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Abstract - Molecular docking are widely used computational 
technics that allows studying structure-based interactions 
complexes between biological objects at the molecular scale. 
We developed AMIDE, a framework that allows performing 
inverse virtual screening to carry out a large-scale chemical 
ligand docking over a large dataset of proteins. Molecular 
inverse docking has several applications in the field of drug 
research like identifying potential side effects of existing or 
new drugs, or to help choosing the less harmful treatment for 
a disease. We developed different strategies to distribute the 
docking procedure, as a way to efficiently exploit the 
computational performance of multi-core and multi-machine 
(cluster) environments. This tool has been validated on well-
known experimental structures through 24 protein-ligand 
complexes extracted from the Kellenberger’s set. Its ability to 
reproduce experimentally determined structures and binding 
affinities highlighted that AMIDE allows performing better 
exploration than existing blind docking methods. 

Keywords - Protein-Ligand docking; inverse docking; ranking 
methods; distributed computations; HPC experiments. 

I.  INTRODUCTION 
In the field of drug discovery or drug design, molecular 

docking is focused on protein-ligand complexes to study 
how the chemical ligand that is a drug will bind to the target 
protein receptor. The prediction of the binding mode of a 
ligand into a protein target cavity, the structure of the 
complex and the estimation of the binding affinity between 
both partners is crucial to find new therapeutic compounds 
to cure life threatening diseases. For this, we develop a 
framework to perform accurate inverse docking and targets 
identification on multi-cores supercomputers [1]. Molecular 
docking represents a virtual alternative to costly and time-
consuming systematic wet biological experiments such as 
High Throughput Screening (HTS) processes and/or 
Nuclear Magnetic Resonance (NMR)-based screening. 
Then, it is called virtual ligand screening (VLS) or in silico 
ligand screening and has become a method of choice for 
rational drug design, hits identification and hits to leads 
optimization [2][3][4]. At present, several applications are 

available for VLS, such as for instance PLANTS [5], 
DOCK Blaster [6], GOLD [7], AutoDock [8][9], FlexX 
[10], Glide HTVS [11], ICM  [12] and LigMatch [13]. 

VLS tries to predict probable bindings of a huge number 
of ligands (to the order of millions) to a unique target 
receptor and is linked to multiple ligand dockings. Such 
methods require knowledge of the three dimensional 
structure of a receptor alone or associated with its 
experimental ligand. Many chemical databases and libraries 
provide millions of compounds, among which we can cite 
some public and free ones such as the PDBbind database 
[14] or the ZINC database [15], some with fees access as 
the Cambridge Structural Database [16] and several private 
pharmaceutical collections. Protein structures are obtained 
from the Research Collaboratory for Structural Biology 
(RCSB) Protein Data Bank (PDB) [17], an open source 
database that collects all public experimental data on 
tridimensional biological structures. For a large number of 
proteins, X-ray crystallography and NMR provide 
experimental structural data. In August 2014, the number of 
protein structures publicly available in the Protein Data 
Bank is over 95,000 ; the number of nucleic acids structures 
is about 2,700 and the number of structures of nucleic acids-
protein complexes is about 5,000. The total number of 
structures available in the PDB increased on average by 
6,500 structures per year during the last decade [17]. Yet, it 
is important to highlight that these statistics do not include 
the large number of proprietary structures as described 
above held by pharmaceutical companies that dispose of 
their own private structures databanks. To use non-resolved 
structures for a protein of interest, 3D prediction models can 
be built de novo [18] or based on partially known fragments 
by homology modelling [19][20]. 

The purpose of the current work is to develop an 
automatic virtual screening tool that allows performing 
large-scale structure-based inverse docking. The main idea 
of this approach is to perform molecular docking of a 
chemical ligand over a large dataset of proteins. In the fields 
of drug design and structural biology, inverse docking 
methodology would find several applications, such as 
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searching for additional uses of new drugs, by searching for 
interactions with protein groups outside the usual research 
field. Inverse docking can also be used to identify potential 
side effects of new drugs or to help choosing the less 
harmful treatment for a disease. Several problems arise 
when performing inverse docking, as we are no longer 
targeting a single protein but thousands. One of the main 
concerns is the computation time, which represents a clear 
obstacle when dealing with a large number of different 
proteins. For instance, even with the use of multicore 
processing we shall not restrain the inverse docking to a 
single computer but rely on multiple computational 
environments such as clusters and grids. In order to 
effectively use wide computational resources, however, we 
cannot simply launch a batch of docking computations but 
we must rethink docking in terms of task distribution, of 
pipelining, as well as load balance and fault tolerance. 
Recently, the literature reports several implementations to 
performed massively parallel ligand screening. These 
implementations rely on Message Passing Interface (MPI or 
OpenMP) only [21] or combined with multi-threading 
programming [22], with cloud computing to treat Full 
Flexible Receptors (FFR) models [23][24] or even with 
FPGAs or GPUs accelerators [25]. AMIDE was 
preferentially developed for and with the AutoDock4.2 
software [26] to keep a fine-grain control of algorithm 
parameters and to generate multiple grids. In fact, whereas 
AutoDock Vina [27] is a docking software that supports 
multithreading natively, only “black box” blind dockings 
are possible with Vina.  

In this work, docking simulations were performed with 
AutoDock and we developed a set of Python scripts to 
automatize the docking process. We also developed a 
Python framework embedding different strategies to 
distribute the docking procedure, as a way to efficiently 
exploit the computational performance of multi-core and 
multi-machine (cluster) environments. Data presented in 
this paper result from the testing described hereafter. In 
addition, the experiments compare the docked poses 
obtained with our tool for a set of chemical ligands on their 
experimental target against the determined structure of the 
complex obtained by X-ray crystallography. The rest of this 
paper is structured as follows: Section II presents the 
methods employed and the different strategies we 
developed to decompose the docking computation. Section 
III presents the results of the computation performances and 
the monitoring of the AutoDock program over HPC 
architectures. Section IV presents the description of the test 
set and methods we used to generate and to rank the 
docking poses. In Section V, docking poses given by these 
strategies are compared to the native ones (X-ray 
structures). Finally, all results are afterward discussed in 
Section VI. 

II. METHODS 

A. Classical method 
Molecular protein-ligand docking experiment consists in 

searching and finding a protein surface area able to host the 

ligand. For some particular protein targets, ligand active 
binding sites on the protein are widely known. In these 
cases, the user can limit the docking search around a protein 
location in order to decrease the computation time without 
affecting the quality of the docking results. In other cases, 
without any knowledge, the user must consider as 
exhaustively as possible the entire protein surface i.e., the 
whole protein “volume”. This way to do is called blind 
docking (BD). BD was introduced to detect possible 
binding sites and ligands binding modes by scanning the 
entire surface of protein targets. This represents the “naïve” 
approach to dock ligands on unknown targets but is barely 
parallelizable. In fact, for each complex the AutoDock 
software will launch only one infrangible docking task with 
the whole volume to explore. Depending on the shape of 
each receptor, a large number of runs/generations is 
required in order to systematically cover the entire protein 
surface and consequently obtain good docking results. 
Some success cases with AutoDock [28][29] or with others 
programs [30][31]were reported in the literature. 

