
134

International Journal on Advances in Life Sciences, vol 13 no 1 & 2, year 2021, http://www.iariajournals.org/life_sciences/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Transcending Two-Path Impedance Spectroscopy with Machine Learning:
A Computational Study on Modeling and Quantifying Electric Bipolarity of Epithelia

Benjamin Schindler

Universität Leipzig
Machine Learning Group

Leipzig, Germany
bschindler@informatik.uni-leipzig.de

Dorothee Günzel

Charité - Universitätsmedizin Berlin
Institute of Clinical Physiology

Berlin, Germany
dorothee.guenzel@charite.de

Thomas Schmid

Lancaster University in Leipzig /

Universität Leipzig
Leipzig, Germany

schmid@informatik.uni-leipzig.de

Abstract—Quantifying tissue permeability is a central task in
assessing pathophysiology of intestinal epithelia. A common
and convenient approach for this task is to determine electric
properties like resistance and capacitance of the epithelial tissue
by applying impedance spectroscopy. While the measurement
technique itself is well-established, analysis tools and strategies
are still subject to ongoing research in epithelial physiology.
Estimations of electric parameters are known to be particularly
imprecise for models where apical and basolateral sides of the
tissue differ significantly from each other. One-sided application
of substances such as Nystatin play an important role here,
as they alter membrane conductivity on one side of the tissue
while leaving other properties unchanged. Here, we present a
novel method that considers two functional states of the cells,
namely before and after apical addition of the substance Nystatin.
To this end, an extensive dataset modeled after the epithelial
cell lines HT-29/B6, IPEC-J2, and MDCK I was synthesized.
In a broad study, we show that considering features from two
distinct tissue states leads to significantly better regressions
by decision trees, random forests, and multilayer perceptrons.
Therein, we extend previous work in order to progress from a
two-path to a more revealing three-path model of electric tissue
properties. Parameters of a corresponding equivalent circuit
could be determined with less than five percent deviation from
the known target value on average. In a post-processing step,
predictions by independent machine learning regressions are
employed to initialize a least squares parameter fitting, where
the associated impedance spectrum is aligned with the originally
observed spectrum, reducing the residual sum of squares by 99%
on average.

Keywords–Physiology; Epithelia; Impedance Spectroscopy; Ma-
chine Learning; Least Squares; Neural Networks; Random Forests.

I. Introduction
Epithelia play a crucial role in animal and human bodies. They
are tissues that form barriers between different compartments
of an organism as well as between the organism and the
environment. Stratified epithelia, such as the skin, consist of
multiple cell layers, whereas simple epithelia (e.g., intestinal,
kidney, lung, or glandular epithelia) consist of a single cell
layer that is attached to the basal lamina, a matrix of extra-
cellular proteins. The results presented here extend previous
work aiming at modeling electric properties of these simple
epithelia [1] and reflects properties of animal and human colon,
intestinal and kidney tissue.

Fully differentiated epithelial cells are polarized, i.e., the
basolateral plasma membrane attached to the basal lamina

or facing the neighboring cells functionally differs from the
opposite, apical plasma membrane (facing the external en-
vironment or the lumen of body cavities). Both, apical and
basolateral membranes contain a multitude of different ion
channels, carriers and pumps (for review see, e.g., [2][3]) and
their apical/basolateral compartmentalization is a prerequisite
for vectorial transepithelial transport. Apical and basolateral
membranes are separated by the tight junction (TJ). TJs are a
meshwork of protein strands that consist of integral membrane
proteins. These proteins bind to their counterparts within the
same plasma membrane as well as within the plasma mem-
brane of the neighboring cells and thus serve two functions:

1) Fence function. TJs act as a diffusion barrier for
proteins within the plasma membrane and prevent
membrane proteins from diffusing from the apical to
the basolateral membrane compartment.

2) Gate function. TJs limit and regulate the passage
of water and solutes between cells, i.e., along the
paracellular pathway [4].

Since their discovery in the 1990s, members of the TJ-
associated MARVEL proteins (TAMP), including, e.g., oc-
cludin or tricellulin [5][6] and the claudin protein family [7]
have been recognized to be the main constituents of this
paracellular barrier. Claudins are of special structural relevance
as they are able to spontaneously assemble into a meshwork
of TJ-like strands at the contact areas with neighboring,
even when overexpressed in non-epithelial cells [8]. As a
consequence, many members of the claudin protein family
strengthen the barrier function of the TJ, as they seal off the
paracellular cleft. However, some claudins (e.g., claudin-2, -
10, -15, -17) were found to act as paracellular cation or anion
channels within these TJ strands [9].

The barrier strength of an epithelium can be quantified
by measuring the transepithelial resistance (TER). TER is the
sum of the resistances of the subepithelial connective tissues
(subepithelial resistance, Rsub) and the epithelial resistance
(Repi). The latter, again, consists of two major resistances: the
resistance of the transcellular pathway (Rtrans) and the resis-
tance of the paracellular pathway (Rpara), which are connected
in parallel. Thus, alterations in TER may reflect alterations in
any of these three components:

T ER = Rsub + Repi = Rsub +
Rtrans · Rpara

Rtrans + Rpara (1)
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Figure 1. Overview of the presented approach for pairwise analysis of epithelial impedance spectra. The main machine learning tasks
(preprocessing, feature selection, supervised learning) are preceeded by data synthesis and followed by a least squares-based postprocessing.

Activation or inactivation of ion channels in the apical
or basolateral membrane alters the corresponding membrane
conductivities or membrane resistances Rap and Rbl, respec-
tively. Any change in Rap and Rbl also affects Rtrans and
thereby ultimately alters TER. A prominent example is the
over-stimulation of cAMP-regulated Cl− channels in the api-
cal membrane of enterocytes, e.g., through activation of the
adenylate cyclase by toxins such as cholera toxin, toxins from
enterotoxigenic Escherichia coli (ETEC) or by substances such
as caffeine or theophylline. The resulting secretion of Cl− into
the gut lumen is accompanied by osmotic water flux and hence
leads to secretory diarrhea.

Alterations in the paracellular barrier of the intestine may
be caused by an upregulation of channel-forming TJ proteins or
a downregulation of barrier-forming TJ proteins. Both result
in a back-leakage of electrolytes and consequently of water
into the gut lumen and thus to leak-flux diarrhea (leaky
gut syndrome). Dysregulation of TJ proteins is observed in
inflammatory diseases, such as chronic inflammatory bowel
diseases (Crohn’s disease; ulcerative colitis), immune-related
diseases (e.g., celiac disease) or in protozoal, bacterial or viral
infection (for review see, e.g., [10][11]). Thus, a hall-mark of
secretory as well as of leak flux diarrhea is a reduction in
TER. Therefore, alterations in TER of a tissue may be due to
alterations in the transcellular or the paracellular pathway (or
both) and a detailed knowledge of the underlying processes is
crucial for an understanding and treatment of these diseases.

Alterations in Rsub are observed in many inflammatory
diseases that cause increased proliferation of subepithelial cells
and thus a thickening of the subepithelial tissue. The resulting
increase in Rsub is of experimental, not of physiological
relevance: in the experiment, TER is increased, suggesting
an increase in barrier function. In situ, however, capillaries
traverse the subepithelium so that the distance between the
capillaries and the basolateral membrane of the epithelium re-
mains unaltered. Thus, the observed increase in TER does not
affect the barrier function of the epithelium. Exact knowledge
of Rsub is thus necessary to correctly assess alterations in Repi.

Many different cell culture models are established to study
regulatory aspects of epithelial barrier functions and to inves-
tigate the effects of over-expression or knockdown of TJ com-
ponents. Among the most widely studied epithelial cell lines
are human colonic Caco-2, T84, HT-29/B6; human bronchial
16HBE14o-; porcine jejunum IPEC-J2; porcine kidney LLC-
PK1; canine kidney MDCK; mouse kidney IMCD-3; mouse

mammary HC11. These cell lines fully differentiate into tight
cell monolayers when grown on filter supports, as judged by
their transepithelial resistances of several hundreds or even
thousands of Ω·cm2. As in tissue, TER is the sum of Repi

and Rsub. While Repi, again, consists of Rtrans and Rpara, Rsub

in the cell culture system is the resistance of the filter support
on which the cells are grown and thus constant.

In order to describe, explain and understand epithelial func-
tionality, a variety of computational models has been developed
for this tissue. To this end, we have established a machine
learning-based approach for quantifying electrical properties
of epithelia. In particular, we could not only improve estimates
for Repi [1], but also the one for the epithelial capacity
Cepi [12]. Based on an early proof-of-concept study [13], we
here introduce an improved, systematic and reliable approach
to quantify transcellular properties discerned into apical and
basolateral resistances (Rap, Rbl) and capacitances (Cap, Cbl).
The key concept to achieve this is to model machine learning
training data, not for individual impedance measurements but
a combination of two measurements during distinct tissues
states. Moreover, we introduce an additional post-processing
step to further improve parameter quantifications. Figure 1
shows an overview of the approach.

