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Abstract— Human emotion prediction is an important aspect of 
conversational interactions in social robotics. Conversational 
interactions involve a combination of dialogs, facial expressions, 
speech modulation, pose analysis, head gestures, and hand 
gestures in varying lighting conditions and noisy environment 
involving multi-party interaction. Head motions during 
conversational gestures, multi-agent conversations and varying 
lighting conditions cause occlusion of the facial feature-points. 
Popular Convolution Neural Network (CNN) based predictions 
of facial expressions degrade significantly due to occluded 
feature-points during extreme head-movements during 
conversational gestures and multi-agent interaction in real-
world scenarios. In this research, facial symmetry is exploited to 
reduce the loss of discriminatory feature-point information 
during conversational head rotations. CNN-based model is 
augmented with a new rotation invariant symmetry-based 
geometric modeling. The proposed geometric model 
corresponds to Facial Action Units (FAU) for facial expressions. 
Experimental data show hybrid model comprising a CNN-based 
model, and the proposed geometric model outperforms the 
CNN-based model by 8%-20%, depending upon the type of 
facial-expression, beyond partial head rotations. 

Keywords-Artificial Intelligence; conversation; deep neural 
network; emotion analysis; facial expression analysis; facial 
occlusion; facial symmetry; head movement; multimedia. 

I.  INTRODUCTION 
Due to an aging population in the developed world and 

limited workforce, there is a growing need of social robotics 
for elderly care and healthcare [1]-[3]. To show empathy, 
interact, and converse with humans, social robots need to 
understand human emotions and pain in the wild [4]-[9]. 

Predicting emotions in the wild is complex and requires 
multimodal media analysis involving dialogs, voice-
modulation (including timed silence), gestures (including 
postures, gaze, conversational head and hand gestures, and 
haptic gestures), facial expressions, pain and tears [10]-[22]. 
Many desirable human-robot interactions, such as 
conversational gestures, including human warmth and 
affection, frustration, irritation, encouragement, impatience 
and pain shown by a combination of voice-modulation, 
speech-phrases, gestures, facial expressions and haptic touch 
are yet to be achieved [13]. Compared to emotions exhibited 
in dialogs, utterances and gestures, facial expressions are 

exhibited more involuntarily and express a major subset of 
expressed human emotions and acute pain [5]-[7], [10]-[20]. 
 Interpreting facial expressions is context sensitive and 
augmented with other modalities such as speech or scene 
analysis [11], [12], [14]. Facial expressions and their intensity 
vary by gender, age and culture. A subset of facial 
expressions has universally accepted interpretations, and 
current-day research on facial expression analysis of basic 
emotions and pain assumes universally accepted meanings 
[5]-[7], [15]. 

In real-life scenarios, a face continuously moves during a 
conversation based upon 1) conversational gestures, such as 
argumentation, interrogation and denial; 2) intensity of 
emotion; 3) multi-party interactions, changing ambient 
lighting and shadows with head-movements [13]. Head 
rotations stochastically occlude feature-points causing 
information loss hindering accurate facial-expression 
classification as illustrated in Fig. 1. 

In cognitive psychology, two approaches study facial 
expressions: 1) valence and intensity based Plutchik’s eight 
emotion classes and their subcategories; 2) basic six emotions 
(anger, disgust, fear, happiness, sadness, and surprise) 
popularized by Ekman and others [5], [6]. Computational 
recognition of facial expressions is based on analysis of facial 
video modeled by Facial Action Unit System (FACS) [6], 
[15]-[17]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. An example of recognizing facial expression in the wild. [Image 
source: Wikimedia Commons, public domain; Credit: US Navy, Bureau of 
Medicine and Surgery, 1945; Available at: https://commons.wikimedia.org/ 
wiki/File:Navy_nurse_signing_cast_--_WWII.jpg] 
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Many Facial Action Units (FAUs) are also associated with 
acute pain that interferes with emotion analysis [18]-[20]. In 
this paper, we focus on the recognition of facial expressions 
under the assumption that conversing agents do not suffer 
from pain. 

Previous studies are mostly limited to the frontal facial 
view or statically aligned poses using curated databases 
showing nonoccluded facial expressions in proper lighting 
conditions [15], [23]-[36]. Recent augmentation of CNN-
based modeling with Long Short-Term Memory (LSTM), 
transfer learning and multiple feed-forward neural networks 
(FNN) improve the prediction of facial expression during 
head movements [37]. However, the model does not handle 
extreme information loss beyond partial occlusion and does 
not exploit facial symmetry. Experiments with CNN-based 
model show that facial expression prediction drops by 10-20% 
for partial occlusion (less than 45° rotation) and by 30-50% 
beyond 45° rotation as described in section V. 

CNN-based models need to restore occluded 
discriminatory feature-points for beyond the partial occlusion 
in conversational head-gestures, such as emotional 
disagreement, interrogation, argumentation or denial; multi-
party interaction that involves significant occlusion of one part 
of the face. Luckily, even during extreme head-rotations, only 
one side of the face is occluded. Hence, facial symmetry can 
be used to reconstruct the occluded discriminatory feature-
points by estimating the angle of facial rotation and knowing 
the coordinates of their counterparts on the nonoccluded side. 