B. Parallel Decomposition 
To obtain a better implication of the computational 

resources, we must imperatively improve task parallelism 
when conducting large-scale inverse docking. If 
decomposing a docking job in parallel task may trigger a 
better utilization of the computational resources through 
pipelining and load balance, it also contributes to the fault 
tolerance aspects since only a small segment of the 
execution is lost in the case of a computer crash or 
execution failure. For this, we developed two methods to 
decompose the docking computation and improve tasks 
distribution and fault tolerance. 

The first strategy to distribute docking computations 
aims at the reduction of the exploring space through the 
multiplication of the number of small 3D boxes. For 
instance, the “single grid” used in a blind docking 
experiment and describing the whole protein volume is 
arbitrary split into several grids. Each grid is a sub-volume 
of points covering a piece of the protein. Assuming a 
regular decomposition, we define a geometrical Arbitrary 
Cutting method (AC) as a 12-part decomposition scheme, 
i.e., 3x2x2 (3 on the longest axis of the protein). We also 
tested multiple space cuttings of the whole-space to find a 
suitable decomposition ratio in prior experiment and the 12-
part scheme showed better quality docking results than 
other geometrical cuttings into multiple subspaces as n-part 
schemes where n = 8 (2x2x2), 27 (3x3x3) or 64 (4x4x4) 
[32]. Indeed, a large number of 3D boxes may improve 
parallelism but the number of subspaces is also dependent 
on the size and shape of the protein. So, having too small 
3D boxes may limit the movement of the ligand and impact 
the success of the ligand docking. Hence, the choice of 
decomposition must be carefully tuned and the number of 
generated chunks must be precisely balanced. Moreover, the 
several subspaces are overlapping each other to explore the 
entire protein surface and overcome the presence of the 3D 
boxes edges. Indeed, one of the constraints imposed by 
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AutoDock is that the ligand cannot bind outside of the box. 
The overlapping is inherently dependent on the ligand size, 
so in our experiments we set two ranges for the partial 
overlapping: a third of the juxtaposed boxes if the ligand 
size is inferior to it, or the size of the ligand if the ligand is 
larger than that.  

This decomposition strategy is simple to implement and 
the subspace grids can be easily generated from the 
coordinates of the protein. By multiplying the number of 3D 
boxes we can deploy the docking over different processors 
in order to be computed in parallel. One drawback of this 
strategy, however, is that it does not check the protein 
surface for cavities (which are potential docking sites), and 
may therefore “cut” right in the middle of a potential cavity, 
making it less interesting. Another drawback of this method 
is that only ligands inside the grid can be evaluated. Indeed, 
any atom of the ligand outside the 3D box will not be 
treated and will eliminate the pose of the conformer during 
the sampling process, which may prevent the detection of 
potential bindings when part of the ligand crosses the 
boundaries of the 3D box. So, to overcome boundary 
problems, we also use a more rational knowledge-based 
method.  

This second method to perform space cutting consists in 
predicting upstream pockets and cavities on the surface 
receptor with additional programs and carry out dockings 
only on these pockets [33][34]. For this Pocket Search 
method (PS), we used the Fpocket program [35] that 
screens pockets and cavities using a geometrical algorithm 
based on Voronoï tessellations. The second version of the 
software (Fpocket2) is compatible with a multiprocessing 
parallel use. Only pockets that show a long side superior to 
a third of the whole protein longest side and inferior to the 
half of the whole protein longest side are conserved in order 
to limit the number of generated jobs and to avoid multi-
exploration of the same space. One advantage of the pocket 
strategy is that it refocuses the docking algorithm 
exploration zones only on predictive biological sites of 
interest (potential binding sites). As only these interesting 
zones are included in the docking procedure they can 
drastically improve the overall inverse docking 
performance. On the opposite side, the pocket search is a 
predictive method and as such it may exclude some 
potential zones, which should not be overpassed by the AC 
method described above. 

C. Proof of concept – biological relevance 
Thanks to our two decomposition strategies, we have 

been able to correctly replace experimental ligands in their 
crystallographic cavities with good free energy of binding 
(see IV.C). In fact, a n =12 and 50 runs of docking, allows 
to locate the ligand in the crystallographic cavity with an 
energy of -9.95 kcal/mol and a RMSD of 1,74 Å for the 
X23/XIAP ligand-protein complex (pdb_ID: 3CM2). In the 
same way, the pocket search strategy and 50 runs of 
docking gives the same experimental location for the ligand 
with the same order of values (ΔG = -10.11 kcal.mol-1; 
RMSD = 1.86 Å). Even they succeed to in replacing the 
ligand in the experimental cavity, the other cuttings n = 8, 

27 or 64, do not give satisfying results in terms of binding 
energy and RMSD value. In fact, n = 27 and n = 64 seem to 
generate too small boxes whose the size is not adapted to a 
standard protein cavity. The 12-part decomposition scheme 
(n = 12) is a cutting method that may let the ligand rotate 
without constrains in the overlapped region and therefore 
lead to an exhaustive search of the binding site. 

 

III. PERFORMANCES 
As stated in the previous sections, we designed 

alternative decomposition methods to improve the potential 
parallelism and fault tolerance when performing an inverse 
docking. Indeed, when analyzing the performance of the 
different decomposition strategies, a number of parameters 
may impact the overall results, as for example the number 
of boxes or the overlapping of these boxes. As our main 
goal is to obtain a decomposition technique with a precision 
level at least as good as the precision of a "monolithic" 
blind docking, we chose to privilege precision and 
distribution, at the expense of raw performance.  

Today, most computers CPUs are composed by several 
computing cores, an architecture that allows parallel 
executions inside a single node. Currently AutoDock does 
not explore multicore and therefore the execution of a blind 
docking on a multicore machine is far from being efficient. 
On the opposite, our decomposition methods allow a better 
resource usage, reducing the overall execution time, as 
indicated in Table I. In addition, the use of decomposition 
methods improve fault tolerance as a crash during the 
execution (for example, after 1 hour) may be resumed from 
the boxes that have not completed yet, contrarily to the 
blind docking that must restart from the beginning.  

