
Redundancy Method for Highly Available OpenFlow Controller

Keisuke Kuroki, Masaki Fukushima, and Michiaki Hayashi Nobutaka Matsumoto
Integrated Core Network Control and Management Laboratory Department of Evolved Packet Core Network Development

KDDI R&D Laboratories, Inc. KDDI Corporation
Saitama, Japan Tokyo, Japan

e-mail:{ke-kuroki, fukusima, mc-hayashi}@kddilabs.jp e-mail:nb-matsumoto@kddi.com

Abstract—OpenFlow is an important element for achieving
Software Defined Networking (SDN) and is expected to be an
enabler that solves the problems of today’s network. Thanks to
the centralized management with OpenFlow, agile network
operation can be achieved with flexible programmability; how-
ever, the centralized management implies a significant impact
of any outages of the OpenFlow controller. Hence, a high
availability technology is indispensable for building the Open-
Flow controller. To achieve the highly available system, we
have to consider extraordinary events (e.g., power outage) af-
fecting the entire data center as well as anticipated server fail-
ures within a local system. In this paper, we review the issue in
using the conventional redundancy method for OpenFlow con-
trollers. Based on this observation, we propose a redundancy
method considering both local and global (i.e., inter data-
center) recoveries using the multiple-controllers capability that
is defined in OpenFlow switch specification version 1.2 and
later. The proposed redundancy scheme eliminates virtual IP
address-based redundancy and frontend server causing limita-
tion of performance scalability, while it achieves competitive
role change and failover times.

Keywords-OpenFlow; controller; redundancy.

I. INTRODUCTION

This paper is an extended version of our previous work
[1]. Towards future telecom services, the programmability
of the network is expected to shorten the service delivery
time and to enhance the flexibility of service deployment
meeting diversified and complex user requirements on vari-
ous applications (e.g., real-time and non real-time applica-
tions). Software Defined Networking (SDN) is an important
concept for achieving a programmable network and Open-
Flow [2] is an important factor for achieving the concept.
OpenFlow is an enabler of the centralized management so-
lution, which enables management and control of several
OpenFlow switches, which allows the network operators to
configure the switches easily and speedily. However, we
have to solve some issues of OpenFlow (i.e., scalability,
reliability and so forth) to deploy the OpenFlow technique
in carrier grade networks. Many researches have addressed
the issues of the OpenFlow-based solution.

Fernandez evaluates several OpenFlow controllers from
the viewpoint of scalability in centralized management and
control [3]. Message processing performances of two opera-
tion modes (i.e., proactive and reactive) of the OpenFlow
controller are evaluated using several existent implementa-

tions (e.g., Floodlight, NOX, Trema). Pries et al. analyze the
scalability of the OpenFlow solution for a data center envi-
ronment to show an implementation guideline [4]. The pa-
per concludes that, to achieve lossless and low delay per-
formance in the data center application, the number of
OpenFlow switches managed by one controller should be
limited to eight. To leverage the advantage of centralized
management, the OpenFlow controller should not be a sim-
ple flow switching policy server. OpenQoS [5] architecture
delivers end-to-end quality of service (QoS) with Open-
Flow-based traffic control. The OpenFlow controller with
OpenQoS plays the role of collecting the network state to
perform dynamic QoS routing, i.e., the controller has a route
calculation function just like the Path Computation Element
(PCE). Indeed, in the Internet Engineering Task Force
(IETF), PCE architecture is growing as a stateful operation
supporting the enforcement of path provisioning in addition
to its original path computation role. Hence, the importance
of the OpenFlow controller is growing with the broader
concept of SDN, and thus the high availability of the con-
troller system must be discussed.

There are two approaches to achieve high availability of
the OpenFlow controllers. One approach is to reduce their
load. The OpenFlow controller exchanges many messages
with the OpenFlow switches especially in reactive mode. As
a result, the OpenFlow controller could be overloaded and
thus become unable to process incoming messages. In such
a case, some processing is required to handle failover. If the
OpenFlow Controller uses Link-Layer Discovery Protocol
(LLDP) [6] messages to discover link and node failures and
manages and monitors several switches, the monitoring
model has serious scalability limitations. Kempf et al. [7]
propose a monitoring function for OpenFlow switches that
achieves a fast recovery in a scalable manner. Dixit et al. [8]
propose a new OpenFlow switch migration algorithm for
enabling load shifting among the OpenFlow Controllers.
This algorithm improves the response time for the Packet-in
messages by shifting the controlled switch. Thus, there are
some researches on reducing the load of the OpenFlow con-
troller for protection of the data-plane.

The other approach is to replace a single controller with
redundant controllers. However, there is little research on
the redundancy of the OpenFlow controller, which must
play an important role in SDN.

In this paper, we investigate the issue of achieving re-
dundancy for the OpenFlow controller with a conventional
method, and we propose a method to improve the availabil-

114

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ity of the OpenFlow controllers. In the proposed redundant
method, “global” recovery (i.e., inter data-center redundan-
cy) as well as local recovery (i.e., redundancy within a local
network) are considered. The proposal achieves a competi-
tive failover time compared with existing redundant
schemes (e.g., server clustering), while the proposal does
not require any frontend server limiting performance scala-
bility of the OpenFlow controller.

The organization of this paper is as follows: In Section
II, we review related works and the capability of multiple-
controllers as defined in OpenFlow switch specification 1.2
[9] and also explain its applicability to achieving redundan-
cy of the OpenFlow controller. In Section III, we describe a
conventional method to achieve the redundancy of the
OpenFlow controller by using the Virtual Router Redun-
dancy Protocol (VRRP) and its limitation. In Sections IV-A
and B, we propose the redundancy method using multiple-
controllers in a single domain and evaluate its performance.
In Sections IV-C and D, we propose the redundancy method
using multiple-controllers in multiple domains and evaluate
its performance. Finally, concluding remarks are given in
Section V.

