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Abstract - The rise of Artificial Intelligence (AI) is ubiquitous. 

In healthcare it is seen as a key technology supporting 

clinicians in their daily routine. The PART research project 

(Predictive Analytics of Robustness Testing) aims to develop an 

AI driven, vendor independent monitoring system, which has 

the focus on system monitoring, profitability analysis, and 

predictive maintenance of networked medical devices in a 

clinical environment. However, before working on AI driven 

monitoring solutions at Heidelberg University Hospital, we 

experienced a variety of difficulties according to networked 

medical devices, data acquisition, standards and protocols, and 

device interfaces, which must be addressed first. This paper 

stresses those difficulties and presents a monitoring system of 

networked medical devices from one operating theater at 

Heidelberg University Hospital. Continuous data streams of 

laparoscopic devices out of the surgery room are ingested into 

the system and analyzed in real-time. The results are stored in 

an on-premises data store and visualized according to 

profitability analysis and system monitoring in a dashboard. 

Further, an outlook is giving including the transformation of 

the presented monitoring system into the Medical Data 

Integration Center (MeDIC) of the Heidelberg University 

Hospital in the future and the connection of more surgery 

theaters. 

Keywords - clinical artificial intelligence; artificial 

intelligence in healthcare; medical device monitoring; real-time 

data stream processing; predictive maintenance; Apache Kafka; 

Apache Flink;  Elasticsearch;  Kibana. 

 

I. BACKGROUND 

The PART research project (Predictive Analytics of 

Robustness Testing) aims to develop an AI driven, vendor 

independent monitoring system, which has the focus on 

system monitoring, profitability analysis, and predictive 

maintenance of networked medical devices. However, at 

Heidelberg University Hospital we experienced a variety of 

difficulties building such a monitoring system including 

data acquisition, standards and protocols and device 

interfaces [1]. Dealing with those circumstances in this 

work, we present a flexible and extendable pipeline 

architecture for ingestion, processing, and storage of 

medical device data. As a first approach we focus on 

monitoring laparoscopic medical devices of our project 

partner Karl Storz GmbH & Co. KG from one operation 

theater. Use cases for this system from the perspective of the 

Heidelberg University Hospital are: 

  

▪ Profitability Analysis 

Acquisition and operation of a vast number of medical 

devices is expensive. Often several devices of the same type 

are used in the same clinic. So far, there are no numbers 

about device usage and whether the current number of 

devices is required. The monitoring system should collect 

key figures such as utilization and operating hours, which 

are then economically analyzed. 

 

▪ Online Inspection 

To conduct inspections on medical devices, such as safety 

related checks and metrological checks, it is necessary to 

put them out of operation. Those checks must be done in 

fixed predefined intervals and are known as preventive 

maintenance [2]. To reduce this costly downtime, the goal 

of the monitoring system is to go from preventive 

maintenance to predictive maintenance by using predictive 

analytics tools to determine when maintenance actions are 

required automatically. 

Analyzing vast amounts of medical device data 

continuously, machine learning (ML) algorithms should 
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help putting medical devices out of order only when 

thresholds are overstepped, or critical errors occur. This 

should help avoiding unnecessary down-times, optimizing 

the maintenance schedules, and reducing maintenance costs. 

 

▪ System Monitoring 

To exchange data with clinical systems like a Picture 

Archiving and Communication System (PACS) [3] or 

Hospital Information Systems (HIS), medical devices are 

interconnected more often. To guarantee stability for such a 

growing networked system and manage a reliable exchange 

of data between devices and other IT infrastructures, a 

superior overall system is required for monitoring and 

alerting. 

This work presents first experiences in designing and 

implementing such a vendor-independent monitoring 

system, facing the real world setting of a university hospital. 

In Section II we describe the challenges we face 

implementing such a monitoring system. The PART 

pipeline architecture of our monitoring system is the focus 

of Section III. The dashboard of the monitoring system is 

presented in Section IV and we conclude with discussion 

and outlook in Section V. 

