
New Software Architecture for Monitoring Mobile Applications
Mobile Data Collection and Indexing for Mobile Application Monitoring

Mourlin Fabrice
Algorithmic, Complexity and Logic

Laboratory

UPEC University

Cretéil, France

e-mail: fabrice.mourlin@u-pec.fr

Djiken Guy Lahlou

Applied Computer Science

Laboratory

Douala University

Douala, Cameroon

e-mail: gdjiken@fs-univ-douala.cm

Laurent Nel
Leuville Objects

Paris-Saclay University

Paris, France

e-mail: laurent.nel@universite-paris-

saclay.fr

Abstract—The monitoring activity remains an activity that

disturbs the system under control. We all try to minimize these

disturbances in order to observe a behavior as close as possible to

reality. In IT, this requires the implementation of a specific

software architecture. Our use case concerns the monitoring of

embedded applications on mobile devices for which the collected

data sometimes contain errors that we want to explain. To this end,

we seek to trace the important events of our calculations in order

to qualify the anomalies in our processing. We have implemented

a monitoring layer within mobile applications in order to perform

intelligent monitoring on a set of mobile devices. We have defined

a Big Data workflow to collect, index and store log data for

submission to an artificial intelligence (AI) model. A crucial aspect

of this collection relies on the use of partitioned topics and thus a

better distribution of the data. With the increase of the data flow

to be processed, the performance remains insufficient and we have

opted for a persistence layer adapted to our data processing. We

detect behavioral anomalies through the analysis of software logs

deployed on embedded devices. Based on the patterns recognized

in the logs, our AI model provides us with a sequence of system

operations. These operations are then scheduled to redeploy a

service, change a driver, perform a library update, etc. In the end,

we build management reports every week for the maintenance

team. These documents help track maintenance activities. They

provide a record of important events such as equipment downtime

or removal of obsolete services.

Keywords— Big Data; indexing; log analysis; distributed

application; AI model; storage efficiency; anomaly detection,

explanatory report.

I. INTRODUCTION

Software monitoring remains without a doubt an active area
of research. The diversity of situations is great because software
supports very different deployment constraints. From the
application installed on an application server, to the component
running on a micro controller, the situations are very different.
There is no single platform to monitor them. Therefore,
everyone tries to specify his or her typical use case and cover a
relevant sub-domain. The monitoring of mobile applications
remains complex because it relies on operating systems with
specific management rules. A crucial principle is to consider
software administration as a facet of any mobile application.
Thus, any installed application exposes resources that are used

to evaluate its state. This one can be judged abnormal or not and
actions are then implemented.

In order to have this information, developers use logging
application programming interfaces (APIs) to transmit all the
behavioral data. To make the information usable, the log
messages usually have a format that facilitates information
extraction. Each message usually has a priority level or severity
hierarchy and a timestamp associated with an origin. The
application administrator manages the level of expressiveness
per module in order not to suffer from an excess of information.

The applications of log messages are numerous; they
communicate an internal state to the users, but they can offer
more like the reconstruction of a state. Database servers like
Postgresql have log files containing the history of activity, from
database creation to application connection triggers. Embedded
applications have the same need. An Android application has
access to a logging API, whether it is written in Java, Kotlin or
C++. An Android logger corresponds to a variable in memory.
It can be stored in a file or sent to a socket.

Log messages play a key role in the life cycle of a project.
From the unit, integration, system and functional testing phases,
logs are used to highlight processing steps. During development,
they provide a view of the application's progress in terms of
network, security, activity, etc. In the case of an embedded
application, this data cannot be displayed because the device
does not necessarily have a screen and it is useful to redirect the
information into a persistence unit (memory card, memory stick,
etc.). During the debugging phase, these same messages have a
tag that allows them to be filtered, or even to specify a different
level of severity from one packet to another to configure the
feedback. In this study, the effort is focused on the analysis of
the log messages used. For this purpose, we use topics on which
each device publishes its messages. On the one hand, this allows
partitioning the messages into categories; on the other hand, the
processing of the published messages is easily distributed [1].

The difficulties linked to the analysis of logs are firstly linked
to the volume of messages received. Indeed, this volume grows
rapidly with the number of sources. Thus, in the case of
monitoring embedded applications, when the number of devices
increases, it is no longer possible in human terms to analyze the
logs with serenity. The automation of this process is necessary.

32

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A second difficulty is the flow of these messages, which depends
on the use of the monitored applications. When the number of
users increases, it is then necessary to set up a sampling of
information. The third difficulty is that it is not uncommon for
each embedded application to have its own log format, even if it
is generated by the same API. In this case, it is necessary to
consider a standardization of the formats during the collection in
order to be able to extract information from different sources and
to put them in a causal relationship. After processing, these log
messages must also be stored in a persistence system capable of
supporting variations in volume, velocity and variable format
(3V of Big Data). This persistence system then becomes the
underlying information center of the indexing module.

The set of properties related to the processing of log
messages naturally leads us to consider this work as a Big Data
workflow applied on a temporal scale. Indeed, it is essential to
react to detected problems before they get worse. In this paper,
we present the results of our work, which started more than two
years ago with the Big Data prototyping of an anomaly
prediction solution for Android applications. These mobile
applications are used to take pictures of biology experiments and
visualize them. Users can annotate each photo and reorganize
the photos into a document related to a lab experiment. Users
export their final document from the mobile device to a web
server accessible from the Wi-Fi network at the experiment site.

The rest of this paper is structured as follows. Section II
describes the works close to our domain. Section III provides a
precise description of our use case. Section IV addresses the
software architecture of our distributed platform and more
precisely the partitioning of log data. Section V goes into finer
details on our streaming approach, which includes an indexing
step and a new storage layer oriented distributed document.
Section VI focuses on our results, the impact on the maintenance
task and the generation of explanatory report. The
acknowledgement and conclusions close the article.

II. RELATED WORKS

Predictive log analysis is a widely studied topic. Part of the
work focuses on enhancing the information itself. A second part
concerns the use of this data to react, alert, and more generally
automates a process.

A. Log analysis methods

Adam Oliner et al. describe, through several use cases, the
information useful to report during execution for software
monitoring [2]. They stress, among other things, the importance
of adopting a consistent format throughout an application. They
make the analogy between the follow-up of manufacturing on
one meeting on a production line and the follow-up of the
software activity, which is the subject of this work.

