
111

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Naming, Assigning and Registering Identifiers in a
Locator/Identifier-Split Internet Architecture

Christoph Spleiß, Gerald Kunzmann1

Technische Universität München
Department of Communication Engineering

Munich, Germany
{christoph.spleiss, gerald.kunzmann}@tum.de

Abstract—Splitting the IP-address into locator and identifier
seems to be a promising approach for a Future Internet
Architecture. Although this solution addresses the most critical
issues of today’s architecture, new challenges arise through
the necessary mapping system to resolve identifiers into the
corresponding locators. In this work, we give an overview of a
scheme how to name identifiers not only for hosts, but basically
for anything that needs to be identified in a future Internet.
Our approach is based on the HiiMap locator/ID split Internet
architecture and supports user-friendly identifiers for hosts,
content, and persons and does not rely on DNS. We show
how the registration and assignment for identifiers is handled
and which modifications in the network stack are necessary.
Furthermore, a possible solution for a lookup mechanism that
can deal with spelling mistakes and typing errors in order to
improve the quality of experience to the user is provided.

Keywords-Locator/ID-split, Future Internet, Naming
schemes, Content Addressing.

I. INTRODUCTION

Today’s Internet architecture has been developed over
40 years ago and its only purpose was to interconnect a
few single nodes. At that time, no one expected that the
Internet and the number of connected devices would grow
to the current size. Measurements show that the Internet
continues growing at a tremendous high rate. The address
space of the current IPv4 addresses is already too small to
address every single node in the Internet and the growth
of BGP routing tables sizes in the Default Free Zone (DFZ)
becomes critical for the Internet’s scalability [1]–[4]. Beyond
that, mechanisms like traffic engineering (TE) or multi
homing are further increasing the BGP tables sizes, as IP
address blocks are artificially de-aggregated or advertised
multiple times. While IPv6 is a promising solution for the
shortage of addresses, it will probably increase the Border
Gateway Protocol (BGP) routing table problem. Therefore,
at least for IPv6, a new and scalable routing architecture is
necessary. Besides that, more and more devices connected to
the Internet are mobile, such as smart phones or netbooks.
Even more and more cars, which are mobile by definition,
have access to the Internet. However, the current Internet

1Dr. Kunzmann is now working for DOCOMO Communications Labo-
ratories Europe GmbH, Landsberger Strasse 312, Munich, Germany.

architecture has only very weak support for mobility, as
the IP-address changes whenever a device roams between
different access points.

All problems mentioned above occur because the IP-
address, no matter if IPv4 or IPv6, is semantically over-
loaded with two completely independent values. It is used
to identify a specific host in the Internet, while on the other
hand, it is also used to locate this node. Separating the
current IP address into two independent parts for reachability
and identification is a promising solution to many prob-
lematic issues with today’s Internet [5]. With this approach
a known identifier (ID) can always be used to reach a
specific host, no matter where it is currently attached to
the network. Thereby, a logical communication session is
always bounded to the ID and not to the locator. A locator
change due to mobility is handled by the network stack
and is completely transparent to the communication session
and the overlying application. It does not disconnect an
ongoing communication anymore. Furthermore, it is possible
to assign more locators to a specific ID, e.g., if a host is
multihomed.

However, not only the number of hosts has developed
differently than initially expected, but also the way people
use the Internet. While the current Internet architecture is
designed for accessing a specific machine, todays focus has
shifted on accessing a specific piece of information. The
host storing the information is thereby of minor interest. The
idea is a new network architecture named Content Centric
Network (CCN) [6]–[8] where content and information can
be directly addressed independent of its storage location,
which usually points to a host. Furthermore, the emergence
of social networks, Web 2.0 applications, Voice over IP
(VoIP) and instant messaging applications additionally put
the person in the focus of interest. People want to commu-
nicate with each other, regardless of the device each of the
person is using.

The split of locator and ID thereby offers ideal prereq-
uisites for the support of addressing schemes for content,
information and persons. Using this paradigm, an ID is
assigned for every host, content object and person. A highly
scalable mapping system, which is a mandatory part of every



112

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

locator/ID separated Internet architecture, translates IDs into
the corresponding locators. Note that the mapping system
can not only return a set of locators, which are necessary to
access a specific host, but it can also return a more complex
description of a content object or a person.

A crucial question in conjunction with a locator/ID sepa-
rated Internet architecture is how to name, assign and register
IDs. As IDs are used as control information in communi-
cation protocols and packet headers, they are mostly fixed-
length bit strings that can be hardly memorized by humans.
However, in order to avoid a second resolution system like
DNS that translates easy memorizable names to IDs, we
need a way how to uniformly name IDs. In this work, we
present a flexible and adaptable naming scheme for IDs that
can be used to identify hosts, content, persons and is open for
future extensions. We furthermore present techniques how
to register IDs and how assign them accordingly. Although
our approach can be adapted to basically any locator/ID
separated Internet architecture, it is currently based on the
HiiMap Internet architecture [9], as HiiMap provides a
highly scalable and customizable mapping system. It does
not rely on the Domain Name System and allows each entity
to calculate the requested ID on its own.

The paper is structured as follows. In Section 2, we
discuss related work and different concepts of locator/ID
split architectures. Section 3 describes our approach of a
new naming scheme for IDs while Section 4 deals with
registration and assignment issues. Section 5 demonstrates
necessary modifications in the network stack and Section 6
discusses a possible lookup algorithm that tolerates spelling
mistakes and allows unsharp queries to a certain extent.
Section 7 summarizes the results and concludes.

II. RELATED WORK

Many proposals dealing with the split of locator and ID
have been published so far, but only a few of them discuss
how to name IDs. However, almost all of them use a bit-
representation of constant length as ID.