In order to evaluate the scalability of the decomposing 
methods when performing in multicore machines, we 
performed additional experiments to evaluate the 
overhead/speedup on different families of processors. For 
instance, these experiments were run on different HPC 
architectures on Bull’s CEPP clusters. Binaries were run on 
bullx B510 blades nodes with Intel Xeon processors: E5-
2680 v1 (Sandy Bridge) 2x8 2.7 GHz cores and E5-2695 v2 
(Ivy Bridge) 2x12 2.4GHz cores interconnected by 
InfiniBand 4x QDR. All docking computations are 
performed with the AutoDock4.2 software. The Linux 
system binary and recompiled sources are available on the 
MG Lab website (http://autodock.scripps.edu/downloads). 
Bull’s Center of Excellence in Parallel Programming 

TABLE I. PERFORMANCES OF SAMPLING METHODS 

Ligand Target Method Cores Tasks Time 

X23 3CM2 BD 1 1 4h13’ 
X23 3CM2 AC/PS 4 12+1 3h00’ 
X23 3CM2 AC/PS 2 x 4 (HT) 12+1 1h53’ 
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expertise helped to optimize the parallel execution on 
multicores supercomputers. To obtain regular computation 
times to compare, we have to use a fixed single seed to 
initiate the conformational sampling to overcome the 
intrinsic stochastic effect of the AutoDock search algorithm. 
In the same manner, always the same sub-volume box AC-1 
of n = 12 cutting is computed to obtain a common reference 
time value for all tests.  

On Fig. 1 sockets were alternatively bound with docking 
tasks until one node was full. While the load occupy less 
than half core, there is no performance change but then we 
can observe a performance loss to reach performance 
degradation inferior to 3% on Sandy Bridge chips and 
inferior to 4% on Ivy Bridge chips. In spite of frequency 
difference between the two node types, times of execution 
are similar on both types. If we decrease core frequencies, 
we also decrease the memory bandwidth, so the execution 
time highly increases of one third at 1.8 GHz and is doubled 
at 1.4 GHz on Ivy Bridge cores. On hyper threaded Sandy 
Bridge cores, time of execution is highly degraded (x 1.8) 
for two threads on one core but allows gaining 10% on a 
machine throughput. The different experiments listed above 
demonstrate that a multicore code can achieve a good 
parallel performance with a good speedup on a single 
machine, as long as the number of tasks corresponds to the 
number of available cores.  

Our final aim is to explore a much larger number of 
proteins; we need to associate resources from several 
machines, therefore deploying the docking tasks over a 
larger set of machines like a cluster or even a cloud 
environment. To coordinate the deployment of tasks over 
several machines, we developed a set of Python scripts to 
automate all the steps involved on inverse docking 
preparation and execution. Each docking experiment 

requires specific input files (e.g. grid coordinates files) and 
parameters. The generation of the required files constitutes 
pre-processing steps. Among these steps we can cite (a) 
downloading and acquisition of PDB files, (b) preparation 
of PDB files of the target structures, (c) extraction of 
coordinates for the grid creation, (d) grids decomposition. 
Pre-processing steps (a) to (d) involve data parsing and files 
manipulation. Depending on the decomposition strategy, 
step (d) creates one or several grids corresponding to the 3D 
boxes for each technique. In the case of the pocket 
approach, it creates 3D boxes only around the cavities 
identified by the Fpocket software. Because this step 
involves several computations (according to the number of 
3D boxes), it represents the first parallel step in our 
implementation.  

Distributed computation steps are (e) grid computation 
and (f) docking execution. Step (e) is managed by 
AutoGrid, a tool from the AutoDock suite that creates the 
affinity grids used on docking to evaluate binding energies. 
The parallel execution of step (e) is obtained through the 
use of a server-worker queue in a task-stealing strategy, 
where the master feeds the task IDs to the queue and the 
workers subsequently get a task from it. If no more tasks are 
available in the queue (they were all consumed and are 
being computed), a grid worker is authorized to become a 
docking worker and start the next step.  

A similar queuing mechanism is set to the execution of 
step (f). However, for a better efficiency, the queue is not 
fed by the master but directly from the grid workers, i.e., as 
soon as a grid worker has prepared its task, it passes the task 
ID to the docking queue, which should be eventually 
consumed by the arriving docking workers. The Fig. 2 
illustrates the processing flow of these two steps. 

 
 
 

IV. COMPARISON WITH EXPERIMENTAL DATA 

A. Preparation of the Test Set 
The test set used in this study is constructed from the 

Rognan’s group [36] set of 100 protein-ligand complexes. 
In order to be able to perform accurate High Definition 
(HD) docking only proteins structures with a long side 
inferior to 60 Angstroms are conserved.  

protein list

Master

Worker
Worker

Worker
Worker

Grid Queue

Docking
Queue

Worker
Worker

Worker
Worker Results

ResultsResultsGridsgrid ID

Figure 1. Performances of load tasks alternatively bound on each 
socket of a Sandy Bridge node (A) and an Ivy Bridge node (B). 

 

Figure 2. Queuing structure for parallel execution 
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Twenty-four complexes have passed this process and 
are included in the final test set (see TABLE II). Molecular 
weights of ligand molecules range from 114 to 659 Daltons, 
number of atoms in the ligand range from 10 to 52 and 
number of rotatable single bonds (rotors) in ligand 
molecules range from 0 to 23. All ligands molecules bind to 
their target protein non-covalently. Structures files and 
coordinates of all the complexes are downloaded from the 
Structural Chemogenomics Group website [36]. For the 
convenience of computation, each complex file was split 
into a protein molecule file in PDB format and a ligand 
molecule file, which was saved in Mol2 format. All 
preparation settings are available in the work from 
Kellenberger et al. [37]. The program automatically 
generates all docking parameters files and each complex is 
then subjected to an exhaustive conformational sampling 
procedure with AutoDock. 

B. Conformationnal Sampling Procedure 
The AutoDock program (version 4.2) is used to generate 

an ensemble of docked conformations for each ligand 
molecule. This program utilizes a Lamarckian Genetic 
Algorithm (LGA) for conformational sampling [38]. Each 
LGA run outputs a single docked conformation as a final 
result. For the AC method and the PS method 50 individual 
LGA runs are performed to generate 50 docked 
conformations for each ligand. All AutoDock docking 
experiments were performed with the default parameters of 
the Lamarckian algorithm for initial population size 
(ga_pop_size = 150), maximal number of energy evaluation 
(ga_num_evals = 2500000) and maximal number of 
generations  (ga_num_generations = 27000). The protein 
structure is kept fixed during docking. 

C. Ranking the Best Ligand Pose 
AutoDock needs to compute an affinity grid for each 

atomic type to pre-evaluate the binding energy. The affinity 
grid is contained in a 3D box that frames the protein 
surface. The binding energy is evaluated with a tri-linear 
interpolation of the eight-grid points affinity value 
surrounding each atom of the ligand.  For the scoring step, 
computation time will only depend of the number of atoms 
in the ligand and will be independent of the protein volume. 
The free energy of binding ΔG is computed with the 
AutoDock4 scoring function (AD4) [39]. The AD4 scoring 
function is composed by several energy terms of classical 
physics force fields. The free energy of binding (1) is 
expressed by the sum of molecular mechanics components 
such as a dispersion-repulsion term, a term for the hydrogen 
bonding, a term for the electrostatics contribution, a term 
describing the energy associated to bond lengths, bond 
angles and associated restriction entropy loss and a term for 
the desolvation energy. 