This research improves facial-expression analysis under 
head-motion by utilizing facial symmetry along the vertical 
major axis [38]-[40]. Prediction uses 1) estimation of the angle 
of facial rotation using nonoccluded feature-points; 2) 
inherent facial symmetry around the vertical axis of the face; 
2) differences between the symmetrical points and the actual 
geometric feature-points from the previous frames. 

The proposed hybrid model integrates CNN-based 
classification for partially occluded space and the symmetry-
based geometric model classification beyond partially 
occluded space. The proposed symmetry-based geometric 
model also provides motion continuity and temporal context 
to the CNN classifier for selecting the nearest static alignment. 

The major contributions in this research are: 
1. Development of a symmetry-based geometric model 

corresponding to Facial Action Units (FAUs) to 
recover discriminative feature-points during 
conversational head-rotations in real-time scenarios; 

2. Augmentation of the CNN-based model with the 
proposed symmetry-based geometric model to 
improve the temporal context and the facial 
expression prediction beyond partial occlusion. 

The overall roadmap is as follows. Section II describes 
background concepts. Section III describes the related work. 
Section IV describes the proposed symmetry-based geometric 
model. Section V describes an overall architecture. Section VI 
describes the implementation and discusses experimental 
results. Section VII discusses the limitations and concludes 
the paper. 

II. BACKGROUND 

A. Facial Muscles and FACS System Correspondence 
A combination of facial muscles expressing facial 

expressions and pain, is shown in Fig. 2. The associated 
muscles and their functions are described in Table I. 
Italicized descriptions in Table I mark the FAUs involved in 
both pain and facial expressions. The compression of muscles 
is externally visible through facial feature-points, as 
illustrated in Fig. 3. A combination of movement of the 
feature-points forms the basis of geometric modeling and 
Facial Action Unit System (FACS). 

Facial expression analysis is based on mapping a subset 
of FAUs to basic facial expressions. Tables II describes the 
FAUs associated with the simulations of the six basic facial 
expressions [6], [15]-[17]. 

B. Facial Feature-points and Symmetry 
There are two types of facial feature-points: fixed points 

and active points. Fixed points act as a reference, and active-
points move during facial-expressions, altering x and z-
coordinates of feature-points [16]. 

 
 
  
  
 
 
 
 
 
 
 
 
 
Figure 2. Facial muscles used in facial-expressions of emotion and pain. 
[Image adopted from Wikimedia Commons, Credit: CNX anatomy 2013] 

 

 

 

 

 

 

 
 
 

Figure 3. Facial feature points with symmetry 

Platysma 
Buccinator 

Occipitofrontalis 

Orbicularis oris 

Orbicularis oculi 
Corrugator supercilli 

Levator labii nasi 

Masseter 

Depressor labii 
inferioris 

Mentalis 

Levator labii 
superioris 

Zygomaticus 
major 

Zygomaticus 
minor 

Depressor angulii 
inferioris 

digastric 

Pterygoids 
Levator palpebrae 

Line of 
symmetry 

𝑏𝑏3
𝑅𝑅 
 

𝑛𝑛𝐵𝐵 

𝑏𝑏2
𝑅𝑅 
 𝑏𝑏1

𝑅𝑅 
 

𝑏𝑏3
𝐿𝐿 
 

𝑏𝑏2
𝐿𝐿 
 𝑏𝑏1

𝐿𝐿 
 

𝑛𝑛𝑇𝑇 

𝑒𝑒3
𝐿𝐿 
 

𝑒𝑒1
𝐿𝐿 
 

𝑒𝑒2
𝐿𝐿 
 

𝑒𝑒1
𝑅𝑅 
 

𝑒𝑒4
𝐿𝐿 
 

𝑒𝑒2
𝑅𝑅 
 

𝑒𝑒3
𝑅𝑅 
 

𝑒𝑒4
𝑅𝑅 
 

𝑚𝑚𝑇𝑇 
𝑚𝑚𝑅𝑅 𝑚𝑚𝐿𝐿 

𝑚𝑚𝐵𝐵 

Line of 
symmetry 

x 

z 
y 



67

International Journal on Advances in Life Sciences, vol 13 no 1 & 2, year 2021, http://www.iariajournals.org/life_sciences/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. RELATED FAUS AND ASSOCIATED FACIAL MUSCLES. ‘E’ 
DENOTES EMOTION, AND ‘P’ DENOTES PAIN. THERE IS AN OVERLAP BETWEEN 
TWO SUBSETS. 

FAU Function Facial Muscle Type 
1 inner brow raiser occipitofrontalis E 
2 outer brow raiser occipitofrontalis E 
4 brow lowerer corrugator supercilli E + P 
5 Upper eyelid raiser levator palpebrae superioris E 
6 Cheek raiser Orbicularis oculi, pars orbitali E + P 
7 Lid tightener orbicularis oculii  E + P 
8 Lips towards each other orbicularis oris E 
9 Nose wrinkler levator labii superioris nasi E + P 
10 Upper lip raiser levator labii superioris E + P 
11 Nasolabial deepener zygomaticus minor E 
12 Lip corner puller zygomaticus major E  
14 Dimpler buccinator E 
15 Lip corner depressor depressor anguli inferioris E 
16 Lower lip depressor depressor labii inferioris E 
17 Chin raiser mentalis E 
20 Lip stretcher platysma E + P 
23 Lip tightener orbicularis orbis E 
25 Lips part depressor labii inferioris P 
26 Jaw drop masseter E + P 
27 Mouth stretcher pterygoids, digastric E + P 
41 Lid droop Relaxation of levator palpebrae 

superioris 
E + P 

43 Eyes Closed relaxation of levator palpebrae 
superioris 

P 

 

TABLE II. SIX BASIC FACIAL EXPRESSIONS AND FAUS 

 
Feature-point denotations use ‘e’ for eye; ‘b’ for brow; ‘m’ 

for mouth. A subscript enumerates feature-points for the same 
organ. A superscript denotes left-side by ‘L’; right-side by 
‘R’; top by ‘T’; bottom by ‘B’. 