A. Host-based approaches

The majority of these proposals are solely host-based
approaches. Among them Hair [11], FIRMS [13], LISP [14],
HIP [15], HIMALIS [16] and many others. In the following,
we will describe three of them more detailed, as their
way how to implement the locator/ID-split is representative.
LISP: In contrast to other architectures that are examined in
this work, LISP does not separate the identifier from routing
purposes. Within an edge network or autonomous system
(AS), the normal IP-address still serves as so called Endpoint
Identifier (EID) and routing address at the same time. While
the EID is only routable inside a LISP-domain, an additional
set of addresses is used for the routing between different
LISP-domains, which are called Routing Locators (RLOC).
RLOCs are the public IP-addresses of the border routers of

a LISP-domain, globally routable, and independent of the
nodes’ IP addresses inside the domain. Whenever a packet
is sent between different LISP-domains, the packet is first
routed to the Ingress Tunnel Router (ITR), encapsulated in a
new IP packet, and routed to the Egress Tunnel Router (ETR)
according to the RLOCs. The ETR unpacks the original
packet and forwards it to the final destination. A mapping
system is necessary to resolve foreign EIDs (EIDs that are
not in the same domain) to the corresponding RLOCs. How-
ever, as in normal IP networks, the EID changes whenever a
node changes its access to the network. Furthermore, DNS
is still necessary to resolve human readable hostnames to
EIDs.

HIP: The Host Identity Protocol implements the loca-
tor/ID split by introducing an additional layer between the
network and the transport layer. For applications from higher
layers the IP address is replaced by the Host Identity Tag
(HIT), which serves as identifier. HIP leaves the IP-layer
untouched and the locator is a simple IPv4 or IPv6 address.
Therefore, HIP does not rely on special gateways, which is
very migration-friendly. However, as it does not influence the
routing system, it does not take any countermeasures against
the growth of the BGP routing tables. Instead, the main
focuses of HIP are security features. The Host Identifier
(HI) is a public key of an asymmetric key pair and used for
identification and cryptographic purposes at the same time.
The HI is not used in packet headers, as the key length can
vary over time. Instead, the HIT, which is a hash value from
the HI, is used for addressing purposes. Encryption, authen-
ticity and integrity can be achieved due to the presence of an
asymmetric key pair. However, the coupling of identifier and
public key is a major drawback, as the ID changes whenever
the key pair changes. While no permanent validity may be
a desirable feature for cryptographic key pairs, it is not for
an identifier.

HIMALIS: Like HIP, the HIMALIS (Heterogeneity In-
clusion and Mobility Adaption through Locator ID Separa-
tion in New Generation Network) approach realizes the loca-
tor/ID split by introducing an extra layer between network
and transport layer, the so-called Identity Sublayer. Upper
layers solely use the host IDs for session identification,
while the lower layer use the locator for packet forwarding
and routing. HIMALIS can use any kind of addressing
scheme for locators and supports security features based
on asymmetric keys. Despite that, it does not burden the
ID with the semantic of a public key. HIMALIS uses
domain names as well as host IDs to identify hosts. In
contrast to other approaches, a scheme how to generate
host IDs out of the domain name using a hash function is
shown. However, HIMALIS uses three different databases
for resolving domain names and hostnames to IDs and
locators (Domain Name Registry, Host Name Registry and
ID Registry), which results in increased maintenance effort
to achieve data consistency.



113

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Content-based approaches

Contrary to host based approaches, several proposals for
a future Internet architecture take into account the changing
demands regarding the intended use of the Internet, namely
the focus on retrieving information [6].

The NetInf (Network of Information) architecture shows
how locator/ID separation can be used for content-centric
networking [8]. By introducing an information model for any
kind of content, NetInf allows fast retrieval of information in
the desired representation. Thereby, each information object
(IO) includes a detailed description of the content and its
representations, with locators pointing to the machine that
stores the information. The ID is assigned to the IO and
is composed out of different hash values of the content
creator’s public key and a label created by the owner. In
order to find a specific IO, the creator’s public key and label
must be known exactly. A first approach of NetInf is realized
as an overlay architecture that uses the current routing
and forwarding system, while a second alternative plans to
deal with name-based routing mechanisms that provide an
integrated name resolution and routing architecture.

Another Future Internet Architecture focusing on content
is TRIAD [7]. One key aspect of TRIAD is the explicit
introduction of a content layer that supports content routing,
caching and transformation. It uses character strings of
variable length as content IDs and uses the packet address
solely as locator. The TRIAD content layer consists of
content routers that redirect requests to content servers
and content caches that actually store the content. DNS is
used to resolve locators for content objects and the content
delivery is purely based on IP in order to achieve maximum
compatibility with the current Internet architecture.

C. Hybrid approaches

A proposal for a Next Generation Internet architecture
that supports basically any kind of addressing scheme is the
HiiMap architecture [9]. Due to the locator/ID separation
and a highly flexible mapping system, HiiMap allows for
addressing hosts as well as content and is still open for future
extensions and requirements. In the following, we use the
term entity for any addressable item.

The HiiMap architecture uses never changing IDs, so
called UIDs (unique ID) and two-tier locators. One part
of the locator is the LTA (local temporary address) that is
assigned by a provider and routable inside the provider’s
own network. The other part is the gUID (gateway UID).
This is a global routable address of the provider’s border
gateway router and specifies an entrance point into the
network. Thereby, each provider can choose its own local
addressing scheme that can be adapted to specific needs.
However, a common addressing scheme for all providers is
necessary for the gUID in order to route packets [17].

HiiMap splits the mapping system into different regions,
whereby each region is its own independent mapping system

that is responsible for the UID/locator mappings of entities
registered in this region. The mapping system in each region
consists of a one-hop distributed hash table (DHT) to reduce
lookup times. As DHTs can be easily extended by adding
more hosts, the mapping system is highly scalable. In order
to query for UIDs which regions are not known, a region
prefix (RP) to any UID is introduced (compare Figure 1).
This RP can be queried at the so-called Global Authority
(GA), which resolves UIDs to RPs. The GA is a centralized
instance and acts as root of a public key infrastructure, thus
providing a complete security infrastructure. As RP-changes
are expected to be rare, they can be cached locally.

Like other approaches, HiiMap uses fixed length bit
strings of 128 bits as UID. As plaintext strings are not
feasible as UIDs due to their variable length, a naming
scheme is necessary to assign UIDs to all kinds of entities.
Thereby, the existing Domain Name System is to be replaced
by the more flexible HiiMap mapping system.

III. NEW NAMING SCHEME FOR IDENTIFIERS

In this section, we introduce a naming scheme for IDs
that is suitable to address basically any entity and that can
be generated out of human friendly information. Although
we use the HiiMap architecture exemplarily for introducing
this approach, it can also be adapted to other locator/ID split
architectures.