 

II. CHALLENGES & OBJECTIVES 

 

There are several hurdles according to healthcare devices, 

medical device data, data processing, and data protection 

that must be taken in advance of realizing a powerful 

monitoring system. First, one must address problems caused 

by heterogeneity. Devices are mostly, due to reasons of 

independence, from different manufacturers. This ranges 

from infusion pumps to the latest CT or MRI scanners. Even 

though there are standards for networked medical devices in 

operation rooms (e.g., IEEE 11073), they are only 

implemented and promoted by a few manufacturers [4]. The 

communication of the most medical equipment works 

mostly via proprietary interfaces and protocols, and 

manufacturers are very reluctant disclosing those interfaces, 

or implementing given standards. Even if monitoring of 

those medical devices is possible in general, integrated 

sensors like in the Philips e-Alert System of MRI scanners 

[5] or in industrial environments, which produce data 

feasible according to predictive maintenance, are rather 

seldom and hence can restrict available information to log 

data of the machines [6]. Further, expensive devices like CT 

scanners usually have extensive maintenance contracts, 

which include that maintenance, repair, and service may 

only be performed by a service engineer of the manufacturer 

itself. Collecting relevant data from such devices, e.g., 

getting information about the condition and operating status 

is demanding. 

Those manufacturers come up with own solutions for 

monitoring the medical device fleet [7][8]. They provide the 

customer with key performance indicators which help e.g., 

identifying over- and under-utilized devices, balancing the 

product use and lessen the strain placed on individual 

medical devices [9]. 

As the operator of all medical equipment, Heidelberg 

University Hospital ends up maintaining a monitoring 

system for each manufacturer, which is not expedient. 

Another potential source of data, delivering information 

about the status of medical equipment, could be the usage of 

IoT sensors. However, gathering data by additional attached 

sensors in a sterile environment like an operating room is 

under serve restrictions due to aspects like patient safety. 

Hence, the situation is barley comparable to an industrial 

production line where predictive maintenance is quite 

common for prevention device failures. 

Data quality is a problem since several decades. In contrast 

to big data, machine learning goes through with a different 

set of data quality concerns. The three components of ML 

algorithms are model representation, measures of valuating 

model accuracy, and methods for searching the best ML 

model [10]. Since these three components are highly related 

to each other, data quality for ML is very complex. One of 

the biggest concerns in big data is missing data as well as 

the well-structured datasets. 

In PART the current question is not which data mining 

algorithms fit the most for our needs, the question is where 

the data is coming from in the first place. Therefore, we are 

looking in all directions and started working with simulated 

device data as well as getting familiar with the data mining 

approaches. Another subject is data protection and privacy. 

By monitoring devices, collecting, and analyzing data, it 

could be possible to draw conclusions about patients, 

treatment, and the work of clinical personnel itself. This is 

sometimes seen very critically by the clinic staff and 

requires a close examination and further steps like 

anonymization of the data. 

Finally, an important point to mention is that according to 

predictive maintenance of networked medical devices, 

failures are quite often due to simple reasons like dropping 

the device or too much moisture when cleaning in a clinical 

environment. Two issues which are hard to handle by 

analyzing device data. 

Although devices in clinical environments produce a high 

volume of data, it is quite challenging, as described above, 

to access, evaluate, and generate added value from this data 

treasure. 

Keeping those challenges in mind in our first approach we 

have focused on descriptive analytics towards the 

development of an AI driven monitoring tool including 

ingestion, real-time analytics, storage, and visualization of 

networked medical device data. 
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III. PART PIPELINE ARCHITECTURE 

 

As mentioned in Section II, there are several hurdles to 

overcome implementing a monitoring system in a clinical 

environment. Hence, the focus was to create a generic 

architecture which can be adapted and extended for future 

needs. This includes ingesting data from arbitrary sources, 

scalability, high availability, and failure safety. 