 
∆𝐺 =   ∆𝐺!"# +   ∆𝐺!!"#$ +   ∆𝐺!"!# +   ∆𝐺!"# +   ∆𝐺!"#$            (1) 

 
In the first experiment, the best ligand poses obtained by 

AC and PS methods are discriminated using the best energy 

of binding for each method with the AD4 function. In the 
second one, five best ligand poses are selected using the 
AD4 function. These ligand poses correspond to the lower 
binding energies structures whatever the method used to 
generate them (AC or PS). They are discriminated from the 
bulk of all generated structures. In the two experiments, the 
localization of best energy docked poses is compared to the 
experimental pose with the measurement of the Euclidian 
Distance (ED) between the two ligands geometrical mass 
centers. When ligands are in the same binding cavity as the 
experimental one and the ED is lower than 2.5 Angstroms, 
the ligand pose is considered similar to the crystallographic 
pose and is called X-pose. When ligands are partially 
docked in the experimental cavity or able to dock in a 
juxtaposed cavity and ED is included between 2.5 and 8.5 
Angstroms, the ligand pose is called J-pose (for Juxtaposed-
pose). Beyond this value, we checked that any ligand is 
localized in a binding area different from the experimental 
structure. In this case, the wrong ligand pose is called W-
pose. (All of these ligands poses were checked by hand and 
visualized with VMD [40]). 

Thus, ligand pair Root Mean Square Deviation (RMSD) 
computation evaluates the shift between the binding 
conformation of the best-docked ligands and the 
crystallographic conformation. The RMSD corresponds to 
the measure of the average distance between atomic 
positions of two structures expressed in Angstroms as it 
shows in (2). 

 
𝑅𝑀𝑆𝐷 𝑣,𝑤 =    !

!
(𝑣!" − 𝑤!")! + (𝑣!" − 𝑤!")! + (𝑣!" − 𝑤!")!)!

!!!   (2) 

 

V. RESULTS 
 

As described above, our methodology was tested on 24 
experimental protein-ligand complexes available in the 
PDB. Both AC and PS methods were used individually and 
in a combined procedure to evaluate their ability to re-dock 
an experimental ligand on its native protein target receptor. 
To evaluate the ability of our methodology to retrieve 
experimental ligands poses; a ranking protocol based on AC 
and PS results has been developed. Protocols parameters are 
explained in this section and are mentioned in section IV.C. 

For the PS method, the experiment shows that for this 
size of proteins (see IV.A), the Fpocket algorithm found at 
the most five or six different well-sized pockets. TABLE III 
gives the volume of the three first pockets found for each 
experimental complex. For all proteins of the set (100%), 
one pocket at least is detected, for nineteen proteins in the 
set (19/24, 79%) two pockets are detected and for 14/24 
(58%) three pockets are detected. If structures displaying at 
least 4 pockets are selected, the ratio of the set falls down to 
9/24 (37.5%) and decreases even more when considering a 
higher number of pockets. Thus, it appears that for each 
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protein-ligand complex selecting only the first pocket found 
by the Fpocket algorithm is enough to consider the whole 
set; the results point that selecting at most the three first 
pockets should refine the search. In addition, the number of 
jobs launched partly depends on the number of pockets that 
will be explored. Thus, the number of jobs launched is 
precisely defined for each complex. A fixed number of jobs 
can be very interesting to monitor the speed-up and the 
scalability of the program over a variant number of available 
cores. In theory, the optimal load balance should be reached 
if the number of available cores is superior or equal to the 
number of launched jobs. So, to optimize the computation 
time we should set the best ratio jobs/cores and to do this a 
fixed number of jobs is necessary. For example, this set of 
complexes generates a pool of maximum 360 jobs (24 
complexes x (12 AC method boxes + 3 pockets boxes from 
the PS method at the most)). So, the best energy structure of 
the ensemble of the twelve boxes is conserved for the AC 
method and the best energy structure of each of the first three 
pockets is conserved for the PS method. Finally, four docked 
poses at the most are obtained for each complex, which will 
be compared with the experimental ligand pose of the 
crystallographic ligand-protein complex. Previously, we 
defined that the re-docking is successful if an X-pose or a J-
pose were obtained for the ligand (see IV.C). 

A. Comparison with the Blind Docking experiment 
Firstly, the results for AC and PS methods are compared 

with the corresponding blind docking experiment (BD). For 
twelve experiments out of the set (12/24, 50%) the best 

energy score was obtained by the PS method, for 10/24 
(41.5%) it was obtained by AC method and only for 2/24 
(8.5%), it was obtained by BD experiment (Fig. 3). 
Moreover, the combined results of AC method and PS 
method give a better energy of docking for 22/24 (91.5%) 
compared to BD. Furthermore, for 54% of the cases the 
combined methods gave a RMSD between the experimental 
structure and the best docking pose lower than 5 Angstroms 
and a RMSD lower than 10 Angstroms for 23/24 (96%) 

TABLE II. THE 24 EXPERIMENTAL PROTEIN-LIGAND COMPLEXES 

PDB 
code 

Res. 
(Å) 

 
Protein 

 
Ligand 

1azm 2.0 Carbonic Anhydrase I 5-Acetamido-1,3,4-Thiadiazole-2-Sulfonamide 
1cbs 1.8 Cellular Retinoic-Acid-Binding Protein Type II Retinoic Acid 
1ebp 2.1 Epididymal retinoic acid binding protein Retinoic Acid 

1fkg 2.0 Fk506 Binding Protein (1R)-1,3-Diphenyl-1-Propyl(2S)-1-(3,3-Dimethyl-1,2-Dioxopentyl)-2-
Piperidinecarboxylate (Rotamase Inhibitor) 

1fki 2.2 Fk506 Binding Protein (21S)-1-Aza-4,4-Dimethyl-6,19-Dioxa-2,3,7,20-Tetraoxobicyclo Pentacosane 
1glp 1.9 Glutathione S-Transferase Yfyf  Glutathione Sulfonic Acid 
1glq 1.8 Glutathione S-Transferase Yfyf S-(P-Nitrobenzyl) Glutathione 
1hfc 1.5 Fibroblast Collagenase (N-(2-Hydroxymatemethylene-4-Methyl-Pentoyl)Phenylalanyl)Methyl Amine 
1icn 1.7 Intestinal Fatty Acid Binding Protein Oleate (Oleic Acid) 
1lic 1.6 Adipocyte Lipid-Binding Protein Hexadecanesulfonic Acid 
1lmo 1.8 Mucopeptide N-Acetylmuramylhydrolase Di-N-Acetylglucosamine 
1mcr 2.7 Immunoglobulin delta Light Chain Dimer N-Acetyl-L-His-D-Pro-Oh 
1mmq 1.9 Matrilysin Hydroxamate Inhibitor 
1mup 2.4 Major Urinary Protein Complex 2-(Sec-Butyl) Thiazoline 
1nco 1.8 Holo-Neocarzinostatin Apo-Carzinostatin chromophore 
1poc 2.0 Phospholipase A2 1-O-Octyl-2-Heptylphosphonyl-SN-Glycero-3-Phosphoenolamine 
1rob 1.6 Ribonuclease A Cytidylic Acid 
1srj 1.8 Streptavidin Naphthyl-Haba 
1stp 2.6 Streptavidin Biotin 
1tng 1.8 Trypsin  Aminomethylcyclohexane 
1tnl 1.9 Trypsin Tranylcypromine 
1ukz 1.9 Uridylate Kinase Adenosine-5'-Diphosphate 
3ptb 1.7 beta-Trypsin Benzyldiamine 
8gch 1.6 gamma-Chymotrypsin Gly-Ala-Trp (peptide) 