A. General Requirements for Identifiers

When introducing a Future Internet Architecture based on
locator/ID separation, the ID has to fulfill some mandatory
requisites. In the following, we sum up general requirements
for IDs proposed by the ITU [18]:

• The ID’s namespace must completely decouple the
network layer from the higher layers.

• The ID uniquely identifies the endpoint of a communi-
cation session from anything above the transport layer.

• The ID can be associated with more than one locator
and must not change whenever any locator changes.

• A communication session is linked to the ID and must
not disconnect when the locator changes.

In addition to the ITU we add further requirements:
• An ID must be able to address any kind of entity, not

only physical hosts.
• Every communication peer can generate the ID of its

communication partner out of a human readable and
memorable string.

• The ID is globally unique, but it must be possible to
issue temporary IDs.

• The registration process for new IDs must be easy.
• IDs must be suitable for DHT storage.
While some of these aspects mainly affect the design of

a Future Internet Architecture based on a locator/ID split,
some issues are directly related with the naming of IDs.



114

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 Ext 2
1 static host plain text domain name hash of local hostname service
2 non-static host global prefix assigned by provider hash of local hostname service

3, 4 content plain text content name child content version number
5 person first + last name random communication channel

Table I: Generic contents of UID fields corresponding to different types

B. Generalized Identifier

As IDs are used in the transport layer protocol to de-
termine the endpoint of a communication, we cannot avoid
using fixed-length bit strings to realize packet headers of
constant size. In combination with DHTs, which also require
fixed-length bit strings, the usage of a hashing function is
obvious. In contrast to other approaches, which compose the
ID of one hash value only, we split the ID in several prede-
termined fields whose purposes are known to all entities.

In the following, we introduce a generalized scheme how
to compose global unique IDs (UID) for any entity and
give concrete examples how to name hosts, content and
persons. Our scheme allows storing all these IDs in the
same mapping database and is yet flexible enough to support
different databases for different types of IDs.

Figure 1 shows the generalized structure of an ID, which
is composed of a region prefix (RP) according to HiiMap
and an UID. The UID consists of a type field (T), the hash
value of a human friendly name for the entity to be identified
as well as two extension fields (Ext 1 and Ext 2). The UID
is stored in the mapping system of a specific region, denoted
by the RP.

The type field T denotes to which type of entity the UID
belongs to. T allocates the most significant bits (MSB) in
the UID, which allows to map different ID types to different
databases in the mapping system. As some entities require
more complex entries in the mapping system, it may be
desirable to use different databases that are optimized for the
needs of a specific entity. We suggest using 128 bits for the
UID, whereby 4 bits are used to determine the type, 76 bits
are assigned for the hash value, 32 bits for Ext 1 and 16 bits
for Ext 2. In the following, we show realizations for applying
UIDs to different types: host, content and persons. Table I
gives an overview how the UID is composed according to
the type of entity. Each part is described in detail in the
following subsections. Note that our scheme is not limited
to these types, but can easily be extended.

RP T Hash(name) [Ext 1] Ext 2 UID

Figure 1: Identifier UID with regional prefix RP

C. Identifiers for Hosts

IDs for hosts are the most common use case today and
DNS is used to resolve hostnames to IP addresses in order
to access a specific machine. The hostname, or FQDN (full
qualified domain name), which specifies the exact position
in the tree hierarchy of the DNS, can be roughly compared
to the ID in a locator/ID separated Internet architecture.
However, the FQDN is solely used in the application layer
and is not present in any lower layer network protocol.

Similar to today’s hostnames, we introduce a hierarchy
to our UIDs. However, contrary to FQDNs, our scheme
is limited to two hierarchical levels: a global part and a
local part. While the global part is used to identify a whole
domain, e.g. a company or an institute at a university, the
local part is used to identify single machines within this
domain. Note that the term domain does not refer to a
domain like in today’s DNS hierarchy. A domain in our
solution has a flat hierarchy and simply defines an authority
for one or more hosts. We differentiate between two different
types of host UIDs and give an overview in Table II:

1) Static Host Identifier: Static host UIDs are never
changing IDs of type T=1 that can be generated by hashing
a human readable hostname. Their main purpose is for
companies or private persons that want to have a registered
UID that is always assigned to their host or hosts.

Hash: The domain name part of the plain text hostname
is used to generate the hash field of the UID. An example
can be mycompany.org as domain name.

Ext 1: The hash value of the local host name is used
to generate this field. A local hostname is unique inside a
specific domain. An example for a local hostname could be
pc-work-003. That way, together with the domain name, a
host in the Internet is unambiguously identified.

Ext 2: The Ext 2 field is used to identify a specific service
on the host. It can be compared to today’s TCP or UDP
ports. An application or service listening for connections
must register its Ext 2 value at the network stack in order
to receive data. Some values for Ext 2 are predetermined,
e.g., for file transfer or remote administration, others can
be chosen freely. However, specifying a value in Ext 2 is
not necessary when requesting the locator for a specific host
from the mapping system and can therefore be set to zero. As
the host is precisely identified with the global and local UID
part, it is not necessary to store identifiers for each service of



115

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 Ext 2

1 static host plain text domain name,
e.g., mycompany.org

hash of local hostname,
e.g., pc-work-003

0 used for requesting the locator
from the mapping system

1..n− 1 standardized Ext 2 values for
n−1 common applications and
services

n..216 further values for proprietary or
open use

2 non-static host
global prefix assigned
by provider, e.g.,
provider12345

as above as above

Table II: Contents of UID fields for hosts

the host as they would all point to the same locator. Instead,
Ext 2 is set to zero in the UID when querying the mapping
system and filled with the specific service identifier when
actually accessing the node.

For privacy reasons it is possible not to publish the UID
for a private host in the global mapping system but only in
a local database. For a single point of contact it is possible
to use an UID with Ext 1 set to zero, which points to, e.g., a
login server, router or load balancer that forwards incoming
requests to designated internal hosts.

Note that the host has to update its mapping entry pointing
to new locator(s) upon any locator change.

2) Non-static Host Identifier: Contrary to static host IDs
and the basic idea of never changing UIDs there will always
be the need for non-static host UIDs, i.e., IDs that do not
have to be registered, that are assigned to a host for a specific
time, and that are returned to the issuer if no longer needed.
We assign the type value T=2 to these class of UIDs. An
example can be a private household with a DSL, cable
or dial-up Internet connection and a few hosts connected
through a router. Each host needs its own, distinct UID to
make connections with other hosts in the Internet. However,
it does not need to have a registered, never changing UID
if no permanent accessibility is needed.

