
Virtual Connections in P2P Overlays with DHT-Based Name to Address Resolution

Telesphore Tiendrebeogo
LaBRI

University of Bordeaux
Talence, France

Email: tiendreb@labri.fr

Daouda Ahmat
LaBRI

University of Bordeaux
Talence, France

Email: adaouda@labri.fr

Damien Magoni
LaBRI

University of Bordeaux
Talence, France

Email: magoni@labri.fr

Oumarou Sié
LTIC

University of Ouagadougou
Ouagadougou, Burkina Faso

Email: sie@univ-ouaga.bf

Abstract—Current Internet applications are still mainly
bound to their transport layer connections. This prevents
many features such as end-to-end security and mobility from
functioning smoothly in a dynamic network. In this paper, we
propose a novel architecture for decoupling communication
from their supporting devices. This enforces the complete
separation of devices, applications and entities such as users,
services and data. Our architecture is based on a peer-to-
peer overlay network where each peer has a permanent name
and a variable address which depends on its position in the
overlay. In order to dynamically map names to addresses, our
architecture provides its own distributed hash table system.
After presenting the design of our architecture, we provide a
scalability analysis and by performing simulations, we assess
its efficiency. Simulation results show that our overlay using a
name to address resolution based on a distributed hash table is
scalable and has acceptable performances given the flexibility
it can provide to applications.

Keywords-overlay; virtual connection; distributed hash table;
name resolution;

I. INTRODUCTION

Current Internet communications are still based on the
paradigms set by the TCP/IP protocol stack 30 years ago
and they are lacking several key features. Although many
efforts have been done during the last decade to provide
mobility, security and multicasting, those efforts have mainly
been focused on the equipment itself (e.g., computers, smart-
phones, routers, etc.) rather than on the logical part of the
communication. In fact, although we already have a lot of
mobile equipment, it is still impossible to transfer a com-
munication from one device to another without interrupting
the communication (and thus start it all over again). In the
same way, although we have the choice of many applications
for carrying one task, it is also still impossible to transfer
a communication from one application to another without
interrupting the communication. Layer 2 device mobility
(e.g., WiFi, WiMAX, 3G and beyond) is nowadays well
supported but users still have a very limited access to upper
layers mobility (e.g., MobileIP, TCP-Migrate).

In this paper, we propose and describe a new architecture
for using virtual connections setup over dynamic peer-to-
peer (P2P) overlay networks built on top of the TCP/IP
protocol stack of the participating devices. We have named

this architecture CLOAK (Covering Layers Of Abstract
Knowledge). This architecture supports names for entities
(i.e., users, services, data) and devices, virtual addresses
for devices, and virtual sessions for managing all kinds
of Internet communications. These new semantics brought
by our proposal open up many novel possibilities for such
communications. The virtual connections that are setup and
managed by our solution, transparently handle the break-
down and restore of transport layer connections (such as
TCP or SCTP connections).

This paper is an extended version of our previous
work [1]. We have added here a detailed description of
the Distributed Hash Table (DHT) mechanism deployed in
CLOAK, an analysis of the complexity of the DHT in
terms of distances, states and messages, as well as addi-
tional simulation results including comparative ones to other
existing DHT systems. CLOAK was originally presented
in our paper [2] which contained an extensive amount of
background and related work as well as some preliminary
simulation results upon static networks concerning path
length. Improving upon this foundation, our paper [1] pre-
sented the protocols and modules of the architecture with
greater details and reported simulation results upon dynamic
networks concerning routing success ratio, path length and
stretch, as well as DHT requests performance indicators. The
addressing and routing system based on hyperbolic geometry
which is used by CLOAK was presented in our paper [3].
Both the distributed addressing algorithm and the greedy
routing algorithm are detailed in this previous paper and
we have not included them here to avoid repetition. The
implementation of the DHT scheme used by CLOAK over
this hyperbolic system is fully explained in Section IV.

The remainder of this paper is organized as follows.
Section II presents the design and features of our architec-
ture. Section III describes the main elements of its possible
implementation. Section IV presents the binding algorithm
used by our DHT. Section V compares the algorithmic
complexity of our proposal to those of various existing DHT
systems. Section VI presents various results obtained by
simulations for evaluating the routing and binding efficiency
of our system. Section VII outlines the related previous
work done on transport layer mobility, name and address

11

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

separation, as well as DHT schemes. We conclude the paper
with a summary of our contributions and present our future
research directions.

II. ARCHITECTURE

A. Design

In the context of our architecture, a communication is
a set of interactions between several entities. It can be
any form of simplex or duplex communication where in-
formation is processed and exchanged between the entities
(e.g., talk, view video, check bank account, send mail, etc.).
An interaction is simply a given type of action carried
out between two or more entities by using an application
protocol (e.g., FTP, HTTP, etc.). An entity is typically a
human user but it can also be an automated service such
as a server. A communication typically involves a minimum
of two entities but it can involve many more in the case of
multicast and broadcast communications. Finally, a device
is a communication terminal equipment. On the device are
running applications that are used by an entity to interact
with other entities. Given this context, the aim of our
architecture is to permit a communication to be carried out
without any definitive unwanted interruption when some or
all of its components (i.e., device, application or entity) are
evolving (i.e., moving or changing) over space and time. Our
architecture ensures that a communication has a lifetime that
only depends on the will of the currently implied entities.
Changes in devices, applications and even entities (when it
makes sense) will not terminate the communication.

Figure 1 shows the CLOAK communication paradigm.
In order to untie entities, applications and devices, CLOAK
introduces the use of a session. A session is a communica-
tion descriptor that contains everything needed for linking
entities, applications and devices together in a flexible way.
A session can be viewed as a container storing the identity
and the management information of a given communication.
Thus the lifetime of a communication between several
entities is equal to the lifetime of its corresponding session.
As shown on Figure 1, a device can move or be changed
for another without terminating the session. Similarly, an
application can be changed for another if deemed appropriate
or even moved (i.e., mobile code) also without terminating
the session. Finally, entities can move or change (i.e., be
transferred to another entity) without terminating the session
if this is appropriate for a given communication. We can
see that in our new architecture, entities, applications and
devices are loosely bound together (i.e., represented by
yellow arrows in Figure 1) during a communication and
all the movements and changes of devices, applications
and entities are supported. Note that in Figure 1, only
one instance of each part (device, application, entity) of a
communication is shown, other instances would obey the
same scheme.

Figure 1. CLOAK communication paradigm.

NETWORK
LAYER

(IP Protocol)

OVERLAY
LAYER

(CLOAK)

Figure 2. Overlay network.

B. Operation

In order to provide all the above mentioned features, our
architecture sets up and maintains a P2P overlay network.
Thus, routers are not part of the overlay. Only the devices
(i.e., end-hosts or terminals) that wish to share resources
in order to benefit from the architecture shall implement
and run CLOAK. By doing so, they can join together to
form an overlay. Figure 2 shows an overlay example with
the links shown in dotted red lines. The devices connect
to the others by creating virtual links (upon transport layer
connections). Devices with two or more links play the role
of overlay routers. The overlay network can build up without
any topological constraints, as network devices can connect
arbitrarily to each others and join and leave the P2P network
at any time.