II. BACKGROUND AND RELATED WORK

Typical implementation of OpenFlow allocates a con-
troller separating the control plane from the data plane, and
an OpenFlow switch playing the role of data plane com-
municates with an OpenFlow controller using the OpenFlow
protocol over a Transport Layer Security (TLS) [10] or a
Transmission Control Protocol (TCP) connection [11] de-
fined as an “OpenFlow channel.” The switch tries to for-
ward a packet by looking up flow entries populated in ad-
vance by the controller. If the packet does not match the
current flow entries, the switch sends a packet-in message
over the OpenFlow channel to the controller in order to re-
trieve a direction on how to treat the packet.

One method of handling data plane failure is to imple-
ment a monitoring function on the OpenFlow switch; how-
ever, only the monitoring function in a data plane is not suf-
ficient for achieving high availability in an OpenFlow net-
work. We cannot achieve a highly available OpenFlow net-
work without achieving the redundancy of the OpenFlow
controller. In the case of controller outages, the OpenFlow
channel is lost accordingly, and then the controller cannot
successfully process the packet-in message. Hence, new
packets that are not matched with the flow entry are simply
dropped or allowed to fall in a default operation (e.g., for-
warding to a neighbor anyway) that does not provide desira-
ble services until the ultimate recovery of the controller. To
achieve a high availability in the OpenFlow network, we
have to achieve recovery methods in both global and local
networks that exploit the redundancy of the OpenFlow con-
trollers.

The HyperFlow [12] approach improves the perfor-
mance of the OpenFlow control plane and achieves redun-
dancy of the controllers. HyperFlow introduces a distributed
inter-controller synchronization protocol forming a distrib-
uted file system. HyperFlow is implemented as a NOX-C++

application and synchronizes all events between controllers
by messaging advertisements. In the case of controller fail-
ures, HyperFlow requires overwriting of the controller reg-
istry in all relevant switches or simply forming hot-standby
using servers in the vicinity of the failed controller. Thus,
this approach assumes re-establishment of the OpenFlow
channel, and does not assume the multiple-controllers capa-
bility defined in OpenFlow 1.2. Therefore, the time duration
of the failover operation may increase with the growth of
the number of switches managed by the failed controller.
Since the failover process of HyperFlow does not consider
any server resource, overload of CPU utilization is a poten-
tial risk in the event of migrating switches to a new control-
ler especially in the global recovery scenario.

There are several methods of general server redundancy,
and such methods may also be effective for OpenFlow con-
trollers. For example, one possible server redundancy can
use one virtual IP address aggregating hot-standby or sever-
al servers. Koch and Hansen [13] evaluate a failover time in
the case of using the virtual IP address-based implementa-
tion with the Common Address Redundancy Protocol
(CARP), which is similar to VRRP [14]. According to the
analysis, the average time to change the role between master
and backup is 15.7 milliseconds. However, the virtual IP
address-based approach may take a longer failover time in
the case of applying this approach on the OpenFlow net-
work because this approach involves the re-establishment
process of the OpenFlow channels. We discuss this issue in
Sections III and Sections IV-A. Although the virtual IP-
based scheme is straightforward if it is applied within single
LAN, it cannot simply be applied to multiple locations (e.g.,
data centers) managed under different addressing schemes.
This means that the virtual IP-based scheme alone is not
sufficient to tackle global recovery. Zhang et al. [15] pro-
pose a server clustering method with a mechanism to seam-
lessly handover the TCP connection between backend serv-
ers. While each TCP connection is visible to only one back-
end server in a normal clustering scheme, the proposal [15]
makes the connection visible to at least two back-ends using
proprietary backup TCP (BTCP) protocol within a backend
network. The connection migrates to a backup, and then the
backup is able to resume the connection transparently before
the client TCP connection is lost. Using this scheme, the
connections are recovered by the backup server within 0.9
seconds including a failure detecting time of 0.5 seconds.
This approach is expected to be applicable also for global
recovery involving multiple locations. However, from the
viewpoint of the performance scalability of the OpenFlow
controller as analyzed in [3, 4], a common frontend server
required in the clustering system can be a serious bottleneck
of message processing in the control plane (e.g., if the
frontend server is broken, all TCP connections are lost). The
high availability scheme should avoid such single frontend
server to ensure the performance scalability of OpenFlow
controllers. In addition, when we tackle global recovery
with many switches, the migration process should also con-
sider the server utilization. However, conventional ap-
proaches do not consider utilization of the server resources
(e.g., CPU).

115

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

OpenFlow specification 1.2 introduced the capability of
multiple-controllers by defining three states (i.e., MASTER,
SLAVE, and EQUAL) of a controller. A controller plays its
own role by using the multiple-controllers capability, and
the state itself is owned by the switch. In the three states,
MASTER and EQUAL have full access to the switch and
can receive all asynchronous messages (e.g., packet-in)
from the switch. A switch can make OpenFlow channel
connections to multiple EQUAL controllers, but the switch
is allowed to access only one MASTER controller. In the
SLAVE state, a controller has read-only access to switches
and cannot receive asynchronous messages apart from a
port-status message from the switches. A controller can
change its own state by sending an
OFPT_ROLE_REQUEST message to switches. On receipt
of the message, the switch sends back an
OFPT_ROLE_REPLY message to the controller. If the
switch receives a message indicating the controller’s intent
to change its state to MASTER, all the other controllers’
states owned by the switch are changed to SLAVE. This
function enables a switch to have multiple OpenFlow chan-
nels, and thus the switch is not required to re-establish new
OpenFlow channels in the event of controller outages. In the
multiple-controllers capability, the role-change mechanism
is entirely driven by the controllers, while the switches act
passively only to retain the role. Therefore, it is important to
investigate the implementation of the controller side to
achieve the redundancy; however, that has yet to be propos-
ed. We use the capability of multiple-controllers to achieve
high availability of the control plane.