In the following sections the  PART pipeline architecture 

with its individual stages is described in detail, see Figure 1. 

  

A. Stage 1: Ingest 

Stage 1 described here is responsible for ingesting medical 

device data into our pipeline architecture. As a first step we 

connected one operating room and collected data from 

medical devices of our project partner Karl Storz GmbH & 

Co KG [11]. All devices are related to laparoscopic surgery 

like insufflators, endoscopic cameras, and light sources. At 

Heidelberg University Hospital those devices are located on 

a mobile cart which makes it possible to move them 

between surgery rooms. When the cart is moved into a 

surgery theater and plugged in, all devices start up and start 

sending records of data in 2 second intervals out of the 

surgery room to a specific Karl Storz machine, called 

Interface Control, over the Storz Communication Bus 

(SCB). 

 

B. Stage 2: Data Distribution 

For broadcasting the device data within the PART pipeline 

architecture, the distributed streaming platform Apache 

Kafka [12] is used, see Figure 1. It can store huge amounts 

of records in a fault-tolerant durable way and processes 

streams as they occur. Apache Kafka has three main 

components which are producers, brokers, and consumers. It 

is comparable to a message queue or an enterprise 

messaging system. 

The interface control, see Section A, sends the device 

messages from the operating room via the serial interface 

RS232 to a machine in a technical room, located close to the 

surgery theater. On this machine the records of machine 

data are transformed into Fast Healthcare Interoperability 

Resources (FHIR) [13] formatted JSON [14] objects. 

FHIR is a standard describing data formats and elements 

and an API for exchanging electronic health records created 

by HL7. One of its goals is to ease the interoperation 

between health care systems. It provides automatic and 

detailed electronic data capture of operational device data 

and offers data formats such as JSON, XML, and RDF. 

 

Those objects are published as streams of records by the 

Kafka producer via TCP and Kafka protocol for 

subscription by consumers in the clinic network, see Figure 

1. The streams of records are grouped in categories called 

topics. Each record consists of a key, a value, and a 

timestamp. 

As shown in Table 1 currently 12 topics exist from four 

different devices including endoscopy camera (endocam), 

light source, operation room light and insufflator. 

 
Table 1. Device topics consumed and processed in the PART 

pipeline architecture 

Topic Unit 

INSUFFLATOR ACTUAL 

FLOW 
liter per minute (l/min) 

INSUFFLATOR ACTUAL 
PRESSURE 

millimeter Mercury column 
(mm [Hg]) 

INSUFFLATOR 

INSUFFLATION ON 

0x00 off 

0x01 on 

INSUFFLATOR GAS 

VOLUME 
milliliter (ml) 

 

 

 
 

Figure 1. PART pipeline architecture with its 6 stages 
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Figure 2. Data stream processing. The original stream is split into two streams. The main data stream colored in blue contains all 
incoming records. The sub stream colored in red contains records with values equal 1. Each partitioned into session windows 

separated by a predefined session gap. The processing is done on each individual window. 

 

 

Topic Unit 

INSUFFLATOR TARGET 

FLOW 
liter per minute (l/min) 

LIGHT SOURCE 

INTENSITY 
percentage (%) [0-100] 

LIGHT SOURCE STANDBY 
0x00 off 
0x01 on 

ENDOCAM BRIGHTNESS 
Low, Medium, High, Peak, 

Small Scope A, Small Scope B 

ENDOCAM 

ENHANCEMENT 

Off, Low, High, Fiberscope 

Filter A, Fiberscope Filter B 

ENDOCAM SHUTTER 

Auto, 1/50, 1/85, 1/125, 

1/175,1/250, 1/350, 1/500, 
1/700, 1/1000, 1/1500, 1/2100, 

1/2800, 1/4000, 1/6000, 1/8500, 

1/12000,1/17000 

ORLIGHT1 INTENSITY percentage (%) [0-100] 

ORLIGHT2 INTENSITY percentage (%) [0-100] 

 

C. Stage 3: Data Stream Processing 

As operator, the Heidelberg University Hospital wants to 

know when a device is used, how often it is used, and what 

is the ratio between hours of operation and device 

utilization. Those numbers help the management planning 

device replacements and optimizing the procurement 

process of the medical equipment. 