When joining the overlay, each device obtains a unique
overlay address from one of the peers already in the overlay.
The method for addressing the peers and routing the packets
inside the overlay is based on the groundbreaking work of
Kleinberg [4] that assigns addresses equal to coordinates
adequately taken from the hyperbolic plane (represented
by the Poincaré disk model). His method creates a greedy
embedding upon a spanning tree of addresses (named ad-

12

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dressing tree). This addressing tree is a regular tree of degree
k. However in Kleinberg’s method, the construction of the
embedding requires a full knowledge of the graph topology
and this topology must also be static. This is required as the
degree k of the addressing tree is set to the highest degree
found in the network. In our previous work [3], we have
enhanced his method in order to manage a dynamic topology
which is able to grow and shrink over time. Because we
setup an overlay network, we are able to set the degree k
of the addressing tree to an arbitrary value and as such, we
are able to avoid the discovery of the highest degree node.
This specificity renders our method scalable because unlike
Kleinberg’s method [4], we do not have to make a two-
pass algorithm over the whole network to find its highest
degree. The fixed degree that we choose determines how
many addresses each peer will be able to give. The degree
of the addressing tree is therefore set at the creation of the
overlay for all its lifetime. In the overlay however, a peer can
connect to any other peer at any time in order to obtain an
address thus setting the degree does not prevent the overlay
to grow. These hyperbolic addresses are appropriately given
to the peers so that a greedy routing based on the hyperbolic
distance metric is guaranteed to work when the network is
connected. Thus, only the addresses of the neighbors of a
peer are needed to forward a message to its destination.
This is highly scalable as the peers do not need to build and
maintain routing tables.

In order to set up the DHT structure needed by our
architecture on top of the P2P overlay network, we only
need to add a mapping function between a keyspace and the
addressing space of the peers. When a peer wants to store
an entry in the DHT, it first creates a fixed length key by
hashing a key string with the SHA-1 algorithm. Then, the
peer maps the key to an angle by a linear transformation.
The peer computes a virtual point on the unit circle by
using this angle. Next, the peer determines the coordinates
of the closest peer to the computed virtual point. The peer
then sends a store request to this closest peer. This request
is routed inside the overlay by using the greedy routing
algorithm presented above.

With the addressing, routing and mapping services pro-
vided by our architecture, any user/entity of the P2P overlay
network can communicate with any other by setting up
a virtual connection on top of the overlay. The steps for
establishing a communication between two entities of an
overlay are the following:

1) Bootstrap into the overlay by setting transport layer
connections to one or more devices (i.e., neighbor
peers).

2) Obtain an overlay address from one of those neighbor
peers.

3) Identify oneself in the overlay with unique device and
entity identifiers.

4) Create a session.

Device BDevice A
Device C

Overlay connection
(CLOAK)

Entity E -Entity F

Transport connection
(e.g. TCP)

Device A – Device B

Link connection
(e.g. Ethernet)

Router W – Router X

Router W Router X Router Y Router Z

Entity E

Entity F

Figure 3. Virtual connections.

Device B
OV@ 2Device A

OV@ 1

Device C
OV@ 3

Device C
OV@ 4

Packet 1
Dev A -> Dev C

Dest OV@ 3

Packet 2
Dev A -> Dev C

Dest OV@ 3

Packet 3
Dev A -> Dev C

Dest OV@ 4
Device C
moves to
OV@ 4

Packet 4
Dev A -> Dev C

Dest OV@ 4

Figure 4. Steering packets inside the overlay network.

5) Contact another entity to communicate with inside this
session.

6) Set an overlay layer virtual connection to this entity
as shown in Figure 3.

7) Send the data stream through this connection.
If an overlay address becomes invalid, two mechanisms

can be used to overcome routing failures. The first one
consists, for intermediate nodes, in using the destination
name inside the packet header to query the DHT for its
new address. If the DHT has a more recent (and thus valid)
entry, the intermediate node will then be able to update
the header with the new address and forward the packet
accordingly. The second one consists, for the destination
node, in replacing its old address with its new one in the
header of its reply packets. Upon reception, the source node
will then be able to update the destination address to the
newly received one. These mechanisms are illustrated in
Figure 4. We call steering, the mechanism of querying the
DHT on the fly by intermediate nodes. This mechanism also
provides multicast capability when it is performed in each
intermediate node. Indeed, a destination group name can be
solved as several user names that again can be solved as
overlay addresses.

To be able to implement our architecture, we need to
introduce several new types of identifiers. More specifically
we need to define the following new namespaces:

13

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Session namespace: any session is attributed a unique
identifier that defines the session during its lifetime in
the overlay.

• Device namespace: any device is attributed a unique
identifier that permanently represents the device. The
lifespan of this identifier is equal to the lifespan of its
corresponding device.

• Entity namespace: any entity is attributed a unique
identifier that represents the entity in a given context.
It can be the name of a real person (John Smith) but it
could also be the identifier of a professional function
(Sales Manager) or the name of an organization (Miche-
lin Company) or a specific service (Areva Accounting
service). The lifespan of this identifier is equal to the
lifespan of its corresponding entity.

• Application namespace: any application used during a
part or all of a session is attributed a unique identifier
for receiving data from the other applications of this
session. The lifespan of this identifier is equal to the
lifespan of the use of the application. If the entity
switches to another application, this identifier is up-
dated.

The identifiers will be stored in a DHT built on the P2P
overlay network. Each peer will store a fraction of all the
records in its naming module. There will be records for the
devices (containing pairs like: device ID - overlay address),
for the entities (containing pairs like: entity ID - device ID),
for the applications (containing pairs like: application ID
- session ID) and finally for the sessions (containing pairs
like: session ID - session data information). An application
using CLOAK will not directly open a connection with an
IP address and a port number as with the usual sockets
API but it will use the destination’s entity ID as well as a
stream ID. Figure 5 shows a typical scenario relying on this
naming system for solving an entity’s location. The yellow
oval represents the CLOAK DHT. An entity B registers itself
in the DHT by providing the device identifier it is on and its
overlay address. Any entity A can now retrieve the location
of B by querying the DHT. It can then connect to B via
the overlay. When B switches to another device during the
same session, A can reconnect to B by using its new overlay
address.

As defined earlier, a session is a communication’s context
container storing everything necessary to bind together en-
tities, applications and devices that are involved in a given
communication. Any device, application or entity can be
changed or moved without terminating the session. In order
to make this possible, the session will be stored in the DHT
built by the peers of the overlay network. The DHT will
ensure reliability by redundantly storing the sessions on
several peers. This session management system ensures the
survival of the session until all the entities involved decide
to stop it. Figure 6 shows a typical scenario relying on this

Figure 5. Identification and localization.