III. CONVENTIONAL METHOD

In this section, we describe a conventional method of a
redundant OpenFlow controller (OFC) using VRRP. We
investigate the issue in the case of using VRRP. Table I
shows the parameters common to all experiments (i.e., Sec-
tion III, Section IV-A, and Section IV-C) in this paper, and
Table II shows the parameters specific to the VRRP experi-
ment in Section III.

We implement OpenFlow-1.2-compliant controllers and
switches on Linux by extending an existing implementation
[16], which consists of a NOX-based controller [17] and
Ericsson TrafficLab 1.1 software switch [18]. In addition,
we use Keepalived [19] to run VRRP between the control-
lers.

We conducted an experiment on our testbed as shown in
Fig. 1. There are two controllers (i.e., OFC01 and OFC02).
To achieve redundancy between the two controllers, VRRP
is used. Initially, the state of OFC01 is set to Master and
thus OFC01 has a virtual IP address. The state of OFC02 is
set to Backup. An OpenFlow Switch (OFS01) is connected
to OFC01 through an OpenFlow channel since OFC01 has a
virtual IP address. OFS01 sends a packet-in message to the
controller when it receives a new packet undefined in the
flow entry because OFS01 is operated under the reactive
mode. A traffic generator sends packets at the rate of 100
packets per second (pps).

Fig. 2 shows an operational sequence that indicates the
state transition in the case of OFC01’s going down. Initially,

TABLE I. PARAMETERS COMMON TO ALL EXPERIMENTS.

TABLE II. PARAMETERS SPECIFIC TO VRRP EXPERIMENT.

Figure 1. Experimental scenario using VRRP.

Figure 2. Operational sequence of the recovery using VRRP

the OFS01 sends an asynchronous message to OFC01

through the OpenFlow channel. Since the OFCs are running
VRRP, OFC01 sends a VRRP advertisement message to
OFC02 every 1000 ms. When OFC01 goes down, OFC02
sends a VRRP advertisement message to take over the virtu-

OFC01 OFC02 OFS01

OFPT_PACKET_IN

Role-change time

224.0.0.18 Broadcast

OFPT_ECHO_REQUEST

OFPT_ECHO_REPLY

OFPT_FLOW_MOD

OFPT_PACKET_OUT

VRRP_Advertisement

Packet-In

OFPT_ECHO_REQUEST

VRRP_Advertisement

1000ms

1000ms

Interface Down

VRRP_Advertisement

TCP_SYN

Gratuitous ARP x 5

TCP_SYN

TCP_SYN,ACK

TCP_ACK

OFPT_HELLO

OFPT_HELLO

OFPT_ECHO_REPLY

OFPT_FLOW_MOD

OFPT_PACKET_OUT

OFPT_FEATURES_REQUEST

OFPT_SET_CONFIG

OFPT_FEATURES_REPLY

OFPT_PACKET_IN

OFPT_FLOW_MOD

OFPT_PACKET_OUT

Failover time

OFPT_ECHO_REQUEST
a

b

c

: Virtual IP address

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

: OpenFlow channel

: Physical connection

: Data traffic

VRRP Master VRRP Backup

: Asynchronous message

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

Data plane

Control plane

VRRP Fault VRRP Master

OFC01’s

Interface

goes down

Node Parameter Value

operating system Ubuntu12.04
openflow implementation NOX-based [16]
network interface Gigabit Ethernet
operating system Ubuntu12.04
openflow implementation TrafficLab 1.1 software-based [16]
network interface Gigabit Ethernet

Traffic generator sending rate 100 packets/s

OpenFlow controller

OpenFlow switch

Node Parameter Value

vrrp implementation Keepalived [19]

vrrp advertisement interval 1000 ms
vrrp master down interval 3004 ms

OpenFlow controller

116

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

al IP address and change its own state to Master from Back-
up after the master down interval, which is a guard timer for
Backup to judge the failed condition of Master. Master
down interval is defined by

3 * Advertisement_Interval + ((256 – Priority) / 256).

The master down interval for OFC02 is 3004 ms be-
cause the priority of OFC02 is set to 255 (i.e., the highest
priority) to detect the failure of OFC01 as soon as possible.

OFC02 sends five gratuitous ARP packets to inform that
the MAC address of the virtual IP address is changed in one
second after the Keepalived sends the VRRP advertisement
message. If OFS01 sends a SYN packet to reconnect to the
virtual IP address before OFC02’s sending gratuitous ARP
packets, OFS01 cannot connect to OFC02 because the des-
tination MAC address of the SYN packet is set to the
OFC01’s MAC address. If the OFS is successfully recon-
nected to OFC02, in other words, if TCP connection is
reestablished, OFS01 starts sending a Hello message to
OFC02 to establish an OpenFlow protocol connection. Then,
OFS01 sends a packet-in message to and receives a packet-
out message from OFC02. Thus, the failover is completed.
In Fig. 2, the failover time is defined as the duration time
from the failure event of OFC01 to the first packet-out mes-
sage sent by OFC02. Also, the role-change time is defined
as the duration time from OFS02’s sending the VRRP ad-
vertisement message to the receipt of OFPT_FEATURE_R-
EPLY by the OFS. Intervals a, b and c shown in Fig. 2 are
defined as follows. Interval a is advertisement delay that is
the time from OFC01’s going down to OFC02’s sending the
advertisement message. Interval b is TCP-recovery delay
that is the time from OFC02’s sending an advertisement
message to OFS01’s sending the OPFT_HELLO message.
Interval c is OpenFlow-recovery delay that is the time from
OFS01’s sending the successful OPFT_HELLO message to
OFC02’s sending OFPT_PACKET_OUT message.

We measured the failover time and role-change time 10
times respectively. The results are shown in Table III. We

TABLE III. ROLE-CHANGE TIME AND FAILOVER TIME IN THE CASE OF
DEFAULT PARAMETER.

can improve these times by tuning some parameters.

