
Detecting Manipulated Wine Ratings with Autoencoders
and Supervised Machine Learning Techniques

Michaela Baumann
Business Intelligence / Analytics Competence Center

NÜRNBERGER Versicherung
Nürnberg, Germany

email: michaela.baumann@nuernberger.de
ORCID: 0000-0001-5066-9624

Michael Heinrich Baumann
Department of Mathematics

University of Bayreuth
Bayreuth, Germany

email: michael.baumann@uni-bayreuth.de
ORCID: 0000-0003-2840-7286

Abstract—In this study, we analyze the ability of different
machine learning methods to detect manipulated wine ratings.
We consider autoencoders, regression models (neural networks,
support vector machines, random forests) and classification mod-
els (support vector machines, random forests) and two different
kinds of manipulation strategies. We find that autoencoders per-
form best on unmanipulated test data, i.e., their reconstruction
error is smaller than the supervised models’ prediction error.
However, on the manipulated test data, the supervised models
outperform autoencoders. This is interesting since autoencoders
are generally used for outlier detection. When comparing only the
supervised methods, we find that, basically, both support vector
machines and random forests perform and detect better than
regression neural networks. Additionally, the optimization and
training times for these two model types are smaller. In order
to consider a relatively large grid of hyperparameters especially
for the neural networks, we introduce a hyperparameter tuning
method called sequential accumulative selection. To sum up, when
trying to detect manipulations, different methods have usually
both advantages and disadvantages.

Keywords—anomaly detection; manipulation identification; wine
preferences; artificial neural networks; autoencoders; support vec-
tor machines; random forests.

I. INTRODUCTION

The work at hand is an extended version of [1]. Some parts
are identical to the conference paper [1] (May 22 version
and Oct. 22 version), however, we especially modified and
extended the methodology (Section IV) by considering a larger
set of models and different data manipulation strategies and,
therefore, get new and more detailed results (Section VI).

In a world of increasingly differentiated products and cus-
tomers who frequently change their buying behavior, it is
difficult to assess whether the price-performance ratio is ap-
propriate before making a purchase. An important and much-
used assistance in such buying decisions are ratings. In this
study, we are going to approach the question of whether and
how manipulated ratings can be detected using wine quality
ratings as an example. When ratings come from an official or
non-official authority (such as Gambero Rosso’s Vini d’Italia
[2], Robert Parker’s The Wine Advocate [3], Gault&Millau
[4], or Guide Michelin [5], when dealing with wines, hotels,
restaurants, or related topics), it is possible to verify with little
effort whether ratings given by a merchant or producer are
genuine by simply looking up the relevant work. However,

since by far not all wines are represented and rated in one
of the works published by an authority, there are countless
other ratings. These other ratings, which are not given by
an authority, are difficult to verify for authenticity, and it
might even be possible that they are not objective, but rather
paid for by someone. In the following, we are going to show
possibilities for detecting such manipulated or faked ratings.

A very basic idea for how to identify manipulated ratings
would be via (linear) regressions (cf. [6]). That means, when
we have other, exactly measurable features, such as alcohol
content, pH value, or density, we can learn how to predict
the rating using these independent variables on correctly rated
data objects. Ratings that differ (strongly) from the predicted
ones on unseen data might be suspicious. However, a linear
regression does not lead to good results in our case, i.e., when
trying to detect manipulated wine ratings. Thus, the research
question is how manipulated wine ratings may be detected in
a better way.

Since artificial neural networks are currently en vogue, one
can of course use a regression by means of a neural network
(cf. [7]–[10]). Note that a linear regression is the same as an
exactly trained, fully connected neural network without any
hidden layer with linear activation functions (i.e., id resp. pass-
through), when adding a dummy column (filled with 1s) in the
data for the intercept and using Mean Squared Error (MSE) as
loss. Regressions based on shallow or deep neural networks
are likely to outperform a linear regression. Other machine
learning techniques for performing regression tasks are, for
example, support vector machines [11][12] or random forests
[13][14].

Especially when dealing with outlier detection, so-called
autoencoders (resp. reconstruction networks or autoassociative
neural networks) are a common means [15]–[18]. Autoen-
coders consist of two parts (i.e., two regressions), an encoder
and a decoder. The encoder compresses the input data to
a lower dimensional representation usually referred to as
the code; the decoder takes the code as input and aims to
reconstruct the original input.

Given a well trained autoencoder, when the input and
the output differ (strongly), the data might be manipulated
(or in other contexts: an outlier, an anomaly, fraudulent,
or suspicious). Note that there are much more application

64

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



areas of autoencoders, such as dimensionality reduction, data
compression, or denoising. Although it is in principal assumed
that the quality depends on the other features, the autoencoder
does not use this dependence information, that is, the quality
and all other features are considered as coequal input (and
output) variables. Since the autoencoder does not use all
the information that is actually available, it would be very
interesting if it nevertheless achieved better results.

In the work at hand, we investigate how Regression Neural
Networks (RNNs), Support Vector Machines (SVMs), Ran-
dom Forests (RFs) and Neural Network based Autoencoders
(NNAs) can be used to identify manipulated data. Additionally,
as benchmark models we use a linear regression (Linear
Model; LM; see [6]) and an autoencoder that implements
two linear regressions (Benchmark Autoencoder; BA; see
Section IV-D).

In the work at hand, we summarize RNN, SVM, RF and
LM under the term supervised methods, since these models
are trained with an explicit label, the wine quality. The autoen-
coders NNA and BA are not referred to as supervised methods.
Usually, autoencoders fall into the category of unsupervised
methods since there is no explicit target feature or label,
but only covariates. This reflects the usage of autoencoders
when the code layer is of interest, e.g., when conducting
dimensionality reduction or data compression. Even though
the training process does not differ, when the reconstructed
input explicitly is of interest, autoencoders may in this case
be called autoassociative or self-supervised methods [19][20].

There clearly are several other data analytics methods
that might be applied, especially since the number of those
techniques keeps growing (see [21][22]), however, the methods
used here are conceptually different from each other and
therefore cover a reasonable range of possible methods.

We find that both regression and classification techniques
are suitable for detecting manipulated wine ratings. Autoen-
coders as means for uncovering outliers in data sets do not
detect the manipulated data objects as well as the supervised
methods. Although we provide a relatively large grid of
possible hyperparameters for the neural network based models,
both RFs and SVMs show a better detection performance than
the RNN and the NNA. Further, the variability in the results
of the neural network based models is quite high.

The remainder of this paper is organized as follows: Sec-
tion II reviews both the literature on wine data analysis
and those on anomaly detection in general while Section III
specifies the data we are using. Section IV depicts our method-
ology step by step and Section V describes the preparatory
activity for the hyperparameter optimization of the neural
networks called sequential accumulative selection. Section VI
presents the results. Finally, Sections VII and VIII conclude
and describe possibilities for ongoing work.