Figure 6. Session management.

session management system. The yellow oval represents the
CLOAK DHT. Let us assume that an entity A wants to start
a video conference communication with an entity B. It first
creates a session called X describing the desired interaction
(e.g., video conference) as well as the destination entity that
it wants to communicate with (here the entity B). Then A
sends an invite message to B that replies by joining the
session X. Later on the entity B invites another entity C to
participate in the video conference. C accepts and joins the
session X. Three entities are now involved in the session
X. Later on, the entity A leaves the session X without
preventing the others to continue. This thus does not end
the session X. Later on the entity C leaves the session X.
The entity B being the last one involved decides to destroy
the session and thus to end the communication.

C. Usage

Our architecture has a wide range of usages. It provides
mechanisms for mobile and switchable applications, for
adaptive transport protocol switching and for defining and
using new namespaces. It can build scalable and reliable
dynamic Virtual Private Networks, define fully isolated
Friend-to-Friend networks, or be used as a convergence
layer for IPv4, NATs and IPv6. The Table I shows the
benefits of cloaked applications. Applications are grouped
by families. Messaging applications contain e-mail, talk
and chat programs. Conferencing applications regroup real-

14

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
FEATURES FOR cloaked APPLICATIONS.

Applications Messaging Conferencing Sharing Streaming
Reachability X
Mobility X X
E2E privacy X X
E2E auth. X X
Pseudonymity X X
Redirection X X
Multicasting X X X

time audio and video communications based on signaling
protocols such as SIP [5] and H.323 [6]. Sharing applications
encompass file-sharing, blogging and social networking ap-
plications. Finally, streaming applications contain audio and
video broadcasting services such as Internet radios, IPTV,
and VoD. Most of the features are usually self-explaining
but we give a few examples to highlight possible scenar-
ios. Reachability is the ability to be reached on whatever
device the user is currently using. When someone sends
a message to an entity, the CLOAK DHT can be used
dynamically to determine on which device is the entity
and the message is routed to the proper device. Mobility
is the ability of CLOAK to hide the handovers of the
lower layers to the applications. If an entity is moving or
switching devices, real-time applications will be maintained
without interruption at the application level. CLOAK can
secure connections by using entity IDs rather than device
IDs (or IP addresses such as in IPsec), thus establishing
End-to-End (E2E) encryption and authentication. The public
keys of the peers can be stored in the DHT, however
the certification of these keys must be done by a trusted
third party. Because CLOAK packets usually transit through
several terminals before reaching destination, the IP address
of the source is often unknown to the destination thus
providing partial pseudonymity. Redirection is the ability
to forward a message or a stream to another entity. Finally,
multicasting support is provided by CLOAK as group names
can be easily set up in the DHT. This feature is useful for
saving bandwidth during group communications.

III. IMPLEMENTATION

Figure 7 shows the OSI layers where the CLOAK ar-
chitecture fits in. CLOAK uses the session layer and the
presentation layer between the transport and application
layers. These layers do not exist in the Internet stack model
but they do already exist in the OSI model. In these two
layers we add two new protocols. We add a CLOAK session
protocol (CSP) at the session layer and a CLOAK interaction
protocol (CIP) at the presentation layer. We also define new
identifiers to be used by these new protocols. These new
identifiers enable data streams to be bound to entities instead
of network identifiers (i.e., IP address, protocol n◦, port n◦).
As shown in Figure 1, identifiers for devices, applications
and entities are interwoven together inside a session, but

Figure 7. CLOAK architecture in the OSI model.

for the purpose of implementation, we have to order them.
We chose to manage a session and its involved devices at
the session layer. We also chose to manage the interactions
between entities at the presentation layer. As previously said,
an interaction is a type of action carried out between two or
more entities. It is equal to the use of an existing application
layer protocol (e.g., FTP, SMTP, HTTP, etc.). Indeed, our
architecture will use the existing application layer protocols
as well as the existing transport layer protocols. Thus a file
transfer (FTP [7]) client application will still use the FTP
protocol to speak to a FTP server. Only the portion of code
for establishing a session and thus a connection to the server
will have to be rewritten for using the CLOAK API instead
of the socket API [8]. The code implementing the application
layer protocol will not have to be changed. Please note that
the CLOAK API and the mapping of application connections
to transport sockets inside the middleware are not defined
yet. They will be presented in a future work.

We have shown in Figure 7 how the CLOAK architecture
fits in the network protocol stack. We will show how this
design translates into the format of the packet headers.
Figure 8 shows a CLOAK packet exchanged between a Web
client and a Web server. The application header involving the
HTTP protocol is now located after the CLOAK headers.
We have added two additional headers. The CSP header
is located directly above the TCP protocol managing the
connection in the operating system of the device. It contains
the overlay addresses for routing inside the overlay and
enabling device mobility, the device identifiers for switching
devices and enabling entity mobility and the entity identifiers
for switching entities. The CIP header is located between
the CSP and the application level header. It is used for
identifying streams and applications. The stream identifiers
are used as virtual port numbering on top of the entity. The
application identifiers are used for selecting or switching

15

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. CLOAK protocol encapsulation.

applications when it makes sense in a communication.
The definition and implementation of the CLOAK ad-

ditional protocols (CSP and CIP) and their corresponding
headers will help our architecture to solve some NAT
issues because applications using CLOAK will not use IP
addresses and ports numbers for setting up or managing
connections. They will use unique permanent entity iden-
tifiers, thus restoring the end-to-end principle of the Internet
communications. The CLOAK architecture will also solve
some firewall issues because any type and any number of
transport layer connections can be used to connect to a
CLOAK overlay. A transport layer connection can act as a
multiplex tunnel for the applications using CLOAK. Thus
on a given device, the applications can even use only a
single port number and a single transport protocol if this
is required by the firewall of the device. Indeed, a CLOAK
packet has a session ID field and two stream ID fields that
enable numerous applications to be multiplexed on a single
transport connection if necessary. CLOAK also solves some
security issues because security will be implemented by
using entity identifiers instead of device identifiers or IP
addresses. The security will then be independent from the
devices and applications involved. Figure 9 shows the mod-
ules composing the CLOAK middleware. The functionalities
provided by each module are:

• Bootstrap: primitives for creating a new or joining an
existing CLOAK overlay.

• Link: primitives for managing overlay links (i.e., trans-
port layer connections) with the neighbor peers.

• Address: primitives for obtaining an overlay address
from an addressing tree parent and for distributing
overlay addresses to the addressing tree children.

• Route: primitives for routing the overlay packets with
the greedy algorithm using the hyperbolic distance
metric.

• Steer: primitives for rerouting overlay packets by using
their device or entity identifiers to update their overlay
destination address.

• Connect: primitives for establishing and managing
overlay virtual connections (i.e., CLOAK layer connec-
tions) to other entities.

• Bind: primitives for querying the DHT of the overlay.
• Name: primitives for managing the identifiers used by

the peer.