T. Yen et al. describe how to leverage distributed application
logs for the detection of suspicious activity on corporate
networks [3]. Their work highlights the use of the beehive tool
for extracting information and producing easily exploitable
messages. Analysis against a signature database is then possible.

S. He et al. present six methods for log analysis of distributed
systems: three of them are supervised and three others are
unsupervised. The authors make a comparative evaluation of
these methods on a significant volume of log messages. They
emphasize the strengths of software monitoring task automation

[4] but the authors do not take into account the model storage
regarding the properties of their data.

In more constrained fields such as real time, log analysis
systems must be able to detect an anomaly in a limited time. B.
Debnath et al. present LogLens that automates the process of
anomaly detection from logs with minimal target system
knowledge [5]. LogLens presents an extensible index process
based on new metrics (term frequency and boost factors). The
use of temporal constraint also intervenes in the recognition of
behavioral pattern. Therefore, abnormal events are defined as
visible in a time window while other events are not. This allows
semi-automatic real-time device monitoring.

B. Log analysis and machine learning

The development of machine learning has greatly impacted
the use of logs. Depending on the work, studies lead to the
detection of anomalies or the discovery of software attacks.

Q. Cao et al. presented a work on web server log analysis for
intrusion detection and server load reduction. The use of two-
level AI model allowed them to increase the efficiency of their
detection system. In this approach, the use of decision trees
structures the log data [6].

W. Li considers that logs are a complement to the software-
testing phase. Since the time allocated to testing is insufficient,
he presents a failure diagnosis strategy based on the use of an AI
model [7]. He provides a comparative study between several
models.

There is a large body of work on network log analysis for
various protocols including HTTP [8] or data-centric protocols
such as Named Domain Networking (NDN) [9]. In all cases, the
strategy is based on formatted messages where part of the
information is filtered and then submitted to a model for
prediction. Once again, the nature of the persistence system is
not highlighted because the constraints of volume and data rate
are not important.

C. Text indexing and storage

Textual data is widely used in Big Data, especially in
linguistic analysis. It is mostly unstructured data, not referenced
in a database. These data are therefore not interpretable by
machines. S. Melink and S. Raghavan have built a distributed
full text-indexing algorithm. They propose a storage scheme
using an embedded database system of the H2 type [10]. Their
results are promising on data from web browsing.

S. Melink and S. Raghavan have defined a novel pipelining
technique for structuring the core index-building system. It
substantially reduces the index construction time but the data
and the index are stored in the same persistence layer. They
provide a storage scheme for creating and managing inverted
files using an embedded database system [11]. They present
performance results obtained during experiments on a
distributed web indexing testbed where we see that the data
structure has no impact on the type of database used.

M. A. Qader and S. Cheng gather a very interesting
comparative study of indexing techniques in the world of
NoSQL databases. They allow a fast writing flow and fast
searches on the primary key. Some of these persistence systems
have added support for secondary indexes. These new indexes
are useful for queries on non-primary attributes. Each NoSQL
database usually supports a secondary index type. Their
conclusion shows that there is no single system, which supports

33

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

all secondary index types [12]. The authors highlight two classes
of indexes: embedded indexes that belong to the storage system
and autonomous indexes that are data structures distinct from the
stored data. Their results show that none of these indexing
techniques dominates the others. On the other hand, embedded
indexes provide higher write throughput and are more memory
efficient, while standalone secondary indexes provide faster
response times when querying. In the end, the optimal choice of
secondary index depends on the workload of the application,
which is the case when analyzing log messages.

D. Reporting of artificial intelligence prediction model

In order to obtain a set of guidelines for the use of predictive
machine learning models, it is essential to build regular reports
on the quality of predictions. In the context of clinical
experiments, W. Luo et al. published a rulebook for AI model
development [13].

P. Henderson et al. present a systematic reporting of the
energy and carbon footprints of machine learning. The authors’
goal is to adapt an efficient reinforcement learning strategy and
explain the reinforcement learning events [14]. Events from the
environment are associated with their evaluation and recorded.
The report traces the life cycle of the AI model.

L.M. Stevens et al. present a recommendation for transparent
and structured reporting of Machine Learning (ML) analysis
results specifically directed at clinical researchers [15]. Their
goal is to convince many clinicians and researchers who are not
yet familiar with evaluating and interpreting ML analyses. The
model provides evaluation measures that offer a means of
comparison between models and underlying strategies.

D.P. Dos Santos et al. take a similar approach to the analysis
of radiological images. Their quality is uneven and it becomes
difficult to provide a reproducible analysis approach. It then
becomes essential to build reports to explain the state of the AI
model that led to certain predictions. The authors explain how to
structure to help build a post analysis explanation [16].

The use of AI models relies on data from persistence
systems. The use of Big Data processing aims to bring data from
a data lake into a data lab. This data lab usually consists of a
NoSQL database and events such as insertion and update have a
strategic role on the life cycle of the associated model. S. Afonin,
et al. describe an automatic report generation system based on
the database activity. They use a zero-code solution where the
underlying software is either Jasper Report [17]. The interest is
the provision of a report in a format adapted to the use (Web,
pdf, etc.).

III. USE CASE DESCRIPTION

A. Context Description

In biology trainings, many experiments are done where
students are asked to prepare, perform and follow up. In this
context, mobile devices are provided to take pictures, record
sounds, or even use the device's sensors to collect data. To save
different documents in the memory of the mobile device, a
software suite is installed. It allows the authentication of the
user, the dating of each collected information and the transfer at
the end of the experiment to a server for validation.

During an experiment, all the devices are connected to the
laboratory Wi-Fi network. This connection authorizes data
exchange with the laboratory server, which will receive all the

students' data at the end of the experiment for validation by the
supervisor. This network connection is also used to send log
messages to monitor the activity of each mobile device. This
concerns the capture of information: taking a picture or
recording a single comment or a short video. This type of
recording is not often used during an experiment because several
students are monitoring the same experiment and this leads to
noise pollution for the other participants.

The analysis of an experiment by a group of twenty students
takes place over a period of one-day maximum in the same
experimentation room. This means that the connection is made
with the same access point for all devices. Even if the batteries
are initially charged, it is possible at any time to have a
recharging point in the room.

Laboratory observation sessions can be short in the early
grades, such as showing the release of gas bubbles by an aquatic
plant. Students construct a document to highlight the conditions
of this phenomenon and then make a video to support their
comments. Then, they observe the role of light and measure its
value with the light sensor of the Android tablet. A second video
will show the release of gas bubbles by an aquatic plant in the
presence of light. In the absence of light, the students make a
comparison with pictures.

