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Abstract—Kinship Recognition, the ability to distinguish be-
tween close genetic kin and non-kin, could be of great help in
society and safety matters. Previous studies on human kinship
recognition found interesting insights when looking for the most
important features. Results showed that analyzing only the top
half of a face gives equal or even better performance compared
to analyzing the whole face. In this paper, we aim to find the
important features for automated kinship recognition based on
the theory of human kinship recognition; this set of features
was researched using features from pre-trained metrics from the
StyleGAN2 model. Three different experiments were performed
focusing on different aspects of facial features. We found that
the most important facial features from the selection of 40
features are mostly focused on the facial hair traits. Furthermore,
age-related features were found to be very important. This set
of features does not entirely comply with the set of features
important in human kinship recognition. Previous research has
shown human kinship recognition performance does not decrease
when removing the bottom half of the image of the face. In
contrast, our results show that for automated kinship recognition,
removing either the bottom or the top half of a face results
in a decrease in the performance of our classifiers. Moreover,
only using a selection of facial features corresponding with the
important features in human kinship recognition did not prove
to be sufficient for the task of Kinship Recognition.

Keywords—kinship recognition; StyleGAN2; Families-in-the-
Wild; feature importance; transfer learning.

I. INTRODUCTION

This work is an extension on our previous research in [1]
on the importance of facial features in Kinship Recognition.

A. Kinship Recognition

One of the fields in artificial intelligence that is currently of
great interest is computer vision. Computer vision is defined
as the study domain that revolves around techniques developed
to automate seeing and understanding the contents of digital
images such as photographs and videos by computers [2]. This
new field started to emerge around the 1960s [3]. However,
projects such as getting a computer to describe what it saw via
a linked camera, proved much more complex than first thought
[4]. Computer vision began to rise after a couple of decades, as
the internet advanced and, therefore, access to data improved.
At that time (the 80s and 90s), it was facial recognition that
grew to be more promising. Subsequently, with the boost of

the internet and following later social media, we came as far
as Facebook using face recognition every day [5]. One of the
subjects that keeps computer vision attractive today is face
recognition. From unlocking your phone using your face to
automated passport checking at an airport, face recognition is
used more often than we realize.

The subject of kinship recognition (KR) is fairly new
within face recognition. Kinship recognition is the ability
to distinguish between close genetic kin and non-kin. The
distinction involves people who are directly related and people
who are not. One example of the usage of KR is of families
who are spread throughout multiple refugee camps. One of
these cases involved a father and his daughter being in one
camp, while his wife and other children were in another camp.
It took them over a year to get reunited by the Red Cross
Restoring Family Links [6]. Even with an organization on
these reunion cases, it still takes them a considerable amount
of time to solve the problem. If a KR system were able to
pick them out as a possible match for a kinship relation,
it could be of great help. Upon request, a picture could be
taken of a refugee and put in a database. This database could
then check for kinship relations with other refugees in the
same database. If a missing person is registered in a camp,
a kinship relation could be detected instantly this way. They
would be reunited much faster and more efficiently. Issues
such as communication and limited manpower could also be
reduced with the discussed automation.

Another example of the usage of KR is focused on safety
measures. Imagine a situation where a terrorist is not in the
system. No information can be found on them, only an image
of their face is accessible. KR systems could try to match
possible family members that are in the system of known
suspects. This could lead to finding the terrorist sooner or to
finding their accomplices. Like this, there are more situations
where automated KR would be really helpful. With the reality
of these problems, KR can bring families together and provide
more safety.

The main contribution of this paper is to make a first step
towards understanding automated KR and the importance of
facial features in it. In the field of KR, there is a lot of room for
improvement, especially on the importance of facial features.
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In our research, we tackled whether kinship is recognizable
by using a set of extracted facial features with the use of
machine learning. Specifically, we focus on what specific set
of features is important for automated KR and if this set of
features complies with the set of features important in human
KR. First presented in this paper is a literature discussion
on human as well as automated KR. We then discuss the
data in Section II. In Section III, an overview of the used
models is presented. Next, we discuss the results of different
experiments in Section IV. Lastly, a discussion and conclusion
of the presented experiments are given in Sections V and VI.

B. Related work

1) Kinship Versus Look-alike: In various researches, which
we will discuss later, it has been shown that automated KR
is possible to a certain degree. The main question we are
left with is how we would separate the classification of two
family members from two people that look alike [7], [8]. On
one side, two people could be unrelated but their faces as
a whole could look alike. If their facial features would be
extracted and compared, the features would probably not have
high similarity [9]. They have lower inter-class variations.
Inter-personal variations refer to the differences in race or
genetics. This includes variations such as eye color and the
shape of a nose, features that are not possible to be (easily)
changed. On the other side, intra-personal variations refer to
variations in features that are easily changed, such as hair,
facial accessories, cosmetics, pose and illumination [8]. Their
face looks similar due to these intra-personal variations. With
this information, we expect each feature separately to not show
significant similarities. For example, having a close look at the
shape of their nose, it is considerably different from the shape
of the other person’s nose. The intra-class similarity is higher
and the inter-class variation is lower for the two individuals
of this example [8].