The rest of the paper is organized as follows. First, the cur-
rent state of research is presented (Section II). In the following
sections, a new method for the determination of physiological
properties of epithelia is introduced. Figure 1 shows this
method as a block diagram. The basis is a data synthesis where
impedance spectra are synthesized using an equivalent circuit
as a cell model (Section III). From previous estimates of physi-
ological properties, epithelial tissues are modeled under control
conditions as well as after the addition of Nystatin. From
these, two impedance spectra are generated for each sample.
In a preprocessing step, new statistical features are constructed
from this pair of spectra. Supervised learning is then used to
train the prediction of circuit parameters (Section IV). In this
step, only a single parameter of the cell model is determined
at a time. By combining the individual parameter values,
a complete prediction of the model parameters is obtained.
Using the originally observed spectra from the data set, the
circuit parameters are further optimized in a least squares
post-processing (Section V). In a comprehensive study, this
method is applied to the three cell lines HT-29/B6, IPEC-J2
and MDCK I. Subsequently, the results of the evaluation are
discussed (Section VI) and summarized (Section VII).
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Figure 2. a) Schematic drawing of a simple epithelium. b) A resistor-capacitor (RC) circuit reflects general properties of the epithelium. c) A
RC circuit with a parallel resistor reflects the paracellular pathway. d) A 2-RC circuit reflects apical and basolateral membrane properties.

II. State of the Art

Over the last century, a variety of techniques has been es-
tablished to assess the functionality of epithelia. The most
common way to determine tissue permeability is a direct
measurement of fluxes, e.g., by using radioactive isotopes or
labeled substances. Alternatively, the permeabilities of the two
major extracellular ion species, Na+ and Cl−, are determined
by measuring tissue conductance or its reciprocal, resistance,
e.g., by using ”chopstick electrodes” or Ussing chambers [14].
Both techniques, however, simply measure TER and are not
able to discriminate between any partial resistances (cf. Eq.
(1)).

In contrast to DC resistance measurements, impedance
spectroscopy measurements allow us to distinguish between
Rsub and Repi. Further, impedances reflect not only conductive
but also capacitive properties and allow to derive the epithelial
capacitance, which directly depends on the epithelial surface
area [12]. Impedance spectroscopy uses the fact that the
plasma membrane of epithelial cells acts as a capacitor (Cepi)
that causes a phase shift between current and voltage under
alternate current (AC) conditions. Cepi is short-circuited by
Repi, resulting in a time constant τ = Repi · Cepi. With Repi

of different cell types and tissues varying between about 10
and 10.000 Ωcm2 and Cepi values of about 1 to 10 µF/cm2, τ
ranges between 10−5 and 10−1 s. In terms of angular frequency
(ω = 1/τ) this is equal to a range from 10 Hz to 100 kHz.
During a typical experiment, up to 50 different frequencies
covering this range are used to obtain impedance values |Z|
and corresponding phase angles φ [15].

Impedance spectroscopy was already used during the first
half of the 20th century [16][17], and gained popularity in
epithelial research since the 1970s (see e.g., [18][19][20][21]).
To analyze samples, an equivalent electric circuit of appro-
priate complexity is modeled [22]. The simplest circuit that
incorporates Repi is a resistor-capacitor (RC) circuit (Fig-
ure 2b). In a previous publication, the evaluation of impedance
spectra based on this equivalent circuit was dubbed one-path
impedance spectroscopy (1PI) to distinguish it from the more
recently developed two-path impedance spectroscopy (2PI,
[23][13]) that additionally allows the separation of the two
major transepithelial transport pathways (trans- and paracel-
lular). In 2PI, a circuit with an RC subcircuit and a resistor
in parallel is used to represent the physiological polarity of

epithelial cells (Figure 2c). In both cases, the subepithelium
can be represented by an additional resistor in series.

In theory, Rsub and Repi can be derived by physical relation-
ships. In particular, limω→∞<(Z) = Rsub and limω→0<(Z) =
Rsub + Repi can be exploited for this task. In previous work,
we have demonstrated that traditional ways to estimate Repi

from these relations, like circle fits or visual extrapolation from
Nyquist diagrams [22], can lead to serious errors in the analysis
of epithelial characteristics [13]. This holds true, in particular,
where spectra deviate from a semicircular shape. We have also
demonstrated that estimations can be improved by applying
machine learning techniques on complex-valued impedances
of error-prone [13] or on extracted features of ideal impedance
spectra, respectively [24]. For Repi, e.g., we achieved less
than ten percent deviation from the known target value on
average with outliers, however, exhibiting significantly larger
maximum deviations [24]. Recently, we have tested a novel
approach to quantify electric properties of epithelia based on
extracted features of error-prone impedance spectra [25].

Cepi is established by the transepithelial pathway or the
hydrophobic part of the lipid bilayers of its cell membranes,
respectively. Under the AC conditions induced by impedance
measurements, charging and discharging of the epithelial ca-
pacitor depends on frequency. At very high frequencies the
impedance of the capacitor approaches zero [26]. In previous
work, we have shown that this physical relation can be used
to approximate Cepi from the cartesian representation of an
impedance spectrum [12]. The main advantage of this is the
minimal requirements for additional equipment. Alternative
methods employ square pulses and the analysis of resulting
output transients [17][27] or very brief pulses or simultane-
ously imposing different sine waves and using Fourier analysis
[28][29]. Currently, however, estimations of Cepi by machine
learning are less precise than those by more complex and more
time-consuming methods [12].

The term machine learning generally comprises a variety
of algorithms that are characterized by learning a function
from given samples. Depending on the employment or non-
employment of target values for each sample, these algorithms
are either regarded as supervised or unsupervised learning
algorithms [30]. To this end, quantification of epithelial prop-
erties is a supervised learning task. Among the most widely
used supervised machine learning techniques are neural net-
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Figure 3. Overlay of two impedance measurements of modeled HT29B6 at 42 frequencies using different representations. Colors indicate functional condition
before (l) and after (n) Nystatin addition. a) Nyquist representation: impedance in algebraic form (<(Z), =(Z)) b) impedance in polar form (r(Z), φ(Y)) c)

admittance in algebraic form (<(Y), =(Y)) (Nyquist representation) d) admittance in polar form (r(Y), φ(Y)).

works, which are biologically motivated, and random forests,
which are statistically motivated. Neural networks model the
characteristics of biological neurons as mathematical functions
[31] and have been proven to be universal approximators [32].
Random Forests are based on the concept of decision trees
[33] and exploit the mathematical effects of induced variability
among a large number of decision trees [34].

As a routine preprocessing task, many machine learning
applications employ an extraction and/or selection of input fea-
tures. While feature extraction typically aims at transforming
or increasing existing features [35], feature selection can be
considered as an algorithmic dimension reduction process. Fea-
ture selection techniques are typically either purely statistically
motivated filter approaches or so-called wrapper approaches
that make use of supervised learning algorithms [36]. Well-
known wrapper approaches are, e.g., Sequential Forward Se-
lection or Recursive Feature Elimination [37]. Apart from these
general strategies, embedded feature selection approaches are
known as effective strategies as they are implemented directly
into supervised learning algorithms [36]. Random Forests are
prominent example for embedded feature selection [34].

To achieve reliable predictions, machine learning requires
large amounts of training data. As measurements are typically
only available in small numbers (n ≤ 1.000), employing
this approach to epithelial analysis requires modeling realistic
impedance data. Therefore, we have established a modeling
methodology, which is based on an equivalent electric circuit
reflecting epithelial polarity (Figure 2d). This includes not only
parameter ranges for circuit components and a mathematical
model of setup-specific data scatter, but also an algorithmic

approach to compare modeled and measured data [13][25].
Detailed and realistic models have been developed for three
epithelial cell lines under various conditions [1]: the human
colon carcinoma cell line HT-29/B6, the porcine jejunum cell
line IPEC-J2, and the canine kidney cell line MDCK I.

Figure 3a shows an example of the impedance spectrum
of a modeled HT29B6 cell culture under control conditions
and after apical addition of Nystatin. Note, how the shapes
of the two curves differ: Whereas under control conditions
an approximately semicircular curve is seen, the shape after
addition of Nystatin can be described as two overlapping
semicircles representing the two cell membrane sides. This
is due to the reduction of the apical membrane resistance Rap

which leads to a difference in the time constants of the apical
membrane τap and basolateral membrane τbl. As an indicator
of the curve shape, previous work has predicted the τ ratio q,
where impedance spectra can be considered semicircular for
q < 5 and non-semicircular for q > 5 [38].

In addition to the use of Cartesian coordinates, i.e., the
algebraic form, other forms of representation can be considered
for the analysis of impedance measurements. Therefore, polar
coordinates of impedance have been calculated in previous
studies to predict epithelial properties using machine learning
(e.g., in [39][12][1]). In addition to impedance, its complex
inverse, the admittance, can also be considered, which can
also be represented in coordinates and polar form. In the case
of admittance, in particular, there is a lack of more detailed
research on how well it can be used for machine-learning-
based analyses. Figure 3 shows the four representations and
the influence of an apical addition of Nystatin.
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III. Modeling Impedance Spectra
For the present study, an extensive dataset was synthesized
that mimics impedance measurements on the three cell lines
HT-29/B6, IPEC-J2, and MDCK I. The data is freely available
online at [40]. For each sample, two different functional states
are considered together: control conditions and application
of Nystatin. By the modeling procedures described in the
following, we produced 150,000 samples per cell line and
tissue condition (cf. Table I). As described in the following, the
modeling process comprised assumptions about an underlying
equivalent electric circuit for both functional states as well
as calculating impedances for given frequencies and modeling
equipment-specific measurements biases.