Fig. 3 shows three operational sequence patterns of
VRRP and Fig.3-(a) shows the sequence in the case of the
default parameter. In VRRP, it is difficult to shorten the
time to detect a failure because the minimum value of the
master down interval is 3004 ms. To shorten the failover
time in VRRP, we should reconnect the OFS to the OFC as
soon as possible. To this end, OFS01 should send a SYN
packet as soon as OFC02 sends the gratuitous ARP packets.
The OFS01 first sends the SYN packet in two seconds after
the failure of sending the OFPT_ECHO_REQUEST mes-
sage. Since OFC01 is down, the OFS cannot receive the
SYN_ACK packet. In our OFS implementation, the chan-
nel-establishment timer of OpenFlow is expired if both of
the TCP connection and OpenFlow connection are not es-
tablished within one second. And then OFS01 retries to
connect to OFC02 after two seconds.

We changed the channel-establishment timer of Open-
Flow to three seconds from one second. In that case, the
SYN packet is retransmitted in one second after OFS01’s
sending the first SYN packet because the initial value of the
TCP retransmission timer of Linux is one second. So, we
can shorten the failover time as shown in Fig. 3-(b). How-
ever, the failover time depends on the timing of the failure
of OFC01. If OFS01 sends an OFPT_REQUEST message
to OFC immediately after OFC01 fails, the second SYN
packet is sent before OFC02’s sending the gratuitous ARP
packets. As a result, the failover time increases as shown in
Fig. 3-(c). Table IV shows the result in the case of changing
the connection-establish timer to three seconds. According
to Table IV, we can shorten the minimum and average times
by changing the channel-establishment timer of OpenFlow.

OpenFlow Switch:Waiting-time Before Reconnect(2000ms)

OFC01 OFC02 OFS01 224.0.0.18 Broadcast

VRRP_Advertisement

Interface Down

VRRP_Advertisement

Master Down Interval:3004ms

TCP_SYN_1
Gratuitous ARP x 5

OpenFlow Switch:Connection Time Out (1000ms)

TCP_SYN_2

Time Out

OFPT_ECHO_REQUEST

2000ms

Linux Reconnect Time(1000ms)

OFC01 OFC02 OFS01 224.0.0.18 Broadcast

VRRP_Advertisement

Interface Down

VRRP_Advertisement

Master Down Interval:3004ms

TCP_SYN_1
Gratuitous ARP x 5

OpenFlow Switch:Connection Time Out (3000ms)

TCP_SYN_2

Time Out

OFPT_ECHO_REQUEST

2000ms
Linux Reconnect Time(1000ms)

OFC01 OFC02 OFS01 224.0.0.18 Broadcast

VRRP_Advertisement

Interface Down

VRRP_Advertisement

Master Down Interval:3004ms

TCP_SYN_1

Gratuitous ARP x 5
TCP_SYN_2

TPC_SYN_3

OFPT_ECHO_REQUEST

2000ms

Time Out

Good Timing

Bad Timing
TCP_SYN_ACK

TCP_ACK

OFPT_HELLO

TCP_SYN_ACK
TCP_ACK

OFPT_HELLO

TCP_SYN_ACK
TCP_ACK

OFPT_HELLO

a

b

a a

b

b

Figure 3. VRRP-based switchover operations for three conditions of the channel-establishment timer.

(c) Channel-establishment timer is
set to 3000ms in bad timing.

(b) Channel-establishment timer is
set to 3000ms in good timing.

(a) Channel-establishment timer is
set to 1000ms

Minimum [ms] Average [ms] Maximum [ms]

Role-change time 3058 3365 3613

Failover time 5307 5653 5958

117

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. ROLE-CHANGE TIME AND FAILOVER TIME IN THE CASE OF
CHANGING THE CHANNEL-ESTABLISHMENT TIMER.

Figure 4. Breakdown of failover time.

Figure 5. CPU utilization of NOX controller process during VRRP-based

failover operation.

However, the maximum time is longer than the case with
the original timer of one second.

Fig. 4 shows a breakdown of the failover time in both
cases (i.e., the channel-establishment timer of OpenFlow is
one second or three seconds). Intervals a, b and c set in Fig.
4 correspond to the markers shown in Fig. 2. Since Interval
c is a very small value compared with Intervals a and b, the
value is hardly visible in Fig. 4. According to Fig. 4, we can
shorten Interval b by changing the channel-establishment
timer of OpenFlow in the minimum and average value.
However, considering that Interval b varies depending on
the timing of OFC01’s failure, it is difficult to adjust the

parameter to the optimal values. In addition, it is also costly
for network operators to set the optimal value to each switch
if the OFC controls many OFSes provided by various ven-
dors on various operating systems.

In the redundancy method using VRRP for the OFC, we
measure the CPU utilization of the NOX controller process
when the Master controller is changed and the OFS is re-
connected to the controller. The experimental testbed is al-
most the same as shown in Fig. 1, except for the following
two points. First, we use Open vSwitch [20] as the OFS to
connect several switches to the OFC. Second, the traffic
generator does not generate the data packet to measure only
CPU utilization due to the failover of the NOX process. We
measure the CPU utilization by a top command of Linux at
one-second intervals. The maximum CPU utilization of the
NOX process due to the failover is evaluated as a function
of the number of OFSes. Fig. 5 shows the average of 10
measurements. According to Fig. 5, the CPU utilization of
the NOX process increases with the growth of the number
of OFSes. The CPU utilization is approximately 40% with
1000 OFSes.

In summary, using VRRP for redundancy of OFCs has
two issues. First, it requires a long failover time. The failo-
ver time of VRRP has lower bound depending on its imple-
mentation. For example, Keepalived needs at least three
seconds as the failover time since the minimum advertise-
ment delay is two seconds and minimum TCP-recovery de-
lay is one second. Also, it is difficult to shorten the failover
time by changing parameters. Second, considering that the
CPU utilization due to the failover process is high, VRRP is
not suitable for a large OpenFlow network.