On the other side, there are two people that are related, a
daughter and father for example. They do not necessarily look
alike since they differ in age and sex. They are in general
not seen as lookalikes. However, when looking at their facial
features, most of the time you would see that there is a high
similarity for some features, whereas other features would not
be similar at all [10]. An example of this is a father and
daughter who have a nose and mouth that are very similar.
However, their faces as a whole do not look alike, because the
rest of their facial features are not similar at all. This would be
due to the heredity in kinship, as not all traits inherited from
a parent to a child are reflected in the child’s appearance.

2) Human Kinship Recognition: Studies on human KR
contribute to our search for the set of important features in au-
tomated KR. Several studies [11]–[13] have been conducted on
human KR, which showed that kinship is indeed recognizable
by humans. Robinson et al. [14] used the Families-In-the-Wild
(FIW) data set for their human performance measurement.
This data set contains images of people’s faces that are
extracted from family pictures. In total, the data set consists
of 656, 954 pairs of images that show a kinship relation.

Robinson et al. state that humans scored an overall average of
56.6% accuracy. In this experiment, two pictures were shown
and a binary classification was performed between related by
kinship and unrelated. Other research on KR [11], [12], [15],
[16] shows similar results. The results from Lu et al. [14] are
shown in Table I. They performed two different experiments
to test human KR. The test group is split up into group A and
B. Group A was only shown a cropped face region, whereas
group B was shown the whole original color images. Group
A intends to test kinship verification purely based on face,
while group B intends to test kinship verification based on
multiple cues including face, hair, skin color, and background
[14]. Their results show that the average accuracy of human
KR is higher when face, hair color, and background are taken
into account compared to when the focus is purely on the face.

TABLE I. RESULTS OF THE TWO EXPERIMENTS ON HUMAN
KINSHIP RECOGNITION FOCUSED ON FOUR KINSHIP TYPES BY

LU ET AL. [14]. THE NUMBERS REPRESENT THE ACCURACY AND
THE DIFFERENT COLUMNS REPRESENT THE KINSHIP RELATIONS
FATHER AND SON (F-S), FATHER AND DAUGHTER (F-D), MOTHER

AND SON (M-S), AND MOTHER AND DAUGHTER (M-D).

Method F-S F-D M-S M-D Mean

HumanA 61.00 58.00 66.00 70.00 63.75
HumanB 67.00 65.00 75.00 77.00 71.00

We take a look at the Feature Importance (FI) in some of
these studies on human kinship detection. The reason behind
this specific set of features for human KR might be of help in
automated KR. One of the studies is by Martello and Maloney
[11], [12], who raised the question which parts of a face are
most important for human KR. In [11], a study is conducted in
which humans were tested on their KR skills based on three
separate conditions: (1) the right hemi-face masked, (2) the
left hemi-face masked, and (3) the face fully visible. Most
interestingly, the results showed that there is no significant
difference in results for recognizing kinship by humans when
the left or right part of the face is covered. On the contrary,
a similar study [12] showed that the covering of the top or
bottom part of a face does give a significant difference. The
effect on kin recognition performance of masks that covered
the upper half or the lower half of the face (experiment 1)
and the eye region or the mouth region (experiment 2) were
measured. An example of the covering up of facial parts for
experiments 1 and 2 can be seen in Figures 1a and 1b below.

In these experiments, it was found that masking the eye
region led to a 20% reduction in performance whereas masking
the mouth region did not yield a significant difference in
performance. This leads us to consider the theory that the
performance in KR is dependent on only the upper half of
a person’s face. Curious is to see how this theory could be
used in automated KR. Another discovery is that the eye
region contains only slightly more information about kinship
than the upper half of the face outside of the eye region.
Moreover, the theory is discussed that splitting up face images
in different patches can improve the ability of humans to
recognize kinship. This would be caused by the mouth area
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(a) Experiment 1: Masking the
bottom and top half of the face

(b) Experiment 2: Masking the
eye area and lip area of the face

Figure 1. Illustration of the masking of faces in [12].

(i.e., the bottom half of the face) containing lesser kinship
features as it is subjected to considerable changes during
development [17]. The lower face does not reach its final form
until early adulthood [18]. Consequently, this area has fewer
stable cues to relatedness. Another view discussed [17] is that
environmental effects have little influence on the detection of
kinship using facial similarities. This indicates that genetically
irrelevant facial information is ignored when human KR is
performed.

Overall, the theory that we researched is based on the
change in performance when using a specific set of facial
features compared to facial features from the whole face. The
theory implies that there is a mere necessity of these facial
features for KR. These are the features that are located in
the upper half of the face, which could lead to only requiring
specific parts of faces to identify kinship relations. This could
lead to more accessible data since only parts of faces are also
sufficient for extracting the important features. Moreover, it
could decrease the computational cost of KR models.

3) Automated Kinship Recognition: For automated KR,
several approaches have been proposed. Most approaches
are not only focused on machine learning models, but also
on feature selection. Feature-based methods aim to preserve
facial, genetically determined characteristics in the feature
descriptors used for the model. These methods identify local
facial features such as inconsistencies in an individual’s eyes,
mouth, nose and skin from the individual’s image. Feature-
based methods can decrease computational costs and improve
model performance. Most of the proposed models and algo-
rithms were only trained on small data sets.