In the lab room, a group of students follows an experiment
with one tablet per student. Each tablet allows a student to take
pictures or videos in order to build his observations of an
experiment. The student first saves them locally on the tablet. A
typical scenario consists of one Wi-Fi access point per room, a
set of mobile devices and a remote storage server for document
backups at the end of the session. This scenario is to be
multiplied by the number of groups, possibly in parallel in
different lab rooms. Two properties are thus highlighted: on the
one hand, a local authentication phase on the mobile device, on
the other hand a centralized storage server (see Figure 1). In
addition, the lab room has a laptop for the teacher and a shared
printer. The teacher thus has access to the documents that have
been saved on the storage server. Furthermore, he can observe
the tablets connected to the lab network and record the addresses
of the tablets participating in the study.

The first router provides a Wi-Fi network to the devices in
the lab room. The second router provides access to the Big Data
workflow, which starts with a set of message queues available to
mobile devices. Without this bridge between the lab room and

Figure 1. Network diagram of a laboratory room.

34

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the data center, we would not have a mobile data responsive
architecture.

B. Scenario description

In order to describe a nominal scenario more precisely, let us
take the case of a student from the beginning of a lab session to
the submission of a document at the end of the session.

Figure 2 describes the general flow of the scenario in the
Unified Modeling Language (UML) notation; it concerns an
observation session (Lab Session). The biology teacher manages
this session. Each student manages their own documents locally
on their local device. Thus, the student takes notes, photos,
videos and measurements via the available sensors. For
example, infrared radiation allows the detection of the closest
objects. This provides appropriate distance measurements
during experiments. When his work is finished or the teacher has
closed the session, a student prepares his final document, signs
it and deposits it on the storage server.

The storage server receives the work of students for each
experiment. The teachers will consult the works to make their
post experimentation evaluation.

Figure 2. Nominal scenario during an experiment in a lab room.

We do not address in this work the management of student-
provided materials throughout the academic year. We focus on
the aspects related to an experimentation and the follow-up of
this activity by processing the associated log messages.

IV. SOFTWARE ARCHITECTURE

If the software architecture of the business part is very
simple, it is only the entry point of the information collection,
which gathers the log data on the storage server. The analysis of
these logs is more complex because it takes into account
additional constraints: the arrival of log data continuously, the

need to impose a data schema to index the information, refine
the search for information and the detection of anomalies.

A. Client application

In order to collect information from the activity of the actors
in the scenario in Figure 2, the log system of the devices is
enabled by the students and the teacher. Our goal is to collect
and cross-reference information from the various sources. Thus,
it is essential to monitor the events related to the management of
the laboratory sessions. In addition, any event related to an
information capture or modification is useful.

1) Mobile application

The MobileApp instance in Figure 2 is an Android
component installed on each tablet. The set of class is written in
Java using the log API specific to this system. In the business
part, we have defined a message format in order to easily extract
the information. The creation of the log messages occurs by
using the android.util.Log class, which allows not only to prefix
with a semantic tab, but also to add a severity level. Thus, from
a set of messages, a regular expression filters the relevant results
to focus on the essential data.

In addition to the business events, in this effort, we have
traced the memory events provided by the garbage collector, the
transmissions and receptions of information from the http
network. Moreover, we used the Android Mobility Management
API to define usage profiles such as Student profile. It allows
business apps and data to be stored in a separate, self-contained
space within a device. The teacher has full management control
over the applications, data, and Student profile settings on the
device, but has no visibility or access to the device's personal
profile. This strong separation allows teachers to control
MobileApp data and security without compromising student
privacy if they are using applications other than those intended
for the biology course.

We have developed a Device Policy Controller (DPC),
which logs network activity. Network activity logging helps us
detect and track the spread of malware on tablets. Our DPC uses
network logging APIs to report the Transmission Control
Protocol (TCP) connections and Domain Name System (DNS)
lookups from system network calls.

To further process the logs on our Big Data cluster, we have
configured DNS deny lists to detect and alert for suspicious
behavior. We have enabled Android network logging to record
every event from the MobileApp application. It uses the system's
network libraries. Network logging records two types of events:
DNS lookups and network connections. The logs capture every
DNS query that resolves a host name to an IP address. Other
supporting DNS queries, such as name server discovery are not
logged. The Network Activity Logging API presents each DNS
lookup as a DnsEvent instance. Network logging also records an
event for each connection attempt that is part of a system
network request. The logs capture successful and failed TCP
connections, but User Datagram Protocol (UDP) transfers are
not recorded. The Network Activity Logging API presents each
connection as a ConnectEvent instance. This entire network log
configuration is complex, but grouped in a specific concrete
class named DevicePolicyManager. The configuration is taken
into account asynchronously and it is important to validate it
before distributing the tablets to students at each software
update.

35

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Mobile component

The component deployed on the teacher's laptop is a
traditional Java component (version 11) also configured with a
message format and a log level. This provides a trace of
important events that take place on this workstation. Log
analysis is the fastest way to detect what went wrong, which
makes logging in Java essential to ensure the performance and
health of our distributed application. The goal is to minimize and
reduce any downtime, to reduce the mean time to repair.

We used the slf4j library because it represents a simple and
highly configurable API. In particular, we have configured the
directory where the log messages are saved as well as the
expression to generate the file names with the date. The size of
the messages is voluntarily limited, so that the subsequent
collection is always done within a reasonable time. In addition,
the stack trace is provided for any anomaly. Finally, the structure
of all logging events follows a pattern consistent with the
MobileApp component. We have added a log converter to hide
some information such as student IDs. It is important that
sensitive information is not traced because this data is then
transmitted to our Big Data cluster for analysis.

B. Server application

The server application part is deployed on the storage server.
This component, also written in Java (version 11), contains the
implementation of Web service allowing on the one hand to
receive the documents of the students but also to acknowledge
the receptions. This part is developed with the Spring Boot
library. We use intensively the Spring configuration for the logs,
it is indeed a simple way to define a different log level from one
package to another but also for the persistence aspects. The
database is Postgresql version 10. This database server is used
for the persistence of data resulting from the work of students
and teachers. As in the previous section, the location of the log
files for our server component or for the Postgresql server is
imposed. As an example, we record the trace of any http request
received by our Web services. The headers are kept as well as
the response headers. The version of the http protocol used is
http/1.1. In the same way as for the Laptop component, we have
imposed a log message format.

