically routed to the Kafka server where the topics are 
managed. All log message traffic can be observed via dedicated 
Kafka system scripts or by using existing JMX components 
(Java Message Extension). 

2) Big Data analysis 

A Big Data cluster that is built from Hortonworks Data 
Platform (HDP) 3.0.1 virtual machines is used to perform log 
analysis. This solution offers the advantage of deploying 
software from the Hadoop ecosystem while remaining open to 
other installations. Moreover, the Ambari console allows a 
simple configuration of servers such as Kafka for topics or 
Flume for routes. Our software architecture for Big Data is based 
on two software routes from Kafka topics to the persistence 
system. In a first version presented at the AllData 2022 
conference, our persistence layer for log messages was based on 
the HBase server. Indeed, it is installed by default in the HDP 
virtual machine and offers a data mapping on top of HDFS 
Hadoop Distributed File System). This type of column family 
oriented database has natural advantages for data parallelization. 
HBase is designed to work with key/value data and random read 
and write access patterns. Its Java library is easy to use but the 
types of data accepted are poor or very poor. It is penalizing 
because our data, essentially textual, also have integer and real 
fields following our analysis and indexing. The consequences 

36

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



are a cost in time increasing with the volume of processed data. 
While the times were acceptable for the first full-scale tests, 
when the number of course sessions increased, we observed very 
long processing times. Thanks to the monitoring of the VMs, we 
were able to understand the origin of the waits: access to the 
region servers, encoding and decoding phases of large numbers 
of data, overly complex queries, etc. 

Figure 3 shows the layer components of our project. 
Deployed on the lab room platforms, we developed Kafka 
producers for the peripherals, the teaching laptop and the storage 
server. All these producers issue log messages in a Kafka topic 
that is partitioned on the server. This improves the access time 
to the information. 

 

Figure 3. Big Data Software architecture. 

The topic partition is the unit of parallelism in Kafka. On 
both the producer and the broker side, writes to different 
partitions are done fully in parallel. At the output of the Kafka 
topics, two Flume routes have been defined within this 
experiment, each managed by an agent. A first route (red on 
Figure 3) consumes the messages in order to transform them for 
some residual format differences and store them in a document-
oriented database, MongoDB, installed on the cluster. A second 
route (green on Figure 3) consumes the messages to index them 
according to a Solr data schema. Each persistence system has its 
own role: MongoDB keeps the structured log data and Solr 
keeps the indexes on these data to enrich the searches. We 
consider MongoDB and Solr as two data sources accessible from 
Spark components. The Spark SQL API is easily used to write 
to MongoDB collections on a Hadoop cluster. In contrast, our 
Spark to Solr consumer does not have such an easily accessible 
API and we used Solr Cloud REST services for our updates. 

The data indexed by Solr enables our system to classify the 
messages in order to carry out maintenance operations on the 
various materials. A relevant option here was a linear classifier 
with margin calculation. In fact, in several evaluations of AI 
models, it is established that in the category of linear classifiers, 
the Support Vector Machine (SVM) are those that obtain the best 
results. Another advantage of SVMs, and one that is important 
to note, is that they are very efficient when there is little training 
data: while other algorithms would fail to generalize correctly, 
SVMs are observed to be much more efficient. However, when 
there is too much data, the SVM tends to decrease in 
performance. 

In order to understand the MongoDB events and their 
distribution on the cluster, we have defined a report template to 
generate a pdf report. It summarizes the activities by collection, 
their events, in particular the use of shards. The use of a template 
guarantees the scalability of these reports according to the 

evolutions of the consumer SQL Spark. We added a page header 
with a table name and the current edition date and a page footer 
with the page number. The column header band is printed at the 
beginning of each detail column with the column names in a 
tabular report. This means the part name of a log message. 