II. LITERATURE REVIEW

The closely related literature roughly splits into two groups,
namely data analytics of wine quality and general out-
lier/anomaly detection resp. fraud identification. The analytics

of wine quality mostly covers the prediction of wine ratings
based on measurable features. Cortez et al. [23][24] compare
several data mining regression methods for predicting wine
preferences based on easily available data during the certifi-
cation of wines. In this context, they originally published the
two datasets that are also used in the work at hand. They
use the vinho verde white wine dataset [24] and both the
vinho verde red wine and white wine datasets [23]. The data
mining methods for predicting wine quality in both papers
are neural networks, i.e., multilayer perceptrons, and SVMs.
Besides these papers, also the importance of the selection of
the most relevant features before predicting the wine quality
with machine learning regression methods is investigated for
the vinho verde datasets [25]. Here, a linear regression is
used for assessing the importance of the variables. Neural
networks and SVMs are then trained for the actual prediction
of the wine quality via regressions. The neural network and
SVM results are compared when using all available variables
or only the most important ones as assessed by the linear
regression. The vinho verde white wine dataset is used for
classifying wine preferences via fuzzy inductive reasoning
[26]. To increase statistical confidence, in [26], the evaluation
process is repeated 20 times. Deep neural regression networks
are applied for predicting wine ratings on the vinho verde
datasets [27]. In [27], the authors train the neural networks
separately for the red and white wine datasets and find that
different network architectures are needed for the two datasets.
These results are then compared to a multiclass SVM, where
the neural networks outperform the SVM.

An expert model consisting of several submodels for dif-
ferent types of input variables for assessing wine quality is
developed to assist the winemakers in their business [28]. This
model is evaluated on 45 data samples from southern France
consisting of altogether 137 variables (vineyard variables and
enological variables). In other works, the effect of weather and
climate changes as well as the effect of expert ratings on the
prices of Bordeaux wines are analyzed [29][30]. With this,
the efficiency of the Bordeaux wine market is assessed. Tree
models are used for predicting the relative quality of German
Rhinegau Riesling considering terrain characteristics obtained
through cartographic studies [31]. Due to unbalances in the
original seven target categories, the Riesling quality classifi-
cation of [31] is developed for a target variable mapped from
the original seven to three more equally balanced categories.
In another work, a framework is developed that automatically
finds an appropriate set of classifiers and hyperparameters
via evolutionary optimization for predicting wine quality for
arbitrary wine datasets [32]. That work also gives a good
overview over further research concerning the prediction of
wine quality with several machine learning methods, such as
k-nearest neighbors [33][34], naive Bayes [35][36], or RFs
[34][36].

Having in mind the literature briefly reviewed above, which
predicts wine ratings or conducts data analyses of wine quality,
the work at hand contributes by connecting wine rating pre-
dictions and anomaly detection. The topic of outlier/anomaly

65

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



detection and fraud identification is addressed in a lot of
related work in various contexts (see, for example, the surveys
and summaries [37]–[41]) and we can only touch on this broad
topic here. Generally, according to Chandola et al., “Anomaly
detection refers to the problem of finding patterns in data that
do not conform to expected behavior” [37]. Usually, anomalies
have to be identified throughout the analysis of data so that
they can be treated separately and do not distort the results of
the analysis of “normal” data. However, in the case of fraud
and also in our case of manipulation detection they are of
special interest (cf. [37]). Fraudulent and manipulated data
objects inhibit abnormal patterns but they try to appear as
normal. The detection of anomalies, especially of intentional,
malicious anomalies, such as fraud or manipulation, is very
challenging and there are many approaches that try to accom-
plish this task. The approaches basically fall in one of the
following three categories [38]:

• Unsupervised methods (e.g., clustering); labels are not
needed here and new patterns (normal ones and outliers)
may be processed correctly.

• Supervised methods (e.g., classification); these need pre-
labeled data, however, anomalies are usually very rare
and the labeled datasets are, thus, highly unbalanced; new
patterns are unlikely to be processed correctly.

• Semi-supervised methods; normal behavior is known, i.e.,
(a part of) the training data is labeled as normal, and new,
unlabeled data objects are compared to the normal case.

When we apply the models mentioned in Section I for
detecting manipulated wine ratings, we use them in a semi-
supervised fashion. This means, the supervised models RNN,
SVM, and RF are trained for predicting the target feature
“wine quality” and the NNA is trained for reconstructing
all features (autoassociative resp. self-supervised). In each
case, this training is carried out on unmanipulated wine data.
Whether the wine data is manipulated or not is a second
label/target feature that is not present in the training process
or, in other words, that is the same (namely: not manipulated)
for the whole training data set. For assessing the manipulation
detection ability of the models, the supervised models’ pre-
dictions and the autoencoder’s reconstructed features of the
test data, which reflect the normal, i.e., unmanipulated case,
are compared to the unlabeled (in terms of manipulation) test
data. The models themselves cannot be semi-supervised, but
the detection approach as a whole is semi-supervised.

In addition to methods that require tabular data (a priori
tabular data, but also image, audio, or video data transferred
to tabular data) there are methods that operate on graph
based data [42], which are especially useful when identifying
anomalies in highly connected data. The approach of the
work at hand falls into the third category, i.e., semi-supervised
methods, and works on tabular data.

III. DATA

The approach described in this work is applicable to various
working areas (see Section VIII). We demonstrate it using
wine data as an example because of the following reasons.

A rather simple advantage is the good data availability
and (if no wine names or winemaker names are used) the
innocuousness of the data. Further, the explaining variables
(except for wine or winemaker names) are metric, clearly
defined, and exactly measurable (e.g., alcohol content, acid,
pH value, red/white). The used datasets further have a unique
target feature and not a list of ratings (see also Section VIII).

We use the “Wine Quality Datasets” [23] from the Univer-
sidade do Minho [43], more specifically the datasets “White
Wine Quality—Simple and clean practice dataset for re-
gression or classification modelling” [44] and “Red Wine
Quality—Simple and clean practice dataset for regression or
classification modelling” [45] downloaded from kaggle, which
are licensed under “Database Contents License (DbCL) v1.0,”
Database: Open Database, Contents: Database Contents [46].
Both datasets contain anonymized vinho verde wines and
have the same twelve columns: eleven independent variables
summarized in Figure 1 through boxplots and the dependent
variable summarized in Figure 2 by means of a histogram.
The dependent variable quality is the wine rating, which is
supposed to depend on the other, explaining features, called
independent. All values except for the ratings are in some
meaningful physical unit, while the ratings range from 0 (very
bad) to 10 (excellent) in integer steps [23]. The red wine
dataset consists of 1,599 entries while the white wine data
has 4,898 rows, leading to a combined data set with 6,497
rows and 13 columns.

Figure 1. Summary of the distribution of the independent features for the
white and red wines via boxplots

For the distinction of red and white wines we added a binary
encoded categorical column to the union of both datasets.
There already exist extensive analyses of the vinho verde
datasets covering, among others, correlations, clusterings,
distribution estimations, etc. Such statistics and many more
analyses can be found in the work of Cortez et al. [23][24],
in other papers [25]–[27], and further tutorials or notebooks
[47]–[51].

