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Abstract—To achieve smooth communication between the deaf
and hard of hearing and hearing people, we developed a Japanese
fingerspelling (JF) recognition system based on sensor gloves.
A light and inexpensive sensor glove was adapted for the daily
use of the system. We conducted evaluation experiments using a
convolutional neural network (CNN) to recognize 76 characters
in JF. The target JF alphabet included 35 characters for dynamic
fingerspelling, and required both finger and wrist movement. The
experimental results show that the average recognition rate of
the developed system was approximately 70.0%. Additionally,
we conducted a continuous fingerspelling recognition experiment
using CNNs and long short-term memory (LSTMs) networks,
aiming to recognize consecutive fingerspelling. We proposed a
dataset to exploit the characteristics of JF and selected 64
words according to the finger flexion, direction, and movement
differences among various signers. Using the collected data, we
then conducted evaluation experiments with seven types of neural
networks. The overlapping characteristics present in JF were
exploited because finger flexion, finger extension, hand direction,
and hand movements vary significantly among people currently
learning sign language, people corresponding in Japanese sign
language (JSL), and people using JSL in their daily lives.
Consequently, the average recognition rate (micro F-measure) of
76 JF characters was approximately 92.1%. Based on the results
of single fingerspelling and continuous fingerspelling recognition
experiments, we discussed the issues concerning the recognition
of JF characters and development of sign language recognition
systems.

Keywords–Sign language; Japanese fingerspelling; Sensor
glove; Recognition; Convolutional neural network; Long short-term
memory.

I. INTRODUCTION

In this study, we developed a Japanese fingerspelling (JF)
recognition system incorporating a sensor glove and deep
learning to achieve smooth communication between the deaf
and hard of hearing (DHH) and hearing people, and investi-
gated the recognition rate of the JF alphabet.

This study extends our initial study [1] on a sensor-glove-
based JF recognition system for using deep learning to realize
smooth communication between DHH and hearing people.

In recent years, interest in speech recognition and infor-
mation technology devices with voice input functions has in-
creased. Various applications, such as UDtalk [2], KoeTra [3],
and cloud-speech-to-text services [4] have been released to
provide information accessibility to the DHH based on speech
recognition. Consequently, the DHH can read text correspond-
ing to the speech of hearing people.

As a primary communication method, sign language is used
in everyday conversations among the DHH. However, hearing

people find reading sign language difficult; this results in a
communication gap between DHH and hearing people.

Sign language has different characteristics from spoken
language. It is expressed itself through finger extensions
and flexion, hand directions, hand movements, and facial
expressions. Hence, learning and reading sign language is
difficult. Therefore, a system for converting sign language into
voice information or text information (i.e., a sign language
recognition system) is necessary (see Figure 1).

Research has been conducted on information accessibility
systems for sign language recognition [5]–[12]. However, com-
pared with information accessibility systems based on speech
recognition that are fast reaching maturity, the development
of a practical sign language recognition system remains in
progress.

In this context, even in a specific country, for example,
Japan, differences exist in sign language expressions in the
daily lives of people new to sign language, those using signed
exact Japanese (SEJ), and those using Japanese Sign Language
(JSL). A person learning sign language for the first time
learns sign language using a dictionary and other teaching
materials. Sign language dictionaries contain many standard-
ized finger expressions for people to imitate and practice, and
for slowly and carefully expressing themselves. People using
SEJ express themselves one word at a time, as in Japanese,
and not using facial expressions. Conversely, people using
JSL express themselves using their fingers, hand directions,
hand movements, facial expressions, etc. People with relatively
little experience in sign language tend to express themselves
slowly, whereas people with more experience tend to express
themselves quickly.

In addition to using sign language, the DHH people use
fingerspelling, e.g., to express their names, proper nouns, and
words not present in JSL. As mentioned earlier, finger flexion,
hand directions, and hand movements can vary depending on
if the person is new to sign language, uses SEJ, or uses a JSL.
For example, although the finger positions of “ka” and “ga”
are identical, the hand movements are different. In this case, an
evident difference exists between the hand movements among
the three groups, i.e., those new to the sign language, those
using an SEJ, and those using a JSL.

In this study, we developed a JF recognition system based
on a sensor glove, deep learning, and acquired data on finger
flexion, hand directions, and hand movements for JF signing
used in daily life.

A sign language recognition system must recognize hand
positions, directions, shapes, and motions. Methods for recog-
nizing sign language can be classified broadly into non-contact
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Figure 1. Information accessibility system.

TABLE I. NUMBER OF FINGERSPELLING CHARACTERS IN DIFFERENT
COUNTRIES.

Language Dynamic Static Sum
American 2 24 26

French 3 23 26
Japanese 35 41 76

approaches such as recognition using cameras [5] [6] [10], and
contact approaches, such as those using sensor gloves [7] [8]
[11] [12].

Luzhnica et al. [7] reported a recognition accuracy of
98.5% for sign language using a sensor glove; however,
they only considered approximately 30 recognition candidate
classes, making this method insufficient for practical use.

In recent years, technologies based on deep learning have
attracted significant attention. By increasing the number of
hidden layers in a neural network, we can improve the recog-
nition rates of deep learning, which is a type of machine
learning. Various techniques for applying deep learning have
been reported for improving the gesture recognition accuracy
based on image recognition [5].

A camera is a non-contact-type sensor, but is difficult to
use for sign language recognition in daily life because it is
easily affected by environmental factors, complicating its use
in different environments. In addition, when standing in front
of people and a camera at a lecture, a speaker tends to speak to
the camera without looking at the people as necessary, thereby
constraining the speaker from making a connection with the
audience. In contrast, hand shape recognition using contact
sensors such as sensor gloves is easier, because the sensors
are attached directly to the hands.

We were motivated by the goal of improving recognition
accuracy using conductive fiber weaving technology [13], as
this technology can reduce the weight and cost of sensor
gloves and simplify hand movements used in daily life for
easy recognition by deep learning (see Figure 2).

In our experiments, we evaluated our developed system
by classifying 76 characters of the JF alphabet, including
dynamic (non-static) fingerspelling characters; those are a
unique feature of JF compared to other fingerspelling systems,
as shown in Table I.

The evaluation experiments for a single JF were conducted
using a convolutional neural network (CNN) as a learning
model (this type of model performed the best in previous
studies) to reduce the data reduction by calculating the moving
averages of the data acquired from gyro sensors. In these exper-
iments, all 76 JF characters of JF were included as recognition

Output
label: “a”

Convolutional
layer

Input Fully connected
layer

Pooling
layer

Pooling
layer

Convolutional
layer

Figure 2. Recognition diagram.

targets, as were dullness, semi-voiced sounds, diphthongs, and
long vowels. These experiments were conducted using all the
collected data under various experimental conditions.

In the continuous JF recognition evaluation experiment,
we utilized the neural network constructed for the single
JF recognition task as a learning model, introduced a long
short-term memory (LSTM), and built seven types of neural
networks. As in the evaluation experiment for single-finger
character recognition, all 76 characters of JF are used for
recognition. Furthermore, evaluation experiments were con-
ducted for consecutive finger characters with two or more
characters. In this experiment, we propose a dataset that
exploits the characteristics of JF, and selected 64 words owing
to the differences in finger flexion, directions, and movements
differences among people new to sign language, people using
SEJ, and people using JSL. We then conducted evaluation
experiments with the seven types of neural networks using
the collected data.

This study provides the following contributions:

• the development and evaluation of a fingerspelling
recognition system using an inexpensive and
lightweight sensor glove;

• the development and evaluation of a continuous JF
recognition system using CNNs and LSTMs; and

• the proposal and evaluation of a dataset for fin-
gerspelling recognition in the daily lives of various
signers.

In Section II, we introduce the related research results. In
Section III, we describe the single fingerspelling recognition
experiments. In Section IV, we describe the continuous fin-
gerspelling recognition experiments. In Section V, we provide
our conclusions.

II. RELATED WORK

Previous research on fingerspelling recognition has pro-
posed two types of sensors for recognizing a series of op-
erations in fingerspelling: contact-type sensor gloves and non-
contact-type cameras.

A. Image recognition
Several methods have been proposed for recognizing hand

shapes based on processing images of fingerspelling as cap-
tured by cameras. Mukai et al. [9] reported that a fingerspelling
recognition method targeting 41 immobile characters in JSL
resulted in an average recognition accuracy of 86%. They
used a classification tree and machine learning based on a
support vector machine to classify individual images. Hosoe
et al. [10] used deep learning for recognition and achieved a
recognition rate of 93%, but only for static fingerspelling. Jalal
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et al. [6] reported a recognition rate of 99% for American sign
language (ASL) images based on a deep learning algorithm for
static fingerspelling (i.e., excluding “J” and “Z”). However,
the recognition accuracy could not be considered as sufficient
for practical recognition in JF. Additionally, relatively few
recognition results have been reported for dynamic finger-
spelling (i.e., fingers moving when expressing a character). In a
study of dynamic fingerspelling in JSL [14], the identification
of hand shapes was performed using a kernel orthogonal
mutual subspace method from images of hand regions obtained
from distance images, and the classification of movements
was performed using decision trees based on center-of-gravity
coordinates. These results yielded a 93.8% identification rate.
However, the recognition accuracy was insufficient for the
practical recognition required for JF.

