
Flow Classification in Delay-Aware NUM-Oriented Wireless Mesh Networks

Przemyslaw Walkowiak, Maciej Urbanski, Mateusz Poszwa, Radoslaw Szalski
Institute of Control and Information Engineering

Poznan University of Technology
Poznan, Poland

Email: {przemyslaw.walkowiak, maciej.urbanski, mateusz.poszwa, radoslaw.szalski}@put.poznan.pl

Abstract—The Network Utility Maximisation (NUM) framework
is one of the most widely investigated approaches for designing
the resource management system for wireless mesh networks. In
order to perform the NUM-oriented per-flow network resource
management, data flows have to be recognised and classified.
Relevant solutions that are constituents of the state-of-the-art
NUM frameworks are insufficient, since they are able to dif-
ferentiate between various network flows only according to the
transport layer protocol used. The paper describes improvements
introduced to an existing DANUM System (DANUMS) imple-
mentation. They provide means for flexible flow classification
enabling more accurate utility estimation for more diverse types
of flows. The solution improves DANUMS’ ability to assign
appropriate utility functions suitable for different types of traffic.
The experiments show that the enhanced framework enables
improving the performance of the DANUMS.

Keywords-DANUMS; wireless mesh networks; Network Utility
Maximisation; traffic classification

I. INTRODUCTION

As the wireless network access is becoming more and more
widespread, the needs of its users grow. When the demands
exceed the network’s capacity, not all flows can be served
equally well. NUM [1] aims to manage network resources
in an optimal way, which ensures maximal satisfaction of
network users. DANUMS [2] provides NUM functionality by
identifying and classifying flows, as well as by measuring and
acting on changes of their utility. It is an application of and an
enhancement to the NUM model providing delay awareness.
The framework improves the fairness of the resource allocation
among flows with different delay requirements. DANUMS has
been designed to work in wireless mesh networks [2].

DANUMS is a part of the architecture developed within the
Carrier-grade delay-aware resource management for wireless
multi-hop/mesh networks (CARMNET) project [3] referred
to as CARMNET architecture. This architecture consists of
multiple components (see Figure 1): a routing component in
the form of Optimised Link State Routing Protocol daemon
(OLSRd), a custom SIP User Agent integrated with a Linux
Loadable Kernel Module (LKM), a user interface (WebUI)
and an IP Multimedia Subsystem (IMS) platform. SIP User
Agent is responsible for asynchronous communication between
LKM and the IMS. The user interface is a WWW application
that allows users to bind utility functions to various types of
traffic. The WebUI also provides insight into statistics about
transmitted traffic and network usage cost.

Internet

CARMNET Node
User space

Kernel space

DANUMS SIP
User Agent

IP Stack

DANUMS
LKM

OLSRd

DANUMS
plug-in

WebUI
IMS

netlink

IP

Figure 1. Architecture of the CARMNET network [3].

In NUM, network resource allocation is performed on per-
flow basis. The flow classification is necessary for recognition
of flow-to-application associations. Once the flow’s category
is identified, its utility can be computed according to its
characteristics. Bidirectional flows, which can be referred to
as request-response flows, also should be properly identified
as their performance may affect each other’s utility. TCP
flows’ rate and responsiveness depend on the timely delivery
of ACK segments. Thus, it is desirable to prioritise request
and response flows similarly in order to avoid unnecessary
congestion window reductions due to excessive ACK segments
queueing. Moreover, recognition of response flows is beneficial
from the business perspective, which is important in the
CARMNET architecture integrating Authentication, Authori-
sation and Accounting (AAA) and charging functionality [3].
Each node that generates traffic should have control over both
request and response flows’ virtual prices (see Section III).

The basic DANUMS implementation [2] differentiates
flows according only to the transport layer protocol. While
effective for basic scenarios, this solution is not versatile
enough to control media streams with different needs. This
paper describes a practical implementation of a more robust

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-299-8

MESH 2013 : The Sixth International Conference on Advances in Mesh Networks

method for flow classification and recognition of response
flows.