Hash: The global part is assigned during the login process
to the router or middlebox that provides Internet access to
the other hosts. It can be compared to the advertisement of an
IPv6 prefix. The global part, e.g., the hash of provider12345,
is valid as long as the customer has a contract with its
provider. A new global part is assigned if the customer
changes its provider. Yet, the transfer of a global UID part
between different providers should be possible. In order to
assign non-static UIDs to customers, each provider holds
a pool of global UID parts. The mapping entry for a spe-
cific non-static host UID is generated by the corresponding
host immediately after assignment and whenever its locator
changes. However, each host with no static UID assigned
must proactively request a non-static host UID, either by

its provider or router and middlebox, respectively. Note that
the global part of a non-static host UID does not necessarily
consist out of the hash value of a plaintext string. It depends
on the provider if he uses hash values or just consecutive
numbers out of a contiguous pool.

Ext 1: Like with static UIDs, the local part of a non-static
UID is generated from the local hostname of a machine.
Therefore, a name for each host is mandatory.

Ext 2: Identical to the Ext 2 field used for static host
UIDs.

D. Identifiers for Content
As the focus of the users in the Internet is shifting from

accessing specific nodes to accessing information and con-
tent, different approaches towards a content-centric network
have been made as shown in Chapter II. By applying the
idea of information models, like the NetInf approach, to
our naming scheme, each content, which can be, e.g., a
webpage or an audio or video file, gets its own distinct UID.
Hereby, the UID does not point to the data object itself but
to the information model of the content that has a further
description and metadata stored. We use two different types
for content UIDs: T=3 and T=4, whereas T=3 is used for
content that is not subjected to public change, and T=4 which
is used for content that is free to public changes.

Hash: For generating the UID of a content we have to
use a meaningful name that can describe the corresponding
content or information. While this is indeed quite a difficult
task, possible solutions can be, e.g., the name of a well-
known newspaper like nytimes, which refers to the front
page of the New York Times online version. Similar, the
name of an artist could refer to an information object where
albums or movies are linked.

In our proposal, this plaintext name is used as input to a
known hash function to generate the hash part of the UID. As
the spelling of the content description is not always exactly
known, we suggest a lookup mechanism that can cope with
minor spelling mistakes in Section VI.

Ext 1: This field is optional and can be used to access
some more specific parts of the content or information that



116

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 (optional) Ext 2 (optional) (Pointer to)

3, 4 content meaningful content
name or description,
e.g., nytimes

Child content or information:

• hash of child content name,
e.g., sports

• number/ID: e.g. DOI
• value 0: request toplevel de-

scription of content object,
i.e., list of possible values
with short description

Version of content:

0 (when querying
mapping)
0 (when requesting
content)
1..216 (when
requesting content)

mapping entry
of content ob-
ject
current or ac-
tual version
some older ver-
sions

Table III: Contents of UID fields for content

is directly related with the main object. This can be, e.g.,
one specific article from a newspaper site or a sub-page
that deals with a specific topic like sports or politics. Other
examples are specific albums or pieces of music from an
artist. Ext 1 can help to avoid downloading a maybe bigger
object description of the main content to gather the desired
information. Another benefit is that each child object has
its own locator and therefore can be stored on different
locations while still being accessible through its parent
UID. This is not possible today as, e.g., the URL of a
newspaper article is directly coupled with the host storing the
information. Ext 1 is created by hashing the human readable
name for the detailed description or just by using consecutive
numbers. The latter is for example useful to assign a specific
article of a newspaper. It can be compared to the Digital
Object Identifier (DOI) in digital libraries [19]. In order to
access a specific content object which Ext 1 value is not
known, the user can access the top-level description of this
content object by setting Ext 1 to zero. This description then
includes lists with all possible values for Ext 1 with a short
description.

Ext 2: This field can be used to access a specific version
of the desired content or information. Like in a versioning
system, the Ext 2 field allows the user to easily access any
earlier version and the changes made to the information.
The content description is obtained by setting Ext 2 to zero
where different values for Ext 2 are listed. Of course, each
new version needs an update of the mapping entry including
potential new locators. Note that we do not create own
mapping entries for each Ext 2 value. Instead, available
values for Ext 2 are listed in the mapping entry that is
identifier by the hash part together with Ext 1. Like with
host addressing, Ext 2 is always set to zero when querying
the mapping system and filled with the desired value when
actually requesting the content.

Table III summarizes the purposes of the UID fields for
content objects. Unlike with host addressing, we cannot
simply connect to a locator returned by the mapping system.
As the information object is a description of content or in-
formation, the requesting application or user has to evaluate
the information object and select the desired representation

according to the user’s needs. Thus, the network stack will
not evaluate the data received from the mapping system for
a content UID query but forward it to the corresponding ap-
plication. The detailed interaction of applications requesting
content UIDs and the network stack will be discussed in
Chapter V.

Note that in case a name, e.g., nytimes, refers to both a
host (company) as well as content (webpage), the type field
is used to differentiate whether a locator (for type host) or
a content description (for type content) is returned.

E. Identifiers for Persons

With the emergence of social networks, Internet-capable
devices, Voice-over-IP (VoIP), etc., the need for personal IDs
arose, as the person itself is moving in the focus of interest.
Whenever somebody wants to contact a specific person he is
interested in the communication with that person and does
not want to care about the device, e.g., which phone or
computer the person is currently using for communication.
However, the user must have the possibility to choose the
desired communications channel. That can be an email, a
phone call, a message on a mailbox, a chat with an instant
messenger or a message in a social network and so on.
Furthermore, the personal UID can be used to make digital
signatures which is necessary for contracts whatsoever. It
has the assigned type T=5.

Hash: The main part of a person’s UID consists of a hash
value calculated from the person’s full name, i.e., first name
plus last name. As many people have the same first and
last name, the hash value is ambiguous and we need further
information to distinguish between different persons.

Ext 1: For this purpose we use a pseudo-random number
for Ext 1 when initially generating a person’s UID [20]. This
initial generation is not done by the person itself in order to
avoid multiple usage of the same Ext 1 value, but is issued by
a federal authority and valid for lifetime . It can be compared
to the number of a passport or the social security number,
which do not change over the persons lifetime.