Transport API

CLOAK API

Figure 9. Modules of the middleware.

• Interact: primitives for managing the bindings between
the data streams and the applications.

IV. DHT-BASED NAME TO ADDRESS STORAGE

In this section we explain how our overlay system stores
and retrieves the (name, address) pairs. Our solution is a
structured DHT system that uses the distributed addressing
and the greedy routing algorithms presented in our previous
work [3].

On startup, each new member of the overlay chooses a
name that identifies the device it runs on. This name will
be kept by the device during all the lifetime of the overlay.
When a new node obtains an address, it stores its name and
its address in the DHT, with the name being used as the key
and the address as the value. If the same name is already
stored in the DHT, an error message is sent back to the node
in order to ask the node to select another name. Thus the
DHT structure itself ensures that names are unique.

A (key, value) pair is called a binding. Figure 10 shows
how and where a given binding is stored in the overlay.
A binder is any peer that stores these pairs. The depth of
a peer in the addressing tree is defined as the number of
parent peers to go through for reaching the root of the tree
(including the root itself). When the overlay is created, a
maximum depth for the potential binders is chosen. This
value is defined as the binding tree depth. All the peers that
have a depth less or equal to the binding tree depth in the
addressing tree may hold bindings and thus be binders.

When a new peer joins the overlay by connecting to other
peers, it obtains an address from one of these peers and it
stores its own binding in the system. When a peer wants to
store an entry in the DHT, it first creates a key by hashing the
name string with the SHA-1 algorithm. It then divides the
resulting 160-bit key into r equally sized 160/r-bit subkeys
(for redundancy storage). This r factor is chosen arbitrarily

16

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

HASHED
KEY

CLOSEST
BINDER

BINDING
RADIUS

FARTHEST
BINDER

BINDER

BINDER

Figure 10. DHT system over the regular spanning tree.

and can be set to whatever value depending on the amount
of redundancy required. In absence of redundancy, the peer
selects the whole key. Then the (sub)key is mapped to an
angle by a linear transformation. The angle is given by:

α = 2π × 160/r-bit subkey

111...11︸ ︷︷ ︸
r

(1)

The peer then computes a virtual point v on the unit circle
by using this angle:

v(x, y) with
{
x = cos(α)
y = sin(α)

(2)

Next the peer determines the coordinates of the closest
binder to the computed virtual point above by using the
given binding tree depth. In the figure we set the binding tree
depth to three to avoid cluttering the figure. It’s important
to note that this closest binder may not exist in reality if no
peer is currently owning this address. The peer then sends a
store query to this closest peer. This query is routed inside
the overlay by using the greedy algorithm presented in our
previous work [3]. If the query fails because the binder does
not exist or because of node/link failures, it is redirected to
the next closest binder which is the father of the computed
binder. This process continues until the query reaches an
existing binder peer which can be any peer on the path
from the computed closest binder to the center peer. Upon
reaching an existing binder, the pair is stored in that binder.
The query can thus go up the addressing tree to the center
peer having the address (0;0) which is the farthest binder.
The path from the computed closest binder to the farthest
binder is defined as the binding radius because it is a shortest
path from the edge of the disk to its center.

This process ensures that the pairs are always stored first
in the binders closer to the unit circle and last in the binders
closer to the disk center. If the addressing tree is imbalanced,
many pairs may be stored in peers close to the center thus
overloading them. In order to solve this issue any binder
peer will be able to set a maximum number of stored pairs
and any new pair to store will be rejected and the query
redirected as above. Furthermore, to provide redundancy, the
peer can repeat the storing process described above for each
of the other r−1 subkeys. Thus r different binding radiuses
can be used and this will improve the evenly distribution
of the pairs. In addition, and still for redundancy purposes,
a pair may be stored in more than one peer of the binding
radius. A binder could store a pair and still redirect its query
for storing it in its other ancestor binders. The number of
stored copies of a pair along the binding radius may be
an arbitrary value set at the overlay creation. We have thus
defined two redundancy mechanisms for storing copies of a
given binding:

1) We can use one or more binding radius(es) by creating
r uniformly distributed subkeys.

2) We can store the pair in one or more binder(s) of the
same binding radius.

These mechanisms enable our DHT system to cope with an
non-uniform growth of the overlay and they ensure that a
pair will be stored in a redundant way that will maximize
the success rate of its retrieval. The number r of subkeys
and the number of copies in a given radius are parameters
that can be set at the creation of the overlay. Increasing them
leads to a tradeoff between improved reliability and storage
space cost in binders.

Our solution has the property of consistent hashing: if one
peer fails, only its pairs are lost but the other binders are not
impacted and the whole system remains coherent. However,
this property does not hold true when a partial readdressing
takes place as explained in our previous paper [3]. In this
case, all the pairs stored in the peers having addresses
derived from the failed or unreachable peer’s address are
lost. To solve this issue, as in many existing systems, pairs
will be stored by following a hybrid soft and hard state
strategy. Thus a pair will have to be stored by its creator
every δt period of time otherwise it will be flushed by
the binders that store it. These periodic store messages
will ensure that pairs lost by a partial readdressing will be
restored after at most δt period of time. A delete-message
may be sent by the creator to remove the pair before the
end of the period. We analyze the influence of the degree of
the addressing tree on the query success rate and the query
path length in Section VI.

V. SCALABILITY ANALYSIS OF OUR DHT SYSTEM

We provide in this section a brief complexity analysis of
our proposal and compare the results with other existing
DHT systems. We first define the four metrics that we use

17

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in our analysis. These metrics were defined and used in the
survey of Lua et al. [9].

1) Hops: this metric counts the average number of peers
to go through to reach the destination. It is also named:
path length, routing distance or dilation.

2) Paths: this metric counts the average number of paths
that are crossing any given peer. It is also named
congestion.

3) States: this metric counts the number of states that
must be stored in a peer for the routing to work, it is
typically equal to the number of entries found in the
routing table of the peer. It is also named routing or
memory states.

4) Churn messages: this metric counts the average num-
ber of messages that are exchanged when a peer joins
or leaves the overlay. It is also named join/leave peers
or linkage.

In our system, the peers in the overlay connect to each
others as they wish, thus no strict topology is enforced. Any
peer can have as many links as it can with other peers and
one link is of course a minimum to connect to the overlay.
The only requirement is that the embedded addressing tree
which is a spanning tree of the overlay shall remain valid
for the greedy routing to work.

Because any overlay will be at least (when no redundant
links exist) composed of its addressing tree, the distances
between any two nodes are expected to be of the order
of O(log(n)) hops. If the peers have a large number of
redundant links (i.e., links not belonging to the addressing
tree), the distances will be much shorter. If the overlay
topology takes the form of a scale free network [10], the
distances will be the order of O(log(log(n))) as shown
in [11]. Whatever the topology, the number of paths crossing
any one peer (its congestion level) will have an expected
probability of at most O(log(n)/n).