B. Sensor glove recognition
Several methods have been proposed for recognizing hand

shapes based on measurement data acquired by contact-type
sensor gloves. These methods can measure finger flexion,
hand positions, and directional data. The measurement data
are then sent to a personal computer, and a classification
algorithm is used to recognize hand shapes. Cabrera et al. [11]
paired the Data Glove 5 Ultra [15] sensor glove with an
acceleration sensor to acquire information regarding the degree
of flexion of each finger and wrist direction. They conducted
test classification using 24 static fingerspelling characters in
ASL, excluding “J” and “Z.” Their neural network was trained
using 5 300 patterns and achieved a recognition rate of 94.07%
for 1 200 test patterns. Mummadi et al. [12] prototyped a
sensor glove with multiple embedded inertial sensors. They
collected French sign language fingerspelling data from 57
people and achieved an average recognition rate of 92% with
an F1-score of 91%. Kakoty et al. [16] reported on a dataset
of one-handed Indian sign language alphabets (C, I, J, L, O,
U, Y, W), ASL alphabets (A to Z), and signed numbers (0 to
9), using a radial basis function with 10-fold cross-validation
Using a kernel-supported vector machine, they achieved an
average recognition rate of 96.7% and reported that the data
were converted to speech. Chong et al. [17] placed six inertial
measurement units (IMUs) on the back of the palm and on each
fingertip to capture their motion and orientations. Ultimately,
28 proposed word-based sentences in ASL were collected,
and 156 features were extracted from the collected data for
classification. Using the long short-term memory (LSTM)
algorithm, the system achieved an accuracy of up to 99.89%.
Notably, 12 people cooperated with us in the data collection
experiment, but whether they were deaf or hearing people
was unclear. Yu et al. [18] reported on the architecture of a
data glove system comprising a stnm32MCU, flex4.5 bend-
ing sensor, mpu6050 six axis sensor, Bluetooth transmission
module, and cellphone voice application. The system was
developed and connected to a Java-based processing software.
They reported that their system recognized sign language
movements and could output the words to be said using the
intelligent voice system. However, the glove does not feature
global movement and rotation tracking. Glauser et al. [19]
demonstrated a glove’s performance in a series of ablation
experiments while exploring various models and calibration
methods. However, the glove does not come with a global
translation and rotation tracking. Realizing a sign language
recognition system requires hand orientations and motions.

Among the various methods for performing JF recognition,
the conductive fiber braid method [13] uses gloves woven with
conductive fibers instead of flexion sensors. These gloves can
recognize hand shapes and movements as they are directional
gyro sensors incorporated into them. However, the recognition
rate for JF (“a,” “i,” “u,” “e,” “o”) based on Euclidean distance
has been reported as only 60%.

C. Data collection
Regarding image recognition, several large-scale continu-

ous sign language recognition (CSLR) benchmarks have been
published [20]. For example, we introduced three large-scale
CSLR benchmarks: PHOENIX-2014, Chinese sing language
(CSL), and PHOENIX-2014-T. PHOENIX-2014 is a publicly
available German Sign Language dataset and the most famous
CSLR benchmark. This corpus is taken from broadcast news
regarding the weather. The CSL dataset consists of 100 sign
language sentences and 178 words related to everyday life.
Fifty signers performed each sentence, resulting in 5,000
videos in total. A matched isolated CSL database containing
500 words is also provided for pre-learning. Each word was
performed 10 times by 50 signers. PHOENIX-2014-T anno-
tates the new videos with two annotations: the sign language
terms for the CSLR task, and the German translation for the a
sign language translation (SLT) task. The vocabulary consists
of 1,115 terms for sign language and 3,000 for German.
This dataset is available in [21]. However, the data of these
three large-scale CSLR benchmarks are insufficient to realize
a highly accurate sign language recognition system using deep
learning. Further research is being conducted to increase the
amount of available data.

Extensive data for image recognition can be obtained from
online sources. For example, the Shi et al. [22] dataset contains
clips of fingerspelling sequences cut from sign language “in the
wild” videos obtained from online sources such as YouTube
and dafvideo.tv [23]. The datasets contain 5,455 training
sequences from 87 signers of “ChicagoFSWild,” 981 devel-
opment (validation) sequences from 37 signers, and 868 test
sequences from 36 signers, without overlapping signers among
the three sets. Another dataset, “ChicagoFSWild+,” contains
50,402 training sequences from 216 signers, 3115 development
sequences from 22 signers, and 1,715 test sequences from 22
signers. Compared to ChicagoFSwild, the crowdsourcing setup
of ChicagoFSWild+ enables the collection of considerably
more training data while significantly reducing the efforts of
experts and researchers.

Danielle et al. [24] expressed privacy concerns regarding
contributing to a filtered sign language corpus, using very
expressive avatars and blurred faces, which may affect the will-
ingness to participate. Training on filtered data may improve
the recognition accuracy. In the case of camera recognition,
the look of the face is also captured; thus, privacy must also
be considered. In contrast, sensor glove recognition does not
require pictures of the face; thus privacy concerns are reduced
and the data can be more simply collected.

III. SINGLE FINGERSPELLING RECOGNITION EXPERIMENT

To achieve smooth communication in real-world environ-
ments, we designed a system for communicating information
using lightweight and comfortable sensor gloves for recog-
nizing fingerspelling with high accuracy in real time. The
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Figure 3. Prototype of sensor glove.

Figure 4. Software structure.

developed system consists of a sensor value measurement unit
and recognition unit. Figure 3 shows the JF recognition system
developed in this study. Figure 4 shows the corresponding
software architecture.

A. Sensor glove

To efficiently recognize fingerspelling efficiently based on
hand, finger, and wrist data, detecting motion magnitudes
and directions using the sensor glove is necessary. In this
study, we adopted a hand shape recognition technique using
conductive fiber sensor gloves, which are more comfortable,
less expensive, and lighter than traditional sensor gloves.
Motion directions are detected using a gyro sensor, whereas
motion magnitudes are detected based on resistance changes
in the conductive fibers of the gloves. The motion detection
board is an Arduino board and the measurement values from
the sensor glove are transferred from the detection board to a
PC, where they are saved in comma-separated-value format.
The machine learning and motion recognition are performed
using Python implementations on a PC. The sensor readings
for JF motion from the data gloves have different scales
depending on the wearer. Therefore, the data are subjected
to linear normalization in consideration of the differences in
movement. Additionally, because the activation and likelihood
functions of the proposed system are based on probabilities,
as a prepossessing for the network inputs, we perform scale
conversion to a range of zero to one.

The motion magnitudes are detected based on the resistance
changes in the conductive fibers during flexion and extension
of the fingers. We use partial pressure values to calculate the
input voltages based on (1).

Figure 5. Architecture of the convolutional neural network.

Vin =
R1

R1 +R2
∗ Vout (1)

In this equation, Vin is the estimated motion magnitude, Vout

is the reference voltage, R1 is the variable resistance of the
conductive fibers, and R2 is a fixed resistance. When a finger is
stretched, the resistance value of the conductive fiber increases.
When a finger is bowed, the resistance value of the fiber
decreases.

B. Recognition algorithm
In this study, we adopted a CNN. This type of network has

achieved high recognition rates in previous studies. The CNN
and k-fold cross-validation are implemented using the open-
source libraries, TensorFlow [25] and scikit-learn [26]. We also
adopted the RMSprop training algorithm [27]. The activation
function is a rectified linear unit, as shown in (2). The error
function is the cross-entropy function shown in (3), where tk
is the correct label (one-hot expression) and yk expresses the
network output.

f(u) = max(u, 0) (2)

E = −
∑
k

tk log yk (3)

The main features of CNNs are the convolutional and
pooling layers. These layers are updated as their feature values
are extracted during the training process. We transform the
measurement data acquired by the sensor glove into two
dimensions based on training and evaluation trials. The motion
magnitudes, accelerations, and gyro readings are branched at
the time of input. Through the CNN (typical layer size of 32 to
64 nodes), these data are coupled using “Flatten” and “Dense”
operations (128 nodes). Finally, the outputs are generated using
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Figure 6. Data acquisition experiment.

Figure 7. Twenty-fold cross-validation by shuffling data.

an additional Dense operation (76 nodes) corresponding to
the number of JF characters, outputs are generated. Figure 5
presents a system overview of the CNN. In the CNN, inputs
are initially separated based on the physical meanings of
each signal. The separated signals are eventually combined
to recognize JF characters.

C. Data collection
To target the 76 JF characters, we recruited 20 participants

(from 20 to 27 years old). In our experiments, each participant
wore a sensor glove and performed the motions of the finger-
spelling characters in sequence for 1 s at a time according
to directions provided by a moderator. As shown in Figure 6,
video was also recorded to capture the motions of the wrists
and fingers of the participants. For each 1 s motion and at a rate
of 200 samples per second (sps), the sensor gloves captured
five dimensions of motion magnitude data, three dimensions
of acceleration data, and three dimensions of gyro data, to
obtain data for 11 dimensions. Data labeling was conducted
manually and simultaneously with the data collection. This
series of motions was repeated five times. Therefore, with five
repetitions per participant, 76 JF characters, and 200 sps for 1
s, a total of 76,000 motion measurement data were collected for
each participant. We were able to collect a total of 1,520,000
data samples from all 20 participants. These experiments
were conducted with approval from the Tsukuba University
of Technology Research Ethics Committee (approval number:
H30-17).