66

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. Summary of the distribution of the dependent variable for the white
and red wines via histograms

IV. METHODOLOGY

As outlined in Section I, the aim of this work is to identify
manipulated ratings. For this, we train several network based
models, SVMs, and RFs on provided, correct data. We then
make predictions on unseen data objects where we manipulate
a certain part of these objects. We use two different kinds
of manipulation strategies. In the first one, we increase the
original rating of very low rated wines as this seems to be
a “reasonable” manipulation in the context of wine ratings,
e.g., when someone wants to increase sales numbers. In the
second one, we take a random part of the test data and
replace the wine rating by a value drawn randomly from the
empirical distribution of the remaining, unmodified part of the
test data. By comparing the potentially manipulated data and
the predicted data we aim at identifying the manipulated data
objects. We assume that objects for which the predicted values
strongly differ from the provided data are more likely to be
manipulated. We assess the models’ detection performance,
i.e., their ability to identify manipulations through calculating
the true and false positive rates when marking the most
deviating data objects as suspicious. To prevent overfitting and
account for other random effects we apply bootstrapping. That
is, we repeat the process of randomly splitting the data and
training the models such as, for example, also done in [26].
Finally, we take among others the median over the particular
results.

In the following, we explain our methodology in detail. The
implementation is done in R using the Keras library, which is
an API to TensorFlow, for the neural networks, the e1071
library for the SVMs, and the caret library with the rf
option for the RFs.

A. Bootstrapping and Data Splitting

The bootstrapping is in our case a Monte Carlo like ap-
proach of repeatedly and independently splitting the complete
dataset all (6,497 rows, 13 columns) with a ratio of 70:30
into training data (4,547 rows, 13 columns) and test data
(1950 rows, 13 columns) 100 times: all = train ∪̇ test.
To make this process reproducible, we set an initial seed and
randomly draw 100 seeds (seed1, . . . , seed100). Before every
splitting we explicitly set the seed to the respective run’s
seed. Please note that when conducting the hyperparameter

optimization for the different methods, the training data set
train is split automatically inside the respective R functions
into a development and validation data set or into the different
folds when using a k-fold cross validation.

B. Data Manipulation

We use and compare two wine rating manipulation strate-
gies. In the first one, we manipulate the 10% worst ranked test
data by averaging the original rating and the highest possible
rating (10) and rounding up. That is, we split the test data
test = low ∪̇ high with a ratio of 10:90 (with a random tie
breaking), manipulate low 7→ lowmanip worst and get the
manipulated test data

manipworst := lowmanip worst ∪̇ high.

We also add a flag column to the manipulated test data for
marking the manipulated entries for evaluation purposes.

In the second manipulation strategy, we randomly take
10% of the test data and replace the true rating by a rating
value drawn from the empirical distribution of the remaining,
unmodified part of the test data. That is, we split the test data
test = random ∪̇ rest with a ratio of 10:90 (again with a
random tie breaking). The manipulation replaces random 7→
randommanip random such that we get the manipulated test
data

maniprandom := randommanip random ∪̇ rest.

Of course, in the second manipulation strategy it may
happen for some or even for all wines, that the true rating and
the manipulated rating are the same due to the random drawing
of manipulated ratings. That is, we actually have a rating
manipulation of at most 10% randomly drawn wines. Further,
the changes of the true and the manipulated ratings may be
rather small, especially compared to the changes induced by
the first manipulation strategy. This is why we expect all
detection methods to “perform,” i.e., to detect better on the
test set manipulated with strategy one, i.e., on manipworst,
than with strategy two, i.e., on maniprandom.

C. Data Normalization

As can be seen in Figure 1, the scales of the independent
wine features differ strongly. Most of the machine learning
models have problems with differing scales, which is why
some data preprocessing, in our case the normalization of the
data, is necessary. We normalize the independent features by
min-max-scaling where train serves as reference. That means,
also the test datasets are normalized with the minimum and
maximum values of train. For LM, RNN, SVM, and RF
the target variable “quality” is not normalized. For BA and
NNA, “quality” is an input variable like the others and, hence,
normalized. To obtain comparable results, the performance of
the regression models is normalized afterwards (using train).

67

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



D. Models
We consider six different kinds of models: LM, RNN,

SVM, RF, BA, and NNA. Except for the two autoencoders
(BA and NNA), the other model types also appear in the
related work concerning the prediction of wine quality, see
Section II. The two simple models LM and BA are solely for
benchmarking the general performance of the other models on
the unmanipulated test data test.

Because SVMs and RFs are made primarily for classi-
fication, we optimize and train SVM and RF not only as
regression models, but also as classification models. This
means, for regression, we treat the wine quality as a numeric
variable with values in [0, 10], for classification we treat it as
a factor variable with values in {0, 1, . . . , 10}. We refer to the
classification models as SVMclass and RFclass, the regression
models are further named SVM and RF.

Thus, we measure the manipulation detection performance
for RNN, SVM, SVMclass, RF, RFclass, and NNA. The
particular model configurations are described in Section IV-E.
For the two simple models, the following holds: LM uses R’s
lm function. BA is a fully connected, three layer network
with input layer (size 14), code layer (size 4), and output
layer (size 14). The input is the 13 dimensional data plus a
constant column of 1s (intercept) in order to mimic two nested
linear regressions. This is also the reason why linear activation
functions and MSE as validation metric are used.

E. Hyperparameter Tuning
In every step during the bootstrapping, all models except the

two simple ones are trained with hyperparameter optimization
over a grid. Especially for the neural network based models
RNN and NNA, the respective grids are quite large (see also,
e.g., [27]). We apply the so-called sequential accumulative
selection, see Section V, in a preceding step in order to
possibly reduce the grid size for the actual tuning and training.
The tuning of the neural network based models uses simple
splits into development and validation data due to runtime
issues. That means, we do not apply a k-fold cross validation
here (at least not for k > 1). The hyperparameter grid after
applying the sequential accumulative selection for RNN is:

• Activation function (hidden layers): linear,
softplus, ReLU

• Activation function (output layer): linear
• Number of hidden layers: 1, 3, 5, 7
• Dropout rate: 0%, 5%, 10%
• Number of neurons in each hidden layer: 32, 64, 128
• Number of neurons the input layer: 12
• Number of neurons the output layer: 1
• Batch size: 32, 64
• Learning rate: 5%, 10%
• Patience for early stopping: 15
• Patience for learning rate reduction: 7
• Loss function: MSE
• Evaluation measure: Mean Absolute Error (MAE)
• Optimizer: Adam
• Number of epochs: 75

• Batch normalization: between every layer
The grid for NNA after the sequential accumulative selec-

tion is defined as follows:
• Activation function (hidden layers, except the code):
softplus, ReLU

• Activation function (code layer and output layer):
linear

• Number of hidden layers (except code layer): 4, 6
• Dropout rate: 0%
• Number of neurons in each hidden layer (except the

code): 64, 128
• Number of neurons the input layer as well as in the output

layer: 13
• Number of neurons the code layer: 4
• Batch size: 32, 64
• Learning rate: 5%, 10%
• Patience for early stopping: 15
• Patience for learning rate reduction: 7
• Loss function: MSE
• Evaluation measure: MAE
• Optimizer: Adam
• Number of epochs: 75
• Batch normalization: between every layer
For training the SVMs (SVM and SVMclass), we perform

a five-fold cross validation with hyperparameter tuning over
the following grid:

• Kernel: linear, radial
• Gamma: 0.01, 0.1, 1
• Cost: 0.01, 1, 100

As regression mode of SVM we set the ε-regression with
the e1071 package default for ε. As classification mode for
SVMclass we set the standard C-classification. We use the
same grids for SVM and SVMclass.