A face has six major fixed points and 14 major active 
points. Fixed points are two ends of the left and right eyes (

L L R R
1 4 1 4e , e , e , e ); bottom of a nose (nB); middle point 

between two eye-brows above the nose-tip (nT). Active major 
points are: 1) three points on each brow (   L

 1b ,   L
  2b ,   L

  3b ,   R
  1b , 

  R
  2b ,   R

  3b ); 2) two middle points of lips (mT and mB); 3) two 
endpoints of the mouth (mR, mL); 4) two middle points in each 

eye ( 2 3 2 3
L L R Re , e , e , e ). 

Facial features are symmetrical around the vertical axis as 
illustrated in Fig. 3: left-side of the vertical line nTnB is 
symmetrical to the corresponding feature-points on the right-
hand side. This symmetry causes similar changes on both 
sides of a face for most facial-expressions at the muscle level. 

C. Occlusion and Head Movement 
In a real-world situation, the head rotations are observed 

every 5 - 7 degrees [41]. The angle of rotation maps to one of 
the internal states based upon an identifiable resolution in the 
feature-points. Distances between the symmetry-axis and the 
feature-points on the nonoccluded side are used to estimate the 
coordinates of occluded feature-points using facial-symmetry. 

D. Deep Learning Models for Facial Expression Analysis  
Convolution neural network comprises a cascade of 

convolution-layers: convolution filter, Rectified Linear Unit 
(RELU) and subsampler (pooling layer) followed by a fully 
connected feed-forward neural network (FNN) [10], [37], 
[42]. In order to model a continuously moving head, multiple 
FNNs, one for each desired orientation, are used for the 
classification [37]. Due to the large number of angles, the 
classification is approximate, lowering the accuracy. 

Long Short Term Memory (LSTM) is a variation of 
Recurrent Neural Network (RNN) where the previous 
outputs are fed back and gated to regulate the output [43], 
[44]. LSTM significantly reduces the problem of vanishing 
gradient and instability in RNN, and improves long range 
contextual dependency [44]. 

Transfer learning adapts meta-level learning rules to a 
similar but somewhat different domain or task [45]. A 
domain is a pair (ψ, P(X)) where ψ is the feature-space, P(X) 
is the marginal probability-distribution, and X is a feature-
vector (x1, …, xN) ∈ ψ. A task is modeled as a pair (Y, f), 
where Y is a label space {y1, …, yM}, and f is a function that 
maps a feature-value xi in X to a label yj ∈ Y. The differences 
could be in feature-vector, probability distribution, label 
space, or mapping of feature-value to label space. 

For facial-expression recognition, feature-vectors change 
due to angular variations. Thus, the feature-vector has to be 
approximated and modified based upon proximity and 
similarity analysis with input feature-vector values of an 
FNN to reduce classification-error. 

E. Notations 
Line-segments are denoted by two end feature-points or 

their intuitive description. For example, eye-width is denoted 
as EW or L L

1 4e e . Lip-width is denoted by LW or mTmB. Given 
a line-segment LS, magnitudes of the x-axis, y-axis and z-axis 
component are denoted respectively by |LS|X, |LS|Y, and |LS|Z. 
In this paper, parameterization is illustrated using left-side of 
a face. The technique applies also to the right-side of the face. 

III. RELATED WORK 
In recent years, many researchers have suggested 

techniques to handle information loss caused by partial 
occlusion and multiple orientations due to head movements. 
Related work can be classified as: 1) handling occlusion for 
improper lighting conditions, hand-gestures and external 
objects such as eye-glasses, hats, scarfs, and medical masks; 
hand gestures; hair and mustaches; ambient lighting 
conditions; 2) analyzing emotions in the wild; 3) mapping 
motion as a set of fixed alignments; 4) a combination of CNN, 

Basic facial expressions FAU subset 
Surprise 1, 2, 5, 10, 16, 26 
Fear 1, 2, 4, 5, 15, 20, 26 
Disgust 2, 4, 9, 15, 17 
Anger 2, 4, 5, 7, 9 
Happiness 6, 12, 14, 20, 27 
Sadness 4, 8, 11, 15, 23, 41 
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LSTM and transfer learning to map continuous motion to the 
corresponding CNN [9], [15], [23]-[31], [36], [37], [46]. 

Most occlusion handling schemes handle occlusion of 
static faces in frontal pose based on the reconstruction of 
small patches of partially occluded parts using the 
corresponding nonoccluded (or global) facial texture [23]-
[31]. The schemes combine information from previous 
images, texture-patterns, or other features from nonoccluded 
space, and dynamic weighting of texture-patterns to 
reconstruct occluded patches using well curated datasets. 

