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Abstract—OpenFlow is an important element for achieving 
Software Defined Networking (SDN) and is expected to be an 
enabler that solves the problems of today’s network. Thanks to 
the centralized management with OpenFlow, agile network 
operation can be achieved with flexible programmability; how-
ever, the centralized management implies a significant impact 
of any outages of the OpenFlow controller. Hence, a high 
availability technology is indispensable for building the Open-
Flow controller. To achieve the highly available system, we 
have to consider extraordinary events (e.g., power outage) af-
fecting the entire data center as well as anticipated server fail-
ures within a local system. In this paper, we review the issue in 
using the conventional redundancy method for OpenFlow con-
trollers. Based on this observation, we propose a redundancy 
method considering both local and global (i.e., inter data-
center) recoveries using the multiple-controllers capability that 
is defined in OpenFlow switch specification version 1.2 and 
later. The proposed redundancy scheme eliminates virtual IP 
address-based redundancy and frontend server causing limita-
tion of performance scalability, while it achieves competitive 
role change and failover times. 

Keywords-OpenFlow; controller; redundancy. 

I.  INTRODUCTION 

This paper is an extended version of our previous work 
[1]. Towards future telecom services, the programmability 
of the network is expected to shorten the service delivery 
time and to enhance the flexibility of service deployment 
meeting diversified and complex user requirements on vari-
ous applications (e.g., real-time and non real-time applica-
tions). Software Defined Networking (SDN) is an important 
concept for achieving a programmable network and Open-
Flow [2] is an important factor for achieving the concept.  
OpenFlow is an enabler of the centralized management so-
lution, which enables management and control of several 
OpenFlow switches, which allows the network operators to 
configure the switches easily and speedily. However, we 
have to solve some issues of OpenFlow (i.e., scalability, 
reliability and so forth) to deploy the OpenFlow technique 
in carrier grade networks. Many researches have addressed 
the issues of the OpenFlow-based solution.  

Fernandez evaluates several OpenFlow controllers from 
the viewpoint of scalability in centralized management and 
control [3]. Message processing performances of two opera-
tion modes (i.e., proactive and reactive) of the OpenFlow 
controller are evaluated using several existent implementa-

tions (e.g., Floodlight, NOX, Trema). Pries et al. analyze the 
scalability of the OpenFlow solution for a data center envi-
ronment to show an implementation guideline [4]. The pa-
per concludes that, to achieve lossless and low delay per-
formance in the data center application, the number of 
OpenFlow switches managed by one controller should be 
limited to eight. To leverage the advantage of centralized 
management, the OpenFlow controller should not be a sim-
ple flow switching policy server. OpenQoS [5] architecture 
delivers end-to-end quality of service (QoS) with Open-
Flow-based traffic control. The OpenFlow controller with 
OpenQoS plays the role of collecting the network state to 
perform dynamic QoS routing, i.e., the controller has a route 
calculation function just like the Path Computation Element 
(PCE). Indeed, in the Internet Engineering Task Force 
(IETF), PCE architecture is growing as a stateful operation 
supporting the enforcement of path provisioning in addition 
to its original path computation role. Hence, the importance 
of the OpenFlow controller is growing with the broader 
concept of SDN, and thus the high availability of the con-
troller system must be discussed.  

There are two approaches to achieve high availability of 
the OpenFlow controllers. One approach is to reduce their 
load. The OpenFlow controller exchanges many messages 
with the OpenFlow switches especially in reactive mode. As 
a result, the OpenFlow controller could be overloaded and 
thus become unable to process incoming messages. In such 
a case, some processing is required to handle failover. If the 
OpenFlow Controller uses Link-Layer Discovery Protocol 
(LLDP) [6] messages to discover link and node failures and 
manages and monitors several switches, the monitoring 
model has serious scalability limitations. Kempf et al. [7] 
propose a monitoring function for OpenFlow switches that 
achieves a fast recovery in a scalable manner. Dixit et al. [8] 
propose a new OpenFlow switch migration algorithm for 
enabling load shifting among the OpenFlow Controllers. 
This algorithm improves the response time for the Packet-in 
messages by shifting the controlled switch. Thus, there are 
some researches on reducing the load of the OpenFlow con-
troller for protection of the data-plane.  

The other approach is to replace a single controller with 
redundant controllers. However, there is little research on 
the redundancy of the OpenFlow controller, which must 
play an important role in SDN.  