The two models RF and RFclass are also trained using a
five-fold cross validation with hyperparameter tuning. The hy-
perparameter grids are, just as above, the same for regression
and classification:

• Number of variables considered for splits (.mtry): 1, 2,
3, 4, 5, 6

• Number of trees: 500, 1000
For the mtry parameter, there exists the rule of thumb to use⌊
p
3

⌋
for regression tasks and

⌊√
p
⌋

for classification tasks with
p being the number of explaining variables [52]. This is why
we vary mtry around

⌊
12
3

⌋
= 4 resp.

⌊√
12

⌋
= 3.

F. The Algorithm

The bootstrapping, model training, and evaluation algorithm
is depicted in the algorithm in Figure 3. All individual steps are
described above. The algorithm is suitable for parallelization
as the bootstrapping runs, i.e., the steps executed within the
for-loop that begins in line 2 of Figure 3, are completely
independent of each other.

In the hyperparameter optimization step (line 6) we use
MSE as performance measure for SVM, the Root Mean
Squared Error (RMSE) for RF, accuracy for RFclass and

68

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1: begin
2: for i=1 to n do
3: begin
4: Prepare datasets with seedi (split, manipulate, normal-

ize);
5: Train the two benchmark models on train;
6: Optimize hyperparameters of RNN, SVM, SVMclass,

RF, RFclass, and NNA and retrain the best model in each
case on train;

7: Measure all models’ performance on test;
8: Measure detection performance of RNN, SVM, SVM-

class, RF, RFclass, and NNA on manipworst and on
maniprandom;

9: end
10: end

Figure 3. Procedure for model training and evaluation. Input: the original
dataset; a seed vector (seed1, . . . , seed100); four hyperparameter grids.
Output: list of performance data.

the misclassification error (1-accuracy) for SVMclass. In the
neural networks, the loss function is MSE, however, as per-
formance metric for the hyperparameter optimization we use
MAE. For RNN, the MAE is calculated on the target variable,
for NNA, the MAE is calculated over all features. Note that
these different performance measures are used for optimizing
the hyperparameters but not for depicting the performance in
Section VI-A.

As one can see from the algorithm, our approach is super-
vised when we train the models for predicting wine quality
(LM, RNN, SVM, SVMclass, RF, and RFclass) resp. all
features (BA, NNA). However, concerning a prediction of
the manipulation label, our approach may be called semi-
supervised. This is because we use labeled data to train the
models, but only data that is labeled as “correct,” i.e., that
is not manipulated. Although in the analysis “correct” and
“incorrect,” i.e., manipulated data are used, no incorrect data
are used for training—that is, one does not need a data set
where “incorrect” data are already identified as incorrect.
We use the information about which data entries are really
“incorrect” only for the statistical analysis of the results for
this paper.

G. Detection Performance

The detection performance is measured as follows: For
RNN, SVM, SVMclass, RF, RFclass, we calculate the squared
difference of the predicted quality and the given quality (which
is possibly manipulated) for each data object (Squared Error;
SE). Note that the results of the two classification models are
treated as numeric values here. For NNA, we compute the
detection performance in two different ways: on the one hand
according to the regression models via the squared differences
only on the target variable and on the other hand via the
sum over the squared differences of all features (Sum of
Squared Errors; SSE). In the following, when we distinguish
between these two measurement methods, we denote with

NNA the performance measure on only the target variable
and with NNA all the performance measure on all variables.
Note that NNA and NNA all are not two different kinds of
models (unlike RF and RFclass resp. SVM and SVMclass) but
denote only the two different kinds of detection performance
measurement for the same model. For each model resp. each
measurement type, we sort the data in descending order
according to the respective deviation values. For example, for
the first manipulation strategy, we map the manipulated test
data to the following resorted sets:

manipworst 7→ (manipworst,RNN ,

manipworst,NNA,

manipworst,NNA all,

manipworst,RF ,

manipworst,RFclass,

manipworst,SVM ,

manipworst,SVMclass)

.
Then, we determine the true/false positive rates when

marking the first qi% of the data objects in the sorted
sets manipworst,x with x ∈ {RNN, NNA, NNA all, RF,
RFclass, SVM, SVMclass} as suspicious for qi = i, i =
1, 2, . . . , 99. The true positive rate tpr is defined as tpr =
TP/(TP + FN) = 1 − fnr and the false positive rate fpr
is fpr = FP/(TN + FP ) = 1 − tnr, where TP is the
number of true positives, i.e., of manipulated objects that are
marked suspicious, TN is the number of true negatives, i.e.,
of unmanipulated objects that are not marked, and FP and
FN are the respective false positives/negatives and fnr and
tnr the respective rates. If one would assign the “suspicious
marks” randomly with equal probabilities to q% (q ∈ [0, 100])
of the data, the expected true/false positive rates would equal
q, i.e., E[tpr] = E[fpr] = q, independent of the share of
real positives/negatives. The values for q = 0 and q = 100
are meaningless since in the former case no object would be
marked as suspicious and in the latter case all objects would
be marked as suspicious.

To summarize the results of all runs, we calculate all quar-
tiles of tpr and fpr for every qi, i.e., minimum, first quartile,
median, third quartile, and maximum. Before presenting the
results of our analysis in Section VI, we describe how the set
of possible hyperparameters via the sequential accumulative
selection is found.

V. HYPERPARAMETERS FOR NEURAL NETWORKS VIA
SEQUENTIAL ACCUMULATIVE SELECTION

Since basically the set of possible hyperparameters espe-
cially for the neural network based models is infinite, it is
quite natural that the size of this set has to be reduced. In
doing so, for the neural networks, we perform the hyper-
parameter optimization in two steps. In the first step, we
start with an initial set for possible hyperparameters, i.e.,
with a relatively large grid on the actually infinitely large

69

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



space of hyperparameters. Additionally, we make an initial
guess for a plausible setting as it is typical, for example, also
for several optimization algorithms. In our case this means
that each hyperparameter is initially set to a plausible value
(underlined). This is done based on comparisons to similar
problems as well as extensive trial-and-error pre-tests. We
then reduce the size of the initial, large grid such that not all
possible hyperparameter combinations need to be tried in the
optimization step itself, which is performed as a grid search.
We call the grid reduction “sequential accumulative selection.”

For our case study, the initial hyperparameter grid for RNN
is:

• Activation function: linear, softplus, ReLU, tanh,
sigmoid

• Number of hidden layers: 0, 1, 3, 5, 7
• Dropout rate: 0%, 5%, 10%
• Number of neurons in each hidden layer: 32, 64, 128
• Batch size: 32, 64
• Learning rate: 5%, 10%
The initial grid for NNA is:
• Activation function: linear, softplus, ReLU, tanh,
sigmoid

• Number of hidden layers (excluding the code layer): 0,
2, 4, 6

• Dropout rate: 0, 0.05, 0.1
• Number of neurons in each hidden layers (except the code

layer): 32, 64, 128
• Batch size: 32, 64
• Learning rate: 0.05, 0.1
All other parameters are fixed to the values of Section IV-E.

Note that we intentionally did not include varying numbers of
neurons for the code layer of the autoencoder. This is because
higher numbers of neurons in the code layer lead to a higher
performance, but to a lower compression. Since both values
are important for outlier detection, based on comparisons to
similar examples, we chose four as a promising tradeoff.

Using the heuristic strategy of sequential accumulative
selection, the two grids given above are thinned out so that
the hyperparameter optimization in the algorithm in Figure 3
(in Section IV-F) performs within a reasonable runtime.