TABLE I. SAMPLE SIZES FOR MODELED EPITHELIAL CELL LINES
AND THEIR FUNCTIONAL CONDITIONS.

Condition HT-29/B6 IPEC-J2 MDCK I
Control 150.000 150.000 150.000
Nystatin 150.000 150.000 150.000

A. Modeling Impedance Spectra
For all three modeled cell lines, an equivalent circuit consisting
of two RC subcircuits a (Ra, Ca) and b (Rb, Cb) located in
series, a resistor in parallel (Rp) and a concluding resistor
in series (Rs) is assumed.(cf. Figure 2). In accordance with
Kirchhoff’s laws, the corresponding impedance Z at an an-
gular frequency ω can be derived from the complex-valued
impedance of the circuit components:

Z(ω) =
Rp(Ra + Rb) + iω[Rp(Raτb + Rbτa)]

Ra + Rb + Rp(1 − ω2τaτb) + iω[Rp(τa + τb) + Raτb + Rbτa]
+ Rs (2)

where i =
√
−1, and τa = RaCa and τb = RbCb.

In the measurements to be modeled, ten frequencies per
decade are used. Based on a lowest frequency f1 of 1.3 Hz,
higher frequencies fi with 1 < i ≤ n = 42 are multiples by a
factor of 100.1 (∼1.26). Note, that the value of f1 is a chosen
to a avoid obtaining multiples of 50 Hz (mains frequency) and
that for application with Eq. (2), ωi = 2π/ fi is calculated.

From calculations, n=42 complex-valued impedances
(Z0, . . . ,Zn−1) are obtained. Real and imaginary parts of a
spectrum can be regarded as separate feature sets S<(Z) and
S =(Z):

S<(Z) = {<(Z0), . . . ,<(Zn−1)} (3)
S =(Z) = {=(Z0), . . . ,=(Zn−1)} (4)

As an alternative representation, these complex values were
transformed to polar coordinates, i.e., to phase angle φ and
magnitude r. This results in two alternative sets S φ and S r:

S φ(Z) = {φ(Z0), ..., φ(Zn−1)} (5)
S r(Z) = {r(Z0), ..., r(Zn−1)} (6)

Furthermore, the admittances Yi = Z−1
i , i.e., the complex

reciprocals of the impedances, were computed for the whole
spectrum. Feature sets S<(Y), S =(Y) correspond to their real and
imaginary parts.

S<(Y) = {<(Y0), . . . ,<(Yn−1)} (7)
S =(Y) = {=(Y0), . . . ,=(Yn−1)} (8)

As for the impedance, the polar form of the admittance was
derived from the algebraic coordinates which leads to feature
sets S φ(Y), S r(Y)

S φ(Y) = {φ(Y0), ..., φ(Yn−1)} (9)
S r(Y) = {r(Y0), ..., r(Yn−1)} (10)

Thus, we obtain four different representations of a spectral
impedance measurement, which can be seen in Figure 3.

B. Modeling Data Scatter
Further, we model and apply synthetic data scatter reflecting
deviations from the theoretical impedance value caused by
the electrophysiological measurement setup. This scatter is
modeled based on relative deviations of the real part < and
imaginary part = of measured impedances from theoretical
values. For a given impedance Z at frequency f = ω/2π,
the relative deviation σ of <(Z) is approximated as second-
order Fourier series (n=2) and relative deviation of =(Z) is
approximated as fourth-order polynomial function (n=4):

σ<( f ) = a0 +

n∑
i=1

ai · cos(nw f ) + bi · sin(nw f ) (11)

σ=( f ) = a0 +

n∑
i=1

ai · f i (12)

where coefficients w, a0, a1, b1, a2, b2 or a0, a1, a2, a3
and a4 were determined by function fitting. a0 is modeled as
dependent on RT . For further details on the data scatter model,
see [13] or [41].

For all synthetic samples used in the following, complex
impedances are calculated according to the model parame-
ters. Subsequently, data scatter is added, and finally, polar
impedances and admittances are calculated from the scattered
complex impedances.

Note, that for the imaginary parts of the impedance, the
modeled scatter can lead to positive values at measurement
points that were already close to zero (cf. Figure 3a). This in
turn leads to negative imaginary parts of the admittance (cf.
Figure 3c). This modeling agrees with our observations from
laboratory practice, although in theory such values should not
occur (cf. Eq. (2)).

C. Sampling Cell Lines for Control Conditions
While IPEC-J2 and MDCK I cells typically show relatively
high Repi values under physiological conditions, for HT-29/B6
cells relatively low values are measured. Based on this, as well
as on further published measurement results, parameter ranges
of the components of the equivalent circuit had been defined in
previous work [25]. An overview of the parameter ranges for
the synthesis is shown in Table II. In an early synthesis phase,
samples with biologically implausible values were obtained.
Under the control conditions it is therefore presumed that
Rap > Rbl applies to all cell lines and 1

4 <
Rpara

Rtrans < 4 applies to
HT-29/B6 and MDCK I.

From the observation that impedance spectra from epithelia
usually show a symmetric semi-circular shape under control
conditions, it can be concluded that apical and basolateral
polarity outbalance each other [22]. In other words, the τ ratio
q is expected to be close to 1. Therefore, impedance spectra,
whose equivalent circuits have a τ-ratio greater than five, were
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TABLE II. MODELED PARAMETER RANGES FOR CELL LINES
UNDER CONTROL CONDITIONS

Parameter HT-29/B6 IPEC-J2 MDCK I unit
min max min max min max

Rsub 8 30 8 50 8 25 Ω · cm2

Repi 150 1498 900 8567 100 4495 Ω · cm2

Rpara 152 30000 944 15000 102 10000 Ω · cm2

Rtrans 151 20000 3000 20000 101 15000 Ω · cm2

Rap 1 19500 2500 19000 10 14500 Ω · cm2

Cepi 1.0 5.5 0.7 2.0 0.8 3.3 µF/cm2

Cap 1.3 8.1 1.1 3.3 0.9 5.7 µF/cm2

Cbl 5.0 86.2 1.5 9.3 2.9 9.5 µF/cm2

filtered out. Visual inspection confirmed that this yields only
impedance spectra with an almost semicircular shape.

The obtained dataset shows different distributions of the
equivalent circuit parameters for the three cell lines, as can be
seen in Figure 4. For example, it is clear that for HT-29/B6
modeling, as in reality, significantly smaller values for Repi

occur than for MDCK I and IPEC-J2 (cf. Figure 4a). Note,
that for HT-29/B6 higher capacitances occur, especially on
the basolateral side (cf. Figure 4d). MDCK I have on average
slightly smaller resistances than IPEC-J2 (cf. Figure 4a-c), but
slightly larger capacitances (cf. Figure 4d).

D. Modeling Nystatin
For estimating apical and basolateral cell membrane properties,
a one-sided addition of the substance Nystatin has been used,
as it increases the conductance on one side of the tissue without
noticeably changing the conductance on the other side [42]. For
the equivalent circuit, the apical application of Nystatin means
a decrease of the apical resistance Rap. To model the applica-
tion of the drug to our cells, the Nystatin factor dnyst ∈ [0; 1]
is introduced. The apical resistance after Nystatin application
Rap

2 is calculated according to the following formula:

Rap
2 = Rap · dnyst (13)

Note, that the stronger the effect of Nystatin, the lower dnyst.
In reality, the effect of Nystatin depends on the amount of
substance added and the time between application and mea-
surement. The reduction of the apical resistance also results in
a reduced transcellular resistance Rtrans

2 , epithelial resistance
Repi

2 and apical time constant τap
2 .

In laboratory practice, Nystatin is applied until two distin-
guishable semicircles are visible in the Nyquist representation.
In this study this procedure is modeled as a multi-step Nys-
tatin application. For a series of k Nystatin applications, the
Nystatin factor is calculated from the product of the individual
applications.

dnyst =

k∏
i=1

di
nyst (14)

Note, that di
nyst = 1.0 means no change and a value of

0 means complete removal of apical resistance. Therefore, at
each step, a random, uniformly distributed value is chosen from
the interval [0.2; 0.8] before updating the apical resistance Rap

2 .
This is repeated until a τ ratio above five is reached, ensuring
two distinguishable semicircles in the Nyquist representation.
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TABLE III. INPUT FEATURE SETS COMPRISING IMPEDANCE SPECTRA AND STATISTICAL FEATURES.