C. Big Data architecture

This section focuses on describing our Big Data workflow
from collection to building our AI model. We wanted to
automate our approach as much as possible because any human
intervention leads to blockages or even loss of information.

In this section, we have made technical choices leading to
the use of open source software. First, we use the Apache Kafka
message queue server. Its role is to receive log messages coming
from mobile devices by classifying them by topic. These topics
are distributed and Apache Kafka acts as a mediator between two
worlds: the mobile device and the Big Data workflow. Secondly,
we use the Apache Flume server, which allows defining routes
between two or more software. Thus, data can flow from
software A to software B. In some aspects, it plays the role of an
ETL (Extract, Transform, Load). Third, we use Apache Spark to
develop and run our Big Data programs. This library helps build
in-memory SQL tables that are then stored in a database such as
MongoDB which is a document-oriented NoSQL database. Its
strong point is to allow the use of simple foreign keys. Finally,

Apache Spark contains a sequencer that manages the execution
of the built programs. It plays the role of a Big Data engine. The
fourth tool is the Apache SolR server, which plays the role of
index creator of the data from the previous SQL tables. This
means that we define our data index calculation algorithm with
the SolR library. At runtime, Apache SolR only stores the
indexes while the data is stored in the MongoDB database. The
searches are thus faster. The fifth and last tool is Jasper Report
from Tibco. It is a tool for building and automatically generating
reports. It plays the role of an information distributor for end
users.

1) Data collection

This part deals with the collection of log files in order to send
them to a Kafka queue. These Kafka files are the entry points of
our Big Data cluster. Because there are 3 different types of
components, our best choice was to build an event-based
collection based on scenario actions. For the MobileApp part, the
logs are recorded locally on the device. The sending of the
information to a Kafka topic is done when the student sends his
final document to the storage server. This approach reduces the
number of accesses to the Kafka topic server. Thus, the access
point of the lab room has been used to send an http request with
an attachment part (the document). This sending is also present
in the logs so that the next time only a request is sent, not the
same data but only the new ones.

The same approach is used for the laptop component. We use
an event-based approach. When the lab session is closed, the
logs on the laptop are sent to a Kafka file of the same topic. The
message volume is lower, but the information is essential when
associating with the logs of the mobile devices.

For the storage server, a repetitive task was our best bid
because this central point does not reveal any particular
interaction but a continuous flow of data. A cron table was used
to collect logs from the Postgresql server and the server
component to a Kafka file of the concerned topic. Data are
automatically routed to the Kafka server where the topics are
managed. All log message traffic can be observed via dedicated
Kafka system scripts or by using existing JMX components
(Java Message Extension).

2) Big Data analysis

A Big Data cluster that is built from Hortonworks Data
Platform (HDP) 3.0.1 virtual machines is used to perform log
analysis. This solution offers the advantage of deploying
software from the Hadoop ecosystem while remaining open to
other installations. Moreover, the Ambari console allows a
simple configuration of servers such as Kafka for topics or
Flume for routes. Our software architecture for Big Data is based
on two software routes from Kafka topics to the persistence
system. In a first version presented at the AllData 2022
conference, our persistence layer for log messages was based on
the HBase server. Indeed, it is installed by default in the HDP
virtual machine and offers a data mapping on top of HDFS
Hadoop Distributed File System). This type of column family
oriented database has natural advantages for data parallelization.
HBase is designed to work with key/value data and random read
and write access patterns. Its Java library is easy to use but the
types of data accepted are poor or very poor. It is penalizing
because our data, essentially textual, also have integer and real
fields following our analysis and indexing. The consequences

36

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are a cost in time increasing with the volume of processed data.
While the times were acceptable for the first full-scale tests,
when the number of course sessions increased, we observed very
long processing times. Thanks to the monitoring of the VMs, we
were able to understand the origin of the waits: access to the
region servers, encoding and decoding phases of large numbers
of data, overly complex queries, etc.

Figure 3 shows the layer components of our project.
Deployed on the lab room platforms, we developed Kafka
producers for the peripherals, the teaching laptop and the storage
server. All these producers issue log messages in a Kafka topic
that is partitioned on the server. This improves the access time
to the information.

Figure 3. Big Data Software architecture.

The topic partition is the unit of parallelism in Kafka. On
both the producer and the broker side, writes to different
partitions are done fully in parallel. At the output of the Kafka
topics, two Flume routes have been defined within this
experiment, each managed by an agent. A first route (red on
Figure 3) consumes the messages in order to transform them for
some residual format differences and store them in a document-
oriented database, MongoDB, installed on the cluster. A second
route (green on Figure 3) consumes the messages to index them
according to a Solr data schema. Each persistence system has its
own role: MongoDB keeps the structured log data and Solr
keeps the indexes on these data to enrich the searches. We
consider MongoDB and Solr as two data sources accessible from
Spark components. The Spark SQL API is easily used to write
to MongoDB collections on a Hadoop cluster. In contrast, our
Spark to Solr consumer does not have such an easily accessible
API and we used Solr Cloud REST services for our updates.

The data indexed by Solr enables our system to classify the
messages in order to carry out maintenance operations on the
various materials. A relevant option here was a linear classifier
with margin calculation. In fact, in several evaluations of AI
models, it is established that in the category of linear classifiers,
the Support Vector Machine (SVM) are those that obtain the best
results. Another advantage of SVMs, and one that is important
to note, is that they are very efficient when there is little training
data: while other algorithms would fail to generalize correctly,
SVMs are observed to be much more efficient. However, when
there is too much data, the SVM tends to decrease in
performance.

In order to understand the MongoDB events and their
distribution on the cluster, we have defined a report template to
generate a pdf report. It summarizes the activities by collection,
their events, in particular the use of shards. The use of a template
guarantees the scalability of these reports according to the

evolutions of the consumer SQL Spark. We added a page header
with a table name and the current edition date and a page footer
with the page number. The column header band is printed at the
beginning of each detail column with the column names in a
tabular report. This means the part name of a log message.

3) Log Data storage

A first Spark consumer (named "Spark SQL consumer") has
an essential task to recognize and process the contents of the file
and load them into an SQL table in memory, perform filter
operations and put them in a common format. Then, the route
continues with a backup of these data in MongoDB collections.
The role of this Flume route is to store structured information in
a document-oriented database (the red route in Figure 3). In this
effort, we experimented keeping software routes with Flume for
event routing and defined Kafka topics to ensure decorrelation
between components. This makes it possible to simplify the
management of components, among other things for software
updates. In addition, the Kafka API allows more controls on the
management of messages associated with a topic; for example
time management. We have added rules to ensure that a received
message is processed within an hour (from a configuration file).
In that case, the system raises an alert and the data saved in the
local file system.