Next, we explain the sequential accumulative selection:
1) We start with performing 50 runs, i.e., on 50 different,

randomly built training data sets, with the hyperparam-
eters fixed to the underlined, plausible values except for
the activation function, which is allowed to be any of
the given possibilities. All activation functions that were
taken at least once in the hyperparameter optimization in
the 50 runs are declared to be also plausible, all others
are deleted.

2) In the same fashion, the number of hidden layers is
analyzed next, i.e., the hyperparameter optimizer has to
optimize over the set of the plausible activation functions
(due to step one there is possibly more than one plausible
activation function) and the number of hidden layers. All
values for the hidden layers that were chosen at least

once are declared to be also plausible, all others are
deleted. The plausible activation functions remain the
same independent of whether they still appear in the set
of optimal parameters of this second round.

3) This procedure is repeated in the following order with
the number of neurons,

4) the dropout rate,
5) the batch size, and
6) the learning rate.

The results of the sequential accumulative selection, i.e., of
the diminution of the possible hyperparameters, can be found
in Section IV-E. For clear, the procedure of sequential accu-
mulative selection is done separately for RNN and NNA and
conducted on unmanipulated training data. The performance
measure both for RNN and for NNA when selecting the best
hyperparameter constellation in each run is the MAE, cf. IV-F.

Concerning the approach of the sequential accumulative
selection, not only the choice of the plausible initial values for
the specific hyperparameters is important, but also the order
in which they are processed. Further, it is not clear in advance
whether the grid is reduced at all. In the worst case, more
models have to be trained than with simply using the initial,
large grid. In our case, we had a distinct performance benefit
through the sequential accumulative selection.

VI. RESULTS

The results section is divided into three parts. First, we
show the general model performances on the unmanipulated
test data test. That means, we analyze the ability of the
regression models to predict correct quality values, the ability
of the classification models to predict correct quality classes
and the reconstruction ability of the autoencoders. Second, we
examine the detection performance of the models except the
benchmark models on the test data manipulated with manip-
ulation strategy 1, i.e., on manipworst. Third, we investigate
the detection performance under manipulation strategy 2, i.e.,
on maniprandom.

A. General Model Performance

The performance of all models, i.e., benchmark models LM
and BA as well as the four resp. six more elaborate models
SVM, SVMclass, RF, RFclass, RNN, NNA on the unmanip-
ulated test data is depicted in Figure 4 through boxplots that
capture the empirical distribution of the performance over all
Monte Carlo runs. As measure for the predictive quality of
all models we show the MAE where the predicted and the
actual classes of the two classification models are treated as
numeric values. For the two autoencoder models we show
their performance on the target variable only (NNA and BA in
Figure 4) and averaged over all variables (NNA all and BA all
in Figure 4). The MAE values of the supervised models are
normalized (the regression resp. classification is done on the
unnormalized target feature) so that we can compare them to
the autoencoder performance measurements.

As there are outliers in the performance of the neural
network based models NNA and RNN, we truncated the

70

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0.00

0.05

0.10

0.15

0.20

NNA NNA_all BA_all BA RFclass SVMclass RF SVM RNN LM
model

pe
rf

or
m

an
ce

 [M
A

E
] (

tr
un

ca
te

d 
at

 0
.2

)

Figure 4. Boxplot of the performance (MAE) of all models (benchmark models and more elaborate models) on the unmanipulated test data. Outliers are
truncated. In median, NNA is best, whilst the interquartile distance is the smallest for LM.

ordinate axis in Figure 4. The actual, rounded values of the five
number summary, which is the basis for the boxplots drawn
in Figure 4, is given in Table I.

TABLE I
FIVE NUMBER SUMMARY, I.E., MINIMUM, FIRST QUARTILE, MEDIAN,

THIRD QUARTILE, AND MAXIMUM OF THE PREDICTIVE PERFORMANCE OF
ALL MODELS.

Min. 1st Qu. Median 3rd Qu. Max.
SVM 0.079 0.084 0.085 0.086 0.089

SVMclass 0.065 0.069 0.071 0.072 0.076
RF 0.071 0.073 0.074 0.075 0.079

RFclass 0.055 0.059 0.060 0.061 0.067
LM 0.091 0.094 0.095 0.096 0.099
BA 0.009 0.033 0.048 0.058 0.100

RNN 0.086 0.089 0.091 0.118 6, 106, 068.000
NNA 0.016 0.022 0.026 0.032 264.789

BA all 0.036 0.041 0.044 0.047 0.067
NNA all 0.028 0.030 0.032 0.035 242.428

Figure 4 and Table I show that NNA has the best predictive
performance (in median) and that in general autoencoders,
both NNA and BA, are better than the regression and classifi-
cation models (in median). Note, however, that the application
conditions for autoencoders and supervised methods are not
the same. Autoencoders try to reconstruct the original input
via compressing and decompressing. That particularly means
that they know the value of the target variable (in terms of the
supervised methods) as this is part of their input data also in
the test set. It is therefore not clear whether the performance
values in this section, although we calculate the MAE for all
models, are really comparable between the autoencoders and
the other, supervised methods.

We further see that the two classification models RFclass
and SVMclass perform better than their corresponding re-

gression models (not only in median, but also regarding the
minimum and maximum values). RNN is (in median) better
than the simplest model LM, however, its interquartile distance
is the largest among all models, closely followed by that of
BA evaluated only on the target variable. Concerning NNA,
there is not much difference whether the model is evaluated
only on the target variable or on all reconstructed variables.
This is unlike BA, where we can see a larger variance when
we evaluate only on the target variable.

Although there are slight performance differences, the SVM
and RF models all show only a small distance between their
minimum and maximum performance values, i.e., these mod-
els seem to be quite stable and well generalizing independent
of the respective Monte Carlo run. It is easy to see that
the neural network based models show higher performance
variances than the other models, where NNA and especially
RNN exhibit large to very large outliers, i.e., really bad
performing models. Regarding the exorbitantly high maximum
value of RNN, we had a closer look on the respective Monte
Carlo run. This high MAE is driven by one (an extremely
bad one) of the 1950 predictions in the respective test set.
Looking deeper at the corresponding wine features we see that
this extremely bad prediction belongs to a wine with by far
the highest value of “free sulfur dioxide” in the test set (two
times as high as the wine with the second highest value) and
the highest value of “total sulfur dioxide”. With an unlucky
weighting of these features in the neural network, the extreme
prediction value may be explained.

Regarding the times for hyperparameter optimization (not
considering the sequential accumulative selection for RNN
and NNA and not considering BA and LM here, as we did
not optimize any hyperparameters for these two models) and

71

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



training, we see the average of each model depicted in Table II.
By far, the optimization and training time of RNN is the
longest, where the fastest is that of RFclass. However, the
grid for RNN is also larger than that of RF(class), thus, a
mere comparison of the training times is not meaningful just
like that. But keeping in mind that despite the relatively small
grid, RF(class) performs better than RNN, RNN is no good
choice for predicting the wine quality. It may be the case
that other neural network architectures not captured by our
hyperparameter grid would show a better performance than
our RNN.

TABLE II
AVERAGE DURATION OF HYPERPARAMETER OPTIMIZATION AND
TRAINING OF THE RESPECTIVE MODELS MEASURED IN MINUTES.