Feature Set Definition Approach Size Quality Form Functional States Ratios and Differences∗

I1
⊥(Z) S ∗

<(Z) × S ∗
=(Z) 1 106 Impedance algebraic Control –

I1
∠(Z) S ∗φ(Z) × S ∗r(Z) 1 106 Impedance polar Control –

I1
⊥(Y) S ∗

<(Y) × S ∗
=(Y) 1 106 Admittance algebraic Control –

I1
∠(Y) S ∗φ(Y) × S ∗r(Y) 1 106 Admittance polar Control –

I2
⊥(Z) I1

⊥(Z) × N∗
<(Z) × N∗

=(Z) 2 212 Impedance algebraic Control + Nystatin Affected –

I2
∠(Z) I1

∠(Z) × N∗φ(Z) × N∗r(Z) 2 212 Impedance polar Control + Nystatin Affected –

I2
⊥(Y) I1

⊥(Y) × N∗
<(Y) × N∗

=(Y) 2 212 Admittance algebraic Control + Nystatin Affected –

I2
∠(Y) I1

∠(Y) × N∗φ(Y) × N∗r(Y) 2 212 Admittance polar Control + Nystatin Affected –

I3
⊥(Z) I2

⊥(Z) × D∗
<(Z) × D∗

=(Z) × R∗
<(Z) × R∗

=(Z) 3 318 Impedance algebraic Control + Nystatin Affected included

I3
∠(Z) I2

∠(Z) × D∗φ(Z) × D∗r(Z) × R∗φ(Z) × R′∗r(Z) 3 318 Impedance polar Control + Nystatin Affected included

I3
⊥(Y) I2

⊥(Y) × D∗
<(Y) × D∗

=(Y) × R∗
<(Y) × R′∗

=(Y) 3 318 Admittance algebraic Control + Nystatin Affected included

I3
∠(Y) I2

∠(Y) × D∗φ(Y) × D∗r(Y) × R∗φ(Y) × R′∗r(Y) 3 318 Admittance polar Control + Nystatin Affected included

*as calculated in section III-E

Figure 4 shows the distributions of equivalent circuit parame-
ters for all cell lines after modeling Nystatin in this manner.

After updating the circuit parameters, new impedance
spectra were calculated based on the modified equivalent
circuit. Thus, for each sample, we obtain two impedance
spectra at two different functional states. As for the state under
control conditions, the feature sets for the state after Nystatin
application were computed according to the formulas 3-10, but
are denoted as Nκ in the following.

E. Extracted Features

New feature sets can be constructed by considering the
impedance spectra before and after Nystatin application. In
order to describe the change of spectra due to the application
of Nystatin, differences and ratios of the measuring points were
calculated for all representations, resulting in the feature sets
Dκ and Rκ.

Dκ = {n − s | n ∈ Nκ ∧ s ∈ S κ ∧ ω(n) = ω(s)} (15)
Rκ = {n/s | n ∈ Nκ ∧ s ∈ S κ ∧ ω(n) = ω(s)} (16)

where κ ∈
{
<(Z),=(Z), φ(Z), r(Z),<(Y),=(Y), φ(Y), r(Y)

}
and

ω(x) is the angular frequency for the measurement of x.

Previous work has shown that the use of additional statisti-
cal features can lead to an improved determination of epithelial
properties [1]. According to this principle, 11 statistical proper-
ties were selected (cf. Table IV). The function stat : R42 → R11

returns these statistical features for a given feature set. For all
previously defined feature sets S κ, Nκ, Dκ, and Rκ, the inclusion
of statistical features results in new feature sets S ∗κ , N∗κ , D∗κ ,
and R∗κ .

S ∗κ = S κ × stat (S κ) (17)
N∗κ = Nκ × stat (Nκ) (18)
D∗κ = Dκ × stat (Dκ) (19)
R∗κ = Rκ × stat (Rκ) (20)

where κ ∈
{
<(Z),=(Z), φ(Z), r(Z),<(Y),=(Y), φ(Y), r(Y)

}

TABLE IV. STATISTICAL PROPERTIES FOR FEATURE SET S i.

Feature Definition
with x j ∈ S i and n = #(S i)

Description

min(S i) {x : x ≤ x j ∀ x j ∈ S i} Minimum

P10(S i) xb0.1·n+1c 10th Percentile

P25(S i) xb0.25·n+1c 1st Quartile

med(S i)


x( n+1

2 ), if n odd

1
2 (x( n

2 ) + x( n
2 +1)), if n even

2nd Quartile (Median)

P75(S i) xb0.75·n+1c 3th Quartile

P90(S i) xb0.9·n+1c 90th Percentile

max(S i) {x : x ≥ x j ∀ x j ∈ S i} Maximum

x̄(S i) 1
n
∑n

j=1 x j Arithmetic mean

s(S i)
√

s2(S i) Standard deviation

s2(S i) 1
n−1

∑n
j=1(x j − x̄(S i))2 Variance

RMM(S i) med(S i) − x̄(S i)
Distance between median and
arithmetic mean

F. Comparison with Measured Data
As outlined (cf. Table I), modeling the cell lines HT-29/B6,
IPEC-J2 and MDCK I under two distinct conditions, six mod-
eling scenarios were considered. For all six scenarios, modeled
impedance spectra were compared to measured spectra. As
true values can not be known for measured parameters, an
indirect approach needs to be chosen that involves differences
between estimations. Such an indirect approach has been
proposed [13] and optimized [1] by us in previous work:
Each parameter is estimated by three alternative techniques,
normalized and resulting estimation differences were plotted
in a two-dimensional diagram for modeled and measured data,
respectively. If data points from measured spectra lie within
the area covered by the data obtained from model spectra,
it is assumed that the modeling reflects realistic epithelial
properties. By calculating hexagonal bins for both diagrams,
the overlap or similarity was quantified. For further details on
the calculation and quantification of similarity, see [41].
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IV. Quantifying Electric Properties byMachine Learning
This section describes how physiological properties of epithelia
can be determined by applying machine learning techniques
on impedance measurements. In particular, we investigate how
much the predictions of the equivalent circuit parameters can
be improved by a two-state consideration. First, necessary
preprocessing and feature selection steps are described. In
the main step, parameters of the tissue-equivalent electric
circuit model are determined by separate regression models
(cf. Figure 1). Therein, the known parameter values from the
modeled impedance data set are used for supervised learning
and subsequent evaluation.

A. Preprocessing and Feature Selection
As described in the previous section, varying input feature
sets were formed from the cell measurements under control
conditions and their statistical properties. In particular, dif-
ferent qualities and forms of measurements were considered
and combined. In general, this approach is analogous to our
previous work [1].

In addition to features from control conditions data, the
pair of spectra, i.e., before and after Nystatin application, and
statistical properties were used to extract features. The last
approach results from combining the features from the second
approach and the differences and ratios of the measurement
points under the two states as described before. For each of
the three approaches, the four representations of impedance
measurements were used.

All in all, this results in 12 input feature sets, which can
be seen in Table III. To determine which features are suitable
for estimating the physiological properties of epithelia, the
feature sets were evaluated by assessing the results of various
supervised learning procedures.

To evaluate the feature sets and learning methods, the
absolute percentage error APE is calculated for all test samples
from the target value t and its prediction t̂:

APE(t, t̂) =
|t̂ − t|

t
(21)

Samples from each cell line were randomized and stan-
dardized by removing the mean and scaling to unit variance.
Subsequently, the dataset was divided to obtain a training set
of 100,000 and a test set of 50,000 samples.

B. Supervised Learning
While the general approach aims to determine several cir-
cuit parameters, individual circuit parameters were determined
instead of multiple regression. With twelve feature sets, six
targets, and three machine learning models, the total number
of trained models is 216 per cell line. For the whole study,
648 models were trained.

This approach allowed to choose the best model and input
feature set for each parameter. Thus, the values of Rsub, Rpara,
Rap, Rbl, Cap, Cbl under control conditions were determined.
To quantify the effect of Nystatin addition, dnyst was also
determined, which was then used to calculate Rap

2 using the
prediction of Rap.

Previous work has shown that machine learning methods,
such as random forests and multilayer perceptrons, provide
more accurate estimates than traditional methods such as circle

fit [12][1]. On this basis, three machine learning regression
methods of varying complexity were used for this work:

• Decision Tree (DT). This simple regressor serves as
a baseline regression method. The depth of the tree is
not limited and two samples are sufficient to split an
inner node. The best split is always chosen based on
the mean squared error.

• Random Forest (RF.) The statistically motivated
regressor was employed using an ensemble of 500
decision trees. As with single decision tree regression,
the random forest trees are not limited in-depth and
a split requires at least two samples. The best split is
chosen based on the mean squared error.

• Multilayer Perceptron (MLP). This biologically
inspired neural network regressor was used
with the seven-layers network architecture
[m, 256, 128, 64, 32, 16, 1], where m denotes the
dimensionality of the input vector. Thus, the number
of input neurons depends on the input feature
set. Rectified linear units (ReLU) are used as the
activation function. For training, the Adam optimizer
of Kingma et al. was used [43]. This is a variant
of the stochastic gradient descent method with
backpropagation and adaptive learning rate. The
initial learning rate was 0.001. In addition, an L2
regularization term with an α of 0.0001 was used.
200 samples were combined to a mini-batch.

Focussing on selecting effective feature sets, extensive
optimization of hyperparameters was omitted for the regression
methods at this point, although these were chosen based on
experience from past work. For all supervised learning tasks,
machine learning methods were used as provided by the
Python library scikit-learn [44].

C. Results
By comparing prediction results from the 648 trained machine
learning models, we identified feature sets best suited for
the given task of determining Rap, Rbl, etc (Table V). The
underlying assumption was that prediction accuracies will
differ depending on the input feature set and the machine
learning model used.

From all 648 trained models, we show results for the best
162 models in Table V. For all target variables, regression
models were considered that estimate with a MAPE of less
than 5%. For every single approach and target, the feature
set that leads to the minimum MAPE value was selected. The
arithmetic mean over the APE values of all test samples MAPE
is a relative metric independent of actual target values and
ranges. It is particularly well suited as a measure to compare
the prediction accuracies among different target variables.