 

Figure 3. Proportion of Best Binding Energy Values given 
by the Sampling Method (AC: 62.5%, PS: 29%, BD: 8.5%). 

 

330

International Journal on Advances in Life Sciences, vol 6 no 3 & 4, year 2014, http://www.iariajournals.org/life_sciences/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



versus only one for BD (4%) in both case (TABLE IV). 
These results highlight that our methods perform better 
exploration of the protein surface. Indeed, the ratio 
(volume/number of runs) explored in the case of our 
methodology is better optimized than in the case of BD. Both 
methods ensure a better conformational sampling and a 
better quality of docking than using the BD. The distribution 
of docked poses depending on the sampling method 
associated with the best energy is presented in Fig. 4. This 
figure also shows the real efficiency of the PS method that 
provides no wrong structures and the need to associate both 
methods (AC + PS) to obtain exhaustive search and good 
ratios in docking experiments.  

B. Comparison between sampling methods 
For 18/24 (75%) the sample methods that give the best 

free energy of binding give also the best docking poses (X-
pose or J-pose) distributed as follows: 7/18 (39%) for AC 
method and 10/18 (55%) for the PS method and 1/18 (6%) 
for the BD experiment. Among these complexes, the 
combined method that gives the best free energy of binding 
gives also the best docking pose for 17 (94.5%) versus only 

one for BD (5.5%). From Table IV, we can extract the 
following correlation: comparing the docked poses at rank 1 
of Euclidian distance and rank 1 for the lowest RMSD value, 
there is a match for 6/24 (25%) in the case where a J-pose is 
observed and for 14/24 (58.5%) in the case where an X-pose 
is observed. So, at rank 1 for the two previous criteria, the 
ligand docked poses (X-poses and J-poses) give the lowest 
RMSD value for 18/24 (75%). Comparing the docked poses 
at rank 1 of Euclidian distance and rank 1 and 2 for the 
lowest RMSD value the proportion reach 22/24 (91.5%). The 
match ratio is distributed by sampling method as follows:  
The AC method gives the X-pose for 3 complexes with a 
mean RMSD value equal to 2.32 Angstroms compared to the 
experimental structures (1glp, 1mup, 1tnl). The AC method 
gives also a J-pose for 3 complexes (1hfc, 1icn, 1rob) and an 
associated RMSD value equal to 7.82 Angstroms compared 
to the experimental structures. Nevertheless, it is important 
to mention that for 1hfc and 1icn poses are reverse poses that 
is to say the ligand acquires a head to tail conformation 
compared to the experimental one so the RMSD increases. 
The PS method gives the X-pose for 11 complexes (1azm, 
1cbs, 1ebp, 1fkg, 1fki, 1mmq, 1nco, 1stp, 1tng, 3ptb, 8gch). 
In these cases, the mean RMSD with the experimental 
structure is 2.93 Angstroms. The PS method gives a J-pose 
for 4 complexes (1lic, 1mcr, 1poc, 1ukz) and an associated 
mean RMSD value with the experimental structure of 5.54 
Angstroms (Fig. 5). The BD method gives an X-pose for 1srj 
with a RMSD value of 2.47 Angstroms. If the rank 2 for the 
Euclidian distance is also considered, the PS method is able 
to replace the ligand for 1srj in an X-pose with 2.35 
Angstroms of RMSD. So, the combined method with these 
evaluation criterions gives the best pose for 22/24, 91.5% of 
the cases of the total set.  

TABLE III. NUMBER OF POCKETS DETECTED FOR EACH PROTEIN 
AND THEIR VOLUMES 

 Pocket 1 
(PS1) 

Pocket 2 
(PS2) 

Pocket 3 
(PS3) 

PDB Volume (Å3) Volume (Å3) Volume (Å3) 

1azm 833 786 244 

1cbs 1626 378 557 

1ebp 1262 370 616 

1fkg 549 N/A N/A 

1fki 576 756 N/A 

1glp 1307 370 640 

1glq 607 637 686 

1hfc 762 683 485 

1icn 1655 N/A N/A 

1lic 978 927 N/A 

1lmo 1306 143 561 

1mcr 676 192 N/A 

1mmq 409 276 548 

1mup 479 583 756 

1nco 350 N/A N/A 

1poc 1016 504 642 

1rob 654 576 686 

1srj 408 N/A N/A 

1stp 367 N/A N/A 

1tng 647 610 N/A 

1tnl 602 466 512 

1ukz 600 1072 N/A 

3ptb 549 328 529 

8gch 765 619 383 

a. N/A: Non Applicable data –  

 

Figure 4. Distribution of docked poses (X-pose in grey, J-
pose in white and W-pose in black) by Sampling Method 

giving the Best Binding Energy  
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Fig. 6 shows the results obtained with the AC method for 
the experimental complex 1stp. An X-pose with a Euclidian 
distance between ligands geometrical mass centers of  0.55 
Angstroms (rank 1) with a RMSD value of 2.42 Angstroms 
(rank 1) is observed. As we can see on Fig. 6 and Fig. 7 
with two different types of protein representations, the re-
docked ligand reached successfully the experimental cavity 
of binding and adopts a similar conformation compared to 
X-ray structure. On Fig. 6, the New Cartoon style represents 
only the secondary structure of the backbone skeleton of the 
protein whereas on Fig. 7, all amino-acids side chains are 
included to build the protein surface thanks to the MSMS 
algorithm [41]. The local structure of side chains creates 
reliefs and since some of them display specific chemical 

properties, they can arrange themselves in binding cavities. 
The ligand pose and conformation in the binding site will be 
related to the cavity geometry. As we can see in Fig. 6, a 
good ligand pose implies a chemical conformation that 
precisely place the chemical groups implied in Hydrogen 
bonds in an appropriate range of distance (around 2.0 
Angstroms). Hydrogen bonds are strong dipole-dipole 
interactions between electro-negative atoms, and according 
to local chemical composition they are partially in charge of 
ligand docking in a binding pocket. Indeed, according to the 
ligand pose in the binding cavity, hydrogen bonds can form 
or not and modify its contribution in the binding free energy 
value. 