IV. PROPOSAL AND EVALUATION

In this section, we propose an architecture that uses mul-
tiple-controllers capability for local and global recoveries.
We also evaluate recovery operation in two scenarios (i.e.,
local and global). To avoid the re-establishment of both the
TCP connection and the OpenFlow channel, which is inevi-
table in conventional virtual IP address-based redundancy,
we apply the multiple-controllers capability [9] to both local
and global scenarios. Through the evaluation of the two
scenarios, we use OpenFlow-1.2-compliant controllers and
switches on Linux by extending an existing implementation
[16] as shown in Section III.

A. Proposed Design of Local Recovery

First, we explain the redundant method in a single do-
main, which is typically a data-center hosting OpenFlow
controllers. Table V shows parameters specific to a local-
recovery experiment.

Fig. 6 shows a reference model for describing and eval-
uating the proposed scheme designed for the local recovery.
OFC01 is connected to two controllers through two Open-
Flow channels. In a normal operation, the role of OFC01 is
set to MASTER and that of OFC02 is set to SLAVE.
OFC01 and 02 have the same flow entry information mir-
rored between the two OFCs. OFS01 and OFS02 are

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

minimum average maximum minimum average maximum

c:OpenFlow-recovery delay

b:TCP-recovery delay

a:advertisement delay

Connection-timeout:
1second

Connection-timeout:
3seconds

F
ai

lo
ve

r
tim

e
(m

s)

200 400 600 800 1000
0

20

40

Number of OpenFlow SwitchesC
P

U
 u

til
iz

at
io

n
of

 O
pe

nF
lo

w
 C

on
tr

ol
le

r
[%

]

Minimum [ms] Average [ms] Maximum [ms]

Role-change time 1040 2621 4597

Failover time 3663 5161 7336

118

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. PARAMETERS SPECIFIC TO LOCAL-RECOVERY EXPERIMENT

Figure 6. Experimental scenario using multiple-controllers capability in

local environment

Figure 7. Design of a control procedure for a local recovery

operated under the reactive mode, and send a packet-in mes-
sage to OFC01 when it receives a new packet undefined in
the flow entry. To evaluate the performance influence in the
data plane, a traffic generator continuously generates data
packets with 100 packets per second (pps) where every
packet has unique flow identifiers for stressing the reactive
operation of the controller.

Fig. 7 shows an operational sequence of the proposed
redundant scheme utilizing the multiple-controllers capabil-
ity. In the proposed scheme, controllers send keep-alive
messages (e.g., ICMP echo) to each other every 50 millisec-
onds. In a normal operation, OFS01 sends an asynchronous
message such as packet-in to OFC01, since the switch rec-
ognizes the role of OFC01 as MASTER and that of OFC02
as SLAVE. OFC01 sends a flow-modification message and
packet-out message to respond to the packet-in message
from the switch. If the keep-alive message is lost, a control-

ler (i.e., OFC01) is assumed to have failed. Due to the fail-
ure of OFC01, OFS01 cannot send any packet-in messages,
and then the data plane cannot continue successful packet
forwarding for any new incoming flows. Upon detecting the
failure of OFC01, OFC02 sends an
OFPT_ROLE_REQUEST message to OFS for changing its
own role to MASTER. Then, OFS replies the
OFPT_ROLE_REPLY message, and starts sending asyn-
chronous messages to OFC02 after the completion of the
role-change process. To respond to the asynchronous mes-
sages, OFC02 starts sending flow-modification and packet-
out messages, and finally, the packet forwarding in the data
plane is restored. As represented in Fig. 2, failover time is
defined as the duration time from the failure event of
OFC01 to the first packet-out message sent by OFC02. Fail-
over time is measured using a traffic generator to obtain the
data plane outage time. The role-change time is defined as
the duration time from the detection of OFC01 failure to the
receipt of OFPT_ROLE_REPLY by OFC02. Role-change
time is measured by retrieving the event log of each control-
ler to observe the control message process.

B. Evaluation of Local Recovery

The failover time and role-change time are evaluated by
increasing flow entries in order to investigate the influence
of the entry size. Fig. 8 shows the average of 10 measure-
ments of the failover time and role-change time. Failover
time is around 60-90 milliseconds and role-change time is
about 15 milliseconds. Since the failure detection included
in the failover time has a timing offset within the keep-alive
interval, the observed failover time has some fluctuation
range. Although the role-change time of the proposal is
comparable with that of the virtual address-based redundan-
cy, the failover time of the proposal shows a significant ad-
vantage thanks to the seamless handover between multiple
OpenFlow channels. Fig. 8 also shows that entry size on
OFCs does not affect the local recovery operation both for
role-change time and failover time.

In the redundancy method that uses the multiple-
controllers capability in the local recovery, we measure the
CPU utilization of the NOX process due to failover. We use
Open vSwitch as OFS instead of Ericsson TrafficLab 1.1
software switch. The traffic generator does not generate any
data packet to measure only CPU utilization of the NOX
process due to failover. Fig. 9 shows the average of 10
measurements of the maximum CPU utilization. According
to Fig. 9, the CPU utilization of the NOX process increases
with the growth of the number of OFSes. However, the uti-
lization is smaller than that of using VRRP. This is because
there is no process of OFS01’s reconnecting (i.e., TCP re-
connecting and OpenFlow reconnecting) to OFC02 in the
proposed method of using the multiple-controllers capability.
Thus, the proposed redundancy method of using the multi-
ple-controllers capability has two advantages compared with
the conventional method of using VRRP. First, its failover
time is short because the process of failure detection is in-
dependent of the process of handover. Consequently we can
combine the fast detection method (e.g., BFD [21]) with the