For all cell lines, targets, and machine learning models, the
feature sets of the second approach perform better than the
first approach (cf. Table V). This is especially evident in the
estimation of apical and basolateral features. In many cases,
the MAPE can further be reduced by adding extra features
using the third approach. For example, in predicting Cbl for
IPEC-J2, the first approach achieves a MAPE of 18.7%, while
the MAPE for the second approach is 2.5% and 2.0% for the
third approach (cf. Table V).
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TABLE V. MAPE FOR PREDICTING EPITHELIAL PROPERTIES [±%].

a) Estimation of Cap

Cell Line Ap-
proach

Feature
Set

DT RF MLP

HT29B6 1 I1
⊥(Y) 8.43 7.01 6.90

2 I2
∠(Z) 2.88 1.84 0.66

3 I3
⊥(Y) 2.60 1.64 0.67

IPECJ2 1 I1
⊥(Y) 9.77 8.13 7.73

2 I2
⊥(Y) 3.82 2.79 1.02

3 I3
⊥(Y) 2.85 1.92 1.31

MDCKI 1 I1
⊥(Y) 5.58 4.79 5.84

2 I2
⊥(Y) 2.87 2.10 0.93

3 I3
⊥(Y) 2.24 1.50 0.77

b) Estimation of Cbl

Cell Line Ap-
proach

Feature
Set

DT RF MLP

HT29B6 1 I1
⊥(Y) 45.13 40.73 33.33

2 I2
⊥(Z) 9.25 5.56 1.65

3 I3
⊥(Z) 8.76 5.44 2.02

IPECJ2 1 I1
⊥(Y) 24.53 20.49 18.70

2 I2
⊥(Z) 8.37 5.62 2.53

3 I3
⊥(Y) 5.71 3.72 2.00

MDCKI 1 I1
⊥(Y) 12.86 11.09 11.53

2 I2
⊥(Z) 6.66 4.38 1.85

3 I3
⊥(Y) 5.55 3.49 1.09

c) Estimation of Rsub

Cell Line Ap-
proach

Feature
Set

DT RF MLP

HT29B6 1 I1
⊥(Z) 3.24 2.22 1.42

2 I2
⊥(Z) 2.65 1.76 1.31

3 I3
⊥(Z) 2.67 1.78 1.27

IPECJ2 1 I1
⊥(Z) 3.75 2.56 2.05

2 I2
⊥(Z) 3.02 1.96 1.32

3 I3
⊥(Z) 3.06 1.98 2.66

MDCKI 1 I1
⊥(Z) 4.88 3.36 2.49

2 I2
⊥(Z) 3.90 2.60 2.45

3 I3
⊥(Z) 3.95 2.62 2.49

d) Estimation of Rap

Cell Line Ap-
proach

Feature
Set

DT RF MLP

HT29B6 1 I1
⊥(Y) 20.73 17.03 13.43

2 I2
⊥(Z) 6.03 6.43 2.58

3 I3
⊥(Z) 4.46 4.76 2.21

IPECJ2 1 I1
⊥(Y) 37.64 31.55 22.92

2 I2
⊥(Y) 22.60 18.73 4.85

3 I3
⊥(Y) 16.45 15.11 4.25

MDCKI 1 I1
⊥(Y) 31.11 24.39 19.74

2 I2
⊥(Z) 10.48 10.28 2.93

3 I3
⊥(Z) 8.78 8.59 3.04

e) Estimation of Rbl

Cell Line Ap-
proach

Feature
Set

DT RF MLP

HT29B6 1 I1
⊥(Y) 50.96 44.06 34.81

2 I2
⊥(Z) 5.54 5.26 2.34

3 I3
⊥(Z) 3.06 2.98 1.99

IPECJ2 1 I1
⊥(Y) 44.87 36.85 25.07

2 I2
⊥(Z) 10.35 8.19 4.90

3 I3
⊥(Y) 6.04 5.26 3.56

MDCKI 1 I1
⊥(Y) 35.08 27.51 22.66

2 I2
⊥(Z) 6.66 5.59 1.93

3 I3
∠(Y) 4.42 3.78 1.78

f) Estimation of Rpara

Cell Line Ap-
proach

Feature
Set

DT RF MLP

HT29B6 1 I1
⊥(Z) 7.25 6.95 5.43

2 I2
⊥(Z) 2.57 2.59 0.75

3 I3
⊥(Z) 2.07 2.03 1.07

IPECJ2 1 I1
⊥(Y) 17.36 13.82 9.76

2 I2
⊥(Z) 7.81 6.84 3.38

3 I3
⊥(Z) 6.94 5.90 4.26

MDCKI 1 I1
⊥(Y) 16.08 13.02 9.57

2 I2
⊥(Z) 5.67 4.93 2.16

3 I3
⊥(Z) 5.00 4.17 1.36

TABLE VI. SELECTED ROBUST FEATURE SETS

Target HT-29/B6 IPEC-J2 MDCK I

Feature Set Model Feature Set Model Feature Set Model

Cap I2
⊥(Y) MLP I2

∠(Z) MLP I2
∠(Z) MLP

Cbl I2
∠(Y) MLP I2

∠(Z) MLP I2
∠(Z) MLP

Rsub I2
⊥(Z) MLP I2

⊥(Z) MLP I2
∠(Z) MLP

Rap I2
∠(Z) RF I2

⊥(Y) MLP I3
∠(Y) RF

Rbl I2
∠(Y) MLP I2

⊥(Y) MLP I3
∠(Y) RF

Rpara I2
⊥(Y) RF I2

∠(Y) MLP I3
⊥(Y) RF

Rap
2 I2

∠(Z) MLP I3
⊥(Y) RF I2

∠(Y) MLP

Among the machine learning models, the MLPs lead to the
smallest MAPE values. In comparison to the baseline method
of the decision tree, however, the random forest also yielded
an improvement of the estimates in the vast majority of cases.

D. Outlier and Robust Feature Sets
Even though it could be shown that machine learning may
yield a very accurate determination of epithelial properties, in
a few cases very high relative deviations occur. In practice,
however, even a few extreme outliers may be more harmful
than lower average accuracies. To this end, an approach that
avoids extreme outliers is favorable and a reliable method is
needed that provides useful estimates even in the worst cases.

Therefore, in an alternative approach, feature sets and
machine learning models were selected for which the smallest
relative deviations (i.e., APE values) occur in the worst case
within the test samples. These alternative feature sets for all

TABLE VII. ABSOLUTE PERCENTAGE ERROR FOR MACHINE
LEARNING WITH ROBUST FEATURE SETS

HT-29/B6 IPEC-J2 MDCK I

mean med P95% max mean med P95% max mean med P95% max

Cap 0.7 0.5 1.8 9.1 1.3 0.9 3.7 20.0 0.8 0.7 2.2 12.0

Cbl 1.2 0.9 3.4 35.9 2.1 1.6 5.9 34.2 1.3 1.0 3.4 31.9

Rsub 1.3 1.0 3.7 9.9 1.3 0.9 4.1 20.0 2.3 1.7 6.4 20.7

Rap 8.8 4.8 30.5 91.6 4.8 2.5 15.5 303.0 8.6 3.4 36.6 176.9

Rbl 1.5 1.0 4.1 38.2 3.3 2.1 10.5 99.8 3.8 1.8 14.6 56.5

Rpara 4.7 3.7 13.6 29.2 3.3 1.9 10.6 115.4 6.9 4.3 23.1 67.5

Rap
2 10.2 6.4 32.7 152.8 14.9 7.9 52.4 320.4 11.8 7.8 36.4 215.2

cell lines and target variables are displayed in Table VI and
referred to as robust feature sets in the following.

Table VII shows the resulting distribution of the absolute
percentage error for the selected robust feature sets. Cap,
e.g., may be determined for HT-29/B6, IPEC-J2, and MDCK
I with a worst-case deviation of 20%. For 11 out of 21
models, maximum APE values are less than 50 percent. For
five models, maximum APE values are less than 25 percent.
It can be seen, though, that even with robust feature sets,
very high maximum deviations may still occur for individual
target variables. For example, the determination of Rap of
IPEC-J2 has an average deviation of 4.8%, but in the worst
case a deviation of 303.0% (cf. Table VII). As percentiles
(P95%) indicate, however, such high prediction errors occur
very rarely.
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V. Postprocessing using Least Squares Approach
After completing the previous step, all components of an
assumed equivalent electric circuit are determined by machine
learning with the respective accuracy (section IV). Having
obtained estimates for all circuit parameters, however, one also
obtains the possibility of synthesizing impedance spectra for
the given values of the circuit parameters. This is the basis for
the postprocessing step that we propose here.

Analogously to the generation of training data (section III),
the determined parameter values are used to model two syn-
thetic impedance spectra for control conditions and Nystatin
application. Both newly synthesized spectra are then compared
to the originally observed spectra. The least-squares method
is then employed to adjust the parameter values so that the
synthesized pair of spectra matches the original.