Model Training Time (in minutes)
SVM 16.49

SVMclass 63.89
RF 16.79

RFclass 5.73
RNN 134.06
NNA 15.41

B. Manipulation Detection Performance

Next, we evaluate the detection performance of the non
benchmark models. For this, we do set neither an explicit
threshold for the share of data objects to be marked as
suspicious nor an explicit threshold for the SE resp. SSE
beyond which the data objects have to be marked as suspicious
since the aim of this work is not to find a classifier for
manipulated wine data quality but the comparison of the four
resp. six models: SVM, SVMclass, RF, RFclass, RNN, NNA,
where NNA’s detection performance may be measured in two
different ways (as before considering only the target feature or
all reconstructed features). How a threshold can be found is,
e.g., outlined in [53]. We first show and discuss the results of
the first manipulation strategy with the corresponding test set
manipworst and then continue with the second manipulation
strategy with the corresponding test set maniprandom. Note
that in contrast to the general model performance analyzed
in Section VI-A, the detection performance is unquestionably
comparable between the autoencoder and the other models as
we work with orderings here and not with absolute values, as
it is the case when, e.g., comparing several MAE values. All
statements in this section apply in tendency, as they depend
on chance (especially the neural networks) and on q.

1) First Manipulation Strategy manipworst: To illustrate
the detection performance of the models mentioned above in
the context of the manipulation of the 10% worst rated wines,
we calculate tpr and fpr for all Monte Carlo like runs and for
all qi = 1, . . . , 99. For all qi, we calculate the five quartiles
of tpr and fpr for each model and plot these values against
q. The results are depicted in Figures 5 (tpr) and 6 (fpr).

As we can easily observe in Figure 5, all models are
better than randomly guessing since all lines are above the

diagonal. An optimal detection model would linearly increase
and reach a tpr of 100% at q = 10%, as already explained in
Section IV-G. Among all models, the NNA (and NNA all)
is by far the worst model concerning the detection of the
manipulated wines. This is interesting as NNA is, at the
same time, the model performing best on the unmanipulated
test data. Further, autoencoders are generally used for outlier
detection, but here it seems that the regression models are
more suitable for the detection of data manipulation in the
target variable. The fpr in Figure 6 shows the corresponding
behavior of the models. Here, an optimal model would have a
fpr of 0 up to q = 10%, i.e., there are no false positives among
the first 10% of the data objects when sorted according to their
deviance of predicted and actual (manipulated) values, and
then linearly increase to the point (100%, 100%). A summary
of the medians of all models and all manipulation strategies
at q = 10% is given in Table III.

2) Second Manipulation Strategy maniprandom: We re-
peat the same analysis as in Section VI-B1 for the second
manipulation strategy, where we randomly changed the target
variable of 10% of the data to a plausible, but also random
value. In Figures 7 and 8 we show the tpr resp. fpr on
the manipulated test set maniprandom. Note that among
the 10% data objects marked as manipulated, not all of
them are necessarily manipulated. This is why we slightly
adjust the analysis resp. the manipulation markings of the
detection performance by marking only those data objects as
manipulated where a manipulation has actually taken place
(maniprandom 7→ maniprandom2). This leads to a maximum
manipulation rate of 10%, i.e., the actual manipulation rate
is somewhere between 0% and 10% and depends on the
respective Monte Carlo run.

The adjustment of the analysis is depicted in Figures 9 and
10 and works, as can be seen in the figures, in favor of the
models, i.e., the adjustment increases their tpr and lowers their
fpr. In the further course, we only discuss the results of the
adjusted detection performance measurements.

When regarding Figure 9, it is immediately obvious that
all models have more trouble detecting the manipulated data
objects than it was the case for the first manipulation strategy.
The order of the models concerning their detection ability is
more or less the same as in Section VI-B1 but at a lower
level. The best model shows a median tpr of about 37% for
q = 10% where on manipworst the median tpr at q = 10%
is about 87% (see also Table III). Again, the NNA is the
worst performing model, where its minimum tpr over all runs
when measuring its detection performance only on the target
variable is even worse than randomly guessing. Note that on
maniprandom2, an optimal model would reach a tpr of 100%
at the latest for q = 10% and possibly already for q < 10%.

VII. CONCLUSION

We analyze the ability of different machine learning meth-
ods for detecting manipulated wine ratings. In detail, we

72

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r 

[%
] (

qu
ar

til
es

)

model

NNA

NNA_all

RF

RFclass

RNN

SVM

SVMclass

Figure 5. The five quartiles of tpr on manipworst for varying q for all models distinguishable by color and line type. The median is drawn thicker.
Additionally, the diagonal and the 10% line are depicted.

TABLE III
MEDIAN DETECTION PERFORMANCE IN % OF ALL MODELS ON

manipworst (w) AND maniprandom (r) RESP. maniprandom2 (r2) FOR
q = 10%.

tpr,w tpr,r tpr,r2 fpr,w fpr,r fpr,r2
RF 86.667 26.154 36.965 1.425 8.148 8.013

RFclass 86.154 24.615 33.835 1.481 8.319 8.256
SVM 81.538 23.077 32.046 1.994 8.490 8.329

SVMclass 78.974 21.538 29.720 2.279 8.661 8.551
RNN 74.872 21.538 29.458 2.735 8.661 8.505
NNA 44.615 15.385 18.919 6.097 9.345 9.304

NNA all 40.513 14.359 16.288 6.553 9.459 9.491

consider autoencoders implemented via neural networks, neu-
ral network regressions, support vector machines used both
for regression and classification, as well as random forests
used both for regression and classification. We measure these
models’ general performance on an unmanipulated test set
and their detection performance on two different manipulated
test sets. The first manipulation strategy increases the quality
ratings of those wines that were originally the worst rated.
The second manipulation strategy changes the quality ratings
of randomly picked wines to a value drawn from the empirical
distribution of the remaining, unmodified part of the test data.
As a benchmark for the models’ general performance we
additionally consider a linear regression and a minimalistic
benchmark autoencoder. The latter two models are not used
for the manipulation detection. All data splitting, training, and

testing steps are repeated 100 times in a Monte Carlo like
manner in order to get more robust results. Our case study is
conducted on two vinho verde datasets.

We find that the more elaborate models generally perform
better than their respective benchmark model. The autoen-
coders show the smallest mean absolute error (in median
over all runs) on the unmanipulated test data, but it is not
clear whether the performance measures are really comparable
since the prerequisites for autoencoders and supervised models
are not the same. Among the supervised models, the support
vector model classification and the random forest classification
(their results also measured via the mean absolute error)
basically perform best. The neural network based models show
a great variability across the different runs.