These are data sets like KinFaceW [14], [19] where only
four types of kinship relations were given on a handmade data
set of around 150 images [20]. Another data set in the field of
KR is TSKinFace (Tri-Subjects Kinship Face Database). This
data set has been used in some studies [21], [22], but also
proved to be too small. These data sets demonstrated to be in-
sufficient for the task at hand. Most of the proposed classifiers
are lower-level models and algorithms which use handcrafted

feature extraction (features using information presented in the
image itself), Support Vector Machines or K-Nearest Neighbor
classifier.

Since 2016, a more extensive data set has been constructed
in [13]: Families-in-the-Wild (FIW). This data set has been
produced to verify kinship and classify relations [23]. The
creators of this data set specify promising results in detecting
kinship. Robinson et al. [14] state the best results were
obtained when using the SphereFace model with an average
accuracy of 69.18% and standard deviation of 3.68. All models
performed well compared to previous work, although much
improvement could still be made.

After publishing the FIW data set, more research in the field
of KR models was done. Many models in KR include the use
of FaceNet or other small feature selections for their models’
input [24]. FaceNet is a neural network that extracts features
of an image. The model provides a mapping from a picture
of a face to the Euclidean space. The distances in this space
correlate to the amplitude of face resemblance [25]. It produces
an output vector to be used as input for a classification model.
FaceNet creates embeddings by learning the mapping from
images. A disadvantage of using FaceNet is that especially
when looking at FI, information gets lost due to lack of feature
interpretation [26]. FaceNet could help improve KR models,
although we are interested in the similarities between faces by
using facial features instead of the faces as a whole. Hence,
we use a different approach than FaceNet.

Fang et al. [27] proposed different feature extractions. They
performed classification on a pair of images based on the
difference between feature vectors of the pair. These pairs are
a potential parent and child pair. The top selected features
showed to be right eye RGB color, skin gray value, left
eye RGB color, nose-to-mouth vertical distance, eye-to-nose
horizontal distance and left eye gray value. The results show a
high importance for eye related features. 10 out of the 14 top
features include the eye area. This study does include specific
facial features like eye color, still it only included 22 low-level
features. It is indeed shown that most of the selected features
are in the upper face area, which complies with the hypothesis.

The top selected features are right eye RGB color, skin gray
value, left eye RGB color, nose-to-mouth vertical distance,
eye-to-nose horizontal distance and left eye gray value. The
results show a high importance for eye related features. 10
out of the 14 top features include the eye area. While this
study does include specific facial features like eye color, it
only included 22 low-level features. It is indeed shown that
most of the selected features are in the upper face area, which
complies with the insight.

Most studies on the subject focus on either the overall
similarities between faces, or on pre-determined facial feature
sets. These studies treat KR tasks similar to the task of
a standard facial recognition. Guo et al. [28] argue that
kinship classification should be treated differently, since trait
similarities are measured across age and gender. Additionally,
kinship has a combination of traits and familial traits, which
are special for each family pair.
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Models proposed by researchers in this field are based on an
input of just the images with little to no alterations. Although,
some research focus on specific facial features by using for
example a weighted graph embedding-based metric learning
framework [31] or by using sparsity to model the genetic
visible features of a face [32].

Another group of researchers thought of combining the
StyleGAN2 algorithm with KR [33]. In the task at hand, there
is a restriction that family members should be recognized
on the basis of physical facial features. However, several
mentioned attempts neglect this constraint and do not employ
any facial landmark before using a classification model. For
this reason, Nguyen et al. [33] experimented with KR mod-
els using StyleGAN2 as an encoder to incorporate a facial
landmark map. This method resulted in an average accuracy
of 0.548 for recognizing kinship. Against expectations, no
improvement was shown in the results from using StyleGAN2
in this manner, which is presumed to be due to the lack of
a proper classification and thus it is argued to need more
investigation. An algorithm proposed by Guo et al. [28] use
familial traits extraction and kinship measurement based on a
stochastic combination of the familial traits. The authors use
a similarity score based on a Bayes decision for each pair of
facial parts. However, facial features used by the algorithm
are limited to the eyes, nose and mouth and, in line with the
observations by Guo et al. [28], more parts of the face could
be explored. Existing data sets use faces from the same family
picture, so models learn about the background similarity. This
causes the models to get a higher performance, but when
tested on real life pictures, not taken from a family picture,
the performance could be lower. When using pre-determined
features, this does not present a problem.

II. DATA

We used the Families in The Wild (FIW) data set. FIW is
made up of 11,932 natural family photos of 1,000 families.
Other data sets contain less images. KinFaceI consists of
1000 pairs of pictures (so even less unique pictures) [29] and
TSKinFace consists of 787 pictures [30]. This makes the FIW
data set by far the biggest data set being used for KR.

The data contains images of people’s faces that are extracted
from family pictures, hence the images vary in quality. All
images of the persons are of the same size (108x124 pixels).
Some pictures are zoomed in on more than others, which
causes this quality difference. In some images, the face and
its facial features are clearly shown, but other images are very
blurry.