A. Approach
Using the machine learning predictions, a new pair of
impedance spectra Ẑ = (Ẑ1, . . . , Ẑ84)> is calculated using
equation 2. Note, that one does not necessarily obtain an
equivalent circuit whose corresponding pair of spectra matches
the original observed pair of spectra Z = (Z1, ...,Z84)>, as
described in the next Chapter. The Residual Sum of Squares
(RSS) is a suitable measure for this purpose, which is calcu-
lated according to the following formula:

RSS(Z, Ẑ) =

84∑
i=1

(Zi − Ẑi)2 (22)

It is desirable that the predicted equivalent circuit exhibit
similar electrical behavior to the measured cell, i.e., have a
minimum RSS. For this purpose, the nonlinear least-squares
curve fit method from the Python library SciPy was ap-
plied [45]. The Trust Region Reflective variant was chosen
because of its capability to specify upper and lower bounds for
each parameter when calling the method. The predictions of
the machine learning models with Robust Feature Sets serve as
initial values for the optimization from which a local minimum
of the RSS is searched for. The bounds from Table II were used
and the measurement points were weighted with the standard
deviations from the error modeling of section III-B.

Note, that both improvement and deterioration of the values
are possible. In previous attempts, no improvement of Rsub

could be achieved. For this reason and because the predictions
of the machine learning models were already sufficiently good,
Rsub was fixed to its initial value.

B. Results
We first present results on how well the RSS could be min-

imized by the least-squares approach. Secondly, we evaluate
relative deviations (APE) of the equivalent circuit parameters.

1) Reduction of the Residual Sum of Squares: For all test
samples, the solver was able to obtain parameter values with
a lower RSS compared to the initial values of the machine
learning. For all cell lines, the average reduction of RSS by
optimization is greater than 99%. (cf. Figure 5). An example
of a pair of impedance spectra before and after post-processing
is shown in Figure 6. Looking at the 84 complex measuring
points, the average RSME could be reduced from 20.2 Ω · cm2

to 2.0 Ω · cm2 for HT-29/B6, from 67.6 Ω · cm2 to 2.6 Ω · cm2

for IPEC-J2 and from 61.1 Ω ·cm2 to 2.5 Ω ·cm2 for MDCK I.
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Figure 5. Residual Sum of Squares (RSS) of predicted impedance
spectra pair before and after least-squares postprocessing as box

plots with arithmetic mean ( ) and whiskers showing the 10th and
90th percentiles.

2) Circuit parameters: Table VIII shows a detailed
overview of derived APE values after least-squares
postprocessing. Note, that the deviations for Rsub do not
change because the parameter was fixed during execution. For
the targets Rap

2 , Rpara and Rap, a significant improvement is
observed for all cell lines. The largest improvement is seen for
Rap

2 , where, for example, for MDCK I the MAPE is reduced
from 11.8% to 0.4% and also the maximum APE is 99.7%
instead of 215.2%. It becomes clear that post-processing
delivers better results especially when good initial values
are already available, whereas hardly any improvements can
be found for the worst-case samples with maximum APE.
This can be seen in the statistical distribution of APE, where,
for example, for Cbl the median improves for all cell lines,
whereas the maximum APE increases. The median APE
worsens in only one case, namely in the determination of Rbl

for HT/29-B6 by 0.1%. Otherwise, clear improvements can
be observed.

TABLE VIII. ABSOLUTE PERCENTAGE ERROR AFTER
POSTPROCESSING

HT-29/B6 IPEC-J2 MDCK I

mean med P95% max mean med P95% max mean med P95% max

Cap 0.3 0.2 1.0 9.5 0.3 0.1 1.0 17.7 0.3 0.1 1.2 18.3

Cbl 1.3 0.8 4.2 45.1 0.6 0.2 2.4 50.7 0.7 0.2 2.7 44.3

Rsub 1.3 1.0 3.7 9.9 1.3 0.9 4.1 20.0 2.3 1.7 6.4 20.7

Rap 4.2 1.8 17.2 76.2 3.0 0.7 12.0 309.7 3.4 0.8 14.6 343.1

Rbl 2.2 1.1 7.9 36.6 1.3 0.3 5.3 98.8 1.4 0.3 6.4 94.3

Rpara 1.7 0.7 6.7 38.3 1.0 0.3 3.6 84.5 1.7 0.4 6.9 120.5

Rap
2 0.9 0.5 3.1 99.6 0.4 0.2 1.2 212.9 0.4 0.3 1.2 99.7
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TABLE IX. FEATURE SUBSET IMPORTANCE FOR PREDICTIONS WITH RANDOM FOREST AND I3
⊥(Y)

Features Cbl Rbl Rpara Rsub

HT-29/B6 IPEC-J2 MDCK I HT-29/B6 IPEC-J2 MDCK I HT-29/B6 IPEC-J2 MDCK I HT-29/B6 IPEC-J2 MDCK I

S<(Y) × S=(Y) 1.3 1.6 2.8 2.5 0.7 3.1 78.6 68.6 73.1 0.2 0.2 1.6
N<(Y) × N=(Y) 6.5 4.8 24.5 5.3 1.4 4.7 1.2 1.3 3.2 0.2 0.2 0.6
D<(Y) × D=(Y) 42.9 35.0 23.3 69.4 87.7 78.9 1.9 2.5 4.1 0.1 0.1 0.4
R<(Y) × R=(Y) 26.5 5.6 7.3 7.6 3.4 2.1 4.4 5.1 11.1 0.1 0.1 0.4

stat
(
S<(Y)

)
× stat

(
S=(Y)

)
2.3 2.0 1.4 1.3 2.0 1.7 10.2 19.5 3.2 93.3 88.3 10.4

stat
(
N<(Y)

)
× stat

(
N=(Y)

)
1.3 47.9 37.6 1.5 0.3 1.3 0.4 0.5 0.8 6.0 11.1 86.3

stat
(
D<(Y)

)
× stat

(
D=(Y)

)
8.5 1.8 1.4 9.6 1.7 6.5 0.7 0.6 1.0 0.0 0.0 0.2

stat
(
R<(Y)

)
× stat

(
R=(Y)

)
10.8 1.3 1.7 2.8 2.8 1.8 2.7 1.9 3.5 0.0 0.0 0.2

VI. Discussion
A. Relevance for Biomedical Applications
Impedance spectroscopic techniques are increasingly gaining
importance in biomedical applications like monitoring the
growth of cultured epithelial and endothelial cells (e.g., retinal
pigment epithelium, gastrointestinal tract cells, pulmonary
cells, blood-brain-barrier models [46][47]), or alterations of
barrier function during pharmacological studies [48][49][46].
Furthermore, impedance spectroscopy is the only technique
that allows functional distinction between epithelial and subep-
ithelial properties of ex vivo tissue, such as intestinal biopsies
of patients with suspected barrier impairment.

Reliable, automated determination of epithelial properties
is becoming increasingly important, as, during the past decade,
impedance spectroscopy of epithelia has started to move from
pure basic research or investigations on biopsies to clini-
cal applications in patients. Several groups have developed
various endoscopic devices that allow in vivo impedance
measurements, e.g., in the GI tract of critically ill patients
that may develop mucosal ischemia [50] or in the esophagus
from patients suffering from gastroesophageal reflux disease
[51][52][53].

If the technique is to be used on a routine basis, however,
reliable automatization for the evaluation of impedance spectra
is indispensable. On one hand, manual evaluation of impedance
spectra to extract the physiologically relevant parameters re-
quires extensive user training and is time-consuming, as in-
dividual spectra need to be fitted by complex equations [24].
On the other hand, currently available systems usually only
record Rtrans (i.e., the sum of the subepithelial and epithelial
resistance) or even only relative alterations in Rtrans over the
time-course of an experiment, as estimation of absolute Rtrans

values is too error-prone [54][46].

B. Combined Consideration of Two-State Measurements
The accurate determination of apical and basolateral properties
with one-path impedance spectroscopy has been considered
an unsolved problem in clinical physiology. In this study,
we have been able to demonstrate that this issue can be
solved by observing the cell under two different conditions, or
states, namely before and after the apical addition of Nystatin.
It became clear that machine learning techniques are well
suited to process pairs of impedance spectra, with a significant
improvement compared to determination based on a single

measurement under control conditions alone (see Table V).
First attempts to construct new features from two different
spectra were successful and showed that this step improves
the determination of epithelial properties by machine learning.

C. Feature Extraction

From the results shown in section IV, we can draw some pre-
liminary conclusions regarding the usefulness of the extracted
features and feature sets.

1) Representations: In the context of this study, none of
the selected representations showed to be consistently superior.
However, among the regression models with the smallest
MAPE, algebraic forms of impedance and admittance are
noticeably more frequent than polar forms (cf. Table V). The
average improvement of the MAPE by the right choice of
representation is about 0.9 percentage points. Therefore, we
assume that the representation does not play a major role in
the method presented here.

2) Feature Importance: Scikit-learn’s Random Tree Re-
gressor provides the output of feature importances. The value
of feature importance lies in the interval [0; 1] and is the larger,
the greater the influence on the regression. Notice that the sum
of all feature importances of an input feature set is equal to 1.
The input feature set can be divided into subsets and compared
to each other by summing the individual importances. Table IX
shows the feature subset importances for the random forest
regressions of Cbl, Rbl, Rpara and Rsub using I3

⊥(Y) as input.