Concerning the models’ ability to detect manipulated wine
ratings, the supervised machine learning models outperform
the autoencoder. For manipulation strategy one, the random
forest models show a true positive rate of over 86% (in
median) when marking the 10% test wines where the predicted
quality and the (possibly manipulated) actual quality deviate
most. As expected, all models show a better detection perfor-
mance on manipulation strategy one (which we intended to be
economically reasonable) than on manipulation strategy two
(the random manipulation). Since the classification random
forest is among the models with the best performance values
and has the least optimization and training time (where the
hyperparameter grid we use is quite sparse), it may be denoted
as the most suitable model for the detection of manipulated

73

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r 

[%
] (

qu
ar

til
es

)

model

NNA

NNA_all

RF

RFclass

RNN

SVM

SVMclass

Figure 6. The five quartiles of fpr on manipworst for varying q for all models distinguishable by color and line type. The median is drawn thicker.
Additionally, the diagonal and the 10% line are depicted.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r 

[%
] (

qu
ar

til
es

)

model

NNA

NNA_all

RF

RFclass

RNN

SVM

SVMclass

Figure 7. The five quartiles of tpr on maniprandom for varying q for all
models distinguishable by color and line type. The median is drawn thicker.
Additionally, the diagonal and the 10% line are depicted.

wine ratings.
In order to allow for a relatively large initial hyperparam-

eter grid for the neural network based models (autoencoder
network and regression neural network), we establish the
procedure of sequential accumulative selection, where in a pre
step the initial grid is sequentially reduced before the actual
full grid search is applied. Despite the comparably large effort
we put into the optimization of the neural networks, they show
a great variability.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r 

[%
] (

qu
ar

til
es

)

model

NNA

NNA_all

RF

RFclass

RNN

SVM

SVMclass

Figure 8. The five quartiles of fpr on maniprandom for varying q for all
models distinguishable by color and line type. The median is drawn thicker.
Additionally, the diagonal and the 10% line are depicted.

VIII. FUTURE WORK

In this paper, we first assume that it is reasonable that ma-
nipulations are applied to low rated wines to make them appear
better to increase sales numbers. As a reference setting, we
additionally apply a random manipulation. However, it would
be interesting to test our approach also on other, somehow
meaningful manipulation strategies, including, e.g., intentional
and unjustified down ratings. Future work could also deal with
the detection of faked ratings when there are multiple ratings

74

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r 

[%
] (

qu
ar

til
es

)

model

NNA

NNA_all

RF

RFclass

RNN

SVM

SVMclass

Figure 9. The five quartiles of tpr on maniprandom2 considering the actually manipulated data objects for varying q for all models distinguishable by
color and line type. The median is drawn thicker. Additionally, the diagonal and the 10% line are depicted.

per product as it is typical for many online stores or rating
portals. Are there ways to detect the faked/manipulated ratings
(whether better or worse) when there are many ratings for the
same product? In this context, many stores and portals offer the
possibility to write a review in addition to the plain rating. The
processing of such information (via natural language process-
ing) is likely to be useful here. In our approach, as it is typical
for wine and other online ratings, we did not assume that
cryptographic means for the prevention of manipulations exist.
This is mainly because ratings can be manipulated before they
are written down the first time. However, it could be interesting
to check how the introduction of some cryptographic means,
e.g., manipulation detection codes [55], which are some kind
of checksums, could influence the detection of manipulated
ratings.

Of course, other application areas apart from wine can
be investigated with our approach, for example, ratings for
products in online stores, restaurants, hotels. The detection of
fraud in telecommunication, insurance, etc. [54] is also closely
related. It could be of interest to identify the similarities and
differences between these applications and how they should
be addressed. When analyzing wine ratings, it would also be
interesting to transfer our approach to other, larger datasets
with more features, such as countries, producing regions,
price segments, etc. and analyze the stability of the models’
performances.

The procedure of sequential accumulative selection (as
explained in Section V) can be further analyzed. One might

investigate whether and how the order of the features is impor-
tant. Comparisons to other hyperparameter selection methods
are also possible (cf. [32]).

Last but not least, it should be noted that the topic of
explainable AI and responsible AI is rapidly growing in impor-
tance [56]. It would be helpful to get to know the reasons why
a manipulation detection model marks a certain data object as
suspicious. As few as possible false positives are to be marked,
whereas all manipulated ones are to be recognized if possible.
So how can the decisions of the recognition algorithms be
(understandably) explained?

ACKNOWLEDGMENT

Michaela Baumann is with NÜRNBERGER Versicherung,
Germany. The opinions expressed here are her own and not
necessarily those of her employer.

The authors thank Lars Grüne and Bernhard Herz, both with
University of Bayreuth, Germany.

REFERENCES

[1] M. Baumann and M. H. Baumann, “Autoencoder vs. Regression Neural
Networks for Detecting Manipulated Wine Ratings,” The Seventeenth
International Multi-Conference on Computing in the Global Information
Technology (ICCGI), 2022, pp. 7-13

[2] G. Rosso, Italian Wines 2021 (English Edition), Gambero Rosso, 2021
[3] R. Parker, The Wine Advocate, https://www.robertparker.com/articles/

the-wine-advocate, accessed: 2022.12.08
[4] Gault&Millau, https://www.gaultmillau.com/, accessed: 2022.12.08
[5] Guide Michelin, https://guide.michelin.com/en, accessed: 2022.12.08
[6] D. Freedman, R. Pisani, and R. Purves, “Statistics,” 4th ed., W. W. Nor-

ton & Company, Inc., New York, London, 2007, Chapters 10-12

75

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r 

[%
] (

qu
ar

til
es

)

model

NNA

NNA_all

RF

RFclass

RNN

SVM

SVMclass

Figure 10. The five quartiles of fpr on maniprandom2 considering the actually manipulated data objects for varying q for all models distinguishable by
color and line type. The median is drawn thicker. Additionally, the diagonal and the 10% line are depicted.

[7] E. Gelenbe, Z. H. Mao, and Y. D. Li, “Function Approximation with
Spiked Random Networks,” in IEEE Transactions on Neural Networks,
vol. 10, no. 1, 1999, pp. 3-9

[8] E. Gelenbe, “Random Neural Networks with Negative and Positive
Signals and Product Form Solution,” in Neural Computataion, vol. 1,
no. 4, 1989, pp. 502-510

[9] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why
and When Can Deep-but Not Shallow-networks Avoid the Curse of
Dimensionality: A Review,” in International Journal of Automation and
Computing, vol. 14, no. 5, 2017, pp. 503-519

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” in Nature,
vol. 521, no. 7553, 2015, pp. 436-444

[11] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Sup-
port Vector Regression Machines,” in Advances in Neural Information
Processing Systems, vol. 9, 1996

[12] I. Steinwart and A. Christmann, “Support Vector Machines,” Springer,
2008

[13] L. Breiman, “Bagging Predictors,” in Machine Learning, vol. 24, 1996,
pp. 123-140

[14] L. Breiman, “Random Forests,” in Machine Learning, vol. 45, 2001,
pp. 5-32

[15] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier Detection
Using Replicator Neural Networks,” Data Warehousing and Knowledge
Discovery, 2002, pp. 170-180

[16] M. Sakurada and T. Yairi, “Anomaly Detection Using Autoencoders with
Nonlinear Dimensionality Reduction,” Proceedings of the MLSDA 2014
2nd Workshop on Machine Learning for Sensory Data Analysis, 2014,
pp. 4-11

[17] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality
of Data with Neural Networks,” in Science, vol. 313, no. 5786, 2006,
pp. 504-507

[18] J. D. Kelleher, “Deep Learning,” MIT press, 2019
[19] M. A. Kramer, “Autoassociative Neural Networks,” in Computers &

Chemical Engineering, vol. 16, no. 4, 1992, pp. 313-328
[20] M. A. Kramer, “Nonlinear Principal Component Analysis Using Au-

toassociative Neural Networks,” in AIChE journal, vol. 37, no. 2, 1991,
pp. 233-243