To handle the occlusion caused by external objects, 
researchers have trained hybrid models on occluded and 
nonoccluded samples and used nonoccluded features-space 
as a guidance to predict texture of occluded patches, 
combination of sparse representation and maximum 
likelihood estimation, a combination of Gabor filter and co-
occurrence matrix of local features, a combination of Gabor 
descriptors and deep structure recognition based upon deep 
belief network, a combination of local binary pattern, feature 
histogram, dimension reduction and support vector machine 
(SVM), a fusion of information derived using Weber Local 
Descriptors and histograms of multiple features using SVM, 
combining global and local textures with CNN and attention, 
the use of LSTM auto-encoders and transfer learning, and 
Bayesian networks. These schemes do not analyze occluded 
facial expressions in the wild during conversational head-
motion. 

Zong et al. use a combination of transduction transfer 
learning and linear discriminant analysis to map the trained 
data using curated dataset to the data in the wild [9]. 
However, the scheme does not: 1) handle conversational head 
movements and the resulting occlusion; 2) does not use 
symmetry to recover occluded feature-points. 
 T-H. S. Li et al. integrate CNN with LSTM to provide 
the temporal context required for analyzing facial expression 
during head rotation [37]. They use transfer learning to map 
a position to the corresponding static alignment of CNN for 
improved accuracy. The scheme is limited by the number of 
fixed domains for transfer learning and does not exploit 
symmetry. Besides, LSTM cannot estimate the coordinates of 
the occluded feature-points explicitly. 

These techniques are not suited for extreme loss of 
discriminatory feature-points during extreme head-rotations 
in argumentation, denial or multi-party interactions where a 
significant part of face is occluded for a longer period. 
 The proposed geometric model exploits facial symmetry 
to recover occluded feature-points during extreme head 
rotations [38]-[40]. The correspondence of the line-segments 
joining discriminatory feature-points to Facial Action Units 
(FAUs) relates the proposed hybrid model with Facial Action 
Coding System (FACS) based analysis and CNN-based 
analysis. In addition, the changes in line-segment ratios with 
head-movements provide temporal context even beyond 
partial occlusion. In our scheme, the discriminative feature-
points also support multimodal analysis of head-gestures and 
provide explanation capability. 

IV. PROPOSED SYMMETRY-BASED GEOMETRIC MODEL 
Facial expression analysis requires: 1) removal of the 

distortions caused by camera zooming; 2) removal of the 
distortions in the line-segments caused by head-rotations, and 
3) correspondences of parameters to the changes in FAUs. 

The identification of parameters invariant to head-
rotations requires the use of fixed feature-points that act as a 
reference to measure the changes in orientation and lengths of 
the line-segments with varying facial expressions. 

The motions of active-points that contribute to the facial 
expressions are: 1) vertical and horizontal motion of 

2 2
L L L
1b , b , b  on an eyebrow; 2) vertical motions of { 2 3

L Le , e } 
in the center of an eyelid, 3) vertical and horizontal motions 
of mL (lip-endpoints), and 4) vertical motions of mT, mB and {

1 2
L Lm , m } (lip-midpoints). Fig. 4 shows left side of the face 

with the required feature-points and line-segments used in the 
facial expression classification. 

The line-segments for the facial expression analysis are: 

2 3 3
L L L L L
1 1

B B Bn b , n b , n b , b b , EH ( 2 3
L Le e : eye-height), LH 

(mTmB : lip-height), LW ( 1
L Lm m : lip width), EL ( L L

cm e : lip 
segment to the eye ( L

ce  is the left center of an eye given by 
2 3

2

l le e+  ). The line-segments 2 3 3
L L L L L
1 1

B B Bn b , n b , n b , b b and 

EL have x-magnitudes and z-magnitudes. 
The line-segments LH and EH have z-magnitudes; the 

line-segment LW has x-magnitude. With no rotation and 
zooming, changes in the x-magnitudes and z-magnitudes of 
these line-segments correspond to different facial expressions. 
In an actual scenario, these line-segments vary with head-
rotations and image scaling due to the camera-zooming. These 
line-segments are mapped to parameters invariant to head-
rotations and camera zooming, such that the resulting 
parameters vary with facial expressions only. 

Four line-segments, joining fixed-points, nBnT, 1 4
L Le e , 

1
T Ln e , and 4

T Ln e have been used to derive parameters 
invariant with respect to head rotation. The effect of zooming 
is removed by dividing the z-magnitudes by the magnitude of 
the line-segment nBnT. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Facial feature-vectors 
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To minimize the effect of variation of x-coordinates 
during a head-rotation, the most aligned fixed segments are 
chosen that are affected similarly by the head-rotation 
compared to line-segments involving active points. 

A division of line-segments by the x-magnitude of the 
line-segments involving the nearest fixed-points parallel to the 
same axis minimizes the effect of rotation and preserves the 
changes due to facial expressions. 

The division by the segment 1 4
L Le e provides invariance for 

the eye-brow area. The division by x-magnitude | 1
T Ln e |X 

cancels the effect of head-rotation on the magnitude | L
1

Bn b |X. 
The division by the x-magnitude | 4

T Ln e |X cancels the effect of 
the head-rotation on the magnitude |LW |x. 

A. Frontal Pose Estimation 

The fixed feature-points nose-bottom nB, left inner-eye 1
Le

and right inner-eye 1eR  are used to establish frontal pose (see 
Fig. 3 and Fig. 4). The ratio | 1

T Ln e  | / | 1
T Rn e  | = 1 for the 

frontal-pose, only altering during head-rotation. The overall 
estimate for the frontal pose is given by (1) where ϵ is an 
experimentally derived value slightly greater than zero to 
take care of involuntary and random head-movements. 