TABLE IV. EVALUATION CRITERIONS OF THE SAMPLING METHODS 

 
Energy 

(kcal/mol) RMSD (Angstroms) Gravity Centers Euclidian Distance (Angstroms) 

Rank 1 Rank 1 Rank 2 Rank 1 Rank 2 

PDB Method Value Method Value Method Value Method Value Pose Method Value Pose 

1azm AC -5.15 PS1 1.95  N/A N/A PS1 1.12 X-pose  N/A N/A  N/A 

1cbs PS2 -6.84 PS2 2.24 AC 8.86 PS2 0.96 X-pose PS1 1.59 X-pose 

1ebp PS2 -8.68 PS2 2.00 AC 2.73 PS2 0.27 X-pose PS1 1.23 X-pose  

1fkg PS1 -5.96 PS1 5.49 AC 8.22 PS1 1.24 X-pose AC 3.98 J-pose 

1fki PS1 -10.49 PS1 0.60 PS2 1.75 PS1 0.59 X-pose PS2 1.00 X-pose 

1glp AC -4.46 AC 2.71 PS1 5.42 AC 0.60 X-pose PS1 2.74 X-pose 

1glq BD -3.66  N/A N/A  N/A N/A  N/A N/A  N/A  N/A  N/A  N/A 

1hfc AC -4.78 AC 8.75  N/A  N/A  AC 3.84 J-pose  N/A  N/A  N/A 

1icn AC -3.97 AC 8.80  N/A  N/A  PS1 3.49 J-pose AC 3.52 J-pose 

1lic PS1 -4.65 PS1 5.75  N/A  N/A  PS1 3.50 J-pose AC 4.23 J-pose 

1lmo AC -3.26  N/A  N/A   N/A  N/A   N/A  N/A   N/A  N/A  N/A  N/A 

1mcr AC -4.03 PS2 4.41  N/A  N/A  PS2 2.81 J-pose  N/A  N/A  N/A 

1mmq AC -6.31 AC 3.97 PS1 4.16 PS1 0.79 X-pose AC 1.55 X-pose 

1mup AC -4.23 AC 2.59 PS1 4.04 AC 1.56 X-pose PS1 2.02 X-pose 

1nco PS1 -7.19 PS1 7.83  N/A  N/A  PS1 2.90  X-pose AC 8.22 J-pose 

1poc PS1 -1.91  PS1 6.71  N/A N/A  PS1 3.95 J-pose  N/A  N/A  N/A 

1rob PS2 -5.29 AC 5.91 PS1 9.89 AC 5.32 J-pose PS2 8.45 J-pose 

1srj BD -7.48 PS1 2.35  BD 2.47 BD 0.45 X-pose PS1 1.13 X-pose 

1stp PS1 -6.10 PS1 1.34 AC 2.42 PS1 0.30 X-pose AC  0.55 X-pose 

1tng PS1 -5.87 PS1 1.05 AC 1.53 PS1 0.60 X-pose AC 0.83 X-pose 

1tnl AC -5.96 AC 1.68 PS1 2.44 AC 0.35 X-pose PS1 0.41 X-pose 

1ukz AC -6.74 PS1 5.31  N/A N/A PS1 3.39 J-pose  N/A N/A  N/A 

3ptb AC -5.52 PS1 1.52 AC 2.07 PS1 0.19 X-pose AC 0.19 X-pose 

8gch AC -5.00 PS1 4.32  N/A N/A PS1 1.03 X-pose  N/A N/A  N/A 

a. N/A: Non Applicable data – Euclidian Distance > 10 Angstroms 
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C. Wrong cases study 
For ligands from seven complexes, there is a match 

between RMSD and mass centers distance but not between 
both and the best binding energy. In all cases the pose 
giving the best energy is localized in different cavities that 
the crystallographic ones. These results can be explained by 
several settings of decomposing method used (Fig. 7). For 
1azm, the best energy is obtained with the box-11 of the AC 
method (-5.15 kcal/mol) whereas best RMSD with an X-
pose is obtained by the PS method (PS1). The AC pose is 
localized in a different cavity from the crystallographic one. 
The box-11 dimensions do not allow to include the 
crystallographic area and they do not permit to refind the 
experimental pose. On the other side, the PS1 box 
dimensions do not allow to refind the AC pose cavity 
neither. The experimental cavity (S1) is included in an 
another AC box, box-7. The ligand pose obtained with this 
box is localized in the same cavity as the previous AC box 
(S2) and presents a better energy than PS1 pose. If we set 
the dimensions of a tuned box able to include the two 
binding sites S1 and S2, the ligand pose obtained binds into 
S1 with even better energy of -5.26 kcal/mol. Finally, to 
maximise the number of energy evaluations and the 
conformationnal sampling, we carried out a 256 runs on the 
previous tuned box and anew the crystallographic cavity is 
obtained with a poorer energy compared to S1 of -4.49 
kcal/mol. So, just the box boundaries presence is not enough 
to conclude, 1azm complex may be wrong prepared or this 
case show the limits of the AutoDock force-field. 

Crystallographic pose refinding may be precluded by 
boxes boundaries but it is also impacted by protein shape 
specifications. In fact, for 1ukz, the cavity is closer as a 

funnel with a long and slight pipe that sinks into the protein 
structure. The experimental ligand is housed at the bottom 
of the pipe in a burried area in the protein core. Fpocket 
detects the left large extremity as part as a full binding 
pocket (PS2) and the hidden area as an another binding 
pocket (PS1). The AC box (giving the best energy) only 
takes in the funnel cavity and does not include the burried 
site (like PS2 do) and inversely PS1 includes the 
crystallographic cavity but does not take in the large surface 
cavity. It explains why there is no match between the AC 
method that gives the better energy and the PS1 X-pose. 

Failed dockings can be explained by protein shape 
specifications but also by ligand chemical structure. Some 
ligands such as 1lmo or 1rob are very exposed in large 
valleys at the protein surface, which are correctly identified 
by the Fpocket program as a binding pocket but the docking 
program could fail to place correctly the ligand on a planar 
surface. Else, the chemical nature of ligands could increase 
the docking process weakness: 1lmo ligand is a big flexible 
di-saccharide and 1rob ligand is an ADN nucleoside both 
containing –ose residues hard to treat with the Autodock 
force field. 