A Flume agent is an independent daemon process, which
manages the red route. The Flume agent ingests the streaming
data from the Kafka topic source to the Spark SQL sink. The
channel between the source and the sink is a temporary storage.
It receives the events from the Kafka source and buffers them
until they are consumed by Spark sinks. It acts as a bridge
between the source and the sinks. We have added a Flume
interceptor to decide what sort of data should pass through to the
channel. It plays first a filter role in case of unsuitable data from
the Kafka source and inserts the time in nanosecond into the
event header. If the event already contains a timestamp, it will
be overwritten with the current time.

In a previous prototype of this project, we noticed the
performance limits of a storage solution based on HBase.
Although it is distributed on the cluster, the distribution of data
in column families was not well adapted to our data types and
our queries when searching for information for the AI model
construction. HBase remains ideal for very large-scale use cases
but with a simple format. This is not the case with our formatted
log messages. HBase offers very fast searches if we are looking
for information on a particular key, but MongoDB provides a
much richer model that allows us to follow the evolution of
information during its life cycle. MongoDB's data model is
relational and allows us multi-document ACID transactions, and
its query language is rich.

The HBase persistence system was uninstalled from the
reference VM to install the MongoDB suite with monitoring and
query software. Therefore, MongoDB becomes a part of the
Ambari stack. We monitor and manage this service remotely via
REST API. MongoDB offers a wide choice of cluster types to
create a specific cluster. Each type represents feature limitations
and space limitations of the specific cluster. We chose a 10 GB
space for our new prototype. Then, we created accounts for the
projects that use the collections in the database, with an
associated authentication method. We have customized the
access privileges to the database. MongoDB schema design

37

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

works a lot differently than relational schema design because
there is no rule and no obvious process. Two different
applications that use the same exact data have different schemas
if the applications are used distinct manners.

We have created our collections by using JSON schema
(JavaScript Object Notation). If this definition comes from the
structure of the log messages, we have added additional fields to
track the processing (date of analysis, date of inclusion in model,
etc.). We have favoured the integration of data in the same
collection to reduce joins. We only use tables of a size fixed by
the schema [Table I]. Finally, our data schema depends
essentially on the access to our data during the construction of
the AI model. We used references to data only to avoid
duplication of data and avoid data cycles. Log entries are written
as a sequence of key-value pairs, where each key indicates a log
message field type, such as “origin” or "severity", and each
corresponding value records the associated logging information
for that field type.

TABLE I. STRUCTURE OF THE MAIN COLLECTION

Field name Type Description

ts DateTime
Timestamp of the log message in ISO-

8601 format.

severity String Short severity code of the log message.

id Integer Unique identifier for the log statement.

context String
Name of the thread that caused the log

statement.

message String
Log output message passed from the

server or driver.

attributes Object
Optional: one or more key-value pairs for

additional log attributes (limit to 10)

tags Array
Strings representing any tags applicable to

the log statement (limit to 10 strings)

origin String
Network description of the message

source.

creation DateTime
Timestamp of the log message insertion

event in MogoDB

consumption DateTime
Timestamp of the consumption event of

the log message into the AI model

report DateTime
Timestamp of the consumption event of
the log message into the generated report

Our Spark SQL consumer uses the Spark SQL module to
store data in a MongoDB database whose schema is structured
in collections of documents. The labels of these key/value pair
are involved in the data schema of the second Spark consumer.
Our MongoDB cluster is used in data replication mode. This
means that replication is done on a group of MongoDB servers
that hold copies of our data. This is a critical property for
deployment as it ensures high availability and redundancy, in
case of outages and maintenance periods.

4) Log Data indexing

In parallel, another route has the role of indexing the data
from the logs (green route in Figure 3). From the same Kafka
source, a second Spark consumer (named "Spark Solr
consumer") takes care of data indexing while respecting the Solr
schema. The index is updated for the query steps and then the
use of a model for the prediction of maintenance tasks. Solr
Cloud is the indexing and search engine. It is completely open
and allows us to personalize text analyses. It allows a close link
with MongoDB, database so the schemas used by both tools are

designed in a closely related way. On our Big Data cluster, the
Solr installation is also distributed. In that context, we have four
shards with a replication rate equals to three. This allows us to
distribute operations by reducing blockages due to frequent
indexing. We have configured, not only the schema, but also the
data handlers (schema.xml and solrconfig.xml files).

Our schema defines the structure of the documents that are
indexed into Solr. This means the set of fields that they contain,
and define the datatype of those fields. It configures also how
field types are processed during indexing and querying. This
allows us to introduce our own parsing strategy via class
programming. Having evolved our persistence layer in order to
have a richer data model, it seems natural to choose a data
schema compatible between MongoDB on the one hand and
Apache Solr on the other hand. The data processing being
separate, we had to adapt ourselves in order to make them match
as well as possible. For example, the Datetime type of
MongoDB plays the same role as the DatePointField type of Solr
but its interpretation is not identical.

The Spark Solr consumer uses the Spring Data and SolrJ
library to index the data read from the Kafka topic. It splits the
data next to the Solr schema where the description of each type
includes a "docValue" attribute, which is the link to the
MongoDB identifier. For each Solr type, our configuration
provides a given analyzer. We have developed some of the
analyzers in order to keep richer data than simple raw data from
log files. Finally, the semantic additions that we add in our
analysis are essential for the evaluation of Solr query. Likewise,
we store the calculated metrics in MongoDB main collection as
an attribute for control. SolrCloud is deployed on the cluster
through the same Zookeeper agents. Thus, the index persistence
system is also replicated. We therefore separate the concepts of
backup and search via two distinct components. This reduces the
blockages related to frequent updates of our Mongo database
[18].

At the beginning of our Solr design, we have built our
schema based on our data types. Some of them were already
defined, but some others are new. In addition, we have
implemented new data classes for the new field types. For
example, we used RankFieldType as a type of some fields in our
schema. It allows us to manage enumeration values from the log
message. Then, it becomes a sub class of FieldType in our Solr
plugin. We have redesigned Solr filters so that they can be used
in our previous setups. Our objective was to standardize the
values present in the logs coming from different servers. Indeed,
the messages provide information of the form <attribute, value>
where the values certainly have units. However, the logs do not
always provide the same units for the same attribute calculation.
The analysis phase is the place to impose a measurement system
in order to be able to compare the results later. The development
pattern proposed by SolrJ is simple because it proposes abstract
classes like TokenFilter and TokenFilterFactory then to build
inherited classes. Then we have to build a plugin for Solr and
drop it in the technical directory agreed in the installation of the
tool [19].