3) Log Data storage 

A first Spark consumer (named "Spark SQL consumer") has 
an essential task to recognize and process the contents of the file 
and load them into an SQL table in memory, perform filter 
operations and put them in a common format. Then, the route 
continues with a backup of these data in MongoDB collections. 
The role of this Flume route is to store structured information in 
a document-oriented database (the red route in Figure 3). In this 
effort, we experimented keeping software routes with Flume for 
event routing and defined Kafka topics to ensure decorrelation 
between components. This makes it possible to simplify the 
management of components, among other things for software 
updates. In addition, the Kafka API allows more controls on the 
management of messages associated with a topic; for example 
time management. We have added rules to ensure that a received 
message is processed within an hour (from a configuration file). 
In that case, the system raises an alert and the data saved in the 
local file system. 

A Flume agent is an independent daemon process, which 
manages the red route. The Flume agent ingests the streaming 
data from the Kafka topic source to the Spark SQL sink. The 
channel between the source and the sink is a temporary storage. 
It receives the events from the Kafka source and buffers them 
until they are consumed by Spark sinks. It acts as a bridge 
between the source and the sinks. We have added a Flume 
interceptor to decide what sort of data should pass through to the 
channel. It plays first a filter role in case of unsuitable data from 
the Kafka source and inserts the time in nanosecond into the 
event header. If the event already contains a timestamp, it will 
be overwritten with the current time. 

In a previous prototype of this project, we noticed the 
performance limits of a storage solution based on HBase. 
Although it is distributed on the cluster, the distribution of data 
in column families was not well adapted to our data types and 
our queries when searching for information for the AI model 
construction. HBase remains ideal for very large-scale use cases 
but with a simple format. This is not the case with our formatted 
log messages. HBase offers very fast searches if we are looking 
for information on a particular key, but MongoDB provides a 
much richer model that allows us to follow the evolution of 
information during its life cycle. MongoDB's data model is 
relational and allows us multi-document ACID transactions, and 
its query language is rich. 

The HBase persistence system was uninstalled from the 
reference VM to install the MongoDB suite with monitoring and 
query software. Therefore, MongoDB becomes a part of the 
Ambari stack. We monitor and manage this service remotely via 
REST API. MongoDB offers a wide choice of cluster types to 
create a specific cluster. Each type represents feature limitations 
and space limitations of the specific cluster. We chose a 10 GB 
space for our new prototype. Then, we created accounts for the 
projects that use the collections in the database, with an 
associated authentication method. We have customized the 
access privileges to the database. MongoDB schema design 
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works a lot differently than relational schema design because 
there is no rule and no obvious process. Two different 
applications that use the same exact data have different schemas 
if the applications are used distinct manners. 

We have created our collections by using JSON schema 
(JavaScript Object Notation). If this definition comes from the 
structure of the log messages, we have added additional fields to 
track the processing (date of analysis, date of inclusion in model, 
etc.). We have favoured the integration of data in the same 
collection to reduce joins. We only use tables of a size fixed by 
the schema [Table I]. Finally, our data schema depends 
essentially on the access to our data during the construction of 
the AI model. We used references to data only to avoid 
duplication of data and avoid data cycles. Log entries are written 
as a sequence of key-value pairs, where each key indicates a log 
message field type, such as “origin” or "severity", and each 
corresponding value records the associated logging information 
for that field type. 

TABLE I.  STRUCTURE OF THE MAIN COLLECTION 

Field name  Type Description 

ts DateTime 
Timestamp of the log message in ISO-

8601 format. 

severity String Short severity code of the log message. 

id Integer Unique identifier for the log statement. 

context String 
Name of the thread that caused the log 

statement. 

message String 
Log output message passed from the 

server or driver. 

attributes Object 
Optional: one or more key-value pairs for 

additional log attributes (limit to 10) 

tags Array 
Strings representing any tags applicable to 

the log statement (limit to 10 strings) 

origin String 
Network description of the message 

source. 