Only for 1glq in the test set, the best energy value is 
given by the blind docking experiment (-3.66 kcal/mol). The 
ligand pose is neither in the crystallographic cavity nor in 
any pocket cavity and binds on a relative open cavity. 
However, 1glq and 1glp are two crystallographic structures 
of the same protein with about the same degree of resolution 
complexed with two similar ligands (see Table II). For all 
this reasons, Fpocket is not able to find precisely the same 
pockets in 1glq so the boundaries are not exactly at the same 
place and do not allow to retrieve the experimental pose 
with the PS method. The AC method does but the energy of 
binding is worse than for the pose obtained by the blind 
docking. Nevertheless, if we launch multiple blind docking 
experiments, these artefact binding modes should not be 

Figure 5. Mean RMSD (in Angstroms) for an X-pose (in 
grey) and a J-pose (in white) by Sampling Method at rank 1 

of Euclidian distance and rank 1 and 2 of RMSD. 

Figure 6. 1STP -- Streptavidin (New Cartoon, in purple)/Biotin 
(Licorice, X-ray in cyan, X-pose in yellow) protein-ligand 
complex stabilized by hydrogen bonds in the binding site. 
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retrieved several times. 1stp and 1srj are two 
crystallographic structures of the same protein (see Table II) 
with a large variation in resolution neatness. In fact, if a 
structure with a higher resolution than 2.0 Angstroms is 
available it is assumed that a structure with a lower 
resolution degree is a worse structure. In this case the two 
structures do not show remarkable difference of structure of 
the binding site. For the binding site in 1stp, the protein-
ligand complex is the well known Streptavidin/Biotin 
complex in which the protein have a β-barrel secondary 
structure. This complex is one of a strongest non-covalent 
interactions known in nature. It is used extensively in 
molecular biology as a marker. The ligand fits perfectly in 
the binding site and the interaction are stabilized through a 
complex network of hygrogens bonds. For 1stp, the 
experimental ligand was well replaced by the PS1 method 
(0.37 Angstroms) and AC method (0.55 Angstroms) with 
the best binding energy equal to -6.10 kcal/mol for PS1.  

For 1srj the ligand is Naphtyl-Haba docked in the same 
cavity as Biotin. It was well re-placed by the blind docking 
experiment (0.45 Angstroms) and PS1 method (1.23 
Angstroms) with the best binding energy equal to -7.48 
kcal/mol for BD. This results could be explained by the 
asymetric shape of the protein that confers a geometry less 
spherical than a regular globular protein. Consequently, the 
long axis of the protein takes a high value and imposes the 
same grid spacing as the other proteins. But in this case, the 
surface to explore included in the blind docking box is less 

important and the majority of the grid points are not on the 
protein surface. So, the ratio volume/runs is very high and 
the algorithm explore much more precisely the binding 
pocket and leads to the best energy pose with the maximum 
goodness. 

D. A second protocol for ranking improvement 
A second protocol briefly described in the IV. D. section 

was set up and the new results were compared to the ones 
obtained with the first protocol. In this experiment, the best 
ligand poses correspond to the five lowest binding energies 
structures (R1, R2, R3, R4, R5) from the bulk of all poses 
generated by AC method and PS methods. While in the first 
protocol only the first three pockets were selected, here the 
pockets were selected from a maximun of 9 pockets if they 
were ever detected by the Fpocket algorithm. The R1 value 
corresponds to the absolute lowest binding energy structure 
from the bulk of all docking runs. The R2, R3, R4, and R5 
values are the four following ranked in ascending order. For 
each R value of binding energy (RE) the associated 
Euclidian distance with the experimental ligand (RD) is 
given in the Table V. The best five energy structures were 
compared with their experimental ligand with the same 
metric as previously (computation of the Euclidian distance 
between the two mass centers). Thus, for 11/24 (46%) of the 
test set, the use of this protocol gives structures that are 
found only in X-pose. For 16 percent of the complexes, the 
solutions belong to the J-Pose class only. If we combined 
the two kinds of class, one of the five structures at least 
gives a X-pose for 19/24 (79%) of the set. For all the set but 
one case (1mcr), the considered solutions are X-pose or J-
Pose (23/24, 96%). 

If we compare strictely the Euclidian distances between 
the two experiments we highlight that only a few values are 
present in both Table IV and V. Since the R1 value is the 
absolute lower energy from the AC and PS method, it is 
necessarily in both tables except if the R1E correspond to a 
structure provided by a pocket not taken into account during 
the first experiment but it has never happened with this test 
set. For the others R values, a few values of the Table IV are 
found in Table V. In the first protocol, each sampling 
method is considered separately : for each one of them the 
best binding energy conformation is selected among the 50 
solutions given by Autodock. Thus, we get 15 
conformations (three for the PS and one for the AC) among 
which we select the lowest one. Whereas we demonstrated 
that this protocol improves in a significtaive way the results 
obtained with blind docking [42], the fact that all the 
collected solutions are not treated with the same weight 
(solution 2 to 50 of a PS1 PS2 or PS3 are never compared to 
solution 2 to 50 of each AC box…) may introduce a bias. 
With the second protocol, all the solutions ((12+n)*50, n 
being the number of considered pockets) are considered 
together and compared on the same level. From this 
ensemble of soultions, the fisrt five best binding energies 
are selected. Following this scheme, it is possible to find in 

Figure 7. 1azm ligands in the crystallographic cavity (MSMS, in 
green): X-ray pose (in cyan), PS1 pose (in tan), Tuned box-256R 
pose (in yellow) and 1azm ligands in another cavity: AC box-11 

pose (in blue), AC box-7 pose (in purple), Tuned box-50R pose (in 
purple) bound on the whole Carbonic Anhydrase I protein receptor 

with a: PS1 pocket box, b: Tuned box, c: AC box-7 
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the final set of solutions ligand conformations that come 
from the same box or pocket. That could not be the case 
with the 4 solutions proposed in the first protocol. This way 
to proceed allows to retrieve a J-pose for 1glq and 1lmo and 
a X-pose for 1srj that increases de ratio of 4.5% to reach 
96% of the test set. Only 1lmo and its di-saccharide ligand 
stay unruly and confirms the real force-field weakness with 
carbohydrate residues. 

VI. DISCUSSION/CONCLUSION 
In order to be able to treat many hundred proteins 

computations on High Performance Computing (HPC) 
architectures, we developed a set of methods to parallelize 
the treatment of each protein, as well as to distribute the 

tasks among a given set of machines as a way to speed up the 
overall execution of the inverse docking. For this, we 
developed a framework that can embed the AC and the PS 
method to explore as best as possible the protein surface and 
rationally dock the ligand into the binding cavity.  

Our results show that the methods we are developing 
perform better volume exploration with a better ratio 
volume/runs than a classical blind docking experiment. In 
fact, to perform an accurate high definition docking we have 
to deal with coherent grid spacing. By default, AutoDock 
builds affinity grids with a spacing of 0.375 Angstroms that 
corresponds to a quarter of the bond between two atoms of 
Carbone. We defined a spacing interval between 0.375 and 
0.450 in which we consider the accuracy of the simulation as 
a HD docking. The main drawback of this method is that 
AutoDock is able to build and also explore a 3D box of 126 
x 126 x 126 points at the most. So, only a protein whose long 
axis is lower than 60 Angstroms can fit into the grid box. 