3) Statistical Features: The extraction of statistical fea-
tures has worked well in previous work related to epithelial
impedance analysis, which is why the approach was retained
for this work [1]. The benefit of using statistical features varies
for different targets. In Table IX, e.g., it can clearly be seen that
the statistical features are of high importance in predicting Rsub

and Cbl through random forest. This is particularly evident in
the prediction of Rsub. Here, with a summed feature importance
of ≥ 97%, decisions are made almost entirely based on the
statistical features. For Cbl of IPEC-J2 and MDCK I, the
statistical features in I3

⊥(Y) obtain high importance and could
contribute to a 0.9 − 1.9 percentage point improvement in
prediction (cf. Table Vb). Because of the ease of calculation
and the possible positive effect on prediction, the use of
descriptive statistics for feature extraction in the analysis of
impedance spectra can be further recommended.
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b) Impedance Spectra after Nystatin Addition

Figure 6. Pair of impedance spectra before and after Nystatin addition: Original measurement from data set (l), pair of spectra derived from Machine Learning
predictions (6), pair of spectra derived from predictions after least-squares postprocessing (6)

4) Differences and Ratios: The frequency-wise calculation
of the differences and ratios from the pairs of spectra is a
completely new approach resulting from the two-state consid-
eration. Looking at the feature importance from Table IX, it
becomes very clear that the features extracted in this way work
very well for transcellular targets such as Cbl and Rbl with an
feature importance between 31% and 91%. On the other hand,
for the quantities that do not belong to the transcellular route,
i.e., Rpara and Rsub, this approach is of little use. Differences
and ratios not only yielded high feature importance for random
forests but were also able to contribute to a 1.8−2.8 percentage
point improvement in prediction (see Table Ve). Additionally,
more complex features could be extracted from the two-state
consideration to further improve prediction.

D. Machine Learning and Least-Squares Optimization
In this work, machine learning methods following statistical
and neuro-inspired paradigms were used for the pairwise anal-
ysis of epithelial impedance spectra. In particular, the MAPE
values from Table V show that with the right combination of
feature set and machine learning model, very good predictions
of all sought targets are possible. With a maximum training
time of a regression model of a few hours on a 4-core CPU,
the overall training period was acceptable despite the large
sample size. Therefore, no further time measurements were
taken during training. A drawback of the presented study is
the brute-force approach in the search for optimal feature sets.
Here, an elaborated search for optimal feature sets would have
saved training effort, for example in the unprofitable use of
different impedance representations.

This computational study was able to show the promising
influence of least-squares postprocessing for machine-learning-
based analysis. Figure 6 shows the original impedance spectra
of a measurement from the data set and the spectra derived
from the machine learning predictions with and without least-
squares optimization. It can be seen that the machine learning
predictions without least-squares optimization may result in
impedance spectra that are significantly different from the
measured ones. In this respect, posterior optimization using
a least-squares approach has been shown to be a suitable
approach to better align a predicted pair of curves to the
observed ones. The greatest empirical evidence represents
the average reduction of the RSS by more than 99% for all

cell lines (see Figure 5). Due to the much better alignment,
the equivalent circuit obtained after optimization is much
better suited to describe the electrical behavior of the cell.
Moreover, with the help of the least-squares optimization, an
improvement in the predictions of Rpara, Rap and Rap

2 by several
percentage points could be achieved.

Least-squares methods, as used in our postprocessing, usu-
ally require suitable initial values from which a local minimum
is found. The choice of suitable initial values for optimization
problems is a frequent topic in various disciplines [55][56].
In the field of epithelial impedance spectroscopy, the use of
randomly chosen initial values may lead to poor convergence
behavior. Manual initialization by an expert, on the other hand,
offers no possibility of automation. The presented method
could fill this gap by using machine learning to find suitable
initial values in an automated way. Accordingly, e.g., in the
field of crystal lattice determination, machine learning tech-
niques have recently been used to find suitable initial values
for subsequent optimization [57].

E. Limitations

A notable limitation of the presented method is the occurrence
of highly increased prediction errors in a few cases, especially
for Rap with a maximal relative deviation of more than 300%
for MDCK I and IPEC-J2 (see Table VIII). Because the apical
resistance decreases after apical addition of Nystatin, Rap is
the only parameter that changes during the experimental setup,
while the others remain the same. For a reliable approximation
of Rap, basolateral addition of Nystatin might be useful to keep
Rap constant during both measurements.

Looking at the absolute percentage error plotted against
the Nystatin factor dnyst, we see for all targets and cell lines
that the highly increased prediction errors occur only for
dnyst < 0.4. In Figure 7, this can be seen for Rap, Rbl, and
Rpara as examples. Note, that in the given experimental setup,
the amount of Nystatin added can freely be chosen. Based
on this, we filtered and re-evaluated the test data set for
samples with dnyst ≥ 0.4 (see Table X). For the reduced test
data set, the overall performance of the proposed method is
significantly better with a maximum APE of 36.5%. However,
the assumption dnyst ≥ 0.4 is not applicable to the general
case, because smaller dnyst values, derived from a substantial
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Figure 7. Absolute percentage error plotted against the Nystatin factor dnyst .

addition of Nystatin, are often required to distinguish apical
and basolateral membranes in the impedance curve.

As the presented method to determine electric properties of
epithelia involves modeled impedance spectra, applicability is
naturally depending on the modeling and sampling of the data.
The previously modeled data that is used here is in good ac-
cordance with data obtained from measurements on epithelial
tissue [25]. While a variety of cell lines and functional states
is considered in our work, results and estimations obtained
here are still limited to the specific scenarios modeled. Also,
characteristics of the training and test data influence charac-
teristics of estimation methods. For example, the precision of
supervised learning methods tends to decrease if the number of
samples decreases. To this end, e.g., the distribution of target
values needs to be considered (cf. Figure 4).

VII. Conclusions and FutureWork
While impedance spectroscopy is a convenient measurement
technique, quantifying the electric bipolarity of epithelial tissue
with traditional approaches is challenging. For some parame-
ters, it may not only be error-prone, but practically impossible
with reasonable efforts. In this computational study, we have
shown that this aim may be achieved with good results by
combining machine learning regression with a least squares-
based postprocessing step. Key concepts were the combination
of measurements obtained under two different tissue conditions
as well as a systematic feature extraction approach. Due to
detailed and realistic modeling, we suggest this approach is
valid for the epithelial cell lines HT-29/B6, IPEC-J2 and
MDCK I under control conditions, as well as under the
influence of Nystatin and EGTA.

All in all, the method outlined and evaluated in the present
study represents a significant progress in order to achieve a
routine evaluation of impedance spectra obtained in a clinical
measurement setting. Several challenges are envisioned, how-
ever, that need to be adressed in future work:

1) Compared to impedance spectra recorded from cul-
tured cell layers, data obtained from patients will be
subject to a considerably larger scatter within one
impedance spectrum, as electrical shielding is limited.

2) There will be a substantial variability between indi-
vidual spectra, due to variation in the positioning of
the electrodes.

3) Larger artifacts have to be recognized, e.g., caused
by movements of the patient.

4) In contrast to the GI tract, esophageal epithelia are
stratified. Thus, valid equivalent circuits for stratified
epithelia have to be developed and tested, before data
can be modeled accurately.

A promising strategy is to solve these open questions in
our current approach would be the application of generative
machine learning methods, which are designed to rebuild
characteristics of given training data. Although techniques such
as Generative Adversarial Networks (GAN) were originally
designed to mimic image data [58], we see much potential
in employing them to model spectral data. In future work,
we will therefore investigate the usage of such state-of-the-art
generative machine learning methods for advanced and highly
automated modeling of impedance spectra.

Appendix
A. Prediction for samples with dnyst ≥ 0.4
In the discussion section, we have pointed out some notable
effects of the Nystatin application on the reliability of pre-
dictions. As can be seen in Figure 7, high prediction errors
occur exclusively in samples with a small Nystatin factor dnyst.
Therefore, the test samples were filtered by dnyst ≥ 0.4 and
re-evaluated. From the original 50,000 samples, we obtained
reduced data sets with 11043 Samples for HT29B6, 3526 for
IPECJ-2, and 2448 for MDCK I. The results of the evaluation
are shown in Table X.

TABLE X. ABSOLUTE PERCENTAGE ERROR AFTER
POSTPROCESSING FOR SAMPLES WITH dnyst ≥ 0.4

HT-29/B6 IPEC-J2 MDCK I

mean med P95% max mean med P95% max mean med P95% max

Cap 0.2 0.1 0.5 4.7 0.2 0.1 0.6 4.6 0.1 0.1 0.4 2.4

Cbl 1.4 1.0 4.2 45.1 0.8 0.4 2.7 21.2 0.6 0.4 1.7 9.7

Rsub 1.4 1.0 3.9 8.3 1.5 1.0 4.5 18.2 2.3 1.7 6.9 14.9

Rap 1.8 1.0 6.0 36.5 0.6 0.3 2.2 13.0 0.4 0.3 1.4 8.1

Rbl 2.4 1.4 7.8 33.0 1.0 0.5 3.7 25.1 0.8 0.5 2.5 17.6

Rpara 0.9 0.5 2.9 15.0 0.2 0.2 0.7 2.5 0.3 0.2 0.9 3.1

Rap
2 1.0 0.6 3.6 17.3 0.3 0.2 1.2 8.8 0.2 0.2 0.7 5.0



147

International Journal on Advances in Life Sciences, vol 13 no 1 & 2, year 2021, http://www.iariajournals.org/life_sciences/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

References
[1] T. Schmid, D. Günzel, and M. Bogdan, “Automated quantification of

the resistance of epithelial cell layers from an impedance spectrum,” in
Proceedings of the Tenth International Conference on Bioinformatics,
Biocomputational Systems and Biotechnologies, 2018, pp. 8––13.