First, we performed extensive data cleaning and feature
selection operations. T o prevent gyro drift, we used Madgwick
filters [28] to calculate angles from the values of the accelera-
tion and gyro sensors in real time. This enabled calculations of

TABLE II. TWENTY-FOLD CROSS-VALIDATION RESULTS.

k Learning data (%) Validation data (%)
1 93.6 65.0
2 94.1 75.5
3 94.8 68.7
4 93.1 69.7
5 94.2 66.3
6 93.9 73.2
7 92.9 67.9
8 93.5 71.1
9 93.0 67.4

10 94.6 70.5
11 93.4 71.6
12 93.0 66.1
13 94.6 68.9
14 94.3 70.3
15 93.0 69.7
16 93.4 68.4
17 92.9 71.3
18 93.1 71.1
19 94.5 74.2
20 94.5 72.4

Average 93.7 70.0

TABLE III. MISRECOGNITION PATTERNS.

Teacher a sa ku yo ke te ki chi chi
Prediction sa a yo ku te ke chi ki tsu
Rate (%) 21.0 19.0 14.0 20.0 12.0 28.0 12.0 12.0 34.0
Teacher tsu ni ha ne ma hi re wo xya
Prediction chi ha ni ma ne re hi xya wo
Rate (%) 32.0 20.0 22.0 13.0 11.0 19.0 23.0 11.0 13.0
Teacher gi di ge de di du zo bu
Prediction di gi de ge du di bu zo
Rate (%) 12.0 13.0 29.0 20.0 39.0 35.0 14.0 15.0

three angle dimensions from the acceleration and gyro data. To
clarify the hand directions, the angles were converted into sine
and cosine data. The resulting six dimensions were combined
with the aforementioned motion magnitudes (five dimensions)
and motion directions (six dimensions) mentioned above to
generate a total of 17 dimensions. Next, we conducted a review
of the sampling frequency. Although 200 sps could be acquired
without leakage, noise and training times were included in
these samples. Therefore, the number of data was reduced by
calculating a moving average to achieve a final value of 4 sps.

D. Evaluation experiments
The collected data were evaluated using the CNN (Fig-

ure 5) and k-fold cross-validation (k = 20). In our evalua-
tion experiments, data shuffling was performed using Google
Colaboratory [29]. The number of folds for the k-fold cross-
validation was set to 20 according to the number of partic-
ipants. Additionally, confusion matrices and accuracy rates
were generated using 20-fold cross-validation for all data
shuffling evaluations (see Figure 7).

E. Results and discussion
The experimental results from the 20-fold cross-validation

are listed in Table II. This table reveals an average recognition
rate of approximately 70.0%.

As shown in Figure 8 and Table III, various misrecognition
patterns occurred. We believe these patterns occurred because
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Figure 8. Confusion matrix.

the conductive fibers are firmly attached to the sensor gloves.
We confirmed that the hand directions for “ha” and “ni”, which
are JF characters, varied among participants. Additionally, “ne”
and “ma” appear to be confused based on both hand bending
and finger bending.

Figure 9 presents the sample input data leading to mis-
recognition for the JF characters “te” and “ke”. By analyzing
the data, it was confirmed that the close contact between the
fingers caused these errors. Notably, the thumb sometimes
contacted the forefinger. Additionally, depending on the par-
ticipant, the hand could be widely opened or the fingers could

be in close contact.
Figure 10 presents examples of acquiring data from two

participants using the sensor glove for dynamic fingerspelling.
This figure clearly highlights the individual differences in
fingerspelling between the participants, particularly in the
strength of the finger bending (including noisy signals), timing
of hand movements, and shapes of the fingers. Therefore, it is
necessary to improve the recognition algorithms and data glove
devices (e.g., to detect hand movement periods and construct
more robust glove devices).

Based on the aforementioned results, we determined that
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Figure 9. Example input data (only five dimensions):
(a) predict “te” as “te” correctly, (b) predict “te” as “ke” incorrectly,
(c) predict “ke” as “te” incorrectly, (d) predict “ke” as “ke” correctly.

the recognition errors largely occurred based on variance in the
flexion and direction of the fingers. We also confirmed that fin-
ger expressions varied based on individual differences, which
could be attributed to different home and social environments
(making recognition more difficult).

However, JF is widely used for displaying proper names
and technical terms. Therefore, the recognition of JF is essen-
tial for construction a JSL recognition system.

IV. CONTINUOUS FINGERSPELLING RECOGNITION
EXPERIMENT

This section describes the selection of words for data
collection and for construction of a new neural network for
continuous fingerspelling recognition experiments based on the
system constructed in Section III. First, we describe the word
selection.

A. Word selection
In a previous study [30], we proposed a method for recog-

nizing fingerspelling words using linguistic information based
on a word dictionary. We separated the recognition of actions
from the recognition of hand shapes: thus, fingerspelling could
be recognized even despite action recognition errors. In this
experiment, we proposed 18 patterns because the number of
JF patterns is more significant than those of other countries,
particularly in dynamic fingerspelling, as described in Section
I. Furthermore, finger and hand movements vary from person
to person. Each pattern is illustrated and explained. I n a

(a) one person

(b) another person

Figure 10. Example of acquiring data.

Figure 11. 64 word patterns.

previous study [30], the number of words selected was 64;
thus, we selected words corresponding to that number and
suitable for the 18 proposed patterns (see Figure 11). The
errors were characterized as follows:

1 denotes the misrecognition of static fingerspelling as the
transition movements between fingerspellings;

2 denotes the misrecognition of transition movements as
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static fingerspelling;
3 denotes the misrecognition of dynamic (non-static) fin-

gerspelling as transition movements;
4 denotes the misrecognition of transition movements as

dynamic fingerspelling. The tasks and groups are explained in
more detail below.

Task 1: Single fingerspelling
1-1 Static fingerspelling
This comprises fingerspelling other than 1-2 dynamic fin-

gerspelling. It is characterized by absence of hand movements.
1-2 Dynamic (non-static) fingerspelling
There are four types of dynamic fingerspellings: dullness,

semi-voiced sounds, diphthongs, and long vowels. Dynamic
fingerspelling is characterized by hand movements.

Task 2: Two or more fingerspellings
2-1 Misrecognizing static fingerspelling and transition

movements.
2-1-1 Misrecognizing transition movements as static fin-

gerspelling
For example, “[ta]” may be misrecognized as “[ta][ta].” The

user may misrecognize “[ta]” two or more times in succession.
2-1-2 Misrecognizing static fingerspelling as transition

movements
For example, “[ta][ta]” may be misrecognized as “[ta].”
2-2 Misrecognizing dynamic fingerspelling and transition

movements
2-2-1 Pattern1 dullness
2-2-1-1 Misrecognizing transition movements as dynamic

fingerspelling
For example, “[ta][da]” may be misrecognized as “[da].”
2-2-1-2 Misrecognizing dynamic fingerspelling as transi-

tion movements
For example, “[da]” is misrecognized as “[ta][da].”
2-2-2 Pattern2 semi-voiced sounds
2-2-2-1 Misrecognizing transition movements as dynamic

fingerspelling
For example, “[pa][pa]” may be misrecognized as “[pa].”
2-2-2-2 Misrecognizing dynamic fingerspelling as transi-

tion movements
For example, “[pa]” may be misrecognized as “[pa][pa].”
2-2-3 Pattern3 diphthongs
2-2-3-1 Misrecognizing transition movements as dynamic

fingerspelling
For example, “[tsu][tsu]” may be misrecognized as

“[tsu][xtsu][tsu].”
2-2-3-2 Misrecognizing dynamic fingerspelling as transi-

tion movements
For example,“[tsu][xtsu][tsu]” may be misrecognized as

“[tsu][tsu].”
2-2-4 Pattern4 -(long vowels)
2-2-4-1 Misrecognizing transition movements as dynamic

fingerspelling
For example, “[hi][-(long vowel)]” may be misrecognized

as “[- (long vowel)].”

2-2-4-2 Misrecognizing dynamic fingerspelling as transi-
tion movements

For example, “[- (long vowel)]” may be misrecognized as
“hi- (long vowel).”

2-2-5 Pattern5
2-2-5-1 Misrecognizing “[no]” as transition movements
For example, “[no]” may be misrecognized as “[hi][no].”
2-2-5-2 Misrecognizing “[mo]” as transition movements
For example, “[mo]” may be misrecognized as “[to][mo].”
2-2-5-3 Misrecognizing “[ri]” as transition movements
For example, “[ri]” may be misrecognized as “[u][ri].”
2-2-5-4 Misrecognizing “[wo]” as transition movements
For example, “[wo]” may be misrecognized as “[o][wo].”
2-2-5-5 Misrecognizing “[nn]” as transition movements
For example, “[nn]” may be misrecognized as “[hi][nn].”
Task 3: Identical fingerspelling problems
For example, “[ta][ta]” may be misrecognized as “[ta].”
The words are selected using the 18 patterns described in

Figure 11. Because finger and hand movements vary from
person to person, we organized the words into 26 groups.
Table IV shows the fingerspelling of each group.

Group 1: [no][u][ni][xyu][u], [u][ri][xyu][u], [ri][yu][u]
We need to identify “[u][ni]”, but it may be “[u][ri]”.