The data is split up into training and test data using
hold-out cross-validation. The data is split up in a 70/30
split, respectively. The training set consists of information
on families, persons and relations between persons including
images of the persons. The data is distributed as follows. An
average of about 12 images per family, each with at least 3
and as many as 38 members. Each family is assigned a unique
id, each person is assigned an id and each image collected
is assigned a unique id. The data set includes good-quality

images of a person’s face, but also blurry images of faces, as
shown in Figures 2a and 2b, respectively.

(a) Image from data set (b) Blurry image from data set

Figure 2. Example data from the Families-in-the-Wild data set

A file containing all matches in the training data set is
available. However, this does not include data on combinations
of persons that do not have a familial relationship. So, these
pairs have been constructed by taking random pairs of images
from the set of training images of the FIW data set. This
is excluding existing related pairs and each pair is unique.
This resulted in 205,285 related and 205,285 unrelated pairs
of images. The kinship relations are labeled as related. Of
all related data points, 21% of the data points are zeroth
generation (siblings), 75% are first generation (parents and
children) and 4% are second generation (grandparents and
grandchildren).

Binary classification is used for predicting relatedness, so
the data set is balanced accordingly. Since the focus is on
the importance of each of the facial features in recognizing
kinship, we have a split in the data between related and
unrelated. The distinction between the types of kinship re-
lations is not made. For now, the types are not taken into the
classification process, considering the aim is to have a general
interpretation of the important facial features. However, the
distribution between the types of pairs can help to understand
the possible patterns found in feature importance.

StyleGAN2 metric: linear separability

This research is focused on FI in KR. To be able to
understand the FI of a model, the features extracted from a
model should be interpretable. To collect a bunch of features
and to avoid having to do manual annotation, we decide
to use a feature description method from the StyleGAN2
model. With this, it can be easily deducted which of the
features of a face are seen as most important by a model
for detecting kinship. The pictures in the data are of size
108x124, while the StyleGAN2 description method expects
pictures of size 256x256 as input. Interpolation of the pictures
in the data is used to overcome this problem. The StyleGAN2
model contains a certain metric called linear separability.
StyleGAN2’s linear separability metric can be used to steer
a generated picture in a certain direction by specifying 40
facial features which are shown in Table IV. For example, the
models can be used to make the generated face have blond
hair and high cheekbones. What we are most interested in for
this research are the pre-trained models used in StyleGAN2
which produce probabilities of the 40 features to be true for
an image of a person.
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TABLE II. FACIAL FEATURES OF LINEAR SEPARABILITY METRIC

1) 5-o-clock-shadow,
2) arched eyebrows,
3) attractive,
4) bags under eyes,
5) bald,
6) bangs,
7) big lips,
8) big nose,
9) black hair,

10) blond hair,
11) blurry,
12) brown hair,
13) bushy eyebrows,
14) chubby,

15) double chin,
16) eyeglasses,
17) goatee,
18) gray hair,
19) heavy make up,
20) high cheekbones,
21) male,
22) mouth slightly

open,
23) mustache,
24) narrow eyes,
25) no beard,
26) oval face,
27) pale skin,

28) pointy nose,
29) receding hairline,
30) rosy cheeks,
31) sideburns,
32) smiling,
33) straight hair,
34) wavy hair,
35) wearing earrings,
36) wearing hat,
37) wearing lipstick,
38) wearing necklace,
39) wearing necktie,
40) young.

The metric was trained using the CelebA Data set (Celeb-
Faces Attributes Data set). This is a face attributes data set with
202,599 celebrity images, each with five landmark locations
and 40 attribute annotations. StyleGAN2’s linear separability
metric is meant to be used for the StyleGAN2 model and its
corresponding data. We are interested in using the metric on
the data from FIW. The information gathered from the linear
separability metric (the facial features) is used as a starting
point for the kinship classification models. Transfer learning
does not only save time, but it also has the possibility of
making a learning process more efficient [34].

Consequently, some adjustments to the data were necessary
to apply the metric. This resulted in an output of 40 features
for all images in the data set, which then could be used to
train the chosen automated KR models. As data points for
the models, we chose a list of length 40 and a list of length
80, composed of the metric values for the features per two
pictures. Two input types were experimented with: (1) a list
of 80 features, consisting of 40 features per image, and (2) a
list of 40 features, taking the absolute difference of the feature
values between the images per feature.

III. MODEL DESCRIPTION

We implemented and tested several models to see how well
the models work on our data and to find a recurring pattern in
FI. For all models, the FI is investigated. The results of this
are then used to understand whether the theory of human KR
will hold for automated KR as well. Various machine-learning
models were selected for this task. For each model, the
accomplished accuracy is obtained by K-fold cross-validation.
The number of folds is set to 10 and the data is shuffled before
splitting into batches.

Machine learning methods

Using StyleGAN2’s linear separability metric on our data
results in an output of 40 features for all images in the data set,
which then are used to train the models. As data points for the
models, we chose a list of either length 40 or 80, composed
of the metric values for the features per two pictures. The

five models we decided to experiment with are decision tree,
random forest, Gaussian naive Bayes, linear support vector
machine and logistic regression.