[2] V. Singh et al., “Translating molecular physiology of intestinal transport
into pharmacologic treatment of diarrhea: stimulation of na+ absorp-
tion,” Clinical Gastroenterology and Hepatology, vol. 12, no. 1, 2014,
pp. 27–31.

[3] S. Priyamvada et al., “Mechanisms underlying dysregulation of elec-
trolyte absorption in inflammatory bowel disease–associated diarrhea,”
Inflammatory bowel diseases, vol. 21, no. 12, 2015, pp. 2926–2935.

[4] J. M. Diamond, “Twenty-first bowditch lecture. the epithelial junction:
bridge, gate, and fence,” Physiologist, vol. 20, no. 1, Feb 1977, pp.
10–18.

[5] M. Furuse et al., “Occludin: a novel integral membrane protein local-
izing at tight junctions,” Journal of Cell Biology, vol. 123, no. 6, 1993,
pp. 1777–1788.

[6] J. Ikenouchi et al., “Tricellulin constitutes a novel barrier at tricellular
contacts of epithelial cells,” Journal of Cell Biology, vol. 171, no. 6,
Dec 2005, pp. 939–945.

[7] M. Furuse, H. Sasaki, K. Fujimoto, and S. Tsukita, “A single gene
product, claudin-1 or -2, reconstitutes tight junction strands and recruits
occludin in fibroblasts,” The Journal of Cell Biology, vol. 143, no. 2,
1998, pp. 391–401.

[8] M. Furuse, H. Sasaki, and S. Tsukita, “Manner of interaction of het-
erogeneous claudin species within and between tight junction strands,”
The Journal of Cell Biology, vol. 147, no. 4, 1999, pp. 891–903.

[9] S. M. Krug et al., “Charge-selective claudin channels,” Annals of the
New York Academy of Sciences, vol. 1257, 2012, pp. 20–28.

[10] J. Luettig, R. Rosenthal, C. Barmeyer, and J. Schulzke, “Claudin-2 as
a mediator of leaky gut barrier during intestinal inflammation,” Tissue
Barriers, vol. 3, no. 1-2, 2015, p. e977176, pMID: 25838982.

[11] C. Barmeyer, J. D. Schulzke, and M. Fromm, “Claudin-related intestinal
diseases,” Seminars in Cell & Developmental Biology, vol. 42, 2015,
pp. 30 – 38, claudins Time, Space and the Vertebrate Body Axis.

[12] T. Schmid, D. Günzel, and M. Bogdan, “Automated quantification of
the capacitance of epithelial cell layers from an impedance spectrum,”
in Proceedings of the 7th International Conference on Bioinformatics,
Biocomputational Systems and Biotechnologies, 2015, pp. 27–32.

[13] T. Schmid, M. Bogdan, and D. Günzel, “Discerning apical and baso-
lateral properties of HT-29/B6 and IPEC-J2 cell layers by impedance
spectroscopy, mathematical modeling and machine learning,” PLOS
ONE, vol. 8, no. 7, 2013, p. e62913.

[14] B. Jovov, N. Wills, and S. Lewis, “A spectroscopic method for assessing
confluence of epithelial cell cultures,” American Journal of Physiology,
vol. 261, no. 6 Pt 1, 1991, pp. C1196–203.

[15] J. R. Macdonald and W. B. Johnson, Fundamentals of Impedance
Spectroscopy. John Wiley & Sons, Inc., 2005, pp. 1–26.

[16] K. S. Cole, “Electric phase angle of cell membranes,” The Journal of
general physiology, vol. 15, no. 6, 1932, p. 641.

[17] T. Teorell, “Application of “square wave analysis” to bioelectric stud-
ies1,” Acta Physiologica Scandinavica, vol. 12, no. 2-3, 1946, pp. 235–
254.

[18] E. Schifferdecker and E. Frömter, “The ac impedance of necturus
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pp. 561–569.

[30] I. El Naqa and M. J. Murphy, “What is machine learning?” in Machine
Learning in Radiation Oncology. Springer, 2015, pp. 3–11.

[31] A. Krogh, “What are artificial neural networks?” Nature Biotechnology,
vol. 26, no. 2, Feb 2008, pp. 195–197.

[32] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
1989, pp. 359–366.

[33] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, 1986, pp. 81–106.

[34] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, 2001,
pp. 5–32.

[35] H. Liu and H. Motoda, Feature Extraction, Construction and Selection:
A Data Mining Perspective. Springer Science & Business Media, 1998,
vol. 453.

[36] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, 2003, pp.
1157–1182.

[37] J. Kittler, “Feature selection and extraction,” Handbook of Pattern
Recognition and Image Processing, 1986.

[38] T. Schmid, D. Günzel, and M. Bogdan, “Automated quantification of
the relation between resistor-capacitor subcircuits from an impedance
spectrum,” in Proceedings of the International Joint Conference on
Biomedical Engineering Systems and Technologies, ser. BIOSTEC
2014, 2014, p. 141–148.

[39] T. Schmid, D. Günzel, and M. Bogdan, “Automated quantification of
the relation between resistor-capacitor subcircuits from an impedance
spectrum,” in Proceedings of the International Conference on Bio-
Inspired Systems and Signal Processing, 2014, pp. 141–148.

[40] B. Schindler, D. Günzel, and T. Schmid, “Synthesized Impedance
Spectra Measurements of Epithelial Tissue,” Nov. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.5718939

[41] T. Schmid, “Automatisierte analyse von impedanzspektren mittels kon-
struktivistischen maschinellen lernens,” Ph.D. dissertation, Leipzig,
2018.

[42] S. Lewis, D. Eaton, C. Clausen, and J. Diamond, “Nystatin as a probe
for investigating the electrical properties of a tight epithelium,” The
Journal of general physiology, vol. 70, 11 1977, pp. 427–40.

[43] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[44] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, 2011, pp. 2825–2830.



148

International Journal on Advances in Life Sciences, vol 13 no 1 & 2, year 2021, http://www.iariajournals.org/life_sciences/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[45] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, 2020.

[46] B. Srinivasan et al., “TEER measurement techniques for in vitro barrier
model systems,” Journal of Laboratory Automation, vol. 20, no. 2, 2015,
pp. 107–126.

[47] N. Onnela et al., “Electric impedance of human embryonic stem cell-
derived retinal pigment epithelium,” Medical & Biological Engineering
& Computing, vol. 50, no. 2, 2012, pp. 107–116.

[48] F. A. Atienzar, H. Gerets, K. Tilmant, G. Toussaint, and S. Dhalluin,
“Evaluation of impedance-based label-free technology as a tool for
pharmacology and toxicology investigations,” Biosensors, vol. 3, no. 1,
2013, pp. 132–156.

[49] S. Ramasamy, D. Bennet, and S. Kim, “Drug and bioactive molecule
screening based on a bioelectrical impedance cell culture platform,”
International Journal of Nanomedicine, vol. 9, no. 1, 2014, pp. 5789–
5809.

[50] N. E. Beltran and E. Sacristan, “Gastrointestinal ischemia monitoring
through impedance spectroscopy as a tool for the management of the
critically ill,” Experimental biology and medicine, vol. 240, no. 7, 2015,
pp. 835–845.

[51] D. Sifrim and K. Blondeau, “Technology insight: the role of impedance
testing for esophageal disorders,” Nature Clinical Practice Gastroen-

terology & Hepatology, vol. 3, no. 4, 2006, pp. 210–219.
[52] F. Ates et al., “Mucosal impedance discriminates gerd from non-gerd

conditions,” Gastroenterology, vol. 148, no. 2, 2015, pp. 334–343.
[53] T. Matsumura et al., “Evaluation of esophageal mucosal integrity in

patients with gastroesophageal reflux disease,” Digestion, vol. 97, no. 1,
2018, pp. 31–37.

[54] Z. Maherally et al., “Real-time acquisition of transendothelial electrical
resistance in an all-human, in vitro, 3-dimensional, blood–brain barrier
model exemplifies tight-junction integrity,” The FASEB Journal, vol. 32,
no. 1, 2018, pp. 168–182.

[55] P. Tsiotras, E. Bakolas, and Y. Zhao, “Initial guess generation for aircraft
landing trajectory optimization,” 08 2011.

[56] Q. Yao and H. Tong, “Quantifying the influence of initial values on
non-linear prediction,” Journal of the Royal Statistical Society: Series
B (Methodological), vol. 56, no. 4, 1994, pp. 701–725.

[57] K. Kaufmann et al., “Crystal symmetry determination in electron
diffraction using machine learning,” Science, vol. 367, 2020, pp. 564–
568.

[58] L. Wang, W. Chen, W. Yang, F. Bi, and F. R. Yu, “A state-of-the-art
review on image synthesis with generative adversarial networks,” IEEE
Access, vol. 8, 2020, pp. 63 514–63 537.