creation DateTime 
Timestamp of the log message insertion 

event in MogoDB 

consumption DateTime 
Timestamp of the consumption event of 

the log message into the AI model 

report DateTime 
Timestamp of the consumption event of 
the log message into the generated report 

 

Our Spark SQL consumer uses the Spark SQL module to 
store data in a MongoDB database whose schema is structured 
in collections of documents. The labels of these key/value pair 
are involved in the data schema of the second Spark consumer. 
Our MongoDB cluster is used in data replication mode. This 
means that replication is done on a group of MongoDB servers 
that hold copies of our data. This is a critical property for 
deployment as it ensures high availability and redundancy, in 
case of outages and maintenance periods. 

4) Log Data indexing 

In parallel, another route has the role of indexing the data 
from the logs (green route in Figure 3). From the same Kafka 
source, a second Spark consumer (named "Spark Solr 
consumer") takes care of data indexing while respecting the Solr 
schema. The index is updated for the query steps and then the 
use of a model for the prediction of maintenance tasks. Solr 
Cloud is the indexing and search engine. It is completely open 
and allows us to personalize text analyses. It allows a close link 
with MongoDB, database so the schemas used by both tools are 

designed in a closely related way. On our Big Data cluster, the 
Solr installation is also distributed. In that context, we have four 
shards with a replication rate equals to three. This allows us to 
distribute operations by reducing blockages due to frequent 
indexing. We have configured, not only the schema, but also the 
data handlers (schema.xml and solrconfig.xml files).  

Our schema defines the structure of the documents that are 
indexed into Solr. This means the set of fields that they contain, 
and define the datatype of those fields. It configures also how 
field types are processed during indexing and querying. This 
allows us to introduce our own parsing strategy via class 
programming. Having evolved our persistence layer in order to 
have a richer data model, it seems natural to choose a data 
schema compatible between MongoDB on the one hand and 
Apache Solr on the other hand. The data processing being 
separate, we had to adapt ourselves in order to make them match 
as well as possible. For example, the Datetime type of 
MongoDB plays the same role as the DatePointField type of Solr 
but its interpretation is not identical. 

The Spark Solr consumer uses the Spring Data and SolrJ 
library to index the data read from the Kafka topic. It splits the 
data next to the Solr schema where the description of each type 
includes a "docValue" attribute, which is the link to the 
MongoDB identifier. For each Solr type, our configuration 
provides a given analyzer. We have developed some of the 
analyzers in order to keep richer data than simple raw data from 
log files. Finally, the semantic additions that we add in our 
analysis are essential for the evaluation of Solr query. Likewise, 
we store the calculated metrics in MongoDB main collection as 
an attribute for control. SolrCloud is deployed on the cluster 
through the same Zookeeper agents. Thus, the index persistence 
system is also replicated. We therefore separate the concepts of 
backup and search via two distinct components. This reduces the 
blockages related to frequent updates of our Mongo database 
[18]. 

At the beginning of our Solr design, we have built our 
schema based on our data types. Some of them were already 
defined, but some others are new. In addition, we have 
implemented new data classes for the new field types. For 
example, we used RankFieldType as a type of some fields in our 
schema. It allows us to manage enumeration values from the log 
message. Then, it becomes a sub class of FieldType in our Solr 
plugin. We have redesigned Solr filters so that they can be used 
in our previous setups. Our objective was to standardize the 
values present in the logs coming from different servers. Indeed, 
the messages provide information of the form <attribute, value> 
where the values certainly have units. However, the logs do not 
always provide the same units for the same attribute calculation. 
The analysis phase is the place to impose a measurement system 
in order to be able to compare the results later. The development 
pattern proposed by SolrJ is simple because it proposes abstract 
classes like TokenFilter and TokenFilterFactory then to build 
inherited classes. Then we have to build a plugin for Solr and 
drop it in the technical directory agreed in the installation of the 
tool [19]. 