Decision Tree: First, we have the decision tree algorithm
with a maximum depth set to 10, where we obtain the FI by
using the Gini importance. The Gini importance is calculated
as shown in Equation (1) with nij the importance of node j,
wj the weighted number of samples reaching node j, Cj the
impurity value of node j and left(j) and right(j) the child
nodes from left and right split respectively on node j.

nij = wjCj = wleft(j)Cleft(j) − wright(j)Cright(j) (1)

The Gini importance value nij for feature i is then used for
the feature importance of feature i with Equation (2) where fii
is the importance of feature i and nij the importance of node
j. These values were then normalized to a value between 0
and 1 by dividing by the sum of all feature importance values
[35].

fii =

∑
j: node j splits on feature i nij∑

k∈ all nodes nik

(2)

Decision trees are easily interpretable. Because of the use of
decision-making logic, the information on the model’s features
is easily extracted in a comprehensible form [36]. Decision
trees have a built-in feature selection, which is beneficial for
our research [37]. However, overfitting is common when using
decision trees. This is due to the trees being too complex.

Random Forest: Second, we have the random forest con-
sisting of 100 trees, where the FI is obtained by using the
impurity importance. The feature importance is computed as
an average over all trees. The splitting rules of a random forest
scale down the impurity presented by a split. When a split
shows a considerable decrease in impurity, the split is seen
as important. This theory results in the impurity importance
calculation for a variable in the random forest as shown in
Equation (3) where RFfii is the importance of feature i in the
random forest, normfiij the feature importance for feature i
in tree j normalized, Tall the set of all trees, and T the number
of trees in the random forest [35], [38], [39].

RFfii =

∑
j∈Tall

normfiij

T
(3)

Where decision trees are susceptible to overfitting, specifically
when a tree is notably deep, the random forest algorithm
reduces this possibility of overfitting. This is due to random
forest algorithms constructing multiple decision trees where
more combinations of conditions are represented [40].

Gaussian Naive Bayes: Then, we have the Gaussian Naive
Bayes, which obtains FI by using the permutation importance.
The permutation importance is calculated by taking the differ-
ence between the prediction error of the baseline metric and
the prediction error of the permuted feature metric as shown
in Equation (4). The permutation importance is obtained as
follows. First, the model m is scored s on data D. Then
permutation variable importance of feature j is calculated. For
each feature, the feature column is randomly shuffled to create
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an adjusted version of the data D̂k,j . The model is then again
scored on the data, although now with the feature f replaced
by the adjusted version. This results in the score sk,j , after
which the importance ij for feature fj can be calculated with
Equation (4) [41].

ij = s− 1

K
ΣK

k=1sk,j (4)

This algorithm generally works very fast and can easily predict
the class of a test data set. It is not sensitive to irrelevant
features [42]. The naive Bayes algorithm does perform the
best overall when there is independence between the features,
while some of our features are dependent. It assumes that
all the features are independent [43]. However, even without
independence between the features, the naive Bayes algorithm
generally performs well.

Linear Support Vector Machine: Next is the linear Support
Vector Machine (SVM), where the weights of the model
are used to determine FI. These weights are used as vector
coordinates. The vector coordinates are orthogonal to the
hyperplane represented by the weights. The directions of the
vectors represent the class prediction. The difference in the
size of the weights is used to determine the feature importance
[44]. SVMs have a low risk of overfitting [45], outliers have
less influence in the algorithm and the SVM algorithm is
relatively memory efficient [46]. Nonetheless, understanding
the final SVM model and interpreting the feature importance
is difficult. Additionally, SVMs are usually not very suitable
for large samples of data, although LSCVs handle this better
[47].

Logistic Regression: Lastly, we have logistic regression,
where the FI is determined by using the coefficients of the
decision function. To get a feeling for the “influence” of a
given parameter in a linear classification model, the magnitude
of the coefficient for each feature times the standard deviation
of the corresponding parameter in the data is considered. The
positive coefficients correspond to outcome 1 (related) and
the negative coefficients correspond to outcome 0 (unrelated).
This means that a higher positive value of the corresponding
feature pushes the classification more towards the negative
class [48]. Logistic regression is easy to implement and
interpret and very efficient to train. Therefore, it does not
require high computation power [49]. The algorithm does
make the assumption of linearity between the log odds and
the independent variables [50].

IV. RESULTS

Three different approaches have been researched, the orig-
inal StyleGAN2 description method, the pre-selected features
method and the bottom and top masked method. The results of
these approaches are discussed and an overview of the results
is provided.

A. Original StyleGAN2 descriptor experiment

The initial approach is taking the results of the StyleGAN2
model and using them as input for the different algorithms.
Over all images, we calculated the probabilities of the image

complying with the given 40 features. Extracting 40 features
per picture resulted in 80 different values since we were work-
ing with two images per data point. The FI was determined
per model. For the 80 feature input, we took the sum of each
feature per picture. An overview of all the results from the
StyleGAN2 descriptor experiment can be found in Table VI
and Table VII.

Decision Tree: The accuracy of the decision tree with 40
features as input has a mean of 0.61 with a standard deviation
of 0.003. The 80 features input gives a mean accuracy of 0.66
with a standard deviation of 0.005. The model is more leaning
towards giving a positive (related) classification. The feature
importance for the decision tree model is shown in Figure 3.
For the decision tree model with input of 40 features, arched
eyebrows, no beard and heavy makeup are the most important
features. For the input of 80 features, the top most important
features include young, no beard and wearing necklace.