The transitions from “[u]” to “[ni]” and from “[u]” to
“[ri]” have similar hand movements, with there being signif-
icant difference in the speed of the fingers. In this experi-
ment, we will collect data on three words, “[u][ri][xyu][u]”,
“[no][u][ni][xyu][u]”, and “[ri][yu][u]”, and investigate the
differences in speed.

Group 2: [su][u][ri][xyo][u], [su][ri][yo][u]
Although the subject of the experiment can correctly ex-

press “[su][u][ri]”, the possibility that he will misrecognize it
as “[su][ri]” exists. The words “[u]” and “[ri]” are difficult to
distinguish and have the same finger positions, and depend on
whether hand movements are used or not. Therefore, we can
expect that “[u]” may be recognized as transition movements,
which would imply “[su][ri].” We will use the two-word data
of “[su][ri][yo][u]” and “[su][u][ri][xyo][u]” in the recognition
experiment.

Group 3: [ru][-][ru], [ru][ru]
Many people expressing “[ru][-][ru]” do not express long

vowels. Therefore, a possibility exists of misrecognizing
“[ru][-][ru]” as “[ru][ru]”. In this experiment, we conduct a
recognition experiment using two sets of data: “[ru][-][ru]”
and “[ru][ru]”. We then investigate the need to distinguish the
differences between “[ru][-][ru]” and “[ru][-][ru]” to realize a
fingerspelling recognition system.

Group 4: [su][su][gi], [su][zu][ki]
The word “[su][su][gi]” is expressed using a downward

extension of the thumb, index finger, and middle finger. In
addition to the use of “[su]” twice, we also investigate whether
the participants could discriminate between the two words
“[su][su][gi]” and “[su][zu][ki]” by adding a murmur. This task
enables us to consider the algorithms necessary for obtaining
sufficient information from moving fingers.
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TABLE IV. 64 WORDS INTO 26 GROUPS

Item Group Word 1-1 1-2 2-1-1 2-1-2 2-2-1-1 2-2-1-2 2-2-2-1 2-2-2-2 2-2-3-1 2-2-3-2 2-2-4-1 2-2-4-2 2-2-5-1 2-2-5-2 2-2-5-3 2-2-5-4 2-2-5-5 3
1 1 [no][u][ni][xyu][u] * *
2 [u][ri][xyu][u] * * *
3 [ri][yu][u] * * *
4 2 [su][u][ri][xyo][u] * * *
5 [su][ri][yo][u] * * *
6 3 [ru][-][ru] * * *
7 [ru][ru] * *
8 4 [su][su][gi] * * *
9 [su][zu][ki] * * *

10 5 [hu][re][-][mu] * * * *
11 [pu][re][mu] * * * *
12 6 [tsu][tsu][mi] * * * *
13 [tsu][du][mi] * * * *
14 [chi][di][mi] * *
15 [tsu][mi] * *
16 7 [po][tsu][ri] * *
17 [po][xtsu][tsu][ri] * * *
18 8 [me][xtsu][ki] * * *
19 [me][tsu][ki] * *
20 9 [hi][nn][to] * * * *
21 [hi][-][to] * * *
22 [pi][-][to] * * *
23 [bi][-][to] * * *
24 [no][-][to] * * * *
25 10 [ro][-][so][nn] * * *
26 [ro][-][nn] * * *
27 11 [hi][ku] * *
28 [no][ku] * * *
29 12 [ka][tsu][wo] * * *
30 [ka][tsu][o] *
31 13 [a][nn][za][nn] * *
32 [te][nn][ke][nn] * *
33 [de][nn][ge][nn] * *
34 14 [ma][tsu][ya] *
35 [ma][chi][ya] *
36 [ma][xtsu][chi][ya] * *
37 15 [ni][ba][i] * * *
38 [ni][ha][i] * *
39 16 [pa][pa] * * *
40 [ha][ha] * * *
41 17 [mo][to][mo][to] * * *
42 [to][mo][do][mo] * * *
43 18 [ta][ta] * * * *
44 [ta][da] * * * *
45 [da][da] * * *
46 19 [ne][sa][se][ru] *
47 [ne][za][sa][se][ru] * * *
48 20 [he][ya] * *
49 [pe][ya] * * *
50 21 [ko][so][gu] * * *
51 [go][zo][ku] * * *
52 [go][hu][ku] * * *
53 [ko][bu][ku] * * *
54 22 [wa][ro][shi] *
55 [wa][nu][shi] *
56 23 [he][ya][gi] * * *
57 [be][ki] * * *
58 24 [ho][e][ki] * *
59 [bo][e][ki] * * *
60 25 [shi][se][i] *
61 [ji][ra][i] * *
62 [shi][ze][i] * *
63 26 [ka][chi][na][no][ri] * *
64 [ga][i][su][u] * *

Count 62 46 5 6 7 10 3 5 1 2 2 4 2 2 2 1 1 7

Group 5: [hu][re][-][mu], [pu][re][mu]
This task investigates if the system can distinguish between

“[hu][re]” and “[mu].” We want to identify “[hu][re][-][mu],”
but it could be misidentified as “[pu][re][mu]” owing to fast
hand movements. Therefore, we collect two types of data,
“[hu][re][-][mu]” and “[pu][re][mu],” in this experiment and
conducted a recognition experiment. While analyzing the hand
movements, we investigate if we can effectively obtain infor-
mation regarding the hand movements.

Group 6: [tsu][tsu][mi], [tsu][du][mi], [chi][di][mi],
[tsu][mi]

We need to identify “[tsu][tsu][mi]”, but cases exist in
which “[tsu]” is used twice and the finger flexion becomes
“[chi]”, which is similar. Therefore, we collect data on four
words to conduct a recognition experiments: “[tsu][tsu][mi]”,
“[tsu][du][mi]”, “[chi][di][mi]”, and “[tsu][mi]”, and con-
ducted a recognition experiment. We examine the hand move-
ments for “[tsu][tsu][mi]” and “[chi][di][mi].”

Group 7: [po][tsu][ri], [po][xtsu][tsu][ri]

For group 6, the word “[tsu][xtsu][mi]” is unavail-
able. Hence, we prepared the words “[po][tsu][ri]” and
“[po][xtsu][tsu][ri].” Thus, in Group 6, “[tsu][tsu][mi]” and
“[tsu][du][mi]” are prepared to investigate their possibility
of it being recognized as “[tsu][tsu][mi]” by expressing
“[xtsu][tsu]” twice in succession.

Group 8: [me][xtsu][ki], [me][tsu][ki]

Unlike group 7, group 8 recognizes only one character
of each of “[xtsu]” and “[tsu].” We investigate whether the
group misrecognizes “[me][xtsu][ki]” as “[me][tsu][ki].” This
is where dynamic fingerspelling is misrecognized as transition
movements or static fingerspelling. The same is valid for
hand movements where “[xtsu]” is a diphthong. We investigate
whether the system can distinguish between “[me][xtsu][ki]”
and “[me][tsu][ki]” by distinguishing the difference between
“[xtsu]” and “[tsu].”
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Group 9: [hi][nn][to], [hi][-][to], [pi][-][to], [bi][-][to],
[no][-][to]

This task examines what type of information can be ob-
tained to identify “[hi][nn][to].” The four words “[hi][-][to],”
“[pi][-][to],” “[bi][-][to],” and “[no][-][to]” are chosen because
they have the potential to produce the same hand movements
as “[hi][-][to].” For example, in the “[hi][-]” and “[no][-]”
parts, the finger flexion is the same, but the hand move-
ments are different. After distinguishing the hand movements,
we investigate whether the participants can identify the five
words “[hi][nn][to]”, “[hi][-][to]”, “[pi][-][to]”, “[bi][-][to]”,
and “[no][-][to].” During the expression of “[hi][-][to]”, when
“[hi]” ends, the fingers either turn to the right or the left. As the
direction depends on the person, this is also be investigated.

Group 10: [ro][-][so][nn], [ro][-][nn]
We need to identify “[ro][-][so][nn],” but it is possible to

misidentify as “[ro][-][nn].” Some difficulty seems to exist in
discriminating between “[-][so][nn]” and “[-][nn]” seems to
exist. The three characters “[-]”, “[-][so]”, and “[-][nn]” all
extend the index finger in the same manner, but the hand
direction and movement may differ per person. Therefore, we
investigate whether the two words “[ro][-][so][nn]” and “[ro][-
][nn]” can be discriminated.

Group 11: [hi][ku], [no][ku]
A possibility exists that “[hi][ku]” may be misrecognized as

“[no][ku].” In this experiment, we compare the transition from
“[hi][ku]” to “[ku]” and from “[no]” to “[ku]” and discover that
distinguishing between “[hi][ku]” and “[no]” at the crossing
portion is more challenging. We also investigate whether the
discrimination between “[hi]” and “[no]” is possible.

Group 12: [ka][tsu][wo], [ka][tsu][o]
The possibility of misrecognizing “[ka][tsu][wo]” as

“[ka][tsu][o]” exists. To determine if distinguishing between
“[wo]” and “[o]” is possible, we investigate the misrecognition
of dynamic fingerspelling as transition movements or static
fingerspelling.

Group 13: [a][nn][za][nn], [te][nn][ke][nn],
[de][nn][ge][nn]

We investigate “[ke],” “[te],” “[ge],” and “[te],” “[a],” and
“[sa].” In this experiment, we also investigate a problem
concerning dullness.