In this paper, we investigate the issue of achieving re-
dundancy for the OpenFlow controller with a conventional 
method, and we propose a method to improve the availabil-
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ity of the OpenFlow controllers. In the proposed redundant 
method, “global” recovery (i.e., inter data-center redundan-
cy) as well as local recovery (i.e., redundancy within a local 
network) are considered. The proposal achieves a competi-
tive failover time compared with existing redundant 
schemes (e.g., server clustering), while the proposal does 
not require any frontend server limiting performance scala-
bility of the OpenFlow controller. 

The organization of this paper is as follows: In Section 
II, we review related works and the capability of multiple-
controllers as defined in OpenFlow switch specification 1.2 
[9] and also explain its applicability to achieving redundan-
cy of the OpenFlow controller. In Section III, we describe a 
conventional method to achieve the redundancy of the 
OpenFlow controller by using the Virtual Router Redun-
dancy Protocol (VRRP) and its limitation. In Sections IV-A 
and B, we propose the redundancy method using multiple-
controllers in a single domain and evaluate its performance. 
In Sections IV-C and D, we propose the redundancy method 
using multiple-controllers in multiple domains and evaluate 
its performance. Finally, concluding remarks are given in 
Section V. 

 

II. BACKGROUND AND RELATED WORK 

Typical implementation of OpenFlow allocates a con-
troller separating the control plane from the data plane, and 
an OpenFlow switch playing the role of data plane com-
municates with an OpenFlow controller using the OpenFlow 
protocol over a Transport Layer Security (TLS) [10] or a 
Transmission Control Protocol (TCP) connection [11] de-
fined as an “OpenFlow channel.” The switch tries to for-
ward a packet by looking up flow entries populated in ad-
vance by the controller. If the packet does not match the 
current flow entries, the switch sends a packet-in message 
over the OpenFlow channel to the controller in order to re-
trieve a direction on how to treat the packet.  

One method of handling data plane failure is to imple-
ment a monitoring function on the OpenFlow switch; how-
ever, only the monitoring function in a data plane is not suf-
ficient for achieving high availability in an OpenFlow net-
work. We cannot achieve a highly available OpenFlow net-
work without achieving the redundancy of the OpenFlow 
controller. In the case of controller outages, the OpenFlow 
channel is lost accordingly, and then the controller cannot 
successfully process the packet-in message. Hence, new 
packets that are not matched with the flow entry are simply 
dropped or allowed to fall in a default operation (e.g., for-
warding to a neighbor anyway) that does not provide desira-
ble services until the ultimate recovery of the controller. To 
achieve a high availability in the OpenFlow network, we 
have to achieve recovery methods in both global and local 
networks that exploit the redundancy of the OpenFlow con-
trollers. 

The HyperFlow [12] approach improves the perfor-
mance of the OpenFlow control plane and achieves redun-
dancy of the controllers. HyperFlow introduces a distributed 
inter-controller synchronization protocol forming a distrib-
uted file system. HyperFlow is implemented as a NOX-C++ 

application and synchronizes all events between controllers 
by messaging advertisements. In the case of controller fail-
ures, HyperFlow requires overwriting of the controller reg-
istry in all relevant switches or simply forming hot-standby 
using servers in the vicinity of the failed controller. Thus, 
this approach assumes re-establishment of the OpenFlow 
channel, and does not assume the multiple-controllers capa-
bility defined in OpenFlow 1.2. Therefore, the time duration 
of the failover operation may increase with the growth of 
the number of switches managed by the failed controller. 
Since the failover process of HyperFlow does not consider 
any server resource, overload of CPU utilization is a poten-
tial risk in the event of migrating switches to a new control-
ler especially in the global recovery scenario. 