Figure 3. Barplots of feature importance for the decision tree model.

Random Forest: The accuracy of the random forest with 40
features as input has a mean of 0.74 with a standard deviation
of 0.003. The 80 features input gives a mean accuracy of
0.80 with a standard deviation of 0.004. The model does
not have a clear preference for either a positive or negative
classification. With the model giving 51.39% and 50.63%
positive classifications for 40 and 80 features respectively, the
even distribution of the data in half-positive and half-negative
data points is represented well with a slight deviation towards
positive classifications. The feature importance for the random
forest model is shown in Figure 4. For the random forest
model with input of 40 features, arched eyebrows, mustache
and heavy make up are the most important features. For the
input of 80 features, the top most important features include
young, no beard and mustache.
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Figure 4. Barplots of feature importance for the random forest model.

Gaussian Naive Bayes: The accuracy of the Gaussian naive
Bayes with 40 features as input has a mean of 0.60 with a
standard deviation of 0.004. The 80 features input gives a
mean accuracy of 0.59 with a standard deviation of 0.005.
The model has a preference for positive classification. With the
model giving 59.56% and 64.21% positive classifications for
40 and 80 features respectively, most errors are false positives.
The feature importance for the Gaussian naive Bayes model
is shown in Figure 5. For the Gaussian naive Bayes model
with input of 40 features, eyeglasses, mustache and arched
eyebrows are the most important features. For the input of 80
features, the top most important features include eyeglasses,
rosy cheeks and no beard.

Linear Support Vector Machine: The accuracy of the linear
SVM with 40 features as input has a mean of 0.59 with a
standard deviation of 0.004. The 80 features input gives a mean
accuracy of 0.63 with a standard deviation of 0.005. The model
does not have a clear preference for a positive or negative
classification. With the model giving 47.08% and 52.92%
positive classifications for 40 and 80 features respectively,
we see a slight effect of the different input values. The 40
values input gives the model a bit more lenience towards
negative classification and the 80 values input gives the model
slightly more lenience towards positive classification. The
feature importance for the LSVM model is shown in Figure
6. For the LSVM model with input of 40 features, arched
eyebrows, no beard and heavy make up are the most important
features. no beard and arched eyebrows are also among the
most important features for the input of 80 features. Here the
top most important features include arched eyebrows, narrow
eyes and no beard.

Logistic Regression: The accuracy of the logistic regression
with 40 features as input has mean 0.60 with a standard devi-

Figure 5. Barplots of feature importance for the naive Bayes model.

Figure 6. Barplots of feature importance for the LSVM model.

ation of 0.003. The 80 features input gives a mean accuracy of
0.63 with a standard deviation of 0.005. The model does not
have a clear preference for a positive or negative classification.
The model gives 50.40% and 51.61% positive classifications
for 40 and 80 features respectively, which shows the balance of
the data with a slight deviation towards positive classification.
The feature importance for the Logistic Regression model is
shown in Figure 7. For the logistic regression model with
input of 40 features, arched eyebrows, no beard and eyeglasses
are the most important features. These are also among the
important features for the input of 80 features. Here the top
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most important features include no beard, arched eyebrows
and pale skin.

Figure 7. Barplots of feature importance for the logistic regression model.

B. Selected StyleGAN2 descriptor experiment

The second approach is based a certain selection of features.
Two different selections were experimented on. The first is
focused on the human KR theory. A pre-selection of features
is applied to the selected models. The selection of features
is focused on the top half of a face. This selection is shown
below in Table III.

TABLE III. SELECTED SET OF TOP HALF FACIAL FEATURES OF
LINEAR SEPARABILITY METRIC

1) Wavy hair,
2) 5-o-clock-shadow,
3) arched eyebrows,
4) bags under eyes,
5) bald,
6) bangs,
7) black hair,

8) blond hair,
9) brown hair,

10) bushy eyebrows,
11) eyeglasses,
12) gray hair,
13) high cheekbones,
14) narrow eyes,

15) receding hairline,

16) sideburns,

17) straight hair,

18) wearing earrings,

19) wearing hat.

This approach, despite the supporting theory, did not give
better results than using all the features. The expectation
was stability in the accuracy scores by only focusing on the
allegedly most important features. However, most models were
less successful and only some of the models continued to
perform roughly the same. The accuracy scores for the models
using the 19 selected features are given in Table V. For this
experiment, the differences were taken between the features,
so the results should be compared to the results of the method
where the input was 40 features as shown in Table V.

The second approach is based on the selection of features
found to be most important according to the original Style-
GAN2 approach. The top most important features for this

approach can be found in Table IV. When using only these
features as input, the results are as shown in Table V.

TABLE IV. SET OF MOST IMPORTANT FOUND FACIAL FEATURES
OF LINEAR SEPARABILITY METRIC

1) Arched eyebrows,
2) eyeglasses,
3) heavy makeup,

4) mustache
5) narrow eyes,
6) no beard,

7) young.