Group 14: [ma][tsu][ya], [ma][chi][ya],
[ma][xtsu][chi][ya]

We investigate whether the system can identify the three
lower case characters “[tsu],” “[chi],” and “[xtsu].” The hand
movements of certain people may be difficult to distinguish
when they transition from “[ma]” to “[tsu],” “[chi]”, and
“[xtsu].” In this experiment, we collect the data of the three
characters for a recognition experiment and investigate whether
they are affected by the person.

Group 15: [ni][ba][i], [ni][ha][i]
“[ni]” and “[ha]” have the same finger flexion but different

hand directions. Similarly, “[ni][ba][i]” and “[ni][ha][i]” have
the same finger flexion but different hand direction. In this
experiment, we collect the data of the two words for the
recognition experiment and investigate whether distinction
between the direction, dullness, and transition movements is
possible.

Group 16: [pa][pa], [ha][ha]
We investigate whether “[pa][pa]” can be misrecognized

as “[ha][ha]”. This is a task in which dynamic fingerspelling
is misrecognized as transition movements. This experiment
specifically examines whether dynamic fingerspelling is mis-
recognized as “[ha][ha]” or “[pa][pa].” The finger movement
may cause transition movements, which may lead to the
misrecognition of “[pa]” as “[ha][ha].” Therefore, we collect
by collecting “[ha][ha]” and “[pa][pa]” data.

Group 17: [mo][to][mo][to], [to][mo][do][mo]
There is a high possibility that the discrimination between

“[mo]” and “[to]” will be difficult. We investigate whether it
is possible to discriminate between “[to]” and “[mo]” using a
series of fingerspelling tasks where it is possible to discrimi-
nate only one character. It is essential to focus on the speed,
as it may be affected by the person.

Group 18: [ta][ta], [ta][da], [da][da]
We investigate three forms of “[ta][da]” two consecutive

forms, i.e., the alternating forms of “[ta][da]” and “[da]” and
two consecutive forms of “[da].” We investigate whether the
the system can distinguish between “[ta]” and “[da]” as “[ta]”
and “[da]” must each be expressed once. The possibilities of
misrecognizing “[ta][ta]” as “[ta][da]” or “[da][da]” and vice
versa are investigated.

Group 19: [ne][sa][se][ru], [ne][za][sa][se][ru]
The first word contains “[sa]” and the second does “[za].”

The task is to distinguish the difference between transition
movements and dullness and through this experiment, we
investigate whether the system can distinguish between “[sa]”
and “[za][sa].”

Group 20: [he][ya], [pe][ya]
The possibility of misrecognizing “[he][ya]” as “[pe][ya]”

exists. The necessary information on the hand movements
is efficiently obtained by comparing the hand movements of
transitions from “[he]” to “[ya]” and from “[pe]” to “[ya].”
After collecting the data on “[he][ya]” and “[pe][ya],” we
conduct a recognition experiment to determine whether human
factors affect the results.

Group 21: [ko][so][gu], [go][zo][ku], [go][hu][ku],
[ko][bu][ku]

“[go][zo][ku]” can be misidentified as “[ko][bu][ku]”,
“[ko][so][gu]”, or “[go][hu][ku].” We believe that the inclu-
sion of dynamic fingerspelling in the transition movements
complicate the identification of the word as “[so],” “[bu],” or
“[zo].” In this experiment, we investigate if we can discrim-
inate between “[go][zo][ku],” “[ko][bu][ku],” “[ko][so][gu],”
and “[go][hu][ku].”

Group 22: [wa][ro][shi], [wa][nu][shi]
“[wa][nu][shi]” may be misrecognized as “[wa][ro][shi].”

We investigate whether the difference between “[ro]” and
“[nu]” can be correctly identified. In particular, we investigate
the degree of discrimination between the transitions from
“[wa]” to “[ro]” and from “[wa]” to “[nu].”

Group 23: [he][ya][gi], [be][ki]
“[be][ki]” can be misrecognized as “[he][ya][ki].” In this

experiment, we investigate whether “[be][ki]” is misrecognized
as “[he][ya][ki]” by transitioning from “[be]” to “[ki].” We also
consider the effects of different signers.
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TABLE V. JAPANESE FINGERSPELLING COUNT

fingerspelling a i u e o
count 1 6 6 2 1
fingerspelling ka ki ku ke ko
count 3 6 5 1 2
fingerspelling sa shi su se so
count 2 4 5 3 2
fingerspelling ta chi tsu te to
count 2 4 8 1 7
fingerspelling na ni nu ne no
count 1 3 1 2 4
fingerspelling ha hi hu he ho
count 2 3 2 2 1
fingerspelling ma mi mu me mo
count 3 4 2 2 2
fingerspelling ya yu yo
count 5 1 1
fingerspelling ra ri ru re ro
count 1 7 4 2 3
fingerspelling wa wo nn
count 2 1 6
fingerspelling ga gi gu ge go
count 1 2 1 1 2
fingerspelling za ji zu ze zo
count 2 1 1 1 1
fingerspelling da di du de do
count 2 1 1 1 1
fingerspelling ba bi bu be bo
count 1 1 1 1 1
fingerspelling pa pi pu pe po
count 1 1 1 1 2
fingerspelling xya xyu xyo xtsu -[long vowels]
count 1 1 1 1 8

Group 24: [ho][e][ki], [bo][e][ki]
When transitioning from “[ho]” to “[e],” the direction of

the hand changes depending on the person. When “[ho]” ends,
the hand turns to the right to express it. At this time, it may
become “[bo].” In this experiment, we analyze data and video
recordings.

Group 25: [shi][se][i], [ji][ra][i], [shi][ze][i]
We investigate whether the three characters “[se],” “[ra],”

and “[ze]” can be identified. We also investigate transition
movements and dullness.

Group 26: [ka][chi][na][no][ri], [ga][i][su][u]
We investigate whether the system can correctly identify

the differences between “[ka]” and “[ga],” “[chi]” and “[i],”
“[na]” and “[su],” and “[ri]” and “[u].”

Table V shows the number of fingerspellings used for the
64 selected words.

B. Data collection
In the continuous fingerspelling recognition experiment, we

collected data using a video recording of the hand and a sensor
glove to record the bending and movements of the fingers, as
shown in Figure 12. Consequently, we collected data from 33
people (nine people aged 20, 13 aged 21, eight aged 22, two
aged 23, and one aged 24). As described above, there were a
total of 64 words (see Table IV). There were five repetitions
for each word. Eleven dimensions (five for the hand, three for
the acceleration, and three for the gyro data) were used for
each word. The number of samples was 120 sps × 8 s = 960
samples. The time to acquire a word was 8 s. Particularly, the

Figure 12. Data acquisition experiment of continuous Japanese fingerspelling.

Figure 13. Five fingers of “ro-sonn.”

time that the hand was placed on the desk before and after
the word was expressed was 3 s and the time for expressing
the word was 5 s, for a total of 8 s. For the word expression
time in this experiment, we defined the maximum number of
characters in an acquired word to be five, with each character to
be expressed in approximately 1 s. A camera (*1 in Figure 12)
was installed to record finger movements. During the data
collection experiment, the collaborator (*2 in Figure 12) wore
the sensor glove and expressed words displayed on an iPad.
In addition, another camera (*3 in Figure 12) was installed to
record the experiment. These experiments were conducted with
approval from the Tsukuba University of Technology Research
Ethics Committee (approval number: 2020-12)

The acceleration and gyro data collected in the experiment
were used to calculate the angle using the Madgwick filter.
Next, we labeled the data using ELAN software, dividing the
time for each one character. For the two instances in which the
hand left and was placed on the desk, and for the transition
movements between characters, the blank symbol “ϕ” was
inserted. To visualize the flow in a graph, “[ro][-][so][nn]” is
shown as an example in Figures 13–17.
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Figure 14. Accelerations of “ro-sonn.”

Figure 15. Gyros data of “ro-sonn.”

C. Construction of neural network using long short-term mem-
ory (LSTM)

Seven neural networks were constructed for the continuous
fingerspelling recognition experiment. The LSTM [31] struc-
ture can use the short-term memory inside the network for a
long time. LSTMs are often used to identify natural and speech
processing language; they generally achieve high recognition
rates. This experiment compares two networks, one with only
the LSTM, and another with both CNN and LSTM, aiming to
identify fingers, accelerations, gyro movements, and angles.

Figure 18a shows the neural network with the single LSTM
as the baseline. The input data consisted of five dimensions of
the hand, three dimensions of acceleration, three dimensions of
gyro movements, and six dimensions of the angle, for a total of
17 dimensions × 32 samples (4 sps × 8 s). Next, the number of
filters for the LSTM was 32 dimensions. In general, the number
of filters is usually set to 16, 32, or 64 dimensions. Therefore,
in this experiment, the number of filters of the LSTM was set
to 32 dimensions, corresponding to the 77 output dimensions
described below: the number of JF characters was 76, and
the remaining one was “ϕ.” The latter was used to represents

Figure 16. Sine of “ro-sonn.”

Figure 17. Cosine of “ro-sonn.”

three situations: when the hand left the desk, when the hand
was placed on the desk, and when the transition movements
existed between characters.