1 – ϵ ≤ | nB 𝑒𝑒1
𝐿𝐿| / | nB 𝑒𝑒1

𝑅𝑅| ≤ 1 + ϵ (1) 

Estimation of rotation angles is based on missing 
landmarks on the rotated side of the face. The landmarks nt 

and nb become invisible in the complete occlusion and are 
visible between partial and complete occlusion. For rotation 
to the left or right, the ratio changes beyond 1 ∓ ϵ. 

The proposed line-segments (LH, LW, EL, EH, | 1
Lb 3

Lb |x,  |nB

1
Lb |z, |nB

2
Lb |z, |nB

3
Lb |z, nBnT, EW, |nTnB|) cover all FAUs to express six 

basic emotions, as described in Table II. The overall 
correspondence is summarized in Table III. 

Variations in the line-segment LH reflect tightening or 
opening of lips and mouth, and jaw-drop. It is associated with 
FAU 8 (lips towards each-other), FAU 10 (upper lip-raiser), 
FAU 16 (lower lip-depressor), FAU 17 (chin-raiser), FAU 23 
(lip-tightener), FAU 26 (jaw-drop) and FAU 27 (mouth-
stretcher).  

TABLE III.  LINE-SEGMENTS 

 

Variations in the line-segment LW reflect compression 
and stretching of a mouth. It corresponds to FAUs 6, 12, 14, 
20, 23 and 27. These FAUs are involved in happiness (lip-
corner and cheek-stretching obliquely up), and sadness (lip-
corner stretching obliquely downwards).  

Variations in the z-component |EL|Z (eye-to-lip vertical 
component) measure compression and stretching of cheek 
muscles. The decrease in |EL|Z corresponds to FAU 6 (cheek-
raiser) associated with happiness. The increase in |EL|Z 
corresponds to FAU 15 (lip-corner depression) associated 
with negative emotions fear, disgust and sadness. The change 
in the magnitude of the line-segments EW (eye-width) and 
EH (eye-height) correspond to FAU 7 associated with anger. 
The magnitude |EH| increases during anger due to the raising 
of the upper eyelid and middle eye-brow point. 

Variations in eye-brow length | 1
Lb 3

Lb | (brow compression 
and stretching) correspond to FAU 1 (inner brow raiser), FAU 
2 (upper brow raiser) or 4 (brow lowerer). However, only the 
x-component | 1

Lb 3
Lb |x is used because vertical variations in 

eye-brow are processed by |nB
1
Lb |z, |nB

2
Lb |z and | nB

3
Lb | z. The 

increase in | 1
Lb 3

Lb  |x corresponds to FAU 4 (brow-lowerer) 
associated with negative emotions: fear, disgust, anger, and 
sadness. 

The z-component |nB
1
Lb  |z corresponds to inner-eyebrow 

raising or lowering. The increase in magnitude |nB
1
Lb  |z 

corresponds to FAU 1 associated with surprise. The decrease 
in |nB (1 3)

L
i ib ≤ ≤ |z corresponds to FAUs 4 and 9 associated with 

negative emotions: fear, disgust, sadness, and anger. The 
increase in the magnitude |nB 3

Lb  |z corresponds to FAU 2 
associated with fear. 

B. Normalized Ratios 
In the beginning, the frontal pose is recorded to derive the 

original coordinates of feature-points and the original length 
and orientation of line-segments. The zooming distortion and 
head-rotation distortions in the x-direction are removed from 
the feature-points and the corresponding line-segments. 

Vertical segments |nB 1
Lb |z ,|nB 2

Lb  |z |nB 3
Lb |z, EH and |EL|Z 

are divided by |nBnT| to derive the corresponding normalized 
ratios. Horizontal line-segment |LW|X and | 1

Lb 3
Lb  |X are 

divided by |nT 1
Le | and EW, respectively. The normalized ratios 

are summarized in Table IV. 

C. FAU Correspondence 
 Table V describes conditions by combining the 

normalized ratios across the same or different video-frames 
that are sampled periodically because facial expressions alter 
after few seconds. 

The increase in the ratio RLH corresponds to FAU 10 
(upper lip raiser), FAU 26 (jaw-drop), and FAU 27 (mouth-
stretch). The decrease in the ratio RLH corresponds to FAU 8 
(lips towards each other), FAU 16 (lower lip-depressor), FAU 
17 (chin-raiser), and FAU 23 (lip-tightener). 

Line-ratio Normalized ratio Description 

RLH |LH | / |nBnT| lip height ratio 
RLW |LW |X / |EW| lip-width ratio 
REL |EL|Z / |nBnT| eye-to-lip ratio 
RBW | 1

Lb 3
Lb |X / EW brow-width ratio 

RIBH | nB
1
Lb |Z / |nBnT| inner brow-height ratio 

RMBH | nB
2
Lb |Z / |nBnT| mid-brow height ratio 

ROBH | nB
3
Lb |Z / |nBnT| outer-brow height ratio 

REH |EH| / |nBnT| eye-height ratio 
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The increase in the ratio RLW corresponds to FAU 6 
(cheek-raiser), FAU 12 (lip-corner puller), FAU 15 (lip-
corner depressor), FAU 16 (lower lip-depressor), and FAU 20 
(lip-stretcher). The decrease in the ratio RLW corresponds to 
FAU 23 (lip-tightener). The increase in the ratio REL 
corresponds to FAU 15 (lip-corner depressor); the decrease 
in the ratio REL corresponds to FAU 6 (cheek-raiser). The 
increase in the ratio REH corresponds to FAU 5 (upper lid 
raiser); the decrease in the ratio REH corresponds to the FAU 
7 (lid tightener) or FAU 41 (lip-stoop). The increase in the 
ratio RBW corresponds to FAU 4 (brow-lowerer). 