TABLE V. OVERVIEW OF RESULTS, PRESENTED AS ACCURACY,
FOR THE TWO SETS OF SELECTED FEATURES COMPARED TO THE

RESULTS OF ALL FEATURES

Selection Top Selection Important All 40

Decision Tree 0.61 0.61 0.59

Gaussian Naive Bayes 0.57 0.59 0.61

Support Vector Machine 0.57 0.57 0.60

Logistic Regression 0.57 0.57 0.60

Random Forest 0.71 0.62 0.74

C. Masked StyleGAN2 descriptor experiment

To support the theory we found, all of StyleGAN2’s linear
separability features were taken of not the original image, but
over an image with the bottom part of the face masked black
like shown in Figure 8. The same was done with the top
part of the face masked black, comparable to the experiments
performed by Martello et al. [11], [12]. All the models are
exactly the same as for the original StyleGAN2 description
method. Only the input changed.

(a) (b)

Figure 8. Example data from the Families in the Wild data set with bottom
masked (a) and top masked (b)

Bottom half masked: This experiment was done with all
models previously used in the original StyleGAN2 descriptor
experiment. The accuracy and FI were obtained for the deci-
sion tree, random forest, Gaussian naive Bayes, LSVM and
logistic regression models. An overview of the accuracy and
important features for all the models from the bottom masked
StyleGAN2 descriptor experiment can be found in Table VI
and Table VII. Again, the results show that the 80 value input
gives an overall better performance than the 40 value input
and the best-performing model is the random forest for both
inputs. Some of the most important features for the bottom
masked approach are related to the nose (pointy nose and big
nose) and the hair (grey hair, blond hair and waivy hair).
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Top half masked: This experiment was done with all models
previously used in the original StyleGAN2 descriptor exper-
iment. The accuracy and FI were obtained for the decision
tree, random forest, Gaussian naive Bayes, SVM and logistic
regression models. An overview of the accuracy and important
features for all the models from the bottom masked Style-
GAN2 descriptor experiment can be found in Table VI and
Table VII. Again, the results show the 80 value input gives
overall better performance than the 40 value input and the
best performing model is the random forest for both inputs.

TABLE VI. ACCURACY FOR THE 40 AND 80 VALUE INPUT PER
EXPERIMENT: COMPLETE, BOTTOM MASKED AND TOP MASKED

40
Compl.

40
Bottom

40
Top

80
Compl.

80
Bottom

80
Top

Decision
Tree

0.61
± 0.003

0.57
± 0.004

0.57
± 0.003

0.66
± 0.005

0.64
± 0.004

0.65
± 0.003

Random
Forest

0.74
± 0.003

0.62
± 0.003

0.63
± 0.002

0.83
± 0.004

0.81
± 0.001

0.82
± 0.001

Gaussian
Naive
Bayes

0.60
± 0.004

0.53
± 0.003

0.55
± 0.002

0.59
± 0.005

0.55
± 0.003

0.57
± 0.002

Support
Vector
Machine

0.59
± 0.004

0.55
± 0.002

0.57
± 0.002

0.63
± 0.005

0.60
± 0.002

0.61
± 0.002

Logistic
Regression

0.60
± 0.003

0.55
± 0.003

0.57
± 0.002

0.63
± 0.005

0.59
± 0.003

0.61
± 0.002

TABLE VII. MOST IMPORTANT FEATURES PER EXPERIMENT

Complete Bottom
Masked

Top
Masked

Decision
Tree

young,
no beard,
arched eyebrows,
eyeglasses

attractive,
blond hair,
pointy nose,
grey hair

young,
no beard,
arched eyebrows,
eyeglasses

Gaussian
Naive Bayes

eyeglasses,
no beard,
young,
arched eyebrows

wavy hair,
blond hair,
pale skin,
heavy makeup

eyeglasses,
no beard,
young,
arched eyebrows

Support
Vector Machine

young,
no beard,
pointy nose,
arched eyebrows

grey hair,
pale skin,
wavy hair,
big nose

young,
no beard,
pointy nose,
arched eyebrows

Logistic
Regression

blurry,
no beard,
wearing necklace,
pointy nose

wavy hair,
young,
grey hair,
big nose

blurry,
no beard,
wearing necklace,
pointy nose

Random
Forest

young,
no beard,
mustache,
arched eyebrows

pointy nose,
grey hair,
smiling,
attractive

young,
no beard,
mustache,
arched eyebrows

V. DISCUSSION

Multiple models have been tested on FI. Some approaches
were based on the human KR experiments from [11], [12].
These experiments showed a certain area of the face to contain
the important facial traits needed for KR. We researched the

set of features that is most important for automated KR. Pre-
trained metrics from the StyleGAN2 model that are meant
to be used for synthesizing artificial examples of faces were
used. The pre-trained models give 40 values for specific facial
features. These 40 values can also be taken from pictures using
the pre-trained models. These values were used as input for
our machine learning models: decision tree, random forest,
Gaussian naive Bayes, support vector machine and logistic
regression. These models were trained and evaluated to show
which of the features were seen as most important by the
models. More experiments were conducted with the top and
bottom parts of a face masked black to also test the theory of
human KR.

Major findings: Interesting results were found when com-
paring the different models using the original StyleGAN2
description method. Four out of five models had a higher
accuracy score when all features for both pictures were kept
separate. The models are able to learn about combinations
of different features between the two pictures, which has a
positive influence on the accuracy score of the models.