When a peer joins the overlay, only its neighbors (i.e.,
those having setup a link with the new peer) need to
update their state information which bears a message cost
complexity independent of n. Similarly, when a peer leaves
the overlay, only its neighbors need to update their state
information also giving a message complexity cost being of
the order of O(1). However, if the addressing tree is broken
and cannot be restored in a reasonable amount of time as
explained in our previous paper [3], a partial readdressing
can occur for peers having addresses derived from the failed
or unreachable peer’s address. In this latter case, which is
expected to be very uncommon, the message cost complexity
is expected to be of the order of O(n).

Readdressing is needed to provide to the peers the ability
of connecting to whatever peers they want. If we force some
peers to connect to some specific peers for restoring the
addressing tree (as done by Chord, where a peer’s IP address
determines to which peers it must connect) then the message
cost complexity is expected to be of the order of O(1) for

Table II
EXPECTED PERFORMANCE MEASURES OF VARIOUS DHT SYSTEMS.

Lookup Hops Paths States Churn
messages

CAN O(n(1/d)) O(n(1/d)/n) O(1) O(1)
Chord O(log(n)) O(log(n)/n) O(log(n)) O(log2(n))
CLOAK O(log(n)) O(log(n)/n) O(1) O(1)/O(n)
Kademlia O(log(n)) O(log(n)/n) O(log(n)) O(log(n))
Pastry O(log(n)) O(log(n)/n) O(log(n)) O(log(n))

a leaving peer. Thus readdressing must be seen as a costly
feature that can be opted out if performance is desired over
flexibility.

Because we use greedy routing, we do not construct and
maintain routing tables and the number of states to maintain
in any one peer is only equal to the number of its neighbor
peers which does not grow with n thus giving a constant
complexity cost being of the order of O(1).

Table II compares the complexity costs of the four above
defined metrics of various DHT systems including our
solution. For CAN, d is an integer equal to or greater than
2 and thus 0 < 1/d < 1. The results presented in this table
have been gathered by using the data published in [9] as
well as from our previous analysis. Note that log functions
with different constant bases are considered equivalent.

VI. SIMULATIONS

In this section, we present the preliminary results of the
simulations that we have carried out to establish a proof-
of-concept of our dynamic P2P overlay architecture. We
have used our packet-driven discrete event network simulator
called nem [12] for obtaining all the results shown in this
paper.

A. Parameters

In order to evaluate our overlay system on a realistic topol-
ogy, we have used a 4k-node IP level Internet map created
from real data measurements with the nec software [13]. In
all simulations, the first peer creating the overlay is always a
randomly picked node of the map. We have considered that
only some nodes of a map at any given time are acting as
overlay peers. The simulator’s engine manages a simulation
time and each overlay peer starts at a given time for a
given duration on a random node of the map. The peer that
creates the overlay remains active for all the duration of
a simulation. The packets are delivered between the nodes
by taking the transmission time of the links into account.
Peers bootstrap by contacting the node that holds the peer
that created the overlay, search for other peers to which they
can connect, obtain an address from one of the peers they
are connected to and send data or requests messages. This
process models the birth, life and death of the overlay.

In any dynamic simulation, there is a warm up phase at the
beginning and a cool down phase at the end that must both
be considered as transitory regimes. Indeed, at the beginning

18

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

only the creator peer exists before new peers start and join
it. Similarly, at the end, all peers are gradually leaving the
overlay until only the creator peer is left and then it stops.
Each simulation runs for 1 hour, thus only measurements
in the middle of the simulation (around 30 minutes) can
be considered as representing a steady state regime. This
comment must be taken into account when looking at all
the plots below as most of them show a curve with a typical
plateau in the middle. The most significant measurements
are those located in this flat part of the plots although the
other measurements are also valid.

The number of new peers is set to 30 per minute with
random inter-arrival times set with a probability following
an exponential distribution. Each peer has a random lifetime
set with a probability following an exponential distribution
with λ = 10e − 5 which gives a median value of 300
seconds and a 90th percentile value of 1000 seconds. As
each dynamic simulation lasts for 1 hour, this distribution
of the peers’ session lengths produces a lot of churn. The
peers create overlay links with other peers by selecting those
which are closer in terms of network hops. Finally, we
collect measurements every 600 seconds.

B. Results

We evaluate here the performances of the overlay routing
depending on the chosen fixed addressing tree degree as
explained in II-B. Data packets are sent by each peer at a
rate of 1 every 10 seconds. We only want to evaluate routing
success, query success and path lengths but not bandwidth
or throughput for now that is why we do not use more
realistic generated traffic patterns. The routing success rate
for a given peer is equal to the number of data packets
properly received by their destinations divided by those sent
by the peer. Each point shown on the following graphs is
the average value of 20 runs, and the associated standard
deviation values are plotted as error bars. We observe the
average routing success rate, the average path length and the
90th percentile path length as a function of the addressing
tree degree of the overlay. In Figure 11, we can see that the
routing success rate is always above 90% which confirms
the proper functioning of our system which maintains a high
routing success rate despite the churn.

Figure 12 shows the average path length of the hyperbolic
routing. The path length is measured as the number of IP
hops covered by the packet from the source peer to the
destination peer. We can see that values are larger than
the ones measured in the static simulations presented in
our previous work [3] because here only a subset of the
nodes are peers belonging to the overlay thus statistically
increasing the distances. In the static simulations, the paths
from all pairs were evaluated and the overlay topology was
the same as the map itself. Here the nodes form an overlay
which may have a different topology and thus lower path
length optimality. This remains true even though overlay

 80

 85

 90

 95

 100

 600 1200 1800 2400 3000 3600

%
 o

f r
ou

tin
g

su
cc

es
s

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 11. Average routing success rate.

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 12. Average path length between peers.

peers always try to establish overlay links to hop-wise closer
peers.

Figure 13 shows the 90th percentile value of the path
length. Here also, the path length is measured as the number
of IP hops covered by the packet. This value gives an
acceptable statistical upper bound on the path length by
excluding extreme cases. We can observe that the path
length, for degrees above 4, is around 35 compared to the
average path length of 18 seen in Figure 12. We conclude
that including the values from the median to the 90th
percentile yields a path inflation of 100% (i.e., paths are
twice as long as the shortest ones) which is important but
comparable to values measured at the IP layer [13].

We now evaluate the DHT efficiency. The only difference
with the previous simulations is that now the peers do not
send data packets but only storing and solving requests.
The frequency of the storing requests generated in each
peer is 1 every 30 seconds. The frequency of the solving
requests generated in each peer is 1 every 5 seconds. We
do not consider any redundancy parameters for now. Thus,
a given pair is stored on one peer only. We observe the
influence of the addressing tree degree of the overlay on

19

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 10

 20

 30

 40

 50

 600 1200 1800 2400 3000 3600

pa
th

 le
ng

th
 (9

0t
h

pe
rc

en
til

e)

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 13. 90th percentile path length between peers.