Ext 2: This field is used to specify the communication
channel to the corresponding person and has a set of prede-
termined values, e.g., for email, VoIP, or instant messaging.



117

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 (optional) Ext 2 (optional) (Pointer to)

5 person first + last name
(random) number is-
sued by federal au-
thority

0 request personal pro-
file of person

1 request locator of
machine

2..n predetermined stan-
dart values

n..216 open for future ex-
tensions

mapping entry of
personal profile
machine user is
working on
mail server, VoIP
phone or VoIP
provider, chat
server, etc.

0 0 access directory

Table IV: Contents of UID fields for persons

Note, there are still enough unused values for future needs.
According to each Ext 2 value, different locators can be
stored in the mapping system. For example, the Ext 2 value
referring to the VoIP account can point to the locator of
a VoIP provider or directly to a VoIP phone, the value
referring to the mailbox can point to a mail server. The
mapping entry for Ext 2 set to zero includes the person’s
full name and, depending on the person’s privacy settings,
further details about the person like birth date or current
residential address. We refer to this as apersonal profile
according to [21]. Ext 2 set to one is used to get the locator
of the machine the person is currently working on if the
corresponding person agreed to publish this information.
Thereby, the communication channel can be signaled in
a higher layer or by using the machines service identifier
Ext 2 when contacting the corresponding host. Note that the
exposure of the device’s locator the person is currently using
can be abused to generate a movement profile. We suggest
to use a privacy service like showed in [22] to avoid these
issues.

However, to contact a specific person, not only the per-
son’s name but also Ext 1 must be known. There are two pos-
sibilities: First, the initiating person knows the correct UID
of its communication partner because they have exchanged
it in any way, e.g., with business cards. Second, the holder
of a personal UID can agree to be indexed in a directory that
is accessible through a personal UID with Ext 1 and Ext 2
set to zero. It stores the personal profiles of all persons that
have the same name including their random Ext 1 values plus
additional information to distinguish persons. According to
the persons privacy settings, further details about city or
street can be published, like in a traditional printed or online
phone book. Table IV summarizes the necessary fields for
personal UIDs.

In order to avoid abuse of personal UIDs, the usage of
PKI mechanisms that guarantee the presence of the corre-
sponding private key is mandatory for every transaction.

IV. IDENTIFIER REGISTRATION AND ASSIGNMENT

As each UID is globally unique by definition, it must
be ensured that only one entity at a time has a specific
UID assigned. It must be further prevented that any entity
is hijacking an UID for malicious purposes.

A. Static host UIDs

The registration process for a static host UID can be
compared to today’s domain names and is depicted in
Figure 2. Whenever a user wants to register a new static
host UID for his hosts, he has to register a UID for each
host together with a public key of this host at his local
registry or local NIC (Network Information Center) with
a REGISTER_UID. If the UID is still available, the NIC
creates the initial mapping entry in the mapping system with
CREATE_UID and stores the hosts public key. Updates are
only allowed if the UPDATE_MAPPING message is signed
with the correct private key, thus avoiding the UID to be
hijacked.

Whenever the host connects to the Internet, it first requests
a valid locator at the designated router with REQ_LOCATOR.
Together with the locator assignment, the locator for the
mapping system is delivered (ASSIGN_LOCATOR) and the
host can update its mapping entry. Whenever the host’s
access point changes, it will request a new locator and
immediately update the mapping entry with the new valid
locator.

The UID at the node is configured via a system file
like /etc/hostname and /etc/domainname. The owner of a
host must proclaim changing the key-pair of a node at the
mapping region. Note that for static UIDs every new UID
must be registered at the registry. It is not possible to register
only the domain part and to freely choose values for Ext 1,
as each static UID needs its own key pair.

B. Non-static host UIDs

The purpose of non-static UIDs is that they do not need
a registration process, as their prefixes are dynamically
assigned by a provider and therefore belong to that provider.
However, it must be possible for hosts with non-static UIDs



118

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Host Router/Middlebox Provider

Mapping

UPDATE_MAPPING
(UID, loc, pubkey+SIG)

UPDATE_OK
(mapping_loc)

REQ_LOCATOR
(pubkey, UID)

ASSIGN_LOCATOR
(loc, mapping_loc)

check 
pubkey 
and SIG,
update 
data

store
new loc

create initial
mapping entry
without loc,
allow updates
only for pubkey

NIC/RegistryUser
REGISTER_UID
(pubkey)

REGISTER_OK
ow

ns
 h

os
t &

as
si

gn
s 

U
ID

CREATE_UID
(pubkey)

Figure 2: Signal flow chart for static UID registration and assignment

Host Router/Middlebox Provider NIC/Registry Mapping
REQ_NSUID_GLOB_LIST

(prov.pubkey)

ASSIGN_NSUID_GLOB
(NSUID-global

parts)

CREATE_NSUID_GLOB
(prov.pubkey)REQ_NSUID_GLOB

(pubkey, [old NSUID-glob])

ASSIGN_NSUID_GLOB
(loc, mapping_loc)

UPDATE_MAPPING
(NSUID, loc, pubkey+SIG)

UPDATE_MAPPING
(NSUID, loc, pubkey, prov.pubkey+SIG)

UPDATE_OK
(mapping_loc)REQ_NSUID_GLOB

(pubkey, [old NSUID-glob])

ASSIGN_NSUID_GLOB
(loc, mapping_loc)

UPDATE_MAPPING
(NSUID, loc, pubkey+SIG)

UPDATE_MAPPING
(NSUID, loc, pubkey+SIG)

UPDATE_MAPPING
(NSUID, loc, pubkey, prov.pubkey+SIG)

UPDATE_OK
(mapping_loc)

check prov.
pubkey for
NSUID & 
grant
pubkey

store
NSUID
glob &
loc

store
NSUID
& loc

Figure 3: Signal flow chart for non-static UID registration and assignment

Host Router/Middlebox Provider Mapping

UPDATE_MAPPING
(NSUID, loc, pubkey)

UPDATE_OK
(mapping_loc)

REQ_LOCATOR
(pubkey, NSUID)

ASSIGN_LOCATOR
(loc, mapping_loc)

check if
pubkey
valid to 
update 
NSUID

store
new loc

NSUID
assigned

If UPDATE_MAPPING fails, e.g., due to a provider change, Mapping-System returns 
UPDATE_FORBIDDEN and the host now requests a new non-static UID prefix. 