As stated in Section III.B Apache Kafka is used to handle 

the vast amount of streams of records coming from the 

medical devices out of the surgery theater. As the next stage 

in the PART pipeline architecture Apache Flink [15] then 

consumes and analyses those streams of records in real-

time. 

The data stream processing stage, described here, focuses on 

specific continuous streams of records of the Karl Storz 

devices, which indicate whether the device is online or in 

standby, see Section III.B. Each record of those streams 

contains either a value equal to zero (standby) or equal to 

one (online). Hence, a device is switched on when the 

values of the records turn from zero to one and is offline if 

no data is sent from the device at all. 

For all medical devices currently connected to the system, 

an Apache Flink program, called job, is implemented 

analyzing the incoming data streams in real-time. 

All jobs are organized and managed as a standalone cluster 

on a machine in the clinic network and working as 

consumers subscribing to the specific topics sent by the 

Kafka producer to the Kafka broker. Each job can be 

separated into several steps, described subsequently. 

 

For each stream: 

 

• Transform 

Each incoming JSON structured record is disassembled 

and mapped onto a Flink container structure, which 

keeps all relevant parameters for the analytics. 

• Split 

After the mapping, the new stream is split into a main 

stream (depicted in Figure 2 as the blue graph), 

containing all records of data and a sub stream (shown 

as the red curve in Figure 2), containing records of 

values equal to one. Note that the split of the sub stream 

is only done when the device is switched on. 

• Process 

To work on infinite streams, Flink offers the concept of 

windows [16]. Session windows split the stream into 

chunks of data with finite size by sessions of activity. 

This is the case every time when a device is plugged in, 

and data is ingested into the pipeline architecture. In 

Figure 2 there are two session windows for the main 

stream, colored in blue, and three session windows for 



5

International Journal on Advances in Life Sciences, vol 12 no 1 & 2, year 2020, http://www.iariajournals.org/life_sciences/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

   

 

 
 

Figure 3. Insufflator dashboard. Key performance indicators of the observed device within a two-month interval 

 

 

 

the sub stream, colored in red. Those windows do not 

have a fixed start or end. Flink closes those windows 

after a period of inactivity and assigns subsequently 

coming events to the next window. This period can be a 

predefined fixed interval or dynamically extracted and 

is called session gap. 

To implement session windows, it is required to 

conduct the concept of event time [17] in the Flink 

application. This guarantees that all incoming events 

are ordered time wise and are processed when they 

happen. Even with delays, e.g., network traffic or how 

fast the stream is processed by the application, it yields 

to deterministic results. Contrary to this, the concept of 

Flink processing time would mean processing the 

stream of records when they receive the application. 

Once Flink closes a session window, a process function 

is applied on that finite stream of data. It computes the 

start, end, and the duration time for the sub stream, 

indicating the time the device is online (depicted in 

Figure 2 red graph) and the values start, end, and 

operation time of the main stream (depicted in Figure 2 

blue graph), indicating the whole period of time the 

device is plugged in and sending data. Note that the 

duration time of a device is always equal or less then 

the operation time. 

Those results are then issued as new events separately, 

narrowing down an infinite stream of data, on the 

relevant information we were looking for. 

 

• Store 

The results then are mapped back from the Apache 

Flink data structure into a valid JSON object, required 

by Elasticsearch [18] for storage in the PART pipeline 

architecture, see Figure 1. A Flink connector is used to 

create an Elasticsearch sink, writing the results via 

REST to the PART data store. 