There are several methods of general server redundancy, 
and such methods may also be effective for OpenFlow con-
trollers. For example, one possible server redundancy can 
use one virtual IP address aggregating hot-standby or sever-
al servers. Koch and Hansen [13] evaluate a failover time in 
the case of using the virtual IP address-based implementa-
tion with the Common Address Redundancy Protocol 
(CARP), which is similar to VRRP [14]. According to the 
analysis, the average time to change the role between master 
and backup is 15.7 milliseconds. However, the virtual IP 
address-based approach may take a longer failover time in 
the case of applying this approach on the OpenFlow net-
work because this approach involves the re-establishment 
process of the OpenFlow channels. We discuss this issue in 
Sections III and Sections IV-A. Although the virtual IP-
based scheme is straightforward if it is applied within single 
LAN, it cannot simply be applied to multiple locations (e.g., 
data centers) managed under different addressing schemes. 
This means that the virtual IP-based scheme alone is not 
sufficient to tackle global recovery. Zhang et al. [15] pro-
pose a server clustering method with a mechanism to seam-
lessly handover the TCP connection between backend serv-
ers. While each TCP connection is visible to only one back-
end server in a normal clustering scheme, the proposal [15] 
makes the connection visible to at least two back-ends using 
proprietary backup TCP (BTCP) protocol within a backend 
network. The connection migrates to a backup, and then the 
backup is able to resume the connection transparently before 
the client TCP connection is lost. Using this scheme, the 
connections are recovered by the backup server within 0.9 
seconds including a failure detecting time of 0.5 seconds. 
This approach is expected to be applicable also for global 
recovery involving multiple locations. However, from the 
viewpoint of the performance scalability of the OpenFlow 
controller as analyzed in [3, 4], a common frontend server 
required in the clustering system can be a serious bottleneck 
of message processing in the control plane (e.g., if the 
frontend server is broken, all TCP connections are lost). The 
high availability scheme should avoid such single frontend 
server to ensure the performance scalability of OpenFlow 
controllers. In addition, when we tackle global recovery 
with many switches, the migration process should also con-
sider the server utilization. However, conventional ap-
proaches do not consider utilization of the server resources 
(e.g., CPU). 
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OpenFlow specification 1.2 introduced the capability of 
multiple-controllers by defining three states (i.e., MASTER, 
SLAVE, and EQUAL) of a controller. A controller plays its 
own role by using the multiple-controllers capability, and 
the state itself is owned by the switch. In the three states, 
MASTER and EQUAL have full access to the switch and 
can receive all asynchronous messages (e.g., packet-in) 
from the switch. A switch can make OpenFlow channel 
connections to multiple EQUAL controllers, but the switch 
is allowed to access only one MASTER controller. In the 
SLAVE state, a controller has read-only access to switches 
and cannot receive asynchronous messages apart from a 
port-status message from the switches. A controller can 
change its own state by sending an 
OFPT_ROLE_REQUEST message to switches. On receipt 
of the message, the switch sends back an 
OFPT_ROLE_REPLY message to the controller. If the 
switch receives a message indicating the controller’s intent 
to change its state to MASTER, all the other controllers’ 
states owned by the switch are changed to SLAVE. This 
function enables a switch to have multiple OpenFlow chan-
nels, and thus the switch is not required to re-establish new 
OpenFlow channels in the event of controller outages. In the 
multiple-controllers capability, the role-change mechanism 
is entirely driven by the controllers, while the switches act 
passively only to retain the role. Therefore, it is important to 
investigate the implementation of the controller side to 
achieve the redundancy; however, that has yet to be propos-
ed. We use the capability of multiple-controllers to achieve 
high availability of the control plane. 

III.  CONVENTIONAL METHOD 

In this section, we describe a conventional method of a 
redundant OpenFlow controller (OFC) using VRRP. We 
investigate the issue in the case of using VRRP. Table I 
shows the parameters common to all experiments (i.e., Sec-
tion III, Section IV-A, and Section IV-C) in this paper, and 
Table II shows the parameters specific to the VRRP experi-
ment in Section III. 

We implement OpenFlow-1.2-compliant controllers and 
switches on Linux by extending an existing implementation 
[16], which consists of a NOX-based controller [17] and 
Ericsson TrafficLab 1.1 software switch [18]. In addition, 
we use Keepalived [19] to run VRRP between the control-
lers.  

We conducted an experiment on our testbed as shown in 
Fig. 1. There are two controllers (i.e., OFC01 and OFC02). 
To achieve redundancy between the two controllers, VRRP 
is used. Initially, the state of OFC01 is set to Master and 
thus OFC01 has a virtual IP address. The state of OFC02 is 
set to Backup. An OpenFlow Switch (OFS01) is connected 
to OFC01 through an OpenFlow channel since OFC01 has a 
virtual IP address. OFS01 sends a packet-in message to the 
controller when it receives a new packet undefined in the 
flow entry because OFS01 is operated under the reactive 
mode. A traffic generator sends packets at the rate of 100 
packets per second (pps). 

Fig. 2 shows an operational sequence that indicates the 
state transition in the case of OFC01’s going down. Initially,  

TABLE I.  PARAMETERS COMMON TO ALL EXPERIMENTS. 

 

TABLE II.  PARAMETERS SPECIFIC TO VRRP EXPERIMENT. 

 

 
Figure 1. Experimental scenario using VRRP. 

 

  
Figure 2. Operational sequence of the recovery using VRRP 

 
the OFS01 sends an asynchronous message to OFC01 

through the OpenFlow channel. Since the OFCs are running 
VRRP, OFC01 sends a VRRP advertisement message to 
OFC02 every 1000 ms. When OFC01 goes down, OFC02 
sends a VRRP advertisement message to take over the virtu-
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al IP address and change its own state to Master from Back-
up after the master down interval, which is a guard timer for 
Backup to judge the failed condition of Master. Master 
down interval is defined by 

3 *  Advertisement_Interval + (( 256 – Priority ) / 256 ). 