Figure 18b shows a neural network with two LSTM layers.
In this approach, the results are re-trains the results after
passing through the first LSTM into the second LSTM. The
number of filters in the LSTM was set to 32 dimensions,
corresponding to the 17 dimensions of the hand, acceleration,
gyro, and angle. The input data comprised five dimensions of
the hand, three of the acceleration, three of the gyro, and six
of the angle for a total of 17 dimensions × 32 samples (4 sps
× 8 s). Finally, the data were output using the Dense operation
(77 dimensions), i.e., the 76 JF characters and “ϕ”.

Figure 19 shows a neural network with two CNN layers
and one LSTM layer. First, we input the data and then branch
out into five dimensions × 32 samples (4 sps × 8 s) of the
hand, three of the acceleration (4 sps × 8 s), three of the
gyro (4 sps × 8 s), and six of the angle (4 sps × 8 s). After
passing through the CNN (32 to 64 filters), these data were
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(a) One LSTM neural network

(b) Two LSTM neural network

Figure 18. Two types of LSTM neural networks.

Figure 19. CNN-CNN-LSTM-unit neural network.

transformed to accommodate the Dense operation (32 nodes).
Then, after passing through the LSTM (three nodes), they were
combined. Finally, a Dense operation (77 nodes) corresponding
to the number of characters (“ϕ” and the 76 JF characters) was
applied to produce the output.

Compared to Figure 19, Figure 20 presents a different
neural network in which the LSTM is added. The LSTM
is interposed after combining the four datasets of the hand,
acceleration, gyro, and angle, the LSTM is interposed. After
inputting the data, we branched out into five dimensions × 32
samples of the hand (4 sps × 8 s), three of the acceleration
(4 sps × 8 s), three of the gyro (4 sps × 8 s), and six of
angle (4 sps × 8 s). These data were transformed after passing
through the CNN (32 to 64 filters) to accommodate the Dense

Figure 20. CNN-CNN-unit-LSTM neural network.

operation (32 nodes). They were then combined, and after
passing through the LSTM (32 nodes), Dense operations (77
nodes) corresponding to “ϕ” and the number of characters in
the JF were applied to produce the output.

Figure 21 shows the neural network with an additional
LSTM for the finger, acceleration, gyro, and angle data. This
re-trains the results after passing the first LSTM into the second
LSTM. After inputting the data, we split the data into five
dimensions × 32 samples (4 sps × 8 s of the hand, three of the
acceleration (4 sps × 8 s), three of the gyro (4 sps × 8 s), and
six of the angle (4 sps × 8 s). After passing through the CNN
(32 to 64 filters), these data were transformed to accommodate
the Dense operation (32 nodes). Then, after passing through
the two LSTM layers (32 nodes), they were combined. Finally,
a Dense operation (77 nodes) corresponding to the number of
characters (“ϕ” and the JF characters) was applied to produce
the output.

Figure 22 shows the neural network after combining the
hand, acceleration, gyro, and angle data with another LSTM.
First, after inputting the data, the five dimensions of hand and
finger are split into 32 samples (4 sps × 8 s), three dimensions
of the acceleration (4 sps × 8 s), three of the gyro (4 sps ×
8 s), and six of the angle (4 sample/s × 8 s). These data
were transformed after passing through the CNN (32 to 64
filters) to accommodate the Dense operation (32 nodes). They
were then combined, and after passing through the two LSTM
layers (32 nodes), Dense operations (77 nodes) corresponding
to the number of characters in “ϕ” and the JF were applied to
produce the output.

Figure 23 shows a neural network with one LSTM before
and after merging. The LTSM before merging learns the results
for the fingers, acceleration, gyro, and angle, after passing
through the CNN. The LSTM after merging learns the results
after merging the hand, acceleration, gyro, and angle datasets.
First, the data ware input; then the network branched into 32
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Figure 21. CNN-CNN-LSTM-LSTM-unit neural network.

Figure 22. CNN-CNN-unit-LSTM-LSTM neural network.

samples of the five dimensions of the hand (4 sps × 8 s),
three of the acceleration (4 sps × 8 s), three of the gyro (4 sps
× 8 s), and six of the angle (4 sps × 8 s). These data were
transformed after passing through the CNN (32 to 64 filters)
to accommodate the Dense operation (32 nodes). Then, after
passing through the LSTM (32 nodes), they were combined.
Finally, after passing through another LSTM (32 nodes), a
Dense operation (77 nodes) corresponding to the number of

Figure 23. CNN-CNN-LSTM-unit-LSTM neural network.

Figure 24. CNN-CNN-LSTM-unit-LSTM neural network.

characters (“ϕ” and the JF characters) was applied to produce
the output.

D. Evaluation experiments
We conducted evaluation experiments for each of the seven

neural networks constructed in Figures 18a–23. The input data
was shuffled and then divided into two parts, i.e., training and
test data, using 10-fold cross-validation (see Figure 24).

E. Results and discussion
As shown in Table VI, the accuracy rates of the six neural

networks, except for the one with the LSTM (one layer),
are above 90%. Comparing the neural network with the two
LSTM layers before merging to the neural network with the
two LSTM layers after merging, the accuracy of the latter is
approximately 1% higher than that of the former. In terms of
good fit and recall, and the neural network with both a CNN
and LSTM obtains an approximately 90% better performance
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TABLE VI. SEVEN NEURAL NETWORKS EXPERIMENT RESULTS.

Neural network Learning Validation
data (%) data (%)

one LSTM 91.4 90.1
two LSTM 92.5 90.3

branch-CNN-CNN-LSTM-unit 95.1 91.7
branch-CNN-CNN-unit-LSTM 94.0 91.8

branch-CNN-CNN-LSTM-LSTM-unit 96.5 91.3
branch-CNN-CNN-unit-LSTM-LSTM 94.7 92.1
branch-CNN-CNN-LSTM-unit-LSTM 95.2 91.6

TABLE VII. FIVE-FOLD CROSS-VALIDATION RESULTS.

k Learning data (%) Validation data (%)
1 95.0 92.4
2 94.7 92.0
3 94.9 92.4
4 94.5 91.8
5 94.4 91.8

Average 94.7 92.1

than the neural network with only one LSTM. That is, the
neural network using both a CNN and LSTM has a higher
accuracy rate. The higher accuracy may be owing to have been
obtained because of the branching of the fingers, acceleration,
gyro, and angle datasets and the detection of the feature points
from the input data using CNNs. Therefore, we analyze the
branch→Conv2D→Conv2D→conjoin→LSTM→LSTM neu-
ral network (see Figure 22) with the highest accuracy among
the seven neural networks. Table VII summarizes the results
of the five-fold cross-validation recognition experiments.

In this experiment, macro-averages are obtained for multi-
class classification. Precision and recall are calculated using
true positive (TP), false positive (FP), and false negative (FN)
as shown below. The F-measure is the harmonic mean of the
two values.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Fmeasure =
2 ∗ Precision ∗Recall

Precision+Recall
(6)

Table VIII shows that the precision, recall, F-measure
for macro-averages, and F-measure for micro-averages were
67.8%, 62.3%, 64.7%, and 92.1%, respectively. Table X shows
the fingerspellings ranked as ordered from the smallest F-
measure. The precision for “ϕ” is 95.6%, the recall is 96.6%,
and the F-measure is 96.1%, i.e., relatively high value. “ϕ”
may have been misrecognized as “[te]” while the fingers were
motionless during data collection. The F value (35.1%) is the
smallest for “[te]” among the 77 types of data. The precision is
43.1%, and the recall is 29.6%. We confirmed that “[te]” was
mistaken as “[de],” “[wa],” and “ϕ” using a confusion matrix.

The F-measure of “[ho]” is 38.5%. We confirmed that
“[ho]” is included in “[bo]” and “[po]” using a confusion
matrix. “[ho]” is expressed with the front of the hand forward,

TABLE VIII. MACRO-AVERAGE AND MICRO-AVERAGE

macro micro
‘ Precision(%) Recall(%) F-measure(%) F-measure(%)

67.8 62.3 64.7 92.1

and the space between the five fingers close together. For
“[bo]”, right-handed users move their fingers to the right, and
left-handed users to the left after expressing “[ho].” “[po]” is
expressed by fingers moving upward after expressing “[ho].”
The misrecognition of “[ho]” as two characters, “[bo]” and
“[po],” owes to the similarities in hand movement.

The F-measure of “[chi]” is 41.4%. The confusion matrix
confirms that “[chi]” is included in “[di],” “[tsu],” “[du],” and
“[xtsu].” The “[chi]” is expressed with the thumb touching the
index, middle, and ring fingers and the little finger extended.
For “[di],” right-handed users move their hand to the right,
and left-handed users to the left, after expressing “[chi]”.
The differences in hand movement cause misrecognition. The
misrecognition of “[tsu],” “[du],” and “[xtsu]” is caused by the
ring finger being extended for “[chi]” or not.

The F-measure of “[pe]” is 45.9%. “[pe]” is included in
“[he]” and “[be],” as confirmed using a confusion matrix.
“[he]” is expressed with fingers pointed downward, with the
thumb and little finger extended and the other three fingers
flexed. “[pe]” is expressed with the fingers moving upward
after expressing “[he].” To express “[be],” right-handed users
move their fingers to the right, and left-handed users to the
left, after expressing “[he].” “[pe]” is misrecognized as two
characters, “[he]” and “[be]”, because the first parts of “[pe]”
and “[be]” are expressed the same as “[he],” resulting in
misrecognition owing to the similarities in hand movements.