[21] D. L. Donoho, “High-Dimensional Data Analysis: The Curses and
Blessings of Dimensionality,” in AMS math challenges lecture, 2000

[22] J. W. Tukey, “The Future of Data Analysis,” in The Annals of Mathe-
matical Statistics, vol. 33, no. 1, 1962, pp. 1-67

[23] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
Wine Preferences by Data Mining from Physicochemical Properties,” in
Decision Support Systems, vol. 47, no. 4, 2009, pp. 547-553

[24] P. Cortez et al., “Using Data Mining for Wine Quality Assessment,”
in International Conference on Discovery Science, Springer, Berlin,
Heidelberg, 2009, pp. 66-79

[25] Y. Gupta, “Selection of Important Features and Predicting Wine Quality
Using Machine Learning Techniques,” in Procedia Computer Science,
vol. 125, 2018, pp. 305-312

[26] À. Nebot, F. Mugica, and A. Escobet, “Modeling Wine Preferences from
Physicochemical Properties Using Fuzzy Techniques,” in SIMULTECH,
2015, pp. 501-507

[27] S. Kumar, Y. Kraeva, R. Kraleva, and M. Zymbler, “A Deep Neural
Network Approach to Predict the Wine Taste Preferences,” in Intelligent
Computing in Engineering, Springer, Singapore, 2020, pp. 1165-1173

[28] P. Abbal, J. M. Sablayrolles, E. Matzner-Lober, and A. Carbonneau,
“A Model for Predicting Wine Quality in a Rhône Valley Vineyard,” in
Agronomy Journal, vol. 111, no. 2, 2019, pp. 545-554

[29] O. Ashenfelter, “Predicting the Quality and Prices of Bordeaux Wine,”
in The Economic Journal, vol. 118, no. 529, 2008, pp. F174-F184

[30] O. Ashenfelter, “Predicting the Quality and Prices of Bordeaux Wine,”
in Journal of Wine Economics, vol. 5, no. 1, 2010, pp. 40-52

[31] R. Schwarz, “Predicting Wine Quality from Terrain Characteristics with
Regression Trees,” in Cybergeo: European Journal of Geography, 1997

[32] T. H. Y. Chiu, C. Wu, and C. H. Chen, “A Generalized Wine Quality
Prediction Framework by Evolutionary Algorithms,” in International
Journal of Interactive Multimedia & Artificial Intelligence, vol. 6, no. 7,
2021, pp. 60-70

[33] R. Andonie, A. M. Johansen, A. L. Mumma, H. C. Pinkart, and S. Vajda,
“Cost Efficient Prediction of Cabernet Sauvignon Wine Quality,” IEEE
Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1-8

[34] U. G. Mahima, Y. Patidar, A. Agarwal, and K. P. Singh, “Wine Quality
Analysis Using Machine Learning Algorithms,” Micro-Electronics and
Telecommunication Engineering, Springer, 2020, pp. 11-18

76

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[35] S. Bhattacharjee and M. R. Chaudhuri, “Understanding Quality of Wine
Products Using Support Vector Machine in Data Mining,” in Prestige
International Journal of Management & IT-Sanchayan, vol. 5, no. 1,
2016, pp. 67-80

[36] S. Kumar, K. Agrawal, and N. Mandan, “Red Wine Quality Prediction
Using Machine Learning Techniques,” International Conference on
Computer Communication and Informatics (ICCCI), 2020, pp. 1-6

[37] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey”, ACM Comput. Surv., vol. 41, no. 3, 2009, article no. 15, pp. 1-
15

[38] V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies.”
Artificial Intelligence Review, vol. 22, 2004, pp. 85-126

[39] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
Anomaly Detection: Methods, Systems and Tools,” in IEEE Commu-
nications Surveys & Tutorials, vol. 16, no. 1, 2014, pp. 303-336

[40] A. Patcha and J.-M. Park, “An Overview of Anomaly Detection
Techniques: Existing Solutions and Latest Technological Trends,” in
Computer Networks, vol. 51, no. 12, 2007, pp. 3448-3470

[41] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection:
A Survey,” preprint on arXiv, https://arxiv.org/abs/1901.03407, 2019

[42] C. C. Noble and D. J. Cook, “Graph-Based Anomaly Detection,”
Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2003, pp. 631-636

[43] Wine Quality Datasets, Universidade do Minho, http://www3.dsi.
uminho.pt/pcortez/wine/, accessed: 2022.12.08

[44] kaggle (Piyush Agnihotri), White Wine Quality—Simple and Clean
Practice Dataset for Regression or Classification Modelling, https://
www.kaggle.com/piyushagni5/white-wine-quality, accessed: 2022.12.08

[45] kaggle (UCI Machine Learning), Red Wine Quality—Simple and Clean
Practice Dataset for Regression or Classification Modelling, https:
//www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009, accessed:
2022.12.08

[46] Open Data Commons—Legal Tools for Open Data, Database Contents
License (DbCL) v1.0, https://opendatacommons.org/licenses/dbcl/1-0/,
accessed: 2022.12.08

[47] T. Shin, “Predicting Wine Quality with Several Classification
Techniques” Towards Data Science, 2020, https://towardsdatascience.
com/predicting-wine-quality-with-several-classification-techniques-
179038ea6434, accessed: 2022.12.08

[48] D. Nguyen, “Red Wine Quality Prediction Using Regression
Modeling and Machine Learning,” Towards Data Science, 2020,
https://towardsdatascience.com/red-wine-quality-prediction-using-
regression-modeling-and-machine-learning-7a3e2c3e1f46, accessed:
2022.12.08

[49] F. Rodrı́guez Mir, “Red Wine Quality,” Data UAB, 2019, https://datauab.
github.io/red wine quality/, accessed: 2022.12.08

[50] unknown, “Wine Quality Prediction,” cppse-
crets.com, 2021, https://cppsecrets.com/users/
10126100104105114971061121141111061019964103109971051084699111109/
WINE-QUALITY-PREDICTION.php, accessed: 2022.12.08

[51] D. Alekseeva, “Red and White Wine Quality,” RPubs, https://rpubs.com/
Daria/57835, accessed: 2022.12.08

[52] M. Hatz, “Der Einfluss von mtry auf Random Forests” (in English: “The
Influence of mtry on Random Forests”), Master’s Thesis, 2018

[53] N. Japkowicz, C. Myers, and M. Gluck, “A Novelty Detection Approach
to Classification,” in IJCAI, vol. 1, 1995, pp. 518-523

[54] M. Baumann, “Improving a Rule-based Fraud Detection System with
Classification Based on Association Rule Mining,” INFORMATIK,
2021, pp. 1121-1134

[55] R. R. Jueneman, “A High Speed Manipulation Detection Code,” in
Advances in Cryptology — CRYPTO’ 86, Lecture Notes in Computer
Science, vol. 263, 1987, pp. 327-346

[56] M. Baumann, “Data Science Challenge 2021: Explainable Machine
Learning,” https://github.com/DeutscheAktuarvereinigung/Data-
Science-Challenge2021 Explainable-Machine-Learning, accessed:
2022.12.08

77

International Journal on Advances in Internet Technology, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/internet_technology/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