The master down interval for OFC02 is 3004 ms be-
cause the priority of OFC02 is set to 255 (i.e., the highest 
priority) to detect the failure of OFC01 as soon as possible. 

OFC02 sends five gratuitous ARP packets to inform that 
the MAC address of the virtual IP address is changed in one 
second after the Keepalived sends the VRRP advertisement 
message.  If OFS01 sends a SYN packet to reconnect to the 
virtual IP address before OFC02’s sending gratuitous ARP 
packets, OFS01 cannot connect to OFC02 because the des-
tination MAC address of the SYN packet is set to the 
OFC01’s MAC address. If the OFS is successfully recon-
nected to OFC02, in other words, if TCP connection is 
reestablished, OFS01 starts sending a Hello message to 
OFC02 to establish an OpenFlow protocol connection. Then, 
OFS01 sends a packet-in message to and receives a packet-
out message from OFC02. Thus, the failover is completed. 
In Fig. 2, the failover time is defined as the duration time 
from the failure event of OFC01 to the first packet-out mes-
sage sent by OFC02. Also, the role-change time is defined 
as the duration time from OFS02’s sending the VRRP ad-
vertisement message to the receipt of OFPT_FEATURE_R-
EPLY by the OFS. Intervals a, b and c shown in Fig. 2 are 
defined as follows. Interval a is advertisement delay that is 
the time from OFC01’s going down to OFC02’s sending the 
advertisement message. Interval b is TCP-recovery delay 
that is the time from OFC02’s sending an advertisement 
message to OFS01’s sending the OPFT_HELLO message. 
Interval c is OpenFlow-recovery delay that is the time from 
OFS01’s sending the successful OPFT_HELLO message to 
OFC02’s sending OFPT_PACKET_OUT message. 

We measured the failover time and role-change time 10 
times respectively. The results are shown in Table III. We 

TABLE III.  ROLE-CHANGE TIME AND FAILOVER TIME IN THE CASE OF 
DEFAULT PARAMETER. 

 
can improve these times by tuning some parameters.  

Fig. 3 shows three operational sequence patterns of 
VRRP and Fig.3-(a) shows the sequence in the case of the 
default parameter. In VRRP, it is difficult to shorten the 
time to detect a failure because the minimum value of the 
master down interval is 3004 ms. To shorten the failover 
time in VRRP, we should reconnect the OFS to the OFC as 
soon as possible. To this end, OFS01 should send a SYN 
packet as soon as OFC02 sends the gratuitous ARP packets. 
The OFS01 first sends the SYN packet in two seconds after 
the failure of sending the OFPT_ECHO_REQUEST mes-
sage. Since OFC01 is down, the OFS cannot receive the 
SYN_ACK packet. In our OFS implementation, the chan-
nel-establishment timer of OpenFlow is expired if both of 
the TCP connection and OpenFlow connection are not es-
tablished within one second. And then OFS01 retries to 
connect to OFC02 after two seconds.  

We changed the channel-establishment timer of Open-
Flow to three seconds from one second. In that case, the 
SYN packet is retransmitted in one second after OFS01’s 
sending the first SYN packet because the initial value of the 
TCP retransmission timer of Linux is one second. So, we 
can shorten the failover time as shown in Fig. 3-(b). How-
ever, the failover time depends on the timing of the failure 
of OFC01. If OFS01 sends an OFPT_REQUEST message 
to OFC immediately after OFC01 fails, the second SYN 
packet is sent before OFC02’s sending the gratuitous ARP 
packets. As a result, the failover time increases as shown in 
Fig. 3-(c). Table IV shows the result in the case of changing 
the connection-establish timer to three seconds. According 
to Table IV, we can shorten the minimum and average times 
by changing the channel-establishment timer of OpenFlow. 
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Figure 3. VRRP-based switchover operations for three conditions of the channel-establishment timer. 

(c) Channel-establishment timer is 
set to 3000ms in bad timing. 

(b) Channel-establishment timer is 
set to 3000ms in good timing. 

(a) Channel-establishment timer is 
set to 1000ms 

Minimum [ms] Average [ms] Maximum [ms]

Role-change time 3058 3365 3613

Failover time 5307 5653 5958
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TABLE IV.  ROLE-CHANGE TIME AND FAILOVER TIME IN THE CASE OF 
CHANGING THE CHANNEL-ESTABLISHMENT TIMER. 