The paper structure is as follows. Related work is described
in Section II. Section III introduces the Delay-aware Network
Utility Maximisation (DANUM) model and provides its main
purposes. Section IV discusses the problem of flow classifica-
tion. Methods of recognition of response flows are described
in Section V. Experiments and their results are described in
Sections VI and VII, followed by conclusion in Section VIII.

II. RELATED WORK

Many NUM systems determine utility of flows according
to the flows’ throughput only [4]–[7]. Such an approach is not
sufficient to effectively measure the utility of delay-sensitive
flows. DANUMS, on the other hand, takes the delay into
consideration as well [2].

The work [6] presents a policy ensuring constant worst-
case delay, however, the utility function used in a maximisation
scheme is based only on throughput. In [4], it is assumed
that the mechanism based on providing inelastic flows with
bandwidth exceeding their injection rate ensures satisfying
their end-to-end delay requirements. The framework presented
in [5] considers only TCP flows. Solutions presented in [7]
require modification of a network card driver, which does not
comply with the basic assumptions of CARMNET [3].

In order to estimate the flow’s utility accurately, its type
has to be determined. Advanced techniques, such as payload
examination [8], machine learning algorithms [9], [10] or
solutions based on neural networks [11], have been used for
this purpose. However, DANUMS is also aimed at serving
mobile nodes, which may be power-constrained. For this
reason, classification methods for DANUMS should not be
computationally complex.

III. DANUM SYSTEM

The aim of the DANUM model is to provide an optimal
packet scheduling policy regarding the maximisation of the
network users’ satisfaction. It targets the maximum of the
network utility (a sum of utility of all flows within the
network):

max
∑
r∈S

Ur(xr, dr), (1)

where S denotes a set of flows within the network; xr – rate
of flow r; dr – delay of flow r; Ur – the utility function of
flow r. In other words, DANUMS aims at solving the NUM
problem in a delay-aware way.

The relation between measurable flow transmission quality
parameters and its utility is modelled by means of a utility
function. Each function corresponds to flows of a given type
or, more precisely, to flows with specific network requirements.
In DANUMS the utility is determined not only according to
the flow’s throughput, but also to its end-to-end delay. Each
flow may have a distinct utility function since it may prioritise
different network performance parameters. Assigning utility
functions to flows is a task of the Flow Classifier described in
Section IV.

It has been proven that the Max-Weight Scheduling (MWS)
algorithm is a solution to the standard throughput-oriented

NUM problem formulation [12]. The DANUMS applies the
MWS algorithm to virtual queue levels in order to determine
the next flow queue to transmit a packet from.

A virtual queue is defined as a product of flow’s packet
backlog level and a virtual price of a single packet. Packet’s
virtual price is a value of the derivative of a utility function
assigned to the flow. In other words, the more utility a flow
would gain from improving its network performance parame-
ters (e.g., by lowering its delay), the higher is the virtual price.
The virtual price plays an important role in packet scheduling
as well as influences the cost of CARMNET network usage.

DANUMS LKM is responsible for packet queueing, mea-
suring flows’ characteristics, as well as applying utility func-
tions and the backpressure scheduling algorithm. Packets
scheduled by DANUMS are relayed to the network interface
output buffer, the level of which is kept low as a result of
using Layer-2 Queue level Estimation [13]. Possible routes
acquisition and explicit signalling of virtual queues is done
through modified OLSRd. The details concerning the DANUM
and its implementation can be found in [2], [13]–[15].

IV. FLOW CLASSIFICATION FRAMEWORK FOR DANUMS

Flows can be divided into two general groups: throughput-
demanding and delay-sensitive. They roughly correspond to
the TCP- and UDP-based traffic, respectively. Such a division
was used in DANUMS prior to implementation of the Flow
Classifier presented in this section. However, for some scenar-
ios, this simple classification is insufficient. The application of
the classification subsystem in DANUMS allows a more fine-
grained flow classification. The more traffic classes a given
NUM system is able to recognise, the more accurately the
utility functions may reflect the requirements of different types
of traffic.