The increase in the ratio RIBR corresponds to FAU 1 (inner 
eye-brow raiser); the decrease in the ratio RIBR corresponds to 
FAU 4 (brow-lowerer). The increase in the ratio ROBR 
corresponds to FAU 2 (outer eye-brow raiser); the decrease 
in ROBR corresponds to FAU 4 (eye-brow lowerer). 

TABLE IV.  LINE-SEGMENTS AND FAU CORRESPONDENCE 
 

TABLE V.  FAUS AND NORMALIZED RATIO CONDITIONS 

 

A simultaneous decrease in the ratio RLH and an increase 
in the ratio REL correspond to the activation of FAU 16 
(lower-lip depressor). Simultaneous decreases in the ratios 
RLH and REL correspond to the activations of FAU 12 (lip-
corner puller) and FAU 6 (cheek-raiser). Simultaneous 
increases in the ratios REL and REW correspond to FAU 15 (lip-
corner depression). Simultaneous decreases in the ratios RIBR, 
RMBR and ROBR and increase in the ratio RBW corresponds to 
the activation of FAU 4 (eye-brow lowerer). 

V. AN OVERALL ARCHITECTURE 
 The proposed architecture, as illustrated in Fig. 5, 
comprises: 1) preprocessing and denoising module; 2) hybrid 
classifier module; 3) angle-based output selector module.  
 The preprocessing and denoising module denoises the 
data, reduces dimensions of facial images using Locality 
Sensitive Hashing (LSH) and uses Gabor filter to preserve 
directionality in images. 
 The hybrid classifier module comprises: 1) CNN-based 
classifier; 2) the proposed geometric-classifier; 3) facial 
orientation based output selector either from the CNN-based 
classifier or the proposed geometric-classifier. 

There are two types of connectivity: 1) based on data 
flow, as shown by the solid arrows; and 2) time-stamped 
stream of angles emanating from the second submodule of 
the geometric-classifier as shown by the dashed arrows. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. An overall architecture 

 

Line-seg. FAUs Basic emotions 
LH 8, 10, 16, 17, 23, 

26, 27 
anger, disgust, fear, sadness, 
surprise 

LW 6, 12, 15, 16, 20, 23 happiness and sadness 
EL 6, 15 disgust, fear, happiness, sadness 
EH 5, 7 anger 

| 1
Lb 3

Lb |x 
4 anger, disgust, fear, sadness 

|nB
1
Lb |z 

1, 4, 9 anger, disgust, fear, sadness, 
surprise 

|nB
2
Lb |z 

4, 5 fear and surprise 

|nB
3
Lb |z 2 fear 

nBnT used for vertical normalizations 
EW, |nTnB|

 

invariant with head-rotation 

FAUs Condition (n = m + k and k > 0) 

#1 IBR IBR
n mR R<   

# 2 OBR OBR
n mR R>  

#4 IBR IBR
n mR R< ⋀ MBR MBR

n mR R<  ⋀ OBR OBR
n mR R<    

#5, 27 EH EH
n mR R>  

#6, 12 LH LH
n mR R< ⋀ EL EL

n mR R<  

#7, 41 EH EH
n mR R<   

#8 LH LH
n mR R<   

#10 LH LH
n mR R>   

#15 EL EL
n mR R> ⋀ EW EW

n mR R>  

#16 LH LH
n mR R<  ⋀ EL EL

n mR R>  

#17 EL EL
n mR R<   

#20 LW LW
n mR R<  

#23 LW LW
n mR R>  

#26 EL EL
n mR R>   
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The time-stamped angle-stream is used for: 1) selecting 
the output from one of the two classifiers; 2) maintaining 
sequentiality of the derived facial-expression labels coming 
from different classifiers; 3) selecting the optimal FNN in the 
CNN-classifier. Only one FNN is selected at a time based 
upon the value of the time-stamped angle. 
 The symmetry-based geometric-classifier has four 
submodules: 1) feature-point extractor; 2) invariant ratio and 
rotational angle calculator; 3) symmetry-based movement 
calculator; 4) FAU-based classifier. 

Feature-point extractor extracts the visible non-occluded 
feature-points, calculates  and time-stamps the line-segments 
as described in Table IV. The stream of time-stamped line-
segments is passed to the second submodule. 

Invariant ratio and Rotational Angle Calculator 
submodule derives the computable ratio |nB 𝑒𝑒1

𝐿𝐿| / |nB 𝑒𝑒1
𝑅𝑅|, |nT 

𝑒𝑒1
𝐿𝐿| / |nT 𝑒𝑒1

𝑅𝑅|, |nT 𝑒𝑒1
𝐿𝐿| / |nT nB|, |nB 𝑒𝑒1

𝐿𝐿| / |nT nB|, |nT 𝑒𝑒1
𝑅𝑅| / |nT nB|, or 

|nB 𝑒𝑒1
𝑅𝑅 | / |nT nB|, and looks up archived lookup tables to 

estimate the angle of rotation for each time-stamped feature-
vector. This time-stamped angle is transmitted to: 1) FNN 
selector submodule within the CNN-classifier; 2) the third 
submodule of the geometric-classifier; 3) the classifier 
selector module. The submodule also computes the motion 
invariant ratio, as described in Section IV. 