 

 
Figure 4. Breakdown of failover time. 

 

 
Figure 5. CPU utilization of NOX controller process during VRRP-based 

failover operation. 
 
However, the maximum time is longer than the case with 
the original timer of one second. 

Fig. 4 shows a breakdown of the failover time in both 
cases (i.e., the channel-establishment timer of OpenFlow is 
one second or three seconds). Intervals a, b and c set in Fig. 
4 correspond to the markers shown in Fig. 2. Since Interval 
c is a very small value compared with Intervals a and b, the 
value is hardly visible in Fig. 4. According to Fig. 4, we can 
shorten Interval b by changing the channel-establishment 
timer of OpenFlow in the minimum and average value. 
However, considering that Interval b varies depending on 
the timing of OFC01’s failure, it is difficult to adjust the 

parameter to the optimal values. In addition, it is also costly 
for network operators to set the optimal value to each switch 
if the OFC controls many OFSes provided by various ven-
dors on various operating systems. 

In the redundancy method using VRRP for the OFC, we 
measure the CPU utilization of the NOX controller process 
when the Master controller is changed and the OFS is re-
connected to the controller. The experimental testbed is al-
most the same as shown in Fig. 1, except for the following 
two points. First, we use Open vSwitch [20] as the OFS to 
connect several switches to the OFC. Second, the traffic 
generator does not generate the data packet to measure only 
CPU utilization due to the failover of the NOX process. We 
measure the CPU utilization by a top command of Linux at 
one-second intervals. The maximum CPU utilization of the 
NOX process due to the failover is evaluated as a function 
of the number of OFSes. Fig. 5 shows the average of 10 
measurements. According to Fig. 5, the CPU utilization of 
the NOX process increases with the growth of the number 
of OFSes. The CPU utilization is approximately 40% with 
1000 OFSes.  

In summary, using VRRP for redundancy of OFCs has 
two issues. First, it requires a long failover time. The failo-
ver time of VRRP has lower bound depending on its imple-
mentation. For example, Keepalived needs at least three 
seconds as the failover time since the minimum advertise-
ment delay is two seconds and minimum TCP-recovery de-
lay is one second. Also, it is difficult to shorten the failover 
time by changing parameters. Second, considering that the 
CPU utilization due to the failover process is high, VRRP is 
not suitable for a large OpenFlow network. 

 

IV. PROPOSAL AND EVALUATION  

In this section, we propose an architecture that uses mul-
tiple-controllers capability for local and global recoveries. 
We also evaluate recovery operation in two scenarios (i.e., 
local and global). To avoid the re-establishment of both the 
TCP connection and the OpenFlow channel, which is inevi-
table in conventional virtual IP address-based redundancy, 
we apply the multiple-controllers capability [9] to both local 
and global scenarios. Through the evaluation of the two 
scenarios, we use OpenFlow-1.2-compliant controllers and 
switches on Linux by extending an existing implementation 
[16] as shown in Section III. 
 

A. Proposed Design of Local Recovery 

First, we explain the redundant method in a single do-
main, which is typically a data-center hosting OpenFlow 
controllers. Table V shows parameters specific to a local-
recovery experiment. 

Fig. 6 shows a reference model for describing and eval-
uating the proposed scheme designed for the local recovery. 
OFC01 is connected to two controllers through two Open-
Flow channels. In a normal operation, the role of OFC01 is 
set to MASTER and that of OFC02 is set to SLAVE. 
OFC01 and 02 have the same flow entry information mir-
rored between the two OFCs. OFS01 and OFS02 are 
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TABLE V.  PARAMETERS SPECIFIC TO LOCAL-RECOVERY EXPERIMENT 

 

 
Figure 6. Experimental scenario using multiple-controllers capability in 

local environment 
 

 
Figure 7. Design of a control procedure for a local recovery 

 
operated under the reactive mode, and send a packet-in mes-
sage to OFC01 when it receives a new packet undefined in 
the flow entry. To evaluate the performance influence in the 
data plane, a traffic generator continuously generates data 
packets with 100 packets per second (pps) where every 
packet has unique flow identifiers for stressing the reactive 
operation of the controller.  