Considering this kind of protein for a blind docking 
experiment, the AutoDock program is also limited in the 
number of simulations runs, that is to say in the number of 
times the initial LGA is reinterred (256 runs max.). So, AC 
method considers the BD box volume cut into 12 sub-boxes 
with a partial overlap. Each sub-box is explored by the LGA 
with 50 runs of simulations that roughly correspond to the 
half of the ratio volume/runs for the BD. Whereas the ratio is 
more difficult to precisely estimate, it is even better with PS 
method, which explains the effectiveness of the program to 
perform better exploration and to obtain better docking 
quality results than BD experiments.  

As many docking programs [29][30], we have shown that 
our framework is a successful tool to re-place correctly the 
ligand into the active site of the target receptor in a non-
covalent manner. Furthermore, it is also able to predict 
accurate ligands bindings independently of active site 
knowledge [33][34]. For this, we established two protocols 
in order to be able to distinguish in the best way the correct 
binding poses of the ligand. In the first protocol we evaluated 
a good docking pose using three criteria: free energy of 
binding, Euclidian distance between mass centers and 
RMSD of the re-docked ligand with respect to the 
crystallographic ligand. Combinations of these criteria are 
able to discriminate right docking poses from experimental 
data. The combination between the binding energy and the 
RMSD (rank1 and 2) is able to discriminate 66.5% of the test 
set and the one between the mass center distance (rank1 and 
2) and the RMSD (rank1 and 2) is able to discriminate 
91.5% of the test set. On the other side, the ratio is 75% for 
the combination of binding energy and center of mass 
distances (rank1 and 2) and 71% for the combination of the 
triad. This is explained by the nature of the evaluation 
criteria. RMSD and mass centers distances are implicitly 
correlated because they both describe a space position. Mass 
centers distances describe a space position for the entire 
ligand whereas RMSD describe a space position for each 
atom of the ligand, both always in respect to the 
experimental structure. In fact the RMSD reflects the ligand 
structure in a local environment, its capacity to adapt itself to 
the binding cavity. Consequently, taking into account the 

TABLE V. EUCLIDIAN DISTANCE FOR R VALUES 

 
E 

(kcal/
mol) 

Euclidian Distance (Angstroms) 

PDB R 1E R 1D R2D R3D R4D R5D 

1azm -5.15 N/A N/A N/A 1.08 N/A 

1cbs -6.84 0.96 2.37 N/A 1.79 2.47 

1ebp -8,68 0.27 1.30 0.14 0.05 0.43 

1fkg -5.96 1.24 2.85 3.15 4.69 2.77 

1fki -10.49 0.59 0.76 8.72 0.56 0.88 

1glp -4.46 0.60 1.74 N/A 5.94 2.69 

1glq -3.21 N/A N/A N/A 2.71 N/A 

1hfc -4.78 3.84 0.29 N/A N/A N/A 

1icn -3.97 3.52 4.51 2.93 2.27 5.21 

1lic -4.65 3.50 3.07 5.35 0.84 1.78 

1lmo -3.26 N/A 7.74 N/A 8.44 8.88 

1mcr -4.03 N/A N/A N/A N/A N/A 

1mmq -6.31 1.55 N/A 8.65 N/A N/A 

1mup -4.23 1.03 1.90 1.87 1.56 N/A 

1nco -7.19 1.50 2.90 6.91 5.78 N/A 

1poc -1.91 3.77 N/A 3.95 7.11 5.20 

1rob -5.29 6.31 9.76 3.03 8.45 3.17 

1srj -6.18 N/A 1.13 6.16 7.50 6.06 

1stp -6.10 0.30 0.53 0.72 N/A N/A 

1tng -5.87 0.60 0.27 N/A 9.97 1.28 

1tnl -5.96 0.35 N/A 0.24 1.28 N/A 

1ukz -6.74 8.17 3.02 0.94 8.97 8.39 

3ptb -5.52 0.19 0.09 1.01 0.91 2.16 

8gch -5.00 N/A N/A N/A 0.79 N/A 

a. N/A: Non Applicable data – Euclidian Distance > 10 Angstroms 
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numbers of atoms implied both in the binding site and in the 
ligand structure and the number of torsions available for the 
ligand, the probability to obtain a low RMSD in a different 
cavity than the crystallographic binding site is close to zero. 
This is well shown in Table IV, for 8 cases out of 9 if the 
RMSD is higher than 10 Angstroms the corresponding mass 
center distance is higher than 10 Angstroms too (N/A data). 
That explains the good ratio for these criteria combination. 
On the other side, the space position adopted by the ligand in 
the binding site translated by the RMSD value impacts the 
chemical match between chemical groups able to make non-
covalent interactions (Hydrogen bonds, van der Waals forces 
and electrostatics) with atoms in the binding cavity. These 
forces represent a major contribution into the energy function 
that is used to evaluate the free energy of binding (see IV.C). 
So, the ratio of the combination of RMSD and energy of 
binding can be explained partially by this relationship. 

Nonetheless, in this experiment we have shown that we 
reproduce ligands experimental poses with our framework. 
As the references are experimental data, we dispose of 
comparison elements (RMSD and mass centers distances). 
The results obtained in this study (distances determining X-
pose and J-pose and associated RMSD) validate the method 
for detecting workable binding sites. To identify already 
known binding sites or new ones the aim of this program is 
to perform predictive experiments on large sets of proteins 
for a given ligand of interest. For these, we will only dispose 
of the free energy of binding to discriminate good docking 
poses. For 7/24 there is no match between the binding energy 
and the geometric criterions. In some remarkable cases we 
have shown previously, only the free binding energy 
computation does not allow to retrieve similar poses to the 
crystallographic ones. That is demonstrating that the 
evaluation of the binding energy is not an absolute reference. 
To reduce the unsuccessful ratio we reinforced the ranking 
evaluation process in the second experiment with a better 
protocol. We showed that this protocol (a) allows removing 
the constraints of the first experiment that excluded some 
good results and (b) is able to compensate force field 
behavior failures.  

In most of the cases we have seen that the PS method 
strongly performs to detect druggable cavities on a protein 
receptor. In fact some proteins present multiple binding sites 
well described in enzymology allosteric phenomena 
especially. The advantage of using multiple pockets search is 
to identify well differentiated multiple sites on the fly during 
a unique docking simulation. That allows us to consider 
ligand repositioning experiments and also second targets and 
off-targets hunting. In addition the AC method is able to 
overcome the PS method failures with adding search 
completeness and not excluding planar binding surfaces such 
as protein-protein binding area in particular. So, we 
demonstrate that the combination of the two methods is an 
accurate strategy to identify new protein targets for a given 
ligand. We developed an effective tool to perform large-scale 
inverse virtual screening works on both HPC hardware and 
personal computer able to identify proteins targets for a 
chemical ligand of interest.  
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