The best-performing model seems to be the random forest.
Since this model has a very high accuracy compared to the
other models, we are specifically interested in its correspond-
ing FI scores. Accordingly, we mainly focus on the results of
the random forest model. This model gives high importance
values to the features young, no beard, mustache and arched
eyebrows. It is also noticeable that in two of the five models,
the feature young is found to be very important and in the
other three models, the FI increases when using 80 features
instead of 40 features as input. On top of that, in all models,
the features arched eyebrows and no beard are in the top four
of the most important features for the model. There is a clear
pattern in the importance of facial hair. Beards, mustaches and
arched eyebrows are found to be important features for most of
the models. Another pattern is the age difference. This gives
us reason to believe that the combination of facial hair and
the age of a person is strongly correlated to the classification.
While the correlation scores do not show a correlation between
the two features, the combination of the features does matter
when comparing two pictures. A reason for these features to be
found important is that most of the kinship relations (75%) in
the data set are zero-generation and first-generation relations.
Young people are not able to grow facial hair, if they have the
genes, it comes with age. This would explain why both facial
hair and age are found to be more important.

The set of features that were found to be the most important
in our research does not comply with the selection of features
proposed by Fang et al. [27]. The set of features used in their
research is different, although it is clear that the eye area was
found to be the most important by them. Contrasting, the set
of important features we found is not particularly focused on
the eye area.

For the masked experiment, all five models had a higher
accuracy score when all features for both pictures were kept
separate. When looking at the bottom masked method results,
a clear decrease in the performance is found compared to
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the original StyleGAN2 description method. Remarkable is
that the feature young and the features on facial hair are
not found in the top features of almost all models. The
original StyleGAN2 approach showed these features to be very
important. This leads to the believe that the bottom part of
a face is essential for extracting the feature age. This would
also explain why the feature grey hair is found to be important
in three out of five models. Grey hair is usually a sign of a
higher age. When looking at the top masked method results,
a decrease in the accuracy is found, although this decrease is
not as excessive as with the bottom masked method. Above
is mentioned that the feature young is likely to be extracted
from mostly the bottom of a face. However, this is not shown
in the results of the top masked method. It is curious that the
feature young is still not found to be one of the most important.
Like the original approach, the top masked method shows the
feature arched eyebrows to be important. Although a pattern
is difficult to find in the top masked method results.

For the bottom masked approaches the difference with the
original approach is clear. Where humans showed equal or
even better performance when masking the top half of a
picture, the algorithms showed the opposite effect.

The set of features does not comply with the set that
we expected it to comply with. The gathered results do not
give any information that would validate the hypothesis that
the most important features would be in the upper half of
the face, specifically the eye region. On the contrary, the
results are more lenient towards age and facial hair traits to
be of great importance. As for the approach with the pre-
selected StyleGAN2 linear separability features, the results
showed us no improvement when focusing on solely the upper
half of the face. When considering the results of the pre-
selected StyleGAN2 and the masked StyleGAN2 descriptor
experiments, rejecting the hypothesis is even more reasonable.

Limitations: The data set might not be very compatible with
the StyleGAN2 metrics, which is an uncertainty. However,
as of now, there are no other data sets that contain enough
images which are of adequate quality. So we have to accept
this limitation for now. An issue was also encountered when
using the linear separability metric for a different purpose than
StyleGAN2. The results for the top masked method showed
one very noteworthy important feature, namely the arched
eyebrows feature. This feature should be focused on the top
part of a face. However, it is found to be important when
the top part of a face is masked. More features which show
unusual behavior are smiling and pointy nose, since these
are found to be important when masking the bottom half
of the face. This is one of the problems that is encountered
when combining StyleGAN2 metrics with other models. The
models that are trained for the linear separability metric behave
differently than intuitively expected. Using the metric in tasks
for which it is not initially intended can cause limitations to
the models.

Unexpected findings: A surprising matter is the difference
in performance between the top masked and bottom masked
StyleGAN2 description method. Masking the bottom half of

the face decreased the performance. As masking the top
half of the face decreased the performance as well, it still
performed better than the bottom masked method. This is
against expectations and raises the question of whether the
bottom part of a face contains more information than the top
part of a face does for KR.

VI. CONCLUSION

We researched the set of features that is most important for
automated KR. For this, multiple models have been tested on
FI. The results showed that the most important facial features
from the selection of 40 features are mostly focused on the
facial hair traits and age-related features.

One of the issues we ran into is on transfer learning. The
question rises whether StyleGAN2 is compatible enough for
transfer learning when combined with our data set. It could
be more effective to write a new metric that focuses on more
solid facial features. Despite that, the StyleGAN2 metrics are
the most elaborate method for finding pre-determined facial
features. Other models do not include as many facial features
or need manual annotation. It would be contributory to find a
way to annotate all parts of the face for many more features
to train the models on.

In conclusion, this paper is an important first step towards
understanding automated KR, but there are many challenges
to be faced before it can be used in real-world applications.
As it is now, a large set of clear pictures of complete faces
are needed for a model to perform decently. Learning more
about the most important parts of our face for automated KR
is the next step to take to improve the field of KR.
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