5) Model factory
In Artificial Intelligence, Support Vector Machine (SVM)

models are a set of supervised learning techniques designed to
solve discrimination and regression problems. SVMs have been

38

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applied to a large number of fields (bioinformatics, information
research, computer vision, finance, etc.) [20]. SVM models are
classifiers, which are based on two key ideas, which allow to
deal with nonlinear discrimination problems, and to reformulate
the ranking problem as a quadratic optimization problem. In our
project, SVMs can be used to decide to which class of problem
a recognized sample belongs. The weight of these classes if
linked to the Solr metrics on these names. This amounts to
predicting the value of a variable, which corresponds to an
anomaly.

All filtered log entries are potentially useful input data if it is
possible that there are correlations between informational
messages, warnings, and errors. Sometimes the correlation is
strong and therefore critical to maximizing the learning rate. We
have built a specific component based on Spark MLlib. It
supports binary classification with linear SVM. Its linear SVMs
algorithm outputs an SVM model [21]. We applied prior
processing to the data from our Mongo collections before
building our decision modelling. These processes are grouped
together in a pipeline, which leads to the creation of the SVM
model with the configuration of its hyper-parameters such as
weightCol. Part of the configuration of these parameters comes
from metrics calculated by our indexing engine (Figure 2). Once
created and tested, the model goes into action to participate in
the prediction of incidents. We use a new version of the SVM
model builder based on distributed data augmented. This comes
from an article written Nguyen, Le and Phung [22].

6) Report generation

Jasper Report library allows us to build weekly graphical
reports on indexing activity. MongoDB events are collected for
displaying. The goal is to correlate the volumes of data saved in
the database with the updates of the AI model. We would like to
refine this report template in order to have metrics to decide on
the model update. Currently, only MongoDB movements are
represented graphically. Based on an MongoDB handler, we
handle the change events at runtime and send data beans to the
Jasper Report Server.

Jasper Report has its own query language in JSON format. It
allows you to specify the data to be extracted from MongoDB.
The connector converts this request into appropriate API calls
and uses the MongoDB Java connector to query our MongoDB
cluster. In particular, it is possible to perform aggregation in the
form of map-reduce, but more efficient than a simple pipeline.
The map-reduce key specifies a map-reduce operation whose
result will be used for the current query. The collection name
specifies the target collection. This optimized extraction gives us
better performance when building the AI model.

V. DATA STREAMING PART

A. Data streaming

Our component called Spark SQL Consumer contains a
Kafka receiver class, which runs an executor as a long-running
task. Each receiver is responsible for exactly one input
discretized stream (called DStream). In the context of the first
Flume route, this stream connects the Spark streaming to the
external Kafka data source for reading input log data.

As an example in Table II, we provide an example of a log
messages from a Kafka topic called “RedTopic”:

TABLE II. MESSAGE FROM KAFKA TOPIC

{

 "ts": "2020-10-02T18:10:22Z",

 "severity": "INFO",

 "id": 192674,

 "context": "kafka.server.KafkaServer",

 "message": "1000ms metadata for topic =

RedTopic partition = part00002 not

propagated to all brokers",

 "attributes": {

 "process-id": 4122,

 "event-type": "ReadEvent"

 },

 "tags": [

 "Startup"

]

}

Structured Streaming, allows us to write streaming queries in
the same way as batch queries. Spark streaming uses micro-
batch processing, which means that data is delivered in batches
to executors. If the executor idle time is less than the time
required to process the batch, the executor is constantly added
and then removed. If the executor idle time is longer than the
batch time, the executor is never deleted. Therefore, we have
disabled dynamic allocation by defining when running
streaming applications. A Kafka partition is only be consumed
by one executor, one executor consumes multiple Kafka
partitions. This is consistent with Spark Streaming.

B. Filtered log strategy

Because the log data rate is high, our component reads from
Kafka in parallel. Kafka stores the data logs in topics, with each
topic consisting of a configurable number of partitions. The
number of partitions of a topic is an important key for
performance considerations as this number is an upper bound on
the consumer parallelism. If a topic has N partitions, then our
component can only consume this topic with a maximum of N
threads in parallel. In our experiment, the Kafka partition
number is set to four.

Since log data are collected from a variety of sources, data
sets often use different naming conventions for similar
informational elements. The Spark SQL Consumer component
aims to apply name conventions and a common structure. The
ability to correlate the data from different sources is a crucial
aspect of log analysis. Using normalization to assign the same
terminology to similar aspects can help reduce confusion and
error during analysis [21]. This case occurs when log messages
contain values with different units or distinct scales. The log files
are grouped under topics. We apply transformations depending
on the topic the data come from. The filtered logs are cleaned
and reorganized and then are ready for an export into a
MongoDB instance.

In the next step, the Spark SQL Consumer component inserts
the cleaned log data into memory data frames backed to a
schema. We have defined a mapping between MongoDB and
Spark tables, called Table Catalog. There are two main
difficulties of this catalog.

a) The identifier definition implies the creation of a specific
index generator in our component.

39

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b) The mapping between table column in Spark and the
document in MongoDB needs a component for dynamic data
frame creation with Spark SQL.

The MongoDB sink exploits the parallelism on the set of
MongoDB nodes. A MongoDB replication is enforced by
providing data redundancy and high availability over more than
one MongoDB server. In addition to fault tolerance, replica sets
also provide extra read operations capacity for the MongoDB
cluster, directing clients to the additional servers, subsequently
reducing the overall load of the cluster. A MongoDB cluster has
a primary node and a set of secondary nodes in order to be
considered a replica set. One primary node exists, and its role is
to receive all write operations. All changes on the primary
node’s data sets are recorded in a special capped collection
called the operation log (oplog). The role of the secondary nodes
is to then replicate the primary node’s operation log and make
sure that the data sets reflect exactly the primary’s data sets.

 The driver Spark generates tasks per data set. The tasks are
sent to the preferred executors collocated with a Mongo server,
and are performed in parallel in the executors to achieve better
data locality and concurrency. By the end of an exportation, a
timed window a log data are stored into MongoDB collections.