Fig. 7 shows an operational sequence of the proposed 
redundant scheme utilizing the multiple-controllers capabil-
ity. In the proposed scheme, controllers send keep-alive 
messages (e.g., ICMP echo) to each other every 50 millisec-
onds. In a normal operation, OFS01 sends an asynchronous 
message such as packet-in to OFC01, since the switch rec-
ognizes the role of OFC01 as MASTER and that of OFC02 
as SLAVE. OFC01 sends a flow-modification message and 
packet-out message to respond to the packet-in message 
from the switch. If the keep-alive message is lost, a control-

ler (i.e., OFC01) is assumed to have failed. Due to the fail-
ure of OFC01, OFS01 cannot send any packet-in messages, 
and then the data plane cannot continue successful packet 
forwarding for any new incoming flows. Upon detecting the 
failure of OFC01, OFC02 sends an 
OFPT_ROLE_REQUEST message to OFS for changing its 
own role to MASTER. Then, OFS replies the 
OFPT_ROLE_REPLY message, and starts sending asyn-
chronous messages to OFC02 after the completion of the 
role-change process.  To respond to the asynchronous mes-
sages, OFC02 starts sending flow-modification and packet-
out messages, and finally, the packet forwarding in the data 
plane is restored. As represented in Fig. 2, failover time is 
defined as the duration time from the failure event of 
OFC01 to the first packet-out message sent by OFC02. Fail-
over time is measured using a traffic generator to obtain the 
data plane outage time. The role-change time is defined as 
the duration time from the detection of OFC01 failure to the 
receipt of OFPT_ROLE_REPLY by OFC02. Role-change 
time is measured by retrieving the event log of each control-
ler to observe the control message process. 

 

B.  Evaluation of Local Recovery 

The failover time and role-change time are evaluated by 
increasing flow entries in order to investigate the influence 
of the entry size. Fig. 8 shows the average of 10 measure-
ments of the failover time and role-change time. Failover 
time is around 60-90 milliseconds and role-change time is 
about 15 milliseconds. Since the failure detection included 
in the failover time has a timing offset within the keep-alive 
interval, the observed failover time has some fluctuation 
range. Although the role-change time of the proposal is 
comparable with that of the virtual address-based redundan-
cy, the failover time of the proposal shows a significant ad-
vantage thanks to the seamless handover between multiple 
OpenFlow channels. Fig. 8 also shows that entry size on 
OFCs does not affect the local recovery operation both for 
role-change time and failover time.  

In the redundancy method that uses the multiple-
controllers capability in the local recovery, we measure the 
CPU utilization of the NOX process due to failover. We use 
Open vSwitch as OFS instead of Ericsson TrafficLab 1.1 
software switch. The traffic generator does not generate any 
data packet to measure only CPU utilization of the NOX 
process due to failover. Fig. 9 shows the average of 10 
measurements of the maximum CPU utilization. According 
to Fig. 9, the CPU utilization of the NOX process increases 
with the growth of the number of OFSes. However, the uti-
lization is smaller than that of using VRRP. This is because 
there is no process of OFS01’s reconnecting (i.e., TCP re-
connecting and OpenFlow reconnecting) to OFC02 in the 
proposed method of using the multiple-controllers capability. 
Thus, the proposed redundancy method of using the multi-
ple-controllers capability has two advantages compared with 
the conventional method of using VRRP. First, its failover 
time is short because the process of failure detection is in-
dependent of the process of handover. Consequently we can 
combine the fast detection method (e.g., BFD [21]) with the  
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Figure 8. Result of failover and role-change time in a single domain. 

 

 
Figure 9. CPU Utilization of NOX process during multiple-controllers-based 

failover operation. 
 

process of handover and we can achieve the short failover 
time. Second, considering that the CPU utilization due to 
the failover is low compared with the method of using 
VRRP, the proposed redundancy method of using multiple-
controllers is suitable especially for a large OpenFlow net-
work. 
 

C. Proposed Design of Global Recovery  
In this section, we explain the redundant method of mul-

tiple domains. Table VI shows the parameters specific to the 
global-recovery experiment. Fig. 10 shows a reference mod-
el of the controller redundancy for the global recovery sce-
nario. The global recovery should consider tackling extraor-
dinary events affecting, for example, the entire data center. 
We assume that a controller is installed in each domain to 
retain its scalability and performance. The controller man-
ages OFSes belonging to the same domain as the MASTER, 