Symmetry-based movement calculator computes the 
normalized ratio conditions, as given in Table V for deriving 
the associated FAU movements. The input to the submodule 
is the motion invariant ratio and time-stamped angle derived 
in the submodule 2 of the classifier. 

FAU-based classifier uses the derived motion of FAUs 
and their association with facial expressions (see Table II in 
Section II) to identify the facial expression [6], [16]. The 
input to the submodule is FAU motions derived in the third 
submodule of the geometric-classifier. 

The CNN-classifier comprises three submodules: 1) three 
layers of cascaded convolution filters; 2) angle-based FNN 
distributor; 3) mutually exclusive FNNs that can recognize a 
facial-expression in one of the static orientations. FNNs are 
optimally trained for specific orientation in the lab conditions 
to improve the performance. 

The choice of three layers in the convolution layer 
cascade and number of FNNs in the CNN-classifier is based 
upon size of the cropped images (56 × 56 pixels) after 
sampling and experimentation to reduce the computational 
overhead while maintaining sufficient accuracy. 

Each FNN corresponds to a static orientation. Adjacent 
orientations are 15° apart instead of optimal 7-8° [41]. In our 
experiment, internal states change every 15° to reduce 
computational overhead. This choice slightly degrades (by 1-
3%) the prediction accuracy for a tradeoff of reduced 
computational overhead. 

Based upon each FNN corresponding to an orientation 
15° apart, there are seven FNNs, one for each orientation (45° 
left rotation, 30° left rotation, 15° left rotation, frontal, 15° 
right rotation, 30° right rotation, 45° right rotation). 

The angle-based distributor selects one of the FNN based 
upon the facial orientation. The angle is received from the 
second submodule of the geometric-classifier module. 

The inputs to these FNNs are: output of CNN module’s 
softmax layer distributed from the angle-based FNN 
distributor. 

The angle-based output selector module selects the 
output from the CNN-classifier or geometric-classifier, 
depending upon the facial orientation. If the angle is less than 
the threshold value (45°), the output from the CNN-classifier  
is taken. For the head rotations greater than 45°, the output 
from the geometric-classifier is taken. 

VI. IMPLEMENTATION AND EXPERIMENTATION 

RaFD dataset was used for measuring the performance of 
the CNN-based model for various static alignments in 
different poses [35], [47]. Compared to other curated facial 
expression databases, RaFD gives comprehensive facial-
expressions for 67 models (for all genders) with multiple 
camera angles and adjustment of lighting conditions [32]-
[34]. We deployed 70% of the data for training, 15% 
validation, and 15% testing. 

For the online video capturing, three frames per second 
were used for the facial expression analysis. The Epochs of 
200 frames were used because the experimental data show 
that the accuracy of the facial expression recognition 
stabilizes around 200 frames. The stabilization of the 200 
frame per second comes from the controlled lab conditions, 
and the hardware that we used for our experiments. The 
number will vary in noisy real environment. 

A. CNN Classifier Implementation 
The implemented CNN-based model is a cascade of three 

hidden layers: conv-32, conv-64 and conv-128, followed by 
a Softmax layer. Each conv-m layer contains m filters to 
extract different orientations. The conv-128 layer provides a 
subclassification of textures. After each convolution layer, 
there is a max-pooling layer for the subsampling of images. 
Each max-pool layer pools a 2 × 2 pixel macroblock. 

After applying the Locality-Sensitive Hashing (LSH) and 
Gabor filter, the processed images are passed to the network 
of convolution layers through the input layer [17]. 

Each cropped image is scaled to 56 × 56 pixels. The data-
size after the conv-32 layer is 56 × 56 × 32 pixels, and the 
output of first max-pooling layer after the conv-32 layer are 
28 × 28 × 32 pixels. The output of the second max-pooling 
layer is 28 × 28 × 64 pixels. The output of the last hidden 
layer is 14 ×14 × 128. The output of the following max 
pooling layer is 7 × 7 × 128 pixels. Extracted features are 
concatenated by adding a fully connected layer at the end. 

B. Result and Data Analysis 
The hybrid model was executed in the wild. We use recall 

metrics to show accuracy of the proposed model because the 
recall gives the overall percentage of true positive. CNN 
model was also executed in wild for the frontal pose and 
compared against the results of RaFD dataset to derive the 
comparative deterioration of the recall. 

In our statistical reporting of data, five occlusion states are 
used: 1) frontal face with no occlusion (|θ| < ϵ); 2) partial left-
side or right-side occlusion (ϵ < rotation < 45°); 3) full left-
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side or right-side occlusion (> 45°). Internal states map to one 
of the five states based upon interval inclusion. 

C. Performance Evaluation and Discussion 
The results are summarized in Tables VI, VII, and VIII. 

Tables VI and VIII show the recall values of CNN-model 
with RaFD dataset and the proposed hybrid model in wild, 
respectively. Table VII shows the confusion matrix for CNN 
model for a frontal pose in the wild. 