UPDATE_FORBIDDEN
(reason)

REQ_NSUID_GLOB
(pubkey, [old NSUID-glob])

Figure 4: Signal flow chart for non-static UID roaming



119

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to change their mapping entries due to roaming although
they have not been individually registered.

In order to distribute global parts for non-static UIDs, the
provider has to request its pool of non-static UID global
parts at the local registry together with its public key. The
NIC creates the initial mapping entries for these global non-
static UID parts, whereby changes are only allowed by the
provider. Figure 3 depicts the complete registration process.

Whenever a home router or middle-box without assigned
global UID part tries to connect to the Internet, it requests a
global non-static UID part by sending a REQ_NSUID_GLOB
message to the provider. Note that this message must be sent
over a providers line (messages on gray background), as the
provider must verify if the device is allowed to request a
global UID part. He can do this by, e.g., checking login
credentials. Similar to a DHCP request, the middle-box can
request a global UID part that has been assigned before (old
NSUID_GLOB). After the assignment of a global UID part,
a valid locator for the device, and the locator of the mapping
system (ASSIGN_NSUID_GLOB), the middle-box updates
its mapping entry. Again, this process must be done over
the providers line, as only the provider can update the initial
mapping entry, because it has the corresponding private key.
Therefore, mapping_loc in the ASSIGN_NSUID_GLOB
message points to a mapping relay at the provider, which
signs UPDATE_MAPPING with the providers private key
and instructs the mapping system to allow updates di-
rectly from the device in the future. The mapping system
responds with UPDATE_OK and a new mapping_loc,
which directly points to the mapping system. However,
mapping_loc that points to the providers mapping relay
is still stored in the middlebox, as it is needed for internal
hosts to initially update their mapping entries.

Internal hosts are sending their request for a global UID
part to the middle-box, which assigns the same global UID
part received by the provider, together with a locator and
the locator of the mapping relay. The update of the mapping
entry is the same as for the middle-box.

In case of roaming (Figure 4), the host usually already has
an assigned non-static UID. Therefore, it does not request a
global UID part at its new access point, but just requests a
new locator with REQ_LOCATOR. It receives a new locator
with ASSIGN_LOCATOR, which also includes the locator of
the mapping system to update its mapping entry. However,
if the update at the mapping system fails, e.g., because the
global UID part has become invalid, the mapping system
returns UPDATE_FORBIDDEN and a reason for the reject.
Depending on that reason the host will then start to request
a new global UID prefix. Such an error can occur if, e.g., the
contract between the provider and the customer that owns
the host has expired.

C. Content UIDs

The procedure for content UIDs is basically the same like
for static host UIDs. The content creator has to initially
register the hash part of the UID at the mapping system.
However, it does not need to register each single content
object that is provided. Then the content provider can freely
create new content that only differs in Ext 1 and Ext 2. By
doing so, the content creator always uses the same public-
key pair for all content objects, and the mapping system
requires a valid signature upon changing any mapping entry.

While this procedure is sufficient for professional or
commercial content that is managed by one authority, a
different approach is necessary for content that is free to
public changes, like articles in Wikipedia. Here, everybody
is allowed to create a new version of the corresponding
content that differs in Ext 2. However, no new mapping
entry is generated for every new Ext 2 value, but the new
Ext 2 value including the corresponding locator is added to
the existing mapping entry. The changing person has to sign
this new entry with its own private key and the mapping
system must grant changes not only to the initial creator of
the mapping entry. In order to differentiate between content
that may be changed by anyone, we have introduced two
different type values 3 and 4 that simplify the setting of the
correct permissions for each mapping entry.

D. Personal UIDs

Unlike with UIDs for hosts or content, UIDs for persons
are assigned by an authority of the state. As the personal UID
can be used to make transactions and legal contracts, it has to
be guaranteed that the UID cannot be abused. Furthermore, it
has to be guaranteed that values for Ext 1 are unambiguous.
That would not be the case if everybody would generate its
own random value for Ext 1. Thus, during the registration
process, an authority assigns a free Ext 1 value and creates
the mapping entry for the person requesting a UID. The
authority furthermore checks the presence of a valid key-pair
and deposits the public key together with the mapping entry
in the mapping system. Then, the person can update and
create any entry for Ext 2 in its mapping entry on its own.
Changing the key pair must always be accomplished through
the issuing authority. Like before, Ext 2 is set to zero when
querying for the mapping entry of a specific person and
solely used when establishing a communication. The persons
UID, together with the cryptographic key pair, maybe stored
on a chip that is embedded in the ID card. This feature is
already supported by many governments today.

V. STACK INTERACTION

As the current Internet architecture does not support any
kind of locator/identifier separation, major changes in the
network stack are necessary to enable this new network
paradigm. Based on the HiiMap approach and in order
to avoid a hierarchical and inflexible design like in the



120

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Network
Block IPv4 IPv6 other Locator-DB

Mapping BlockType Dispatcher

Host Block Content Block Person Block

Type Dispatcher

Storage

Application Layer

Physical Layer

Datalink Layer

Middleware

Figure 5: New network stack with middleware and interacting
building blocks

Open Systems Interconnection (OSI) reference model, we
suggest to use building blocks that can freely interact in
the so-called middleware. Applications in the upper layer
can choose to which types they want to connect and the
middleware provides the mapping lookup, handles the con-
nection setup and keeps track of changing locators. Note
that this architecture requires no changes in the datalink and
physical layer. Figure 5 shows the schematic model of the
middleware. Building blocks are shown in gray and the Type
Dispatcher forwards incoming and outgoing data packets
to the responsible building block. Note this middleware is
necessary on all devices connected to the Internet. However,
during a migration phase, it is possible to gradually introduce
the specific building blocks. Nevertheless, the Network and
Host Block are mandatory from the beginning to allow at
least host-to-host communication.

A. Network Block

The task of the network block is to select adequate
protocols for inter-networking, according to the network
configuration. These can be for example IPv4, IPv6 or
future protocols with new addressing schemes and routing
techniques. The network block is solely working on locator-
level, and prepends the necessary routing and forwarding
header to the data packets. Furthermore, the building block
is responsible for the locator values of all connected network
interfaces and also requests non-static global UID parts if
necessary. It keeps track of all UIDs and the corresponding
locator values that are being used in the locator database.
It notifies all these communication partners upon a local lo-
cator change, thus ensuring a interruption-free data transfer.
Moreover, it notifies the mapping module to update the entry
in the mapping system.