5) Model factory 
In Artificial Intelligence, Support Vector Machine (SVM) 

models are a set of supervised learning techniques designed to 
solve discrimination and regression problems. SVMs have been 
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applied to a large number of fields (bioinformatics, information 
research, computer vision, finance, etc.) [20]. SVM models are 
classifiers, which are based on two key ideas, which allow to 
deal with nonlinear discrimination problems, and to reformulate 
the ranking problem as a quadratic optimization problem. In our 
project, SVMs can be used to decide to which class of problem 
a recognized sample belongs. The weight of these classes if 
linked to the Solr metrics on these names. This amounts to 
predicting the value of a variable, which corresponds to an 
anomaly. 

All filtered log entries are potentially useful input data if it is 
possible that there are correlations between informational 
messages, warnings, and errors. Sometimes the correlation is 
strong and therefore critical to maximizing the learning rate. We 
have built a specific component based on Spark MLlib. It 
supports binary classification with linear SVM. Its linear SVMs 
algorithm outputs an SVM model [21]. We applied prior 
processing to the data from our Mongo collections before 
building our decision modelling. These processes are grouped 
together in a pipeline, which leads to the creation of the SVM 
model with the configuration of its hyper-parameters such as 
weightCol. Part of the configuration of these parameters comes 
from metrics calculated by our indexing engine (Figure 2). Once 
created and tested, the model goes into action to participate in 
the prediction of incidents. We use a new version of the SVM 
model builder based on distributed data augmented. This comes 
from an article written Nguyen, Le and Phung [22]. 

6) Report generation 

Jasper Report library allows us to build weekly graphical 
reports on indexing activity. MongoDB events are collected for 
displaying. The goal is to correlate the volumes of data saved in 
the database with the updates of the AI model. We would like to 
refine this report template in order to have metrics to decide on 
the model update. Currently, only MongoDB movements are 
represented graphically. Based on an MongoDB handler, we 
handle the change events at runtime and send data beans to the 
Jasper Report Server. 

Jasper Report has its own query language in JSON format. It 
allows you to specify the data to be extracted from MongoDB. 
The connector converts this request into appropriate API calls 
and uses the MongoDB Java connector to query our MongoDB 
cluster. In particular, it is possible to perform aggregation in the 
form of map-reduce, but more efficient than a simple pipeline. 
The map-reduce key specifies a map-reduce operation whose 
result will be used for the current query. The collection name 
specifies the target collection. This optimized extraction gives us 
better performance when building the AI model. 

V. DATA STREAMING PART  

A. Data streaming 

Our component called Spark SQL Consumer contains a 
Kafka receiver class, which runs an executor as a long-running 
task. Each receiver is responsible for exactly one input 
discretized stream (called DStream). In the context of the first 
Flume route, this stream connects the Spark streaming to the 
external Kafka data source for reading input log data.  

As an example in Table II, we provide an example of a log 
messages from a Kafka topic called “RedTopic”: 

TABLE II.  MESSAGE FROM KAFKA TOPIC 

{ 

  "ts": "2020-10-02T18:10:22Z", 

  "severity": "INFO", 

  "id": 192674, 

  "context": "kafka.server.KafkaServer", 

  "message": "1000ms metadata for topic = 

RedTopic partition = part00002 not 

propagated to all brokers", 

  "attributes": { 

     "process-id": 4122, 

     "event-type": "ReadEvent" 

  }, 

  "tags": [ 

       "Startup" 

  ] 

} 

Structured Streaming, allows us to write streaming queries in 
the same way as batch queries. Spark streaming uses micro-
batch processing, which means that data is delivered in batches 
to executors. If the executor idle time is less than the time 
required to process the batch, the executor is constantly added 
and then removed. If the executor idle time is longer than the 
batch time, the executor is never deleted. Therefore, we have 
disabled dynamic allocation by defining when running 
streaming applications. A Kafka partition is only be consumed 
by one executor, one executor consumes multiple Kafka 
partitions. This is consistent with Spark Streaming. 