C. Index construction and query

The strategy of the Spark Solr Consumer component deals
with the ingestion of the log data into Apache Solr for search and
query. The pipeline is built with Apache Spark and Apache
Spark Solr connector. Spark framework is used for distributed in
memory compute, transform and ingest to build the end-to-end
pipeline.

The Apache MongoDB role is the log storage and the
Apache Solr role is the log indexing. Both are configured in
cloud mode Multiple Solr servers are easily scaled up by
increasing server nodes. The Apache Solr collection, which
plays the role of a SQL table, is configured with shards. The
definition of shard is based on the number of partitions and the
replicas rate for fault tolerance ability. The Spark executors run
a task, which transforms and enriches each log message (format
detection). Then, the Solr client takes the control and send a
REST request to Solr Cloud Engine. Finally, depending on the
Solr leader, a shard is updated.

We use also Solr Cloud as a data source Spark when we
create our ML model. We send requests from Spark ML classes
and read results from Solr (with the use of Solr Resilient
Distributed Dataset (SolrRDD class). The pre statement of the
requests is different from the analysis of the log document. Their
configuration follows another analysis process. With Spark
SQL, we expose the results as SQL tables in the Spark session.
These data frames are the base of our ML model construction.
The metrics called Term Factor (TF) and Inverse Document
Frequency (IDF) are key features for the ML model. We have
also used boost factor for customizing the weight of part of the
log message. The data in the database is updated with the
addition of attributes to the documents that have just been read.
Finally, the use of this data for the AI model is recorded in order
to distinguish it from new information to come.

VI. RESULTS AND TASK MAINTENANCE

We have several kinds of results. A part is about our
architecture and the capacity to treat log messages over time.
Another part is about the classification of log messages. The
concepts behind SVM algorithm are relatively simple. The
classifier separates data points using a hyperplane with the
largest amount of margin. In our working context, the margin
between log patterns is a suitable discriminant.

A. Data features

For our tests, we used previously saved log files from a
month of application server and database server operations. We
were interested in the performance of the two Spark consumers:
For Spark SQL Consumer, the volume of data to analyze is 102.9
M rows in HBase. To exploit this data, we used a cluster of eight
nodes on which we deployed Spark and MongoDB. The duration
of the tests varies between 38 minutes and 3 hours and 51
minutes.

Figure 4. Spark consumer runtime versus number of partitions.

For Spark Solr Consumer, the volume of data indexed is
100.5M rows indexed in about an hour. The number of
documents indexed per second is 35k. We only installed Solr on
four nodes with four shards and a replication rate of three. We
have seen improved results by increasing the number of Spark
partitions (RangePartitioner). At runtime for our data set based
on a unique log format, the cost of Spark SQL consumer
decreases when the partitioning of the dataset increases, as
illustrated in Figure 4. The X-axis represents the partition
number and the Y-axis represents the time consuming. We have
to oversize the partitions and the gains are much less interesting.

SVM offers very high accuracy compared to other classifiers
such as logistic regression, and trees. There are several modes of
assessment. The first is technical; it is obtained thanks to the
framework used for the development (Spark MLlib). The second
is more empirical because it relates to the use of this model and
the anomaly detection rate on a known dataset. The analytical
expression of the features precision, recall of retrieved log
messages that are relevant to the find: Precision (1) is the fraction
of retrieved log messages that are relevant to the find:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

Recall (2) is the fraction of log messages that are relevant to
the query that are successfully retrieved:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

40

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

𝐹𝛽 = (1 + 𝛽2) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙

In Table III, we have four classes and for each class we
compute three metrics: true positive (tp), false positive (fp) and
false negative (fn). For instance, for the third class, we note these
numbers tp3, fp3 and fn3. From these values, we compute
precision by label, recall by label and F-score by label.

TABLE III. SVM MODEL MEASURES

Class

number

Metrics

Precision by label Recall by label F1 score by label

0.0000 0.8158 0.8901 0.8966

1.0000 0.9110 0.9810 0.9910

2.0000 0.8545 0.7857 0.8515

3.0000 0.8524 0.7589 0.8331

Our prediction models are similar to a multiclass
classification. We have several possible anomaly classes or
labels, and the concept of label-based metrics is useful in our
case. Precision is the measure of accuracy on all labels. This is
the number of times a class of anomaly has been correctly
predicted (true positives) normalized by the number of data
points. Label precision takes into account only one class and
measures the number of times a specific label has been predicted
correctly normalized by the number of times that label appears
in the output. The last observations are:

 Weighted precision = 0.9017

 Weighted recall = 0.9318

 Weighted F1 score = 0.9817

 Weighted false positive rate = 0.04009

Our results for four classes are within acceptable ranges of
values for the use of the model to be accepted.

The test empirical phase on the SVM model was not
extensive enough to be conclusive. However, our results suggest
that increasing the number of log patterns deteriorates the
performance. In addition, we defined a finite set of log patterns
for a targeted anomaly detection approach.

B. Reporting

1) From storage activities

MongoDB is not well designed for analytics purpose, we
have set up a SQL data warehouse, and we have used Apache
Camel to load data into a H2 warehouse. Apache Camel is a
simple ELT (Extract Load and Transform) data from a data
source into a SQL sink [23]. Thanks to the events performed on
our collections, we can visualize the traffic variations on our
collections according to the sampling duration we have chosen
(Figure 5). We also monitor AI model updates following log
message collections. These results are first displayed in the
weekly report. We also count events related to the use of
damaged replicas as well as all incidents during our data
retrievals. In the end, we currently get a set of tables
summarizing the activity on the data in our persistence layer. As
a first observable result, we see that the number of unavailability
is much lower than in our previous HBase-based prototype.

Figure 5. JSR and two data sources

2) From indexing activities

We have created a custom data source to connect to Apache
Solr, therefore we are able to retrieve data and provide them back
in following the JRDataSource interface of Jasper Report. With
this access point, we have extracted metrics about the document
cache and Query result cache. Both give an overview of the Solr
activities and is meaningful for the analysts. We have deployed
the CData JDBC Driver on Jasper Reports to provide MongoDB
data access from reports. We have found that running the
underlying query and getting the data to our report takes the most
time. When we generate many pages per report, there is
overhead to send that to the browser.

For the reporting phase, we have developed two report
templates based on the use of a JDBC adapter. With system
requests, we collect data about the last events (Create, Update,
and Delete). From these H2 view, we have designed the report
templates with cross tables. For the storage phase, we compute
and display the number of Update events per timed window or
grouped over a period. We periodically updated the data across
report runs. We export the PDF files to the output repository
where a web server manages them.