B. Mapping Block

This building block is responsible for keeping the host’s
mapping entries up to date. Locator changes of the network
interfaces are reported from the network block and updated
in the mapping system. Despite that, receives requests for
UID resolution from other building blocks and forwards
these requests to the mapping system. It returns the corre-
sponding locators, content descriptions or personal profiles

to the requested building block. The mapping block uses
the mapping_loc value that is returned at the locator
assignment process for the communication with the mapping
system.

C. Host Block

Every application that wants to be accessible through a
specific service identifier (Ext 2 in host UIDs) must register
this identifier at the host block. Incoming connections for
UIDs with type ”host” are dispatched at the type dispatcher
and forwarded to the host block. If any application is
listening at the corresponding service identifier, the data
is forwarded. Furthermore, the host block handles outgoing
connections to other hosts and accepts connection requests
to host UIDs. It selects one locator value returned by the
mapping block and forwards the data packet to the network
block. The host block also keeps track of locator changes at
its communicating peers.

D. Content Block

The tasks of the content block contain the reception of any
kind of content, including the evaluation of the information
object with the content description returned by the mapping
system, as well as the provision of own content that is stored
locally.

1) Content reception: The request of any application that
wants to receive a specific content object is dispatched to the
content block. According to the desired UID, the content
block requests the information object from the mapping
system. Furthermore the application has the possibility to set
some filter rules regarding the requested content, e.g., mini-
mal/maximal bit-rate for audio and video files, or resolution
for pictures. Mobile devices can benefit from that filtering
option, as the application has the possibility to request only
the smallest available version of the content. If the filtered
content description still has more than one source available,
the final choice has to be taken by the application or user
respectively.

2) Content provision: The other way round, the content
block is also responsible for the provision of content objects
that are stored on the local machine. Thereby, content that
shall be publicly available is registered at the content block
including the corresponding content UID. The content block
notifies the mapping block about new available content,
which in turn registers the content UIDs at the mapping
system. Requests for content UIDs are dispatched to the
content block, which delivers the desired content to the
inquirer. Note that the content block must have access to
the storage location of all registered content objects.

E. Person Block

The person block is responsible for any kind of personal
communication between users. Every application dealing
with chat capabilities, instant messaging, email, and voice-



121

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or video communication registers itself at this building
block. According to the connected applications and settings
of the user, the person block, in conjunction with the
mapping block, modifies the mapping entry of the persons
UID in the mapping system. The personal UID is configured
via a card reader and the persons ID card that also stores the
persons private key. Incoming connections are immediately
forwarded to the corresponding registered application. If
the user agrees to continuously update the locator(s) of his
machine, the person block takes care of this action.

VI. LOOKUP MECHANISM

The idea of our naming scheme for IDs is based on
the fact that each UID can be generated out of a known
plain text string with a known hash function and without
an additional naming system like DNS. However, as the
main part of any UID consists of a hash function, the
desired entity can only be found if the plain text string that
builds the UID is exactly known and no spelling mistake
or typing error occurred. This is particularly a problem for
querying UIDs, where phonetical identical search strings can
be spelled in different ways, e.g, ”color” and ”colour”. To
overcome this drawback, we suggest a lookup mechanism
that is based on n-grams in addition to the pure UID lookup.
Harding [23] and Pitler [24] showed that the usage of n-
gram based queries can significantly improve the detection
of spelling errors in noun phrases and word tokens. Note
that this feature must be supported and implemented in the
mapping system as well as in the mapping block of each
querying machine [25].

A. n-gram generation

Although DHTs only support exact-match lookups, it is
possible to use n-grams to perform substring and simi-
larity searches. Hereby, each plaintext string is split up
into substrings of length n, which are called n-grams. The
hash value of each n-gram together with the corresponding
complete plaintext string is then stored as key/value pair in
the DHT [25].

A typical value for n is two or three. As an example with
n = 3, the content name P set to nytimes is split up into
I = 5 trigrams hi with i = 1, ..., I: nyt, yti, tim, ime, mes.
In addition to the actual mapping entry indexed by the
UID, the hash value H(hi) of each n-gram hi is inserted
in the mapping system together with the corresponding
plain text name P . Thereby, the mapping entry for an n-
gram consists of the tuple 〈H(hi); plaintext string〉 [20].
Although these tuples are stored in the same mapping system
like the UID, we suggest using a different database within
the mapping system for performance reasons. Whenever the
entity changes its location, no updates of the n-grams are
necessary, as they do not contain any locator information
but only the entities’ plaintext name.

B. Querying UIDs

Whenever querying the mapping system for a specific
UID, the first step in the lookup process is using the pre-
calculated (or already known) UID as query parameter. Only
if the mapping system is not able to find a mapping entry to
the corresponding UID, e.g., because of a spelling mistake,
the n-gram lookup is executed. It is up to the user or
application if an n-gram based query request is initiated.
An n-gram based query can also be initiated if the query
does not return the desired result.

In doing so, the second step is to calculate the cor-
responding n-grams out of the plaintext string and query
the mapping system for each n-gram. The mapping system
sorts all matching n-grams according to the frequency of
the plaintext string and returns the list to the user. With
high probability, the desired plaintext has a high rank in
the returned list. By further correlating the input string with
each returned plaintext string, e.g., by using the Levenshtein
distance, the result is even more precise [26].

As the results returned by an n-gram query must be
further evaluated, the mapping block in the middleware
will forward that data to the corresponding building block.
This block can already select the best matching result, or
forwards the possible choices directly to the application,
which is responsible for correct representation to the user
that takes the final decision. However, although this feature
is similar to Google’s ”Did you mean...?”, the mechanism
is not suitable to handle complex queries with semantically
coherent terms as Google can do. However, it can help to
significantly improve the quality of returned search results
and thus the quality of experience to the user, as phonetical
similar words can be found despite different spelling.