B. Filtered log strategy 

Because the log data rate is high, our component reads from 
Kafka in parallel. Kafka stores the data logs in topics, with each 
topic consisting of a configurable number of partitions. The 
number of partitions of a topic is an important key for 
performance considerations as this number is an upper bound on 
the consumer parallelism. If a topic has N partitions, then our 
component can only consume this topic with a maximum of N 
threads in parallel. In our experiment, the Kafka partition 
number is set to four. 

Since log data are collected from a variety of sources, data 
sets often use different naming conventions for similar 
informational elements. The Spark SQL Consumer component 
aims to apply name conventions and a common structure. The 
ability to correlate the data from different sources is a crucial 
aspect of log analysis. Using normalization to assign the same 
terminology to similar aspects can help reduce confusion and 
error during analysis [21]. This case occurs when log messages 
contain values with different units or distinct scales. The log files 
are grouped under topics. We apply transformations depending 
on the topic the data come from. The filtered logs are cleaned 
and reorganized and then are ready for an export into a 
MongoDB instance. 

In the next step, the Spark SQL Consumer component inserts 
the cleaned log data into memory data frames backed to a 
schema. We have defined a mapping between MongoDB and 
Spark tables, called Table Catalog. There are two main 
difficulties of this catalog. 

a) The identifier definition implies the creation of a specific 
index generator in our component.  
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b) The mapping between table column in Spark and the 
document in MongoDB needs a component for dynamic data 
frame creation with Spark SQL.  

The MongoDB sink exploits the parallelism on the set of 
MongoDB nodes. A MongoDB replication is enforced by 
providing data redundancy and high availability over more than 
one MongoDB server. In addition to fault tolerance, replica sets 
also provide extra read operations capacity for the MongoDB 
cluster, directing clients to the additional servers, subsequently 
reducing the overall load of the cluster. A MongoDB cluster has 
a primary node and a set of secondary nodes in order to be 
considered a replica set. One primary node exists, and its role is 
to receive all write operations. All changes on the primary 
node’s data sets are recorded in a special capped collection 
called the operation log (oplog). The role of the secondary nodes 
is to then replicate the primary node’s operation log and make 
sure that the data sets reflect exactly the primary’s data sets. 

 The driver Spark generates tasks per data set. The tasks are 
sent to the preferred executors collocated with a Mongo server, 
and are performed in parallel in the executors to achieve better 
data locality and concurrency. By the end of an exportation, a 
timed window a log data are stored into MongoDB collections. 

C. Index construction and query 

The strategy of the Spark Solr Consumer component deals 
with the ingestion of the log data into Apache Solr for search and 
query. The pipeline is built with Apache Spark and Apache 
Spark Solr connector. Spark framework is used for distributed in 
memory compute, transform and ingest to build the end-to-end 
pipeline.  

The Apache MongoDB role is the log storage and the 
Apache Solr role is the log indexing. Both are configured in 
cloud mode Multiple Solr servers are easily scaled up by 
increasing server nodes. The Apache Solr collection, which 
plays the role of a SQL table, is configured with shards. The 
definition of shard is based on the number of partitions and the 
replicas rate for fault tolerance ability. The Spark executors run 
a task, which transforms and enriches each log message (format 
detection). Then, the Solr client takes the control and send a 
REST request to Solr Cloud Engine. Finally, depending on the 
Solr leader, a shard is updated. 

We use also Solr Cloud as a data source Spark when we 
create our ML model. We send requests from Spark ML classes 
and read results from Solr (with the use of Solr Resilient 
Distributed Dataset (SolrRDD class). The pre statement of the 
requests is different from the analysis of the log document. Their 
configuration follows another analysis process.  With Spark 
SQL, we expose the results as SQL tables in the Spark session. 
These data frames are the base of our ML model construction. 
The metrics called Term Factor (TF) and Inverse Document 
Frequency (IDF) are key features for the ML model. We have 
also used boost factor for customizing the weight of part of the 
log message. The data in the database is updated with the 
addition of attributes to the documents that have just been read. 
Finally, the use of this data for the AI model is recorded in order 
to distinguish it from new information to come. 