Node Parameter Value
keep-alive interval 50 ms

keep-alive timeout 50 ms
OpenFlow controller

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

: OpenFlow channel

: Physical connection

: Data traffic

: Asynchronous message

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

Data plane

Control plane
OFC01’s

Interface

goes down

Role: MASTER Role: SLAVE Role: SLAVE Role: MASTER

OFC02

Keep-alive(ECHO_REQUEST)

50ms

OFPT_ROLE_REQUEST

OFPT_PACKET_IN

Failover time

Role-change time

OFPT_FLOW_MOD

ECHO_REPLY

Interface down

OFC01 OFS

OFPT_ROLE_REPLY

OFPT_PACKET_OUT

OFPT_PACKET_OUT

OFPT_FLOW_MOD

OFPT_PACKET_IN

Failure detection time

Keep-alive(ECHO_REQUEST)
ECHO_REPLY

Keep-alive(ECHO_REQUEST)

ECHO_REPLY

ECHO_REPLY

Keep-alive(ECHO_REQUEST)

Keep-alive(ECHO_REQUEST)

50ms

119

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Result of failover and role-change time in a single domain.

Figure 9. CPU Utilization of NOX process during multiple-controllers-based

failover operation.

process of handover and we can achieve the short failover
time. Second, considering that the CPU utilization due to
the failover is low compared with the method of using
VRRP, the proposed redundancy method of using multiple-
controllers is suitable especially for a large OpenFlow net-
work.

C. Proposed Design of Global Recovery
In this section, we explain the redundant method of mul-

tiple domains. Table VI shows the parameters specific to the
global-recovery experiment. Fig. 10 shows a reference mod-
el of the controller redundancy for the global recovery sce-
nario. The global recovery should consider tackling extraor-
dinary events affecting, for example, the entire data center.
We assume that a controller is installed in each domain to
retain its scalability and performance. The controller man-
ages OFSes belonging to the same domain as the MASTER,

and the controller manages the other OFSes in the other
domains as the SLAVE. The respective roles of the control-
lers are depicted in the upper side of Fig. 10. For example,
OFS-A (i.e., some switches belonging to domain-A) recog-
nizes the role of OFC-A (i.e., the controller belonging to
domain-A) is MASTER and the role of the other controllers
is SLAVE. Similarly, OFS-B and OFS-C also recognize the
role of the controller that belongs to its same domain is
MASTER and the roles of the other controllers are SLAVE.
The controller has flow entry information for only OFSs
recognizing the controller as MASTER. Thus, the controller
does not need to have an excessive configuration or receive
an excessive message. Additionally, one characteristic of
our proposal is the existence of a Role Management Server
(RMS). RMS monitors all controllers to manage their role,
and RMS has some data such as CPU utilization, role in-
formation, configurations of all controllers and domain in-
formation of all switches. RMS determines which controller
should take over the role of MASTER and relevant configu-
ration data, if a controller has failed. In this regard, we have
to be careful to prevent second failures. If OFC-B takes over
the role of MASTER for broken OFC-A and places OFS-A
under management besides OFS-B, there is the possibility
of CPU utilization overload of OFC-B and then OFC-B may
fail consequently. Thus, we should consider that one failure
would induce subsequent failures. That is why RMS moni-
tors CPU utilization and judges multiple-controllers should
take over the role of MASTER from one controller, if RMS
judges that taking over with a single controller raises over-
load of CPU utilization.

TABLE VI. PARAMETERS SPECIFIC TO GLOBAL -RECOVERY
EXPERIMENT

Figure 10. A network model for global recovery.

5000 10000
0

50

100

150

Number of Flow Entries

T
im

e
[m

s]

Failover time
Role−change time

200 400 600 800 1000
0

10

20

Number of OpenFlow Switches

C
P

U
 u

til
iz

at
io

n
of

 O
pe

nF
lo

w
 C

on
tr

ol
le

r
[%

]

Node Parameter Value

operating system Ubuntu12.04

network interface Gigabit Ethernet
snmp monitoring interval 50 ms

Role management system

OFS A OFS B OFS C

OFS A Master
Master

Master
Slave
Slave Slave

Slave Slave
SlaveOFS B

OFS C

OFC A OFC B OFC C

Role-Management
Server(RMS)

Domain A Domain B Domain C

:OpenFlow Channel :Asynchronous message

OFC A OFC B OFC C

The role of the controller

120

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Fig. 11 shows the role-change transition for the global
controller recovery. Fig. 11-(a) shows the initial state, and
two switches are connected to three controllers through
three OpenFlow channels. In the normal operation, both
switches recognize that the role of OFC-A is MASTER and
the other controllers are SLAVE. So only OFC-A receives
some asynchronous messages such as packet-in messages.
In this case, the three controllers have different configura-
tions respectively and the information is reflected in the
database of RMS. Also RMS has CPU utilization, the role
information of each controller and the cognition haven by
switch regarding the role of the controller in its database.
The traffic generator connects OFS01 and OFS02 respec-
tively and the data transfer rate is 100 pps. The two switches
receive a new packet and send a packet-in message to the
controller at all times as well as the measurement of a single
domain.

If OFC-A fails and RMS judges there is no problem of a
single controller taking over the MASTER role, the initial
state (i.e., Fig. 11-(a)) is changed to Fig. 11-(b) where only
OFC-B takes over the role of MASTER. The RMS database
is updated accordingly, and both switches start sending asyn-
chronous messages to OFC-B.

In contrast, if OFC-A fails and RMS judges that a single
controller cannot take over the Master role but two control-
lers can, the initial state is changed to Fig. 11-(c) where two
controllers take over the role of MASTER. The database of
RMS is updated accordingly, and then OFS01 starts sending
asynchronous messages to OFC-B. OFS02 sends asynchro-
nous messages to OFC-C.