and the controller manages the other OFSes in the other 
domains as the SLAVE. The respective roles of the control-
lers are depicted in the upper side of Fig. 10. For example, 
OFS-A (i.e., some switches belonging to domain-A) recog-
nizes the role of OFC-A (i.e., the controller belonging to 
domain-A) is MASTER and the role of the other controllers 
is SLAVE. Similarly, OFS-B and OFS-C also recognize the 
role of the controller that belongs to its same domain is 
MASTER and the roles of the other controllers are SLAVE. 
The controller has flow entry information for only OFSs 
recognizing the controller as MASTER. Thus, the controller 
does not need to have an excessive configuration or receive 
an excessive message. Additionally, one characteristic of 
our proposal is the existence of a Role Management Server 
(RMS). RMS monitors all controllers to manage their role, 
and RMS has some data such as CPU utilization, role in-
formation, configurations of all controllers and domain in-
formation of all switches. RMS determines which controller 
should take over the role of MASTER and relevant configu-
ration data, if a controller has failed. In this regard, we have 
to be careful to prevent second failures. If OFC-B takes over 
the role of MASTER for broken OFC-A and places OFS-A 
under management besides OFS-B, there is the possibility 
of CPU utilization overload of OFC-B and then OFC-B may 
fail consequently. Thus, we should consider that one failure 
would induce subsequent failures. That is why RMS moni-
tors CPU utilization and judges multiple-controllers should 
take over the role of MASTER from one controller, if RMS 
judges that taking over with a single controller raises over-
load of CPU utilization. 

TABLE VI.  PARAMETERS SPECIFIC TO  GLOBAL -RECOVERY 
EXPERIMENT 

 

 
Figure 10. A network model for global recovery. 
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 Fig. 11 shows the role-change transition for the global 
controller recovery. Fig. 11-(a) shows the initial state, and 
two switches are connected to three controllers through 
three OpenFlow channels. In the normal operation, both 
switches recognize that the role of OFC-A is MASTER and 
the other controllers are SLAVE. So only OFC-A receives 
some asynchronous messages such as packet-in messages. 
In this case, the three controllers have different configura-
tions respectively and the information is reflected in the 
database of RMS. Also RMS has CPU utilization, the role 
information of each controller and the cognition haven by 
switch regarding the role of the controller in its database.  
The traffic generator connects OFS01 and OFS02 respec-
tively and the data transfer rate is 100 pps. The two switches 
receive a new packet and send a packet-in message to the 
controller at all times as well as the measurement of a single 
domain. 

If OFC-A fails and RMS judges there is no problem of a 
single controller taking over the MASTER role, the initial 
state (i.e., Fig. 11-(a)) is changed to Fig. 11-(b) where only 
OFC-B takes over the role of MASTER. The RMS database 
is updated accordingly, and both switches start sending asyn-
chronous messages to OFC-B. 

In contrast, if OFC-A fails and RMS judges that a single 
controller cannot take over the Master role but two control-
lers can, the initial state is changed to Fig. 11-(c) where two 
controllers take over the role of MASTER. The database of 
RMS is updated accordingly, and then OFS01 starts sending 
asynchronous messages to OFC-B. OFS02 sends asynchro-
nous messages to OFC-C. 

Fig. 12 shows a global recovery scheme in the case of 
Fig. 11-(b). RMS monitors the CPU utilization of all control-
lers every 50 milliseconds with Simple Network Manage-

ment Protocol (SNMP) [22]. Since Fig. 5-(b) has three con-
trollers, each controller is monitored every 150 milliseconds. 
The proposed recovery process consists of a judge-phase and 
a takeover-phase. If RMS is unable to retrieve the infor-
mation about CPU utilization from OFC-A, RMS does not 
immediately assume that OFC-A has failed to avoid false 
positive. To ensure the failure detection, RMS requests that 
the ICMP echo be sent from the other controllers (OFC-B 
and OFC-C) to OFC-A. If more than half of the results indi-
cate the failure of OFC-A, RMS determines that OFC-A has 
failed and starts calculating a new MASTER controller mi-
grating OFC-A’s configuration and OFSs under OFC-A. The 
process from failure detection to the determination of a failed 
controller is defined as the judge phase as indicated in Fig.12. 

 
Figure 12. Proposed operational sequence for Figure 5 (b) scenario. 
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Figure 13. Result of failover time and role-change time in global recovery. 

 

 
Figure 14. Breakdown of role-change time observed for scenario Fig. 11-

(b) and (c) 
 

After the judge-phase, RMS moves to the takeover-phase. In 
the takeover-phase, RMS firstly calculates whether it is no 
problem for a single controller to take over all switches con-
nected to OFC-A by considering CPU utilization of OFC-A 
as well as OFC-B and C. If two or more controllers are re-
quired to take over all switches of OFC-A, RMS separates 
the switches based on the ratio of the available CPU re-
sources of new MASTER controllers. If RMS decides that 
OFC-B is adequate to become a new single MASTER as 
shown in Fig. 11-(b), RMS integrates OFC-A’s configuration 
into OFC-B’s and registers the integrated configuration into 
OFC-B. Upon receiving the integrated configuration, OFC-B 
updates its own configuration and then reports the comple-

tion of the integration process. Then, RMS requests OFC-B 
to send the OFPT_ROLE_REQUEST to the switches for 
updating the role of OFC-A to SLAVE and OFC-B as 
MASTER. The switches send the OFPT_ROLE_-REPLY 
after updating the role change process. Then, OFC-B reports 
the completion of the role-change process to RMS. The pro-
cess from completion of the judge-phase to completion of the 
role-change is defined as the takeover-phase. After the take–
over phase, the switches OFC01 and 02 start sending asyn-
chronous messages to OFC-B. 
 