VI. RESULTS AND TASK MAINTENANCE 

We have several kinds of results. A part is about our 
architecture and the capacity to treat log messages over time. 
Another part is about the classification of log messages. The 
concepts behind SVM algorithm are relatively simple. The 
classifier separates data points using a hyperplane with the 
largest amount of margin. In our working context, the margin 
between log patterns is a suitable discriminant. 

A. Data features 

For our tests, we used previously saved log files from a 
month of application server and database server operations. We 
were interested in the performance of the two Spark consumers: 
For Spark SQL Consumer, the volume of data to analyze is 102.9 
M rows in HBase. To exploit this data, we used a cluster of eight 
nodes on which we deployed Spark and MongoDB. The duration 
of the tests varies between 38 minutes and 3 hours and 51 
minutes. 

 

Figure 4. Spark consumer runtime versus number of partitions. 

For Spark Solr Consumer, the volume of data indexed is 
100.5M rows indexed in about an hour. The number of 
documents indexed per second is 35k. We only installed Solr on 
four nodes with four shards and a replication rate of three. We 
have seen improved results by increasing the number of Spark 
partitions (RangePartitioner). At runtime for our data set based 
on a unique log format, the cost of Spark SQL consumer 
decreases when the partitioning of the dataset increases, as 
illustrated in Figure 4. The X-axis represents the partition 
number and the Y-axis represents the time consuming. We have 
to oversize the partitions and the gains are much less interesting. 

SVM offers very high accuracy compared to other classifiers 
such as logistic regression, and trees. There are several modes of 
assessment. The first is technical; it is obtained thanks to the 
framework used for the development (Spark MLlib). The second 
is more empirical because it relates to the use of this model and 
the anomaly detection rate on a known dataset. The analytical 
expression of the features precision, recall of retrieved log 
messages that are relevant to the find: Precision (1) is the fraction 
of retrieved log messages that are relevant to the find: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|


Recall (2) is the fraction of log messages that are relevant to 
the query that are successfully retrieved: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|
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𝐹𝛽 = (1 + 𝛽2) ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
                                

In Table III, we have four classes and for each class we 
compute three metrics: true positive (tp), false positive (fp) and 
false negative (fn). For instance, for the third class, we note these 
numbers tp3, fp3 and fn3. From these values, we compute 
precision by label, recall by label and F-score by label. 

TABLE III.  SVM MODEL MEASURES 

Class 

number 

Metrics 

Precision by label Recall by label F1 score by label 

0.0000 0.8158 0.8901 0.8966 

1.0000 0.9110 0.9810 0.9910 

2.0000 0.8545 0.7857 0.8515 

3.0000 0.8524 0.7589 0.8331 

Our prediction models are similar to a multiclass 
classification. We have several possible anomaly classes or 
labels, and the concept of label-based metrics is useful in our 
case. Precision is the measure of accuracy on all labels. This is 
the number of times a class of anomaly has been correctly 
predicted (true positives) normalized by the number of data 
points. Label precision takes into account only one class and 
measures the number of times a specific label has been predicted 
correctly normalized by the number of times that label appears 
in the output. The last observations are: 

 Weighted precision = 0.9017 

 Weighted recall = 0.9318 

 Weighted F1 score = 0.9817 

 Weighted false positive rate = 0.04009 

Our results for four classes are within acceptable ranges of 
values for the use of the model to be accepted. 

The test empirical phase on the SVM model was not 
extensive enough to be conclusive. However, our results suggest 
that increasing the number of log patterns deteriorates the 
performance. In addition, we defined a finite set of log patterns 
for a targeted anomaly detection approach. 