The F-measure of “[du]” is 46.2%, and the confusion
matrix confirms “[du]” is included in “[tsu]” and “[di].” “[tsu]”
is expressed with the thumb touching the index and middle
fingers and the ring and little fingers extended. Right-handed
users express “[du]” by moving their fingers to the right, and
left-handed users to the left, after expressing “[tsu].” “[du]” is
misrecognized as “[tsu]” owing to movement similarities.

The F-measure of “[xyo]” is 77.9%. A confusion matrix
confirms that “[yo]” is included in “[yo].” For “[yo],” only
the thumb is flexed, and the other four fingers are extended.
Therefore, the misrecognition of “[xyo]” as “[yo]” is caused
by hand movement problems.

The F-measure of “[nn]” is 79.1%. We confirmed that
“[nn]” is included in “[so]” and “[-](long vowel)” using a
confusion matrix. For “[nn]”, the index finger is extended to
express a writing image, such as “[nn]” in katakana. “[so]”
is expressed with the index finger extended downward and
slightly diagonal. The misrecognition of “[nn]” as “[so]” is
caused by the similarities in hand movement. T he “[-]” sound
is represented by the index finger extending and moving up
and down. “[nn]” is misrecognized as a “[-]” because the
movement required to express “[nn]” halfway resembles the
movement required to express “(-)”.

The F-measure of “[mu]” is 80.2%. A confusion matrix
confirms that “[mu]” is included in “[ku],” using a confusion
matrix. “[mu]” is expressed with the thumb and index finger
extended. “[ku]” is expressed with all five fingers extended
and in close contact (excepting the thumb). “[mu]” is misrec-
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Figure 25. Recognition time series of “gohuku.”

TABLE IX. “gohuku” accuracy(%)

sample 9 10 11 14 15 16 18 19 20
ko 69.0 13.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0
go 3.9 77.0 83.0 0.0 0.0 0.0 0.0 0.0 0.0
hu 0.0 0.0 0.0 19.0 84.0 1.8 0.0 0.0 0.0
bu 0.0 0.0 0.0 1.0 1.0 22.0 0.0 0.0 0.0
ku 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.0 90.0
phi 19.0 7.5 14.0 79.0 12.0 76.0 95.0 32.0 9.3

ognized as “[ku]” owing to the positions of the middle, ring,
and little fingers.

The F-measure of “[mi]” is 82.0%, i.e., the highest among
the 76 characters other than “ϕ”. The confusion matrix con-
firms that “[mi]” is included in “[shi].” The “[mi]” character is
expressed with the index, middle, and ring fingers extended to
the left for right-handed users and to the right for left-handed
users. The index and middle fingers are extended to express
“[shi]” with the right-handed fingers pointing left and left-
handed fingers right. The misrecognition of “[mi]” as “[shi]”
is caused by the position of the thumb and ring finger.

As an example of a problem in hand movement, we
take the word “[go][hu][ku].” When users attempt to express
“[go],” they may first express “[ko],” and we assume that it

is recognized correctly. As an example, the recognition result
of “[go][hu][ku]” is shown in the Figure 25. In addition,
Table IX shows accuracy rate (unit: %) for each sample of
“[go][hu][ku].” In this case, the user expression of the word
“[go]” first expresses “[ko]” using static fingerspelling, and
then performs an action. That is, the first movement of “[go]”
is regarded as a static fingerspelling and become “[ko][go].”
To recognize “[go]” clearly, specifying the range of time from
when the finger begins moving after expressing “[ko]” to when
the movement ends is necessary. In addition, it is necessary to
insert a new transition movement between “[ko]” and “[go].”

V. CONCLUSIONS AND FUTURE WORK

In this study, to realize smooth communication between
DHH and hearing people, we adapted a lightweight sensor
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TABLE X. FINGERSPELLING RANK FROM THE LEAST F-MEASURE

Rank JF Data Precision(%) Recall(%) F-measure(%)
1 te 159 43.1 29.6 35.1
2 ho 182 41.7 35.7 38.5
3 chi 676 43.9 39.2 41.4
4 pe 245 58.1 38.0 45.9
5 du 255 47.3 45.1 46.2
6 ko 360 55.5 44.7 49.5
7 di 259 53.0 47.1 49.9
8 pi 241 63.8 42.3 50.9
9 ji 256 65.1 42.2 51.2
10 so 338 55.7 47.3 51.2
11 ga 261 54.7 48.7 51.5
12 bo 252 60.6 48.8 54.1
13 ka 555 57.0 52.3 54.5
14 tsu 1801 58.7 51.5 54.8
15 ne 356 60.8 50.6 55.1
16 hu 367 56.1 55.3 55.7
17 ni 546 54.7 58.4 56.5
18 ro 509 61.9 52.7 56.9
19 ha 639 60.6 53.7 56.9
20 he 394 56.0 58.1 57.0
21 pu 242 62.1 52.9 57.1
22 hi 553 57.2 57.7 57.4
23 me 328 63.5 53.7 58.2
24 pa 437 65.9 52.6 58.5
25 xtsu 701 65.2 53.4 58.7
26 po 485 63.8 51.3 58.8
27 wo 273 63.6 56.4 59.8
28 wa 382 61.7 60.2 60.9
29 o 264 66.8 58.0 62.1
30 na 154 60.5 65.6 62.9
31 ra 189 70.6 57.1 63.2
32 su 1082 63.6 63.1 63.4
33 nu 201 70.3 57.7 63.4
34 ma 543 62.6 65.7 64.2
35 shi 863 67.2 61.4 64.2
36 de 222 70.9 60.4 65.2
37 bi 244 70.0 61.1 65.2
38 zo 248 66.0 64.9 65.4
39 go 516 67.1 64.5 65.8
40 ru 1305 65.2 67.1 66.1
41 a 170 70.4 62.9 66.5
42 ta 606 72.9 61.6 66.7
43 xya 268 69.5 64.6 66.9
44 sa 387 68.8 65.4 67.0
45 se 563 68.0 67.3 67.7
46 yu 195 70.6 65.1 67.7
47 e 365 68.3 67.4 67.9
48 ke 168 67.8 69.0 68.4
49 ba 260 68.5 68.5 68.5
50 gu 284 72.8 66.9 69.7
51 bu 260 77.5 63.5 69.8
52 yo 188 73.2 69.7 71.4
53 da 761 72.5 70.8 71.7
54 be 207 76.5 67.6 71.8
55 xyu 488 75.3 69.5 72.3
56 mo 847 75.3 69.8 72.4
57 ze 260 75.8 70.0 72.8
58 ya 1195 74.8 73.8 74.3
59 no 976 75.9 72.8 74.3
60 ki 1374 75.6 73.1 74.3
61 zu 275 76.5 72.4 74.4
62 u 1884 75.8 73.0 74.4
63 re 353 74.3 75.4 74.8
64 za 473 79.5 71.5 75.3
65 do 259 78.9 72.2 75.4
66 ge 228 80.8 71.9 76.1
67 to 1738 78.2 74.3 76.2
68 gi 550 76.2 76.7 76.4
69 i 1428 77.3 76.3 76.8
70 -(long vowel) 2115 75.4 79.0 77.1
71 ri 1890 79.3 76.3 77.8
72 xyo 259 782.2 77.6 77.9
73 ku 1263 79.4 77.7 78.5
74 nn 2878 81.7 76.6 79.1
75 mu 494 80.7 79.8 80.2
76 mi 1021 82.7 81.6 82.0
77 phi 252947 95.6 96.6 96.1

glove, developed an effective CNN model, implemented a
JF recognition system, and evaluated the performance of the
developed system. JF data collection experiments with 20
participants and 76 target JF characters were repeated five
times. Data were acquired at 200 sps for 11 input dimensions.
Angle data were transformed by applying a Madgwick filter to
gyro readings and were converted into sine and cosine spaces,
thereby increasing the total number of input dimensions to 17.
However, the data acquired at 200 sps contained various issues,
such as noisy signals. To solve this problem, we calculated the
moving averages to reduce the frequency to 4 sps. Finally, a 20-
fold cross-validation evaluation was conducted. The average
recognition rate was approximately 70.0%, and the maximum
recognition rate was approximately 75.5%. We determined that
the variance in the flexion and direction of the fingers was a
significant cause of misrecognition.

We then described the results of the continuous finger-
spelling recognition experiment. In daily life, finger flexion,
extensions, hand directions, and movements vary considerably
among people learning sign language, people using ESJ, and
people using JSL. Therefore, we proposed a dataset to exploit
the characteristics of JF and selected 64 words. Then, we
conducted a data collection experiment. For each of the 64
words, 11 dimensions (hand: five dimensions, acceleration:
three dimensions, gyro: three dimensions) were input for
eight s (120 sps × 8 s = 960 samples). The data and
video collections were repeated five times. Then, using the
acceleration and gyro data, the angles (three dimensions) were
calculated using the Madgwick filter and converted to sine and
cosine values. Six dimensions were added, bringing the total
number of dimensions to 17, including those of the fingers
(five dimensions) and accelerations and gyro (six dimensions).
Next, the data was reduced by setting the average to 32
samples (4 sps × 8 s). Finally, a discrimination experiment
was conducted. We compared two neural networks, one with
only an LSTM and another with both CNN and LSTM.
For the neural network using both CNN and LSTM, the
evaluation experiment was conducted by splitting the hand,
acceleration, gyro, and angle data, and passing each through
the neural network. Consequently, micro F-measure of 92.1%
was obtained for the neural network using the CNN and LSTM.
Although we solved the calibration problem, a hand adhesion
issue remained. Furthermore, distinguishing between static and
dynamic fingerspelling based on hand motion became difficult.