VII. CONCLUSION AND FUTURE WORK

We have presented our approach on log analysis and
maintenance task prediction. We showed how an index engine
is crucial for a suitable query engine. We have developed
specific plugin for customizing the field types of our documents,
but also for filtering the information from the log message.
Because indexing and storage are the two sides of our study, we
have separated the storage into a Hadoop database. We have
stressed the key role of our Spark components, one per data
source. The partition management is the key concept for
improving the performance of the Spark SQL component. The
data storage into data frames during the micro batches is
particularly suitable for the management of flows originating
from Kafka files. We observed that our approach supported a
large volume of logs.

From the filtered logs, we presented the construction of our
SVM model based on work from the Center for Pattern
Recognition and Data Analytics, Deakin University, (Australia).
We were thus able to classify the recognized log patterns into
classes of anomalies. This means that we can identify the
associated maintenance operations. Finally, to measure the
impact of our distributed analysis system, we wanted to build
automatically reports based on templates and highlight indexing

41

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and storage activity. Our study also shows the limits that we
want to push back, such as the management of log patterns. The
use of an AI model is not the guarantee of an optimal result. We
want to make more.

A first perspective will be to improve the indexing process
based on a custom schema. We think that the use of DisMax
query parser could be more suitable in log requests where
messages are simple structured sentences. The similarity
detection makes DisMax the appropriate query parser for short
structured messages. The log format has a deep impact on the
Solr schema definition and about the anomaly detection. We are
going to evolve our approach. In the future, we want to extract
dynamically the log format instead of the use of a static
definition. We think also about malicious messages, which can
perturb the indexing process and introduce bad request in our
prediction step. The challenge needs to manage a set of
malicious patterns and the quarantine of some message
sequences.

A second perspective on the performance comparison
obtained with the MongoDB cluster with replication and a
sharded MongoDB cluster or horizontal scaling. In that context,
data are distributed across many MongoDB servers. The main
purpose of sharded MongoDB is to scale reads and writes along
multiple shards and then to reduce the communication time.

REFERENCES

[1] F. Mourlin, G. L. Djiken and N. Laurent, “Big Data for

Monitoring Mobile Applications,” The 8th International
Conference on Big Data, Small Data, Linked Data and Open Data,
ALLDATA, IARIA. April 2022.

[2] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges
in log analysis,” Communications of the ACM, 2012, 2nd ed., vol.
55, pp. 55-61.

[3] T. F. Yen et al., “Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks,” In Proceedings of the
29th Annual Computer Security Applications Conference, pp.
199-208, December 2013.

[4] S. He et al., “Experience report: System log analysis for anomaly
detection,” In 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), pp. 207-218, October
2016.

[5] B. Debnath et al., “Loglens: A real-time log analysis system,” In
2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 1052-1062, July 2018.

[6] Q. Cao, Y. Qiao, and Z. Lyu, “Machine learning to detect
anomalies in web log analysis,” In 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), pp. 519-
523, December 2017.

[7] W. Li, “Automatic log analysis using machine learning: awesome
automatic log analysis version 2.0.,” 3 edition, November 2013.

[8] A. Juvonen, T. Sipola, and T. Hämäläinen, “Online anomaly
detection using dimensionality reduction techniques for HTTP
log analysis,” Computer Networks 91, pp. 46-56, November
2015.

[9] J. Dongo, C. Mahmoudi, and F. Mourlin, “Ndn log analysis using
big data techniques: Nfd performance assessment,” In 2018 IEEE
Fourth International Conference on Big Data Computing Service
and Applications (BigDataService), pp. 169-175, March 2018.

[10] S. Melink et al., “Building a distributed full-text index for the
web,” ACM Transactions on Information Systems (TOIS), 2001,
vol.19, n°3, pp. 217-241.

[11] J. He, H. Yan, and T. Suel, “Compact full-text indexing of
versioned document collections,” In Proceedings of the 18th
ACM conference on Information and knowledge management,
pp. 415-424, November 2009.

[12] Q. M. Abdul, S. Cheng, and V. Hristidis, “A comparative study
of secondary indexing techniques in LSM-based NoSQL
databases,” In Proceedings of the 2018 International Conference
on Management of Data, pp. 551-566, May 2018.

[13] W. Luo et al., “Guidelines for developing and reporting machine
learning predictive models in biomedical research: a
multidisciplinary view,” Journal of medical Internet research, 12
ed., vol. 18, 2016.

[14] P. Henderson et al., “Towards the systematic reporting of the
energy and carbon footprints of machine learning,” Journal of
Machine Learning Research, 2020, 248 ed., vol. 21, pp. 1-43.

[15] L. M. Stevens et al., “Recommendations for reporting machine
learning analyses in clinical research. Circulation: Cardiovascular
Quality and Outcomes,” 2020, 10 ed., vol. 13.

[16] D. P. Dos Santos and B. Baeßler, “Big data, artificial intelligence,
and structured reporting,” European radiology experimental,
2018, 1st ed., vol. 2, pp. 1-5.

[17] S. Afonin, A. Kozitsyn, and I. Astapov, “SQLReports yet another
relational database reporting system,” In 2014 9th International
Conference on Software Engineering and Applications (ICSOFT-
EA) IEEE, pp. 529-534, August 2014.

[18] K. Koitzsch, “Advanced Search Techniques with Hadoop,
Lucene, and Solr,” Pro Hadoop Data Analytics, Apress, Berkeley,
CA, 2017, pp. 91-136.

[19] J. Kumar, “Apache Solr search patterns,” Packt Publishing Ltd,
2015.

[20] M. F. Ghalwash, D. Ramljak, and Z. Obradović, “Early
classification of multivariate time series using a hybrid
HMM/SVM model,” 2012 IEEE International Conference on
Bioinformatics and Biomedicine, IEEE, pp. 1-6, 2012.

[21] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti, “Big data
machine learning using apache Spark MLlib,” 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 3492-
3498.

[22] T. D. Nguyen, V. Nguyen, T. Le, and D. Phung, “Distributed data
augmented support vector machine on Spark,” 23rd International
Conference on Pattern Recognition (ICPR), IEEE, 2016.

[23] F. Gosewehr et al., “Apache camel based implementation of an
industrial middleware solution,” In 2018 IEEE Industrial Cyber-
Physical Systems (ICPS), IEEE, pp. 523-528, May 2018.

42

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