Table VI illustrates CNN based prediction, even for a 
cured RaFD database, deteriorates quickly due to the 
unavailability of discriminatory feature-points on the 
occluded part of the face. The deterioration varies from 48% 
for sadness to 41% for happiness for complete occlusion. 

Comparison of Tables VII and VIII illustrates that the 
accuracy of facial expression classification deteriorates in the 
wild even for the frontal pose: more for sadness (around 22%) 
and the least for disgust (around 6%). Even neutral face is 
labeled as sad for 10% of the time in the wild. 

TABLE VI.  RECALL IN THE CNN MODEL WITH RADB DATASET 
 

TABLE VII.  CONFUSION MATRIX - CNN MODEL (FRONTAL) IN WILD 
 

TABLE VIII.  RECALL IN THE HYBRID MODEL IN WILD 

 

The reasons for this deterioration are: 1) mixing of facial 
muscles and feature-points for negative facial expressions, 
sadness, fear and anger, in real-time expressions; 2) 
variations in the intensity level of the expressed facial 
expressions in real-time; 3) continuous random head-motions 
during real-time facial-expressions causing noise; 4) uneven 
ambient lighting conditions with shadows obscuring feature-
points; 5) randomly picking the video-frame may not 
correspond to the apex image corresponding to a facial-
expression [46]. 

The facial expressions for the negative emotions: sadness, 
fear, and anger are often confused due to 1) the presence of 
common facial muscles; 2) the mixing of facial expressions 
in real-time; 3) improper temporal labeling during transition 
of a negative facial expression to another; 4) uncontrolled 
thought patterns affecting involuntary facial expressions in 
real-time. Another problem is that CNN is trained using fixed 
alignments, and a head-movement is approximated to one of 
the fixed poses. 

Comparison of the occluded parts in Table VI and Table 
VIII shows that the hybrid model outperforms CNN-based 
prediction even for the curated RaFD dataset for beyond the 
partial occlusion. The improvement is 8% for sadness 
(minimum) to 21% for the happiness (maximum). In a multi-
party interaction, where the change in the line-of-view may 
cause extreme occlusion, the hybrid model provides better 
accuracy and information. 

VII.  CONCLUSION AND FUTURE WORK 
Head-motions during conversational gestures and multi-

agent interactions cause extreme occlusion on one side of 
facial features. Automated feature-extracting and deep 
learning schemes are limited by the facial feature detections. 
Their performance degrades during extreme occlusion due to 
the nonavailability of discriminatory feature-points. Facial 
symmetry reconstructs the occluded discriminatory feature 
points. Combining CNN-based schemes with the proposed 
geometric modeling improves the performance in such a 
scenario by 8% – 21% beyond the partially occluded state. 

The current scheme can be further improved by 
smoothening the derived facial-expression sequence and 
predicting the next facial-expression using Dynamic 
Bayesian Network (DBN), the knowledge of average 
duration of facial-expressions during emotional conversation, 
and sampling more video-frames for near-apex facial 
expressions [46]. 

In this paper, we have assumed that conversational agents 
are not suffering from any acute pain. As described in Section 
II, the facial-expressions for basic emotions and acute pain 
significantly overlap [7], [18]-[20], [48], [49]. Many times 
chronic pain is displaced and expressed as a combination of 
negative emotions, depression and anxiety [48], [49]. Many 
times, negative emotions and pain occur together and are 
inseparable [49]. Such cases can only be resolved by the 
knowledge of the situation, dialog understanding or scene 
analysis to build the needed context. For example, knowledge 
of cause of pain or video analysis of person’s gesture or 
wound detection can provide sufficient context. 

 Right 
complete 
occl. 

Right 
part 
occl. 

Front 
no 
occl. 

Left 
part 
occl. 

Left 
complete 
occl. 

sadness 49% 83% 97% 79% 48% 
disgust 54% 81% 98% 88% 63% 
anger 53% 81% 96% 87% 64% 
fear 51% 86% 95% 81% 55% 
surprise 57% 84% 98% 90% 53% 
happiness 59% 85% 99% 92% 62% 
neutral 54% 82% 95% 79% 51% 

 sad. 
% 

disg. 
% 

ang. 
% 

fear 
% 

sur. 
% 

happ. 
% 

neutral 
 

sadness 74.5 0.1 8.0 12.3 0.9 0.7 3.5 
disgust 0.7 92.4 1.4 1.1 1.3 1.7 1.4 
anger 6.4 2.3 79.3 2.5 1.6 2.4 5.5 
fear 7.2 0.6 6.1 82.3 1.2 0.8 1.8 
surprise 1.8 0.7 2.6 5.2 86.9 1.7 1.1 
happiness 1.4 0.2 2.2 2.5 3.0 87.2 2.5 
neutral 10.2 0.2 4.2 5.7 2.2 3.7 73.8 

 Right 
complete 
occlusion 

Right 
part 
occlusion 

Front 
no 
occlusion 

Left  
part 
occlusion 

Left 
complete 
occlusion 

sadness 57% 68% 75% 69% 59% 
disgust 70% 81% 92% 82% 70% 
anger 73% 75% 79% 77% 76% 
fear 66% 75% 82% 76% 67% 
surprise 71% 74% 87% 76% 75% 
happiness 75% 79% 87% 81% 77% 
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We are currently investigating the DBN on a sequence of 
facial-expressions to smoothen out the errors due to image 
frames missing the apex image for the corresponding facial 
expressions [46]. 
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