 80

 85

 90

 95

 100

 600 1200 1800 2400 3000 3600

%
 o

f s
uc

ce
ss

fu
l s

to
rin

g
re

qu
es

ts

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 14. Percentage of successful storing requests.

the performances of the storing and the solving requests.
More precisely we measure the rate of success as well as
the average overlay path length of both storing and solving
requests.

Figure 14 shows the percentage of successful storing
requests over the simulation duration. We assume here that
only one copy of a given pair is stored in the system. We
can see that given the parameters of the simulation, the rate
of success is very high despite the churn.

Figure 15 shows the average path length of the storing
requests in the overlay network over the simulation duration.
The number of peers to go through including the destination
before storing a pair varies from 6 to 9 depending on the
addressing tree degree. This number is decreasing when the
degree is increasing with a diminishing return effect that can
be seen starting at degree 16.

Figure 16 shows the average path length of the storing
requests in the IP network over the simulation duration. We
can see on this plot that the addressing tree degree has a
greater impact on the number of IP hops than on the number
of overlay hops. The number of hops are greater of course
but also the variability of the values as well as the gaps

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

 o
f s

to
rin

g
re

qu
es

ts

 in
 th

e
ov

er
la

y

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 15. Average path length of the storing requests in the overlay.

 0

 20

 40

 60

 80

 100

 120

 140

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

 o
f s

to
rin

g
re

qu
es

ts

 in
 th

e
ne

tw
or

k

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 16. Average path length of the storing requests in the IP network.

between the plots of the various degree parameter values are
much higher. For a degree of 4 the average hop count is 60
whereas for a degree of 64 the average hop count is around
27. Given the results of Figure 15, we can deduce that the
average IP hops between the peers varies from around 4.5
to 6.7 which is lower than the average path length of 7.9
measured in the IPv6 map. We can deduce that the peers
which store the bindings are on average closer to the core
of the network.

Figure 17 shows the percentage of successful solving
requests over the simulation duration. As for the storing re-
quest, we can see that given the parameters of the simulation,
the rate of success is very high despite the churn.

Figure 18 shows the average path length of the solving
requests in the overlay network over the simulation duration.
The number of peers to go through to reach the holder of the
pair and including the return trip to the sender of the request
varies roughly from 9 to 16 depending on the addressing tree
degree. A degree of 4 yields a typical path length of 16, a
degree of 8 reduces the path length to 12 and degree values
above 8 all yield path lengths between 9 and 10. Thus the
number of hops is decreasing when the degree is increasing

20

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 80

 85

 90

 95

 100

 600 1200 1800 2400 3000 3600

%
 o

f s
uc

ce
ss

fu
l s

ol
vi

ng
 re

qu
es

ts

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 17. Percentage of successful solving requests.

 0

 5

 10

 15

 20

 25

 30

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

 o
f s

ol
vi

ng
 re

qu
es

ts

 in
 th

e
ov

er
la

y

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 18. Average path length of the solving requests in the overlay.

with a diminishing return effect around degree 16, similar
to the storing requests path lengths of Figure 15.

Figure 19 shows the average path length of the solving
requests in the IP network over the simulation duration. We
can also see on this plot that the addressing tree degree has
a much greater impact on the number of IP hops than on
the number of overlay hops. The gaps between the plots of
the various degree parameter values are much higher than
what was observed for the storing requests in Figure 16. If
we except the plots corresponding to the degrees 8 and 16
that are very close to each other, the other plots have widely
different path lengths ranging from roughly 110 for degree
4 to 60 for degree 64. Given the results of Figure 18, we
can deduce that the average IP hops between the pairs of
neighbor peers varies from around 6.6 to 6.9 which is a bit
lower than the average path length of 7.9 in the IPv6 map.
As a solving request takes a much longer path than a storing
request, this explains the reduction in the variability of the
number of IP hops between two neighbor peers.

We can conclude that given those simulation results, our
overlay routing mechanism remains efficient under dynamics
with a success rate above 90%. The average path lengths

 0

 20

 40

 60

 80

 100

 120

 140

 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 p
at

h
le

ng
th

 o
f s

ol
vi

ng
 re

qu
es

ts

 in
 th

e
ne

tw
or

k

Time in seconds

Degree 4
Degree 8

Degree 16
Degree 32
Degree 64

Figure 19. Average path length of the solving requests in the IP network.

in the overlay are typically between 15 and 20 IP network
hops. Our DHT request shows encouraging performances
whatever the degree chosen. The rate of success of both the
storing and solving requests is above 95%. The average path
lengths of the requests are also acceptable and show typical
values for DHT systems.

In order to compare our DHT solution detailed in Sec-
tion IV to previous existing schemes, we have implemented
the addressing, routing and DHT mechanisms of CLOAK
inside the PeerSim simulator. We have thus obtained com-
parative simulation results with Chord [14], Kademlia [15]
and MSPastry [16] by using the same simulation parameters
(e.g., simulation duration, peers’ topology, peers’ session
lengths, etc). We have used an overlay network with a size
remaining around 1000 nodes for 2 hours of simulated time.
The churn rate varies from 10% to 60% over periods of
10 minutes (i.e., during the 10 minutes, x % of randomly
selected peers will leave and be replaced by new ones).
Each point on these plots, is the average of 10 runs and
the standard deviation is provided.

Figure 20 shows the success ratio of the solving requests
as a function of the churn rate. We can see that all DHT
schemes perform similarly with a success ratio linearly
decreasing with the churn rate. CLOAK has the best success
ratio results, closely followed by MSPastry and Chord which
have nearly the same values. Kademlia has the lowest
success ratio results. As the plots for the storing requests
are very similar to the solving ones, we do not show them
to avoid redundancy.

Figure 21 shows the average path length measured by
hop count of the solving requests as a function of the churn
rate. Here again, the DHT schemes have the same behavior
with a path length (in hops) slowly decreasing when the
churn increases. MSPastry exhibits the shortest path lengths,
closely followed by CLOAK. Kademlia has on average 1
more hop than MSPastry whatever the churn, while Chord
has the longest path lengths, being on average 2 hops longer
than MSPastry and CLOAK, although this difference tends

21

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60

S
u
cc

e
ss

 r
a
te

 (
%

)

Churn rate (%)

CLOAK
Chord

Kademlia
MSPastry

Figure 20. Comparison of the success ratio of the solving requests for
various DHT vs churn rate.

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

h
o
p
s

Churn rate (%)

CLOAK
Chord

Kademlia
MSPastry

Figure 21. Comparison of the hop count of the solving requests for various
DHT vs churn rate.

to decrease when the churn is equal or above 40%. As for
the success ratio, we do not show the plots for the hop count
of the storing requests because they are very similar to the
solving ones.

Figure 22 shows the average latency of the solving re-
quests as a function of the churn rate. Indeed, as a path
length measured in number of hops does not necessarily
translate into a higher latency, we have measured the latter
one to evaluate the time taken for the requests to complete.
All the DHT schemes have nearly the same latency at any
churn rate, excepted for Kademlia which is typically 100 ms
to 180 ms higher than the others depending on the churn
rate. These results illustrate our point above that despite
longer path lengths, Chord performs as well as MSPastry
and CLOAK when the latency is observed.