 

D. Stage 4: Data Storage  

As stated in Section I, the monitoring system for networked 

medical devices at Heidelberg University has several 

requirements according to a data store. In the presented 

architecture medical equipment of Karl Storz is sending 

JSON formatted data via Kafka protocol to the database. 

However, to handle other types of data from different 

manufacturers, e.g., not related to surgery theaters, there is a 

need for a flexible system, which offers tools for ingestion 

of arbitrary sources of data. Connecting more of those 

devices gradually will yield to surging amounts of data. The 

data store must have the ability to adapt to changing 

conditions as needed overcoming problems of access times 

and failure safety. 

The Elastic Stack offers open-source solutions for those 

mentioned requirements. For ingesting data there are 

lightweight data shippers called Beats [19] and the data 

collection engine Logstash[20]. Storage, search, and simple 

analytics is done by Elasticsearch, which runs as a cluster 

and scales horizontally. It is capable storing complex data 

structures represented as JSON objects by using RESTful 

APIs [21]. 

In the PART pipeline architecture, all observed data streams 

and the results of the real-time analytics are stored in 

Elasticsearch into an index. An index is comparable to a 

data table in the concept of relational database systems 

(RDBMS). For the index, an underlaying schema handles 

the mapping between JSON data fields and Elasticsearch 
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Figure 4. Insufflator dashboard. Recorded process values of the insufflator for a period of two month 

 

 

 

data types during the ingestion. The data is then used for 

further analysis and visualization in stage 5. 

 

E. Stage 5: Visualization 

Kibana [22] is a data exploring and visualization tool and 

runs on top of Elasticsearch. It is part of the Elastic Stack 

and helps interacting with huge amounts of stored sensor 

data. It provides tools for searching, analyzing, and 

presentation and is used in a wide field of applications, e.g., 

Industrial Internet of Things (IIoT) [23][24]. 

Easy understandable, clearly structured visualizations 

embedded into good organized dashboards help conceiving 

the data more quickly and give first insights and hints about 

potential problems, e.g., device failures, even without 

applying sophisticated AI algorithms. Further, such 

dashboards help keeping track of a growing number of 

networked medical devices and increase the visibility and 

status of each individual one. Hence, Kibana is used in our  

PART pipeline architecture for descriptive analytics by 

creating dashboards combining simple histograms, line 

graphs, and more advanced time series aggregations for the 

monitored medical equipment. 

F. Stage 6: Machine Learning 

The problems with technical equipment during laparoscopic 

surgeries have been analyzed in early years which show us 

that there were different issues accordingly [25]. We aim to 

carry the current situation to a next step which would be 

beneficial to implement machine learning model on device 

data to be able to decrease the technical problems during the 

surgeries. 

In machine learning, understanding the data is a key. 

Therefore, Jupyter Notebook [26] is used to analyze the data 

for machine learning implementation. In this phase of the 

architecture, the data from Elasticsearch is taken to Jupyter 

Notebook by using Pandasticsearch library [27]. In this way, 

we can create Pandas data frame for data analysis as well as 

implement a machine learning algorithm. 

To be able to train machine learning algorithms, the data 

should be separated into a clean, annotated, well-structured 

dataset. These datasets then will be stored in MongoDB [28] 

as train, test, and validation datasets separately. With that, 

we can train our machine learning algorithm on training 

datasets and test the accuracy on test datasets. The aim of 

implementing machine learning algorithms will be used for 

the use case 2 “online inspection”, to find the anomalies of 

the devices through their data. Therefore, we assume that 

unsupervised machine learning techniques will fit the most 

to find anomalies and outliers. 