Thus, this system had two main problems: hand-finger
adhesion and distinguishing between static and dynamic fin-
gerspellings. In the continuous fingerspelling recognition ex-
periment, the accuracy rate of the finger characters decreased
owing to the large number of instances “ϕ”. To obtain a
high discrimination rate in fingerspelling recognition, we must
expand the data on fingerspellings and collect more data. The
amount of data for “ϕ” is considerably larger than that of
the 76 characters of JF; more data facilitate distinguishing
between static and dynamic fingerspelling. Distinguishing be-
tween “[ko]” and “[go]” became particularly difficult; thus,
we must contemplate constructing a system that considers any
hand movement as a dynamic fingerspelling. The issue is also
occurred in the single fingerspelling recognition experiments,
e.g., distinguishing “[te]” from “[u],” “[te]” from “[tsu],” “[te]”
from “[ru],” and “[te]” from “[wa].”

To further develop sign language recognition systems, three
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issues must be addressed. First, a large amount of speech data
exists but with insufficient sign language data. To improve
the accuracy rates using deep learning, collecting more sign
language data is necessary. Second, preparing data on JSL
is also necessary. In daily life, variations in finger flexion,
hand directions, and hand movements occur among people.
In addition, we must develop a learning model suitable for
JSL. A multimodal approach, concerning JSL, addresses the
first issue by inputting different types of information such as
finger flexion, hand directions, hand movements, and facial
expressions to improve recognition. JSL uses fingers, hand
directions, and hand movements as well as the upper body,
head, face, and mouth to express. Therefore, constructing a
suitable language model for JSL is necessary. We plan to
development of a sign language recognition system able to
address these three issues.

VI. ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber #19K11411 and the Promotional Projects for Advanced
Education and Research in NTUT. We would like to thank
Editage (www.editage.com) for English language editing.

REFERENCES

[1] T. Tsuchiya, A. Shitara, F. Yoneyama, N. Kato, and Y. Shiraishi,
“Sensor glove approach for japanese fingerspelling recognition system
using convolutional neural networks,” in Proceedings of The Thirteenth
International Conference on Advances in Computer-Human Interactions
(ACHI 2020), 2020, pp. 152–157.

[2] “UDtalk,” 2015, URL: https://udtalk.jp/ [retrieved: December, 2022].
[3] “KoeTra,” 2015, URL: https://www.koetra.jp/en/ [retrieved: December,

2022].
[4] “speech-to-text,” 2019, URL: https://cloud.google.com/speech-to-text

[retrieved: December, 2022].
[5] S. Gattupalli, A. Ghaderi, and V. Athitsos, “Evaluation of deep learning

based pose estimation for sign language recognition,” in Proceedings
of the 9th ACM International Conference on PErvasive Technologies
Related to Assistive Environments, 2016, pp. 1–7.

[6] M. A. Jalal, R. Chen, R. K. Moore, and L. Mihaylova, “American
sign language posture understanding with deep neural networks,” in
2018 21st International Conference on Information Fusion (FUSION).
New York, NY, USA: IEEE (Institute of Electrical and Electronics
Engineers), July 2018, pp. 573–579.

[7] G. Luzhnica, J. Simon, E. Lex, and V. Pammer, “A sliding window
approach to natural hand gesture recognition using a custom data glove,”
in 2016 IEEE Symposium on 3D User Interfaces (3DUI). New York,
NY, USA: IEEE (Institute of Electrical and Electronics Engineers),
March 2016, pp. 81–90.

[8] K. Murakami and H. Taguchi, “Gesture recognition using recurrent
neural networks,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 1991, pp. 237–242.

[9] N. Mukai, N. Harada, and Y. Chang, “Japanese fingerspelling recog-
nition based on classification tree and machine learning,” in 2017
Nicograph International (NicoInt). New York, NY, USA: IEEE
(Institute of Electrical and Electronics Engineers), June 2017, pp. 19–
24.

[10] H. Hosoe, S. Sako, and B. Kwolek, “Recognition of jsl finger spelling
using convolutional neural networks,” 05 2017, pp. 85–88.

[11] M. E. Cabrera, J. M. Bogado, L. Fermin, R. Acuna, and D. Ralev,
“Glove-based gesture recognition system,” in Adaptive Mobile
Robotics. World Scientific, 2012, pp. 747–753.

[12] C. K. Mummadi, F. P. P. Leo, K. D. Verma, S. Kasireddy, P. M.
Scholl, and K. Van Laerhoven, “Real-time embedded recognition
of sign language alphabet fingerspelling in an imu-based glove,”
in Proceedings of the 4th International Workshop on Sensor-Based
Activity Recognition and Interaction, ser. iWOAR ’17. New York,

NY, USA: Association for Computing Machinery, 2017, pp. 1–6.
[Online]. Available: https://doi.org/10.1145/3134230.3134236

[13] R. Takada, J. Kadomoto, and B. Shizuki, “A sensing technique for data
glove using conductive fiber,” in Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems, ser. CHI EA ’19.
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 1–4. [Online]. Available: https://doi.org/10.1145/3290607.3313260

[14] M. Kondo, N. Kato, K. Fukui, and A. Okazaki, “Development and
evaluation of an interactive training system for both static and dynamic
fingerspelling using depth image,” IEICE technical report, vol. 114, no.
512, 2015, pp. 23–28, (in Japanese).

[15] “5DT Data Glove 5 Ultra,” 2019, URL: https://5dt.com/ [retrieved:
December, 2022].

[16] N. M. Kakoty and M. D. Sharma, “Recognition of sign language
alphabets and numbers based on hand kinematics using a data glove,”
Procedia Computer Science, vol. 133, 2018, pp. 55–62.

[17] T.-W. Chong and B.-J. Kim, “American sign language recognition
system using wearable sensors with deep learning approach,” The
Journal of the Korea Institute of Electronic Communication Sciences,
vol. 15, no. 2, 2020, pp. 291–298.

[18] X. Yu, S. Liu, W. Fang, and Y. Zhang, “Research and discovery of smart
dumb gloves,” in Journal of Physics: Conference Series, vol. 1865, no. 4.
IOP Publishing, 2021, p. 042054.

[19] O. Glauser, S. Wu, D. Panozzo, O. Hilliges, and O. Sorkine-Hornung,
“Interactive hand pose estimation using a stretch-sensing soft glove,”
ACM Transactions on Graphics (TOG), vol. 38, no. 4, 2019, pp. 1–15.

[20] H. Zhou, W. Zhou, Y. Zhou, and H. Li, “Spatial-temporal multi-cue
network for continuous sign language recognition,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020,
pp. 13 009–13 016.

[21] “PWTH-PHOENIX-Weather 2014-T),” 2019, URL: https://www-
i6.informatik.rwth-aachen.de/ koller/RWTH-PHOENIX-2014-T/ [re-
trieved: December, 2022].

[22] B. Shi, A. M. D. Rio, J. Keane, D. Brentari, G. Shakhnarovich, and
K. Livescu, “Fingerspelling recognition in the wild with iterative visual
attention,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019.

[23] “Chicago Fingerspelling in the Wild Data Sets
(ChicagoFSWild, ChicagoFSWild+),” 2019, URL:
https://home.ttic.edu/ klivescu/ChicagoFSWild [retrieved: December,
2022].

[24] D. Bragg, O. Koller, N. Caselli, and W. Thies, “Exploring collection of
sign language datasets: Privacy, participation, and model performance,”
in The 22nd International ACM SIGACCESS Conference on
Computers and Accessibility, ser. ASSETS ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3373625.3417024

[25] “TensorFlow,” 2019, URL: https://www.tensorflow.org [retrieved: De-
cember, 2022].

[26] “scikit-learn,” 2019, URL: https://scikit-learn.org/stable/index.html [re-
trieved: December, 2022].

[27] G. Hinton, N. Srivastava, and K. Swersky, “Lecture 6e-rmsprop: Divide
the gradient by a running average of its recent magnitude. cousera neural
networks machine learning, 2012.”

[28] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation
of imu and marg orientation using a gradient descent algorithm,” in 2011
IEEE International Conference on Rehabilitation Robotics. New York,
NY, USA: IEEE (Institute of Electrical and Electronics Engineers), June
2011, pp. 1–7.

[29] E. Bisong, “Google colaboratory,” in Building Machine Learning and
Deep Learning Models on Google Cloud Platform. Springer, 2019,
pp. 59–64.

[30] K. Kazama, Y. Horiuchi, S. Masayoshi, and S. Kuroiwa, “Continuous
finger spelling recognition using kinect based on linguistic informa-
tion,” IEICE technical report, vol. 117, no. 502, 2018, pp. 83–88, (in
Japanese).

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, 1997, pp. 1735–1780.

70

International Journal on Advances in Life Sciences, vol 14 no 3 & 4, year 2022, http://www.iariajournals.org/life_sciences/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