Fig. 12 shows a global recovery scheme in the case of
Fig. 11-(b). RMS monitors the CPU utilization of all control-
lers every 50 milliseconds with Simple Network Manage-

ment Protocol (SNMP) [22]. Since Fig. 5-(b) has three con-
trollers, each controller is monitored every 150 milliseconds.
The proposed recovery process consists of a judge-phase and
a takeover-phase. If RMS is unable to retrieve the infor-
mation about CPU utilization from OFC-A, RMS does not
immediately assume that OFC-A has failed to avoid false
positive. To ensure the failure detection, RMS requests that
the ICMP echo be sent from the other controllers (OFC-B
and OFC-C) to OFC-A. If more than half of the results indi-
cate the failure of OFC-A, RMS determines that OFC-A has
failed and starts calculating a new MASTER controller mi-
grating OFC-A’s configuration and OFSs under OFC-A. The
process from failure detection to the determination of a failed
controller is defined as the judge phase as indicated in Fig.12.

Figure 12. Proposed operational sequence for Figure 5 (b) scenario.

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

MASTER MASTER
SLAVE

SLAVE SLAVE

SLAVE

x%

y%

z%

A

B

C

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

SLAVE SLAVE
MASTER

SLAVE SLAVE

MASTER

x%

y+a%

z%

A

A+B

C

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

SLAVE SLAVE
MASTER

SLAVE MASTER

SLAVE

x%

y+b%

Z+c%

A

A+B

A+C

: OpenFlow channel : Physical connection : Asynchronous message : Data traffic

OFC A goes down

The database of RMS The database of RMS The database of RMS

Figure 11. Role-change transition in the global controller recovery

(c) Two switches are migrated to
two controllers.

(b) Two switches are migrated to
a single controller.

(a) Normal state.

OFPT_PACKET_OUT

50ms

RMS OFC-A OFC-B

Keep-alive(ECHO_REQUEST)

Send result of keep-alive

snmp

OFS01

OFTP_ROLE_REPLY

Send updated configuration

Completion notice about updated configuration

Fail detection

Request to change role

OFPT_ROLE_REQUEST

Completion notice about role-change

OFPT_PACKET_IN

OFPT_FLOW_MOD

OFPT_PACKET_OUT

Role-change time

judge

Judge-phase

Takeover-phase

OFC-C OFS02

Keep-alive(ECHO_REQUEST)

Send result of keep-alive

OFPT_PACKET_IN

Failover time

snmp

snmp

Request sending a keep-alive

Request sending a keep-alive

OFPT_ROLE_REQUEST

OFTP_ROLE_REPLY

a

b

c
d

e

f

Failure detection time

Interface down

OFPT_FLOW_MOD

121

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Result of failover time and role-change time in global recovery.

Figure 14. Breakdown of role-change time observed for scenario Fig. 11-

(b) and (c)

After the judge-phase, RMS moves to the takeover-phase. In
the takeover-phase, RMS firstly calculates whether it is no
problem for a single controller to take over all switches con-
nected to OFC-A by considering CPU utilization of OFC-A
as well as OFC-B and C. If two or more controllers are re-
quired to take over all switches of OFC-A, RMS separates
the switches based on the ratio of the available CPU re-
sources of new MASTER controllers. If RMS decides that
OFC-B is adequate to become a new single MASTER as
shown in Fig. 11-(b), RMS integrates OFC-A’s configuration
into OFC-B’s and registers the integrated configuration into
OFC-B. Upon receiving the integrated configuration, OFC-B
updates its own configuration and then reports the comple-

tion of the integration process. Then, RMS requests OFC-B
to send the OFPT_ROLE_REQUEST to the switches for
updating the role of OFC-A to SLAVE and OFC-B as
MASTER. The switches send the OFPT_ROLE_-REPLY
after updating the role change process. Then, OFC-B reports
the completion of the role-change process to RMS. The pro-
cess from completion of the judge-phase to completion of the
role-change is defined as the takeover-phase. After the take–
over phase, the switches OFC01 and 02 start sending asyn-
chronous messages to OFC-B.

D. Evalution of Global Recovery
Fig. 13 shows the average of 10 measurements of role-

change time and failover time in both cases of Fig. 11-(b)
and (c). Role-change time and failover time increase with the
growth of flow entry size. This result shows the difference in
behavior compared with the result of a local recovery shown
in Fig. 8. The major reason for this increase of failover time
is that RMS needs integration of multiple configurations of
failed OFC and registration of the configuration during the
takeover-phase. As different scenarios of the global recovery,
RMS selects multiple-controllers as the new MASTER as
shown in Fig. 11-(c), and the scenario takes a longer role-
change time and failover time as shown in Fig. 13. This rea-
son is analyzed using the result of Fig. 14 that shows a
breakdown of the role-change time under 1000 entries in
both cases (i.e., Fig. 11-(b) and (c)). The characters (“a” to
“ f”) placed on the x-axis of Fig. 14 correspond to the marker
shown in Fig. 12. As shown in Fig. 14, the major perfor-
mance difference comes from c that is the time to integrate
configuration in RMS and register it to OFC. Current im-
plementation suffers from the serial processing of the regis-
tration of integrated data. This means introducing parallel
processing of the registration resolves the delay of role-
change fo r t he scenar io shown in F ig . 11 - (c) .

According to Fig. 13, the role-change time is about 300
milliseconds and failover time is 420 milliseconds in 10000
flow entries, in the case of the scenario in Fig. 11-(b). In the
case of the Fig. 11-(c) scenario, the role-change time is about
500 milliseconds and failover time is about 620 milliseconds.
These results indicate that, for both scenarios, our proposal
achieves a competitive role-change time and faster failover
time compared with existing redundant mechanisms [13, 15].
We consider the proposed implementation of multiple-
controllers achieves high availability controllers for both
intra and inter data-center recoveries.