 

IV. DASHBOARD 

 

Our goal was to create an intuitive dashboard for the 

monitoring tool, including all medical devices in the surgery 

theater. As stated in Section III.E we use Kibana for 

 

Figure 5. Insufflator Status. Device is offline, in standby or online 
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Figure 7. Calendar Visualization: Heatmap of the device usage per 

day. Dark blue indicates longer usage times 

 

 

 

Figure 6. Insufflator KPIs – duration time, operation time and usage 

counter 

 

 

visualization of laparoscopy device data. For each device 

type, e.g., insufflators, one monitoring dashboard was 

created by assembling different kinds of visualizations. 

Subsequently the PART dashboard (see Figure 3, Figure 4) 

with focus of profitability analysis and system monitoring 

for the insufflator is shown. 

The dashboard has a date range field which enables looking 

at specific time ranges getting different insights of the key 

performance indicators (KPI). This makes it possible to 

examine historical periods of time, e.g., the last two years, 

shorter periods, e.g., minutes or even real-time data. 

 

The presented dashboard is divided into two sections. 

Figure 3 shows the top section, including visualizations and 

numbers according to the profitability analysis, and the 

system monitoring for a time period of two month 

exemplarily. Followed by a section showing medical device 

data related to the process values, including the insufflator 

pressure, flow and the gas volume for the same time range, 

depicted in Figure 4. Subsequently, some of the 

visualizations and graphs of the dashboard are described in 

more detail. Figure 5 shows the top section of the dashboard 

which is the insufflator status. It plots the stream of records 

grouped by the topic INSUFFLATION ON, see Table 1. 

Note that in Figure 3 and Figure 4 a much wider range of 

time is selected, hence more data is visualized. In Figure 5 

we basically zoomed into the data timewise, showing a two-

hour period of recorded insufflator data for better 

understanding. The graph shows the usage of the insufflator 

during that time period. Three scenarios are possible: 

• offline - no data is available 

• standby - the device is sending records of zero data 

• online - the device sending records with values of 

one 

The x-axis shows the time, the y-axis has two scales. On the 

left-hand side it shows the status, zero for standby, one for 

online. On the right it shows the time in hours according to 

the device usage and operation time. 

If there is no data shown on the timeline, which is the case 

at the very beginning and the end of the graph, the device is 

switched off. In the time period where the graph shows 

values of zero, the device is in standby. This is the situation 

usually right before a surgery, where the cart is already 

moved into the surgery room and plugged in, see Section 

III.A. When the graph values turn to one, it indicates that 

the device is now being used. After a short period of time it 

was switched off again. In this visualization a laparoscopic 

intervention is shown. 

When switched off, Apache Flink, see Section III.C, 

calculates the operation and the usage time indicated by the 

yellow and the blue dot (see Figure 5). Operation time 

implies the whole time the device is powered on. Usage 

time represents the time the device is actually used. The 

difference between those measures is encoded in their 

height. In our example there is a long time where the device 

is in operation but only a small period of time where it is 

actually used. From an economic perspective and as the 

operator of thousands of devices at Heidelberg University 

Hospital those numbers are analyzed according to potential 

optimization. 

In the section below, the status graph (see Figure 6) of the 

PART dashboard some KPIs, e.g., the device usage- and 

operation time of the insufflator, are shown. As depicted in 

Figure 6 the very left panel shows the usage of the device, in 

our case eight minutes, and the total operation time on the 

right, which is about two hours. In the middle of this section 

a panel shows the time when the device was online the last 

time, named as last seen, and a usage counter for the 

specific time frame. Note that this information can be 

exported as a report. 

To give the user an overview about those numbers on a 

daily basis, a calendar was created for usage and operation 

time, see Figure 7. The heat map visualization of Kibana 

does a color coding from white to blue according to the 

duration, where blue indicates a longer usage duration. This 

utilization distribution immediately shows peaks and helps 

finding patterns in device and operating room usage, which 

can help optimizing utilization of medical equipment by 

balancing the product use and hence could yield to less 

inventory. 
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Figure 8. Detailed insufflator process values during a surgery. Flow, gas volume and pressure visualizations in the PART dashboard 

 The lower part of the insufflator dashboard has three panels 

each divided into three sections, see Figure 8. The middle 

section of each panel contains a graph drawing the process 

values. On the x-axis of this graph the time is indicated. On 

the far right, the graph shows the latest record of the data 

stream received by the monitoring tool. There is one section 

depicting minimum, maximum, and the average of the 

process values. One field shows the latest value recorded in 

Elasticsearch as a number, which is identical to the far-right 

value of the graph. 