Figure 23 shows the average latency of the storing re-
quests as a function of the churn rate. Unlike the success
ratio and hop count metrics above, here the plots of the
storing requests are a bit different than the solving ones.
Starting at 20% of churn, the plots of the latency of Chord,

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60

A
v
e
ra

g
e
 l
a
te

n
cy

 (
m

s)

Churn rate (%)

CLOAK
Chord

Kademlia
MSPastry

Figure 22. Comparison of the latency of the solving requests for various
DHT vs churn rate.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50 60

A
v
e
ra

g
e
 l
a
te

n
cy

 (
m

s)

Churn rate (%)

CLOAK
Chord

Kademlia
MSPastry

Figure 23. Comparison of the latency of the storing requests for various
DHT vs churn rate.

MSPastry and CLOAK begin to separate. CLOAK has the
lowest latency values, followed by MSPastry and Chord.
However the gaps between these three plots are quite small,
typically no more than 25 ms. As above for the solving
latency, Kademlia has a storing latency which is typically
100 ms to 170 ms higher than the others depending on the
churn rate.

All these comparative results show that CLOAK performs
as well as (and sometimes a little bit better than) Chord,
MSPastry and Kademlia which are the three popular DHT
schemes that we have compared CLOAK to. These results
also confirm our analysis presented in Section V. The key
advantage of our solution is that peers can connect freely
to any other peers they want, while in other DHT schemes
such as Chord, peers must insert themselves in the DHT
by connecting to other predetermined peers depending on
their IP addresses. Another advantage is the cheap cost of
building our DHT on top of our addressing and routing
system. Using another DHT scheme would impose us to
use two different routing schemes with the associated costs.

22

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Our greedy hyperbolic routing scheme for the overlay and
a key based routing scheme for the DHT. The simulation
results encourage us to keep our own DHT scheme inside
the CLOAK overlay.

VII. RELATED WORK

A. Transport Layer Mobility

Virtual connections, as we define them, can be considered
as providing (among other benefits) transport layer connec-
tion mobility. Research on such transport layer connection
mobility has mainly remained experimental up to now. Con-
cerning the TCP connection management, several solutions
have been proposed. TCP-Migrate [17], [18] developed at
the Massachusetts Institute of Technology, provides a unified
framework to support address changes and connectivity
interruptions. TCP-Migrate provides mobile-aware applica-
tions with a set of system primitives for connectivity re-
instantiation. TCP-Migrate enables applications to reduce
their resource consumption during periods of disconnection
and resume sessions upon reconnection. Rocks [19] devel-
oped at the University of Wisconsin, protects socket-based
applications from network failures, such as link failures,
IP address changes and extended periods of disconnection.
Migratory TCP [20], developed at Rutgers University, is a
transport layer protocol for building highly-available net-
work services by means of transparent migration of the
server endpoint of a live connection between cooperating
servers that provide the same service. The origin and des-
tination servers cooperate by transferring the connection
state in order to accommodate the migrating connection.
Finally, the Fault-Tolerant TCP [21], [22] developed at the
University of Texas, ensures a faulty server to keep its TCP
connections open until it either recovers or it is failed over
to a backup. The failure and recovery of the server process
are completely transparent to client processes. However, all
these projects only deal with TCP re-connection. They do
not provide a total virtualization of the communication and
do not permit to switch both applications and/or devices
from any communicating user at will. Furthermore, they are
based on the domain name and IP address paradigm and
do not provide the separation of the naming and addressing
planes.

B. Name and Address Separation

Other solutions have been proposed with this separation in
mind. However, they are typically placed below the transport
layer and require modifications in the host or in the network
infrastructure. The Host Identity Protocol (HIP) [23] for
example, proposes a new namespace, the Host Identity
namespace, and a new protocol layer named HIP, between
the internetworking and transport layers. This solution re-
quires the modification of the host stack. Similarly, the Lo-
cator/Identifier Separation Protocol (LISP) [24] is a network-
based protocol that enables separation of IP addresses into

two new numbering spaces: Endpoint Identifiers (EIDs) and
Routing Locators (RLOCs). No changes are required to
either host protocol stacks or to the core of the Internet
infrastructure. However LISP requires software changes in
edge routers and cannot deal with host mobility. LISP can
be incrementally deployed and offers traffic engineering
and multi-homing benefits even when there are relatively
few LISP-capable sites. The Shim6 protocol [25] is a layer
3 shim for providing locator agility below the transport
protocols, so that multihoming can be provided for IPv6
with failover and load-sharing properties, without assuming
that a multihomed site will have a provider-independent IPv6
address prefix announced in the global IPv6 routing table.
Currently, this solution is restricted to the IPv6 network.
The Internet Indirection Infrastructure (i3) by Stoica et
al. [26] is an overlay-based indirection infrastructure that
offers a rendezvous-based communication abstraction thus
decoupling the act of sending from the act of receiving.
Instead of sending a packet to a destination, each packet
has an identifier which is used by the receiver to obtain the
packet. However, i3 must be defined as a general overlay
that everyone should use thus needing third party resources
(such as the DNS infrastructure). With CLOAK, we try
to enforce the principle that only the members of a given
overlay have to share their resources. The Host Identity
Indirection Infrastructure (Hi3) by Gurtov et al. [27] is a
networking architecture for mobile hosts, derived from i3
and HIP. Although Hi3 provides efficient support for secure
mobility and multihoming to Internet hosts, we do not adopt
this infrastructure in order to avoid the issues of IP stack
modifications (HIP) and third party resource requirements
(i3). Data-Oriented Network Architecture (DONA) by Ko-
ponen et al. [28] proposes the use of permanent flat names
coupled with name-based routing. Rather than use DNS
servers, DONA relies on a new class of network entities
called resolution handlers (RHs). As with i3, DONA needs
third party resources provided by the infrastructure of RHs.