In this paper, we do not evaluate the redundancy of RMS
itself. Although conventional server redundancy mechanisms
accompanying a relatively longer failover time may be ap-
plied to RMS redundancy, RMS cannot be a critical bottle-
neck of processing asynchronous messages. This is because
RMS failure itself does not affect any OpenFlow channel
sessions and thus the data plane is not affected, accordingly.

V. CONCLUSION AND FUTURE WORK

In OpenFlow architecture, the controller is an important
element for achieving reliable SDN. In this paper, we evalu-

5000 10000
0

200

400

600

Number of Flow Entries

T
im

e
[m

s]

(b) Role−change time
(b) Failover time
(c) Role−change time
(c) Failover time

0

200

400

(b) Role−change time
(c) Role−change time

a b c d e f

T
im

e
[m

s]
122

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ated the redundant method for the OpenFlow controller by
using a conventional method (i.e., VRRP) and we verified
the existence of the issue from the viewpoint of failover time
and CPU utilization. And then we proposed a redundant
scheme to tackle both a single domain (“local”) and multiple
domain (“global”) recovery scenarios, which cannot be re-
solved with conventional redundant schemes. To avoid a
long failover time and heavy CPU load due to conventional
virtual IP address-based schemes, our scheme used the mul-
tiple-controllers capability for seamless handover. To avoid
performance scale-limit due to conventional clustering
schemes, our scheme eliminates any frontend server from the
redundant system. The evaluation shows that the proposed
scheme involves lower CPU utilization and competitive role-
change and failover times compared with conventional
schemes. In our scheme, the CPU utilization due to the pro-
cess of failover is half or less compared with the virtual IP
address-based scheme in the case of 1000 units of OFSes.
Our scheme is more suitable for a large OpenFlow network.
The role-change time observed in a local recovery scenario is
about 15 milliseconds regardless of entry size, and that in a
global scenario ranges from 200 to 400 milliseconds. CPU
resource-aware migration of managed OpenFlow switches in
the failover process was successfully achieved by our
scheme. The proposal is expected to be an effective high
availability scheme necessary for deploying reliable and
scalable SDN.

In future work, we will shorten the failover time for the
scenario of some OpenFlow switches migrated to some
OpenFlow controllers. In RMS, we will separate the current
redundancy process that is sequential migration into every
controller, and we will establish CPU-based controller re-
source modeling to accurately handover many OpenFlow
switches in the event of, especially, global recovery where
massive nodes may need to be protected.

ACKNOWLEDGMENT

We are grateful to Yasunori Maruyama for our produc-
tive discussions, support for our experiments and program-
ming assistance.

REFERENCES
[1] K. Kuroki, N. Matsumoto, and M. Hayashi, “Scalable

OpenFlow controller redundancy tackling local and global
recoveries,” Proc. International Conference on Advances in
Future Internet (AFIN2013), August 2013, pp. 61-66.

[2] N. McKeown et al., “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, isssue 2, April 2008, pp. 69-
74.

[3] M. P. Fernandez, “Evaluating OpenFlow controller
paradigms,” Proc. International Conference on Networks
(ICN2013), January 2013, pp. 151-157.

[4] R. Pries, M. Jarschel, and S. Goll, “On the usability of
OpenFlow in data center environments,” Proc. IEEE
International Conference on Communications (ICC2012),
June 2012, pp. 5533-5537.

[5] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp,
“OpenQoS: an OpenFlow controller design for multimedia

delivery with end-to-end quality of service over software-
defined networks,” Proc. Signal & Information Processing
Association Annual Summit and Conference (APSIPA ASC
2012), December 2012, pp. 1-8.

[6] “IEEE standard for local and metropolitan area networks –
station and media access control connectivity discovery,”
IEEE Std 802.1AB, September 2009.

[7] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and
P. Skoldstrom, “Scalable fault management for OpenFlow,”
Proc. IEEE International Conference on Communications
(ICC2012), June 2012, pp. 6606-6610.

[8] A. Dixit et al., “Towards an elastic distributed SDN
controller,” Proc. ACM SIGCOMM Computer
Communication Review, vol. 43, October 2013, pp. 7-12.

[9] “OpenFlow switch specification version 1.2,” Open
Networking Foundation, December 2011.

[10] “The transport layer security (TLS) protocol version 1.2,”
IETF RFC5246, August 2008.

[11] “Transmission control protocol,” IETF RFC793, September
1981.

[12] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed
control plane for OpenFlow,” Proc. the 2010 Internet Network
Management Conference on Research on Enterprise
Networking (INM/WREN’10), 2010.

[13] F. Koch and K. T. Hansen, “Redundancy performance of
virtual network solutions,” Proc. IEEE Conference on
Emerging Technologies and Factory Automation (ETFA’06),
September 2006, pp. 328-332.

[14] “Virtual router redundancy protocol (VRRP),” IETF
RFC3768, April 2004.

[15] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic, “Efficient
TCP connection failover in web server clusters,” Proc. IEEE
International Conference on Computer Communications
(INFOCOM’04), vol. 2, March 2004, pp. 1219-1228.

[16] CPqD/OpenFlow-1.2-Tutorial - GitHub,
https://github.com/CPqD/OpenFlow-1.2-Tutorial
[retrieved: April, 2013].

[17] NOXRepo, http://www.noxrepo.org
[retrieved: April, 2013].

[18] TraffcLab/of11softswitch – GitHub,
https://github.com/TrafficLab/of11softswitch
[retrieved: April, 2013].

[19] Keepalived for Linux, http://www.keepalived.org
[retrieved: October, 2013].

[20] Open vSwitch, http://openvswitch.org
[retrieved: April, 2013].

[21] “Bidirectional forwarding detection (BFD),” IETF RFC5880,
June 2010.

[22] “A simple network management protocol (SNMP),” IETF
RFC1157, May 1990.

123

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