At the top of Figure 8 the insufflator flow is shown. The 

blue area depicts the target, the yellow graph the actual 

flow. Currently, the latter has the value 35. The progress 

over time of the insufflator gas volume is depicted in the 

middle. The accumulated value is 413. At the bottom, the 

user can monitor the pressure of the insufflator. The yellow 

line indicates the target pressure while the blue curve 

represents the actual pressure, currently set to 19, during a 

surgery. Those visualizations enable the user to monitor the 

devices and the whole surgery theater as being used in real-

time detecting potential anomalies in the data only by 

descriptive analytics. 

V. DISCUSSION AND OUTLOOK 

The goal of PART is to build an AI driven monitoring 

system for networked medical devices. This system should 

be vendor independent. As shown in Section II, there are 

several hurdles to overcome reaching this goal. Those 

circumstances made us focus building up a generic 

architecture which is a flexible, easy to extend infrastructure 

for ingesting, analyzing, storing, and visualizing medical 

device data. We started ingesting data out of one surgery 

room from laparoscopy related devices of one device 

manufacturer. We are analyzing those streams of records in 

real-time according to the use case profitability analysis and 

built a dashboard showing those results for the monitored 

medical devices. 

Still, at Heidelberg University Hospital, our strategy is to 

add more devices of different manufacturers gradually. 

Hence, we work closely together with other device 

manufacturers, not only related to operating rooms, e.g., 

patient monitoring. 

Further, we continue to work on the architecture to be 

prepared for growing amounts of medical device data in the 

future. This is done by moving the PART pipeline 

architecture into the Medical Data Integration Center 

(MeDIC) of the Heidelberg University Hospital. Including 

the transformation of each particular stage of the PART 

pipeline architecture from standalone components to 

orchestrated clusters. Making the monitoring system more 

robust against performance issues and failure safety. 

Additionally, a monitoring system for the PART pipeline 

architecture with its components should be implemented to 

handle the complexity of the monitoring system itself. 

Another upcoming task is to connect more integrated 

operating theaters [15] with its laparoscopic devices from 

Karl Storz including collection, analyzing, and visualizing 

the retrieved data as presented here. Those extensions and 

the goal to support a multitude of devices from different 

vendors, requires a complete redesign of the PART 

dashboard in the future. 

There is still a lot of information in the data which is not 

appropriately extracted and visualized. Hence, extending the 

dashboards by additional visualizations is planned. For 

example, including distribution numbers when specific 

devices are used during a day, month or year or adding a 

counter which shows since when a device is online. 

With the experience made, we have lowered our aspiration 

towards an AI driven system for predictive maintenance and 

hence focused on a combination of descriptive analytics and 
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real-time stream processing as a first approach. However, 

we still have the ambition to push this topic further by 

extending the PART pipeline architecture with machine 

learning tools and deepen the research on the other use 

cases. Therefore, we look at the data comprehensively to be 

able to create a well-structured dataset that can be used 

straightforwardly for further implementations. To be able to 

succeed this, we work with surgeons closely to annotate 

data. 

Establishing such a generic monitoring system at Heidelberg 

University Hospital would have several benefits for the 

clinic. It should make the complete IT infrastructure more 

robust and stable. Detecting problems of networked devices 

in early stages, by real-time alerts or in a best-case scenario 

before they are going to happen, saves maintenance time 

and costs. Further, with workload statistics of the devices 

one gets a good tool for tracking the usage and can adapt the 

inventory accordingly. 
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