C. Distributed Hash Table

Concerning the DHT part of our solution, our proposal
borrows some elements from well known DHTs. Our map-
ping mechanism for placing keys on the unit circle is similar
to the one defined by Chord [14]. However, unlike Chord we
do not place the peers themselves on this circle but inside
the unit disk by using complex coordinates. Similarly to
CAN [29], we use a multi-dimensional coordinate space,
but instead of using a d-dimensional cartesian multi-torus,
we use the 2-dimensional hyperbolic plane H2. Our greedy
routing scheme is based on a properly defined distance
metric as done in Kademlia [15]. But unlike Kademlia which
is based on the XOR metric, we use the hyperbolic distance
defined for the Poincaré disk model of the hyperbolic
plane. Another advantage of our greedy routing algorithm as
opposed to prefix routing algorithms such as those developed

23

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in Pastry [16], is that it does not rely on routing tables. Only
the coordinates of the neighbors of a peer are needed to
forward a message. This is highly scalable as the peers do
not need to build and maintain routing tables. The intuition
of using the hyperbolic plane as a virtual address space
for our overlay and DHT systems comes from the work of
Kleinberg [4]. However, we have defined a novel mapping
function, whereas Kleinberg has suggested using CAN for
implementing a DHT based on hyperbolic coordinates.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new architecture
called CLOAK designed for providing flexibility to Internet
communications by using virtual connections set upon an
overlay network. This architecture will be implemented as
two protocols running on top of the transport protocols of
the devices. The devices using the CLOAK middleware will
freely interconnect with each other and thus will form a
dynamic P2P overlay network. This overlay will enable
the applications to maintain their communications even if
some transport layer connections are subject to failures. The
middleware will transparently restore the transport connec-
tions without killing the connections of the applications.
The architecture, by giving identifiers to users and devices,
will provide flexibility, security and mobility to applications
despite the IP address changes suffered by the devices.

We have also shown that given an appropriate mapping
function, it is easy to setup and maintain a consistent DHT
structure upon such an overlay. Our theoretical analysis has
shown that our DHT proposal is scalable with performances
similar to other existing DHTs. We have implemented the
overlay addressing and routing part as well as the DHT
part of our middleware in our discrete event nem simulator
as well as in the PeerSim simulator and the results are
encouraging. Our simulation results have demonstrated that
the success rate of the routing procedure, as well as the
success rate of the storing and solving requests are typical
of such systems. Measurements of path lengths and latencies
also confirm the proper behavior of our solution compared
to prior ones.

Our future work will be aimed at defining the CLOAK
API, implementing the middleware as a library, modifying a
relevant test application (such as a chat or video streaming
application) and testing it on a virtualized platform for
studying the impact of transport layer connection pipelining
created by the P2P overlay network.

REFERENCES

[1] T. Tiendrebeogo, D. Magoni, and O. Sié, “Virtual internet
connections over dynamic peer-to-peer overlay networks,” in
Proceedings of the 3rd International Conference on Evolving
Internet, 2011, pp. 58–65.

[2] C. Cassagnes, D. Bromberg, and D. Magoni, “An overlay
architecture for achieving total flexibility in internet commu-
nications,” in Proceedings of the 8th International Confer-
ence on Advanced Information Technologies for Management,
2010, pp. 39–60.

[3] C. Cassagnes, T. Tiendrebeogo, D. Bromberg, and D. Magoni,
“Overlay addressing and routing system based on hyperbolic
geometry,” in Proceedings of the 16th IEEE Symposium on
Computers and Communications, 2011, pp. 294–301.

[4] R. Kleinberg, “Geographic routing using hyperbolic space,”
in Proceedings of the 26th IEEE INFOCOM, 2007, pp. 1902–
1909.

[5] Rosenberg, Schulzrinne, Camarillo, Johnston, and P. et al.,
“SIP: Session initiation protocol,” Internet Engineering Task
Force, Request For Comments 3261, June 2002.

[6] ITU-T, “H323: Packet-based multimedia communications
systems,” ITU-T, Recommendation, December 2009.

[7] J. Postel and J. Reynolds, “File transfer protocol (FTP),”
Internet Engineering Task Force, Request For Comments 959,
1985.

[8] G. Wright and R. Stevens, TCP/IP Illustrated, Volume 2: The
Implementation. Addison-Wesley, 1995.

[9] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim,
“A survey and comparison of peer-to-peer overlay network
schemes,” IEEE Communications Surveys & Tutorials, vol. 7,
pp. 72–93, 2005.

[10] A.-L. Barabási and E. Bonabeau, “Scale-free networks,” Sci-
entific American, vol. 288, pp. 60–69, 2003.

[11] R. Cohen and S. Havlin, “Scale-free networks are ultrasmall,”
Phys. Rev. Lett., vol. 90, no. 5, p. 058701, Feb 2003.

[12] D. Magoni, “Network topology analysis and internet mod-
elling with nem,” International Journal of Computers and
Applications, vol. 27, no. 4, pp. 252–259, 2005.

[13] D. Magoni and M. Hoerdt, “Internet core topology mapping
and analysis,” Computer Communications, vol. 28, no. 5, pp.
494–506, 2005.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in Proceedings of the ACM SIGCOMM
Conference, 2001, pp. 149–160.

[15] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Proceedings
of the First International Workshop on Peer-to-Peer Systems
(IPTPS). Springer-Verlag, 2002, pp. 53–65.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer sys-
tems,” in IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 2001, pp. 329–350.

[17] A. C. Snoeren, H. Balakrishnan, and M. F. Kaashoek, “Re-
considering IP mobility,” in Proceedings of the 8th HotOS,
2001, pp. 41–46.

24

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] A. Snoeren and H. Balakrishnan, “An end-to-end approach
to host mobility,” in Proceedings of the 6th ACM MobiCom,
2000, pp. 155–166.

[19] V. Zandy and B. Miller, “Reliable network connections,” in
Proceedings of the 8th ACM MobiCom, 2002, pp. 95–106.

[20] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory
TCP: Connection migration for service continuity in the
internet,” in Proceedings of the 22nd International Conference
on Distributed Computing Systems, 2002, pp. 469–470.

[21] D. Zagorodnov, K. Marzullo, and T. Bressoud, “Engineering
fault tolerant TCP/IP services using FT-TCP,” in Proceedings
of the IEEE International Conference on Dependable Systems
and Networks, 2003, pp. 393–402.

[22] T. Bressoud, A. El-Khashab, K. Marzullo, and D. Zagorod-
nov, “Wrapping server-side TCP to mask connection failures,”
in Proceedings of the 20th IEEE INFOCOM, 2001, pp. 329–
338.

[23] P. Nikander, A. Gurtov, and T. Henderson, “Host identity
protocol (hip): Connectivity, mobility, multi-homing, security,
and privacy over ipv4 and ipv6 networks,” IEEE Communi-
cations Surveys and Tutorials, vol. 12, no. 2, pp. 186–204,
2010.

[24] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Loca-
tor/identifier separation protocol,” Internet Engineering Task
Force, Internet Draft, July 2011.

[25] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming
shim protocol for IPv6,” Internet Engineering Task Force,
Request For Comments 5533, June 2009.

[26] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
“Internet indirection infrastructure,” in Proceedings of ACM
SIGCOMM’02, 2002.

[27] A. Gurtov, D. Korzun, A. Lukyanenko, and P. Nikander, “Hi3:
An efficient and secure networking architecture for mobile
hosts,” Computer Communications, vol. 31, pp. 2457–2467,
2008.

[28] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica, “A data-oriented (and beyond)
network architecture,” in Proceedings of the 2007 conference
on Applications, technologies, architectures, and protocols for
computer communications, ser. SIGCOMM ’07, 2007, pp.
181–192.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proceedings of the ACM SIGCOMM Conference, 2001, pp.
161–172.

25

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