B. Reporting 

1) From storage activities 

MongoDB is not well designed for analytics purpose, we 
have set up a SQL data warehouse, and we have used Apache 
Camel to load data into a H2 warehouse. Apache Camel is a 
simple ELT (Extract Load and Transform) data from a data 
source into a SQL sink [23]. Thanks to the events performed on 
our collections, we can visualize the traffic variations on our 
collections according to the sampling duration we have chosen 
(Figure 5). We also monitor AI model updates following log 
message collections. These results are first displayed in the 
weekly report. We also count events related to the use of 
damaged replicas as well as all incidents during our data 
retrievals. In the end, we currently get a set of tables 
summarizing the activity on the data in our persistence layer. As 
a first observable result, we see that the number of unavailability 
is much lower than in our previous HBase-based prototype. 

 

Figure 5. JSR and two data sources 

2) From indexing activities 

We have created a custom data source to connect to Apache 
Solr, therefore we are able to retrieve data and provide them back 
in following the JRDataSource interface of Jasper Report. With 
this access point, we have extracted metrics about the document 
cache and Query result cache. Both give an overview of the Solr 
activities and is meaningful for the analysts. We have deployed 
the CData JDBC Driver on Jasper Reports to provide MongoDB 
data access from reports. We have found that running the 
underlying query and getting the data to our report takes the most 
time. When we generate many pages per report, there is 
overhead to send that to the browser.  

For the reporting phase, we have developed two report 
templates based on the use of a JDBC adapter. With system 
requests, we collect data about the last events (Create, Update, 
and Delete). From these H2 view, we have designed the report 
templates with cross tables. For the storage phase, we compute 
and display the number of Update events per timed window or 
grouped over a period. We periodically updated the data across 
report runs. We export the PDF files to the output repository 
where a web server manages them. 

VII. CONCLUSION AND FUTURE WORK 

We have presented our approach on log analysis and 
maintenance task prediction. We showed how an index engine 
is crucial for a suitable query engine. We have developed 
specific plugin for customizing the field types of our documents, 
but also for filtering the information from the log message. 
Because indexing and storage are the two sides of our study, we 
have separated the storage into a Hadoop database. We have 
stressed the key role of our Spark components, one per data 
source. The partition management is the key concept for 
improving the performance of the Spark SQL component. The 
data storage into data frames during the micro batches is 
particularly suitable for the management of flows originating 
from Kafka files. We observed that our approach supported a 
large volume of logs. 

From the filtered logs, we presented the construction of our 
SVM model based on work from the Center for Pattern 
Recognition and Data Analytics, Deakin University, (Australia). 
We were thus able to classify the recognized log patterns into 
classes of anomalies. This means that we can identify the 
associated maintenance operations. Finally, to measure the 
impact of our distributed analysis system, we wanted to build 
automatically reports based on templates and highlight indexing 
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and storage activity. Our study also shows the limits that we 
want to push back, such as the management of log patterns. The 
use of an AI model is not the guarantee of an optimal result. We 
want to make more. 

A first perspective will be to improve the indexing process 
based on a custom schema. We think that the use of DisMax 
query parser could be more suitable in log requests where 
messages are simple structured sentences. The similarity 
detection makes DisMax the appropriate query parser for short 
structured messages. The log format has a deep impact on the 
Solr schema definition and about the anomaly detection. We are 
going to evolve our approach. In the future, we want to extract 
dynamically the log format instead of the use of a static 
definition. We think also about malicious messages, which can 
perturb the indexing process and introduce bad request in our 
prediction step. The challenge needs to manage a set of 
malicious patterns and the quarantine of some message 
sequences. 

A second perspective on the performance comparison 
obtained with the MongoDB cluster with replication and a 
sharded MongoDB cluster or horizontal scaling. In that context, 
data are distributed across many MongoDB servers. The main 
purpose of sharded MongoDB is to scale reads and writes along 
multiple shards and then to reduce the communication time. 
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