VII. CONCLUSION

In this work, we presented a new naming scheme for
IDs in locator/ID separated Future Internet Architectures
based on the HiiMap proposal. The generalized ID scheme
is suitable for basically addressing any kind of entity and we
gave examples for hosts, content and persons. As each UID
can be computed out of a human readable plaintext string,
an additional naming system like DNS is not necessary
any more. Due to the extendible type field, we have the
possibility to assign ID-types also for, e.g., mobile phones,
sensors, or even cars or abstract services that provide any
functionality to a user. As IDs are independent from locators,
a communication session is not interrupted upon an access
point change. We showed instructions how new UIDs for
each type are assigned and registered and which changes
in the network stack are necessary in order to enable the
addressing scheme proposed in this work. Furthermore, by
introducing an n-gram based extended lookup mechanism
we are able to cope with spelling errors and typing mistakes.



122

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work was funded by the Federal Ministry of Edu-
cation and Research of the Federal Republic of Germany
(Project ID 01BK0807). The authors alone are responsible
for the content of the paper.

REFERENCES

[1] C. Spleiß and G. Kunzmann, “A Naming scheme for Iden-
tifiers in a Locator/Identifier-Split Internet Architecture,” in
ICN 2011, Proceedings of 10th International Conference on
Networks, Sint Maarten, Netherland, January 2011, pp. 57–
62.

[2] A. Afanasyev, N. Tilley, B. Longstaff, and L. Zhang, “BGP
routing table: Trends and challenges,” in Proc. of the 12th
Youth Technological Conference Ḧigh Technologies and In-
tellectual Systems¨, Moscow, Russia, April 2010.

[3] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang,
“IPv4 address allocation and the BGP routing table evolu-
tion,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 1, p. 80, 2005.

[4] ISC, “The ISC Domain Survey,” http://www.isc.org/solutions/
survey, Internet System Consortium, 2010.

[5] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure,
“Evaluating the benefits of the locator/identifier separation,”
in Proceedings of 2nd ACM/IEEE International Workshop on
Mobility in the evolving Internet Architecture, 2007, pp. 1–6.

[6] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs,
and R. Braynard, “Networking named content,” in Proceed-
ings of the 5th international conference on Emerging network-
ing experiments and technologies. ACM, 2009, pp. 1–12.

[7] D. Cheriton and M. Gritter, “TRIAD: A new next-generation
Internet architecture,” Tech. Rep., 2000. [Online]. Available:
http://www.dsg.stanford.edu/triad

[8] C. Dannewitz, “NetInf: An Information-Centric Design for
the Future Internet,” Proceedings of 3rd GI/ITG KuVS Work-
shop on The Future Internet, May 2009.

[9] O. Hanka, G. Kunzmann, C. Spleiß, and J. Eberspächer,
“HiiMap: Hierarchical Internet Mapping Architecture,” in 1st
International Conference on Future Information Networks,
October 2009.

[10] M. Menth, M. Hartmann, and D. Klein, “Global locator,
local locator, and identifier split (GLI-split),” University of
Würzburg, Institute of Computer Science, Technical Report,
2010.

[11] A. Feldmann, L. Cittadini, W. Mühlbauer, R. Bush, and
O. Maennel, “HAIR: Hierarchical Architecture for Internet
Routing,” in Proceedings of the 2009 Workshop on Re-
architecting the Internet. ACM, 2009, pp. 43–48.

[12] J. Pan, S. Paul, R. Jain, and M. Bowman, “MILSA: A
Mobility and Multihoming Supporting Identifier Locator Split
Architecture for Naming in the Next Generation Internet,” in
IEEE GLOBECOM, 2008, pp. 1–6.

[13] M. Menth, M. Hartmann, and M. Höfling, “FIRMS: a map-
ping system for future internet routing,” IEEE Journal on
Selected Areas in Communications, vol. 28, no. 8, pp. 1326–
1331, 2010.

[14] D. Farinacci, V. Fuller, D. Oran, D. Meyer, and S. Brim,
“Locator/ID separation protocol (LISP),” Draft, 2010.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-lisp-07

[15] R. Moskowitz and P. Nikander, “Host identity protocol (HIP)
architecture,” RFC 4423, Tech. Rep., May 2006.

[16] V. Kafle and M. Inoue, “HIMALIS: Heterogeneity Inclusion
and Mobility Adaptation through Locator ID Separation in
New Generation Network,” IEICE TRANSACTIONS on Com-
munications, vol. 93, no. 3, pp. 478–489, 2010.

[17] O. Hanka, C. Spleiß, G. Kunzmann, and J. Eberspächer,
“A novel DHT-based Network Architecture for the Next
Generation Internet,” in Proceedings of the 8th International
Conference on Networks, Cancun, Mexico, March 2009.

[18] ITU, “Draft Recommendation ITU-T Y.2015: General re-
quirements for ID/locator separation in NGN,” International
Telecommunication Union, 2009.

[19] N. Paskin, “Digital Object Identifier (DOI R©) System,” Ency-
clopedia of library and information sciences, pp. 1586–1592,
2010.

[20] G. Kunzmann, “Performance Analysis and Optimized Opera-
tion of Structured Overlay Networks,” Dissertation, Technis-
che Universität München, 2009.

[21] C. Spleiß and G. Kunzmann, “Decentralized supplementary
services for Voice-over-IP telephony,” in Proceedings of the
13th open European summer school and IFIP TC6. 6 con-
ference on Dependable and adaptable networks and services,
2007, pp. 62–69.

[22] O. Hanka, “A Privacy Service for Locator/Identifier-Split
Architectures Based on Mobile IP Mechanisms,” in Proceed-
ings of 2nd International Conference on Advances in Future
Internet, Venice, Italy, July 2010.

[23] S. Harding, W. Croft, and C. Weir, “Probabilistic retrieval of
OCR degraded text using N-grams,” Research and advanced
technology for digital libraries, pp. 345–359, 1997.

[24] E. Pitler, S. Bergsma, D. Lin, and K. Church, “Using web-
scale N-grams to improve base NP parsing performance,”
in Proceedings of the 23rd International Conference on
Computational Linguistics. Association for Computational
Linguistics, 2010, pp. 886–894.

[25] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica, “Complex queries in DHT-based peer-to-peer
networks,” Peer-to-Peer Systems, pp. 242–250, 2002.

[26] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus
among words: Lattice-based word error minimization,” in
6th European Conference on Speech Communication and
Technology, 1999.