D. Evalution of Global Recovery  
Fig. 13 shows the average of 10 measurements of role-

change time and failover time in both cases of Fig. 11-(b) 
and (c). Role-change time and failover time increase with the 
growth of flow entry size. This result shows the difference in 
behavior compared with the result of a local recovery shown 
in Fig. 8.  The major reason for this increase of failover time 
is that RMS needs integration of multiple configurations of 
failed OFC and registration of the configuration during the 
takeover-phase. As different scenarios of the global recovery, 
RMS selects multiple-controllers as the new MASTER as 
shown in Fig. 11-(c), and the scenario takes a longer role-
change time and failover time as shown in Fig. 13. This rea-
son is analyzed using the result of Fig. 14 that shows a 
breakdown of the role-change time under 1000 entries in 
both cases (i.e., Fig. 11-(b) and (c)). The characters (“a” to 
“ f”) placed on the x-axis of Fig. 14 correspond to the marker 
shown in Fig. 12. As shown in Fig. 14, the major perfor-
mance difference comes from c that is the time to integrate 
configuration in RMS and register it to OFC. Current im-
plementation suffers from the serial processing of the regis-
tration of integrated data. This means introducing parallel 
processing of the registration resolves the delay of role-
change  fo r  t he scenar io  shown in  F ig .  11 - (c ) . 

According to Fig. 13, the role-change time is about 300 
milliseconds and failover time is 420 milliseconds in 10000 
flow entries, in the case of the scenario in Fig. 11-(b). In the 
case of the Fig. 11-(c) scenario, the role-change time is about 
500 milliseconds and failover time is about 620 milliseconds. 
These results indicate that, for both scenarios, our proposal 
achieves a competitive role-change time and faster failover 
time compared with existing redundant mechanisms [13, 15]. 
We consider the proposed implementation of multiple-
controllers achieves high availability controllers for both 
intra and inter data-center recoveries. 

In this paper, we do not evaluate the redundancy of RMS 
itself. Although conventional server redundancy mechanisms 
accompanying a relatively longer failover time may be ap-
plied to RMS redundancy, RMS cannot be a critical bottle-
neck of processing asynchronous messages. This is because 
RMS failure itself does not affect any OpenFlow channel 
sessions and thus the data plane is not affected, accordingly. 

 

V. CONCLUSION AND FUTURE WORK 

In OpenFlow architecture, the controller is an important 
element for achieving reliable SDN. In this paper, we evalu-
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ated the redundant method for the OpenFlow controller by 
using a conventional method (i.e., VRRP) and we verified 
the existence of the issue from the viewpoint of failover time 
and CPU utilization. And then we proposed a redundant 
scheme to tackle both a single domain (“local”) and multiple 
domain (“global”) recovery scenarios, which cannot be re-
solved with conventional redundant schemes. To avoid a 
long failover time and heavy CPU load due to conventional 
virtual IP address-based schemes, our scheme used the mul-
tiple-controllers capability for seamless handover. To avoid 
performance scale-limit due to conventional clustering 
schemes, our scheme eliminates any frontend server from the 
redundant system. The evaluation shows that the proposed 
scheme involves lower CPU utilization and competitive role-
change and failover times compared with conventional 
schemes. In our scheme, the CPU utilization due to the pro-
cess of failover is half or less compared with the virtual IP 
address-based scheme in the case of 1000 units of OFSes. 
Our scheme is more suitable for a large OpenFlow network. 
The role-change time observed in a local recovery scenario is 
about 15 milliseconds regardless of entry size, and that in a 
global scenario ranges from 200 to 400 milliseconds. CPU 
resource-aware migration of managed OpenFlow switches in 
the failover process was successfully achieved by our 
scheme. The proposal is expected to be an effective high 
availability scheme necessary for deploying reliable and 
scalable SDN.  

In future work, we will shorten the failover time for the 
scenario of some OpenFlow switches migrated to some 
OpenFlow controllers. In RMS, we will separate the current 
redundancy process that is sequential migration into every 
controller, and we will establish CPU-based controller re-
source modeling to accurately handover many OpenFlow 
switches in the event of, especially, global recovery where 
massive nodes may need to be protected. 
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