Flow Classifier used in DANUMS is a cascade of simple
filters (see Figure 2). Flow’s properties are checked against
rules defined for each of the filters. Each rule is a pair
composed of filter-specific constraints and a flow type. If any
of the rules matches the flow, i.e., the flow’s properties meet
the rule’s constraints, the classification yields a flow type
assigned to the matching rule as a result. An unspecialised
utility function is assigned if all the filters fail to classify
the flow. Using this utility function is equivalent to setting a
constant virtual price for each packet, i.e., excluding the flow
from the evaluation of NUM.

Response flow recognition

Classification by application name

Classification by port numbers

Classification by application protocol

Classification by transport protocol

Figure 2. Overview of the Flow Classification Framework for DANUMS.
Arrows denote the order of applying the filters.

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-299-8

MESH 2013 : The Sixth International Conference on Advances in Mesh Networks

A. Classification by a transport layer protocol

Classification by the transport layer protocol is the sim-
plest solution, nevertheless, it lacks the ability to differentiate
specific uses of each of the protocols. An example of different
TCP protocol applications can be provided: the comfort of Web
navigation depends on low delay, whereas comfort of sending
an e-mail does not.

B. Classification by source and destination port numbers

A common way to determine flow’s type is to assume
that the traffic of a certain service or an application is bound
to a predefined port. The advantage of this approach is that
the port numbers are already known to the classifier, so no
additional processing is needed to determine them. However,
this assumption usually holds true only for services using the
well-known ports provided they were not configured to use
non-standard ports. Moreover, some application layer protocols
can be used with random ports, or even different transport
protocols. For the given reasons, the method assuming that
the traffic of a certain service or an application is bound to
a predefined port would require constant reconfigurations to
ensure an optimal classification of flows.

C. Classification by an application layer protocol

In order to address the limitations of the above-described
approaches, classification by the application layer protocol has
been considered. The transport layer and network layer proto-
cols’ headers do not provide any indication of the application
layer protocol used. Therefore, it has to be determined by a
direct analysis of the payload data, which is a complex task and
should be delegated to an external program such as l7-filter [8].
However, its kernel-space implementation is known to cause
problems on SMP-enabled processors [16], and the use of the
user-space implementation in critical systems is discouraged
by its authors [16]. Due to these disadvantages as well as lack
of well tested alternatives, this classification method was not
yet implemented.

Even if it was possible to use some version of the l7-filter to
classify flows, some of its patterns return false results [17] and
the cost of this method is considerably higher than the cost of
other methods discussed here. This may have an influence both
on performance and energy consumption. The latter aspect is of
great importance for the use of mobile nodes, which DANUMS
is designed for [2].

D. Classification by filename of sending application

It is possible to use locally available information to au-
tomatically determine the filename of the application sending
the flow. Moreover, it is much more probable that the node’s
user is able to state the name of the application she uses, than
that she is able to determine the port numbers bound to flows
sent by the application. Thus, this method supports associating
flows with desired utility functions chosen by the user through
the WebUI.

On the other hand, some applications send many types
of flows simultaneously. A VoIP client, for example, is re-
sponsible for setting up sessions, sending multimedia streams
and reporting statistics by means of SIP, RTP and RTCP

protocols respectively. It is essential to choose a utility function
meant for the protocol whose transmission quality impacts the
application usability the most (in this case – RTP). In this
approach, heterogeneous flows sent by a single application are
assigned the same utility function, which is, obviously, not the
optimal assignment.

E. Combining the classification methods

Each of the aforementioned methods has disadvantages,
which render each of them insufficient when used separately.
Some of the disadvantages may be avoided or minimised by
combining several classification methods.

Response flows are already classified by their destination
nodes (referred to as “owners”). They are treated specially and
should be filtered out first.

The most desired classification criterion is the application
layer protocol used for the flow payload. Unfortunately, as
discussed above, it is computationally expensive to determine.
For this reason, classification based on regular expressions
should be preceded by less complex methods. Classification
by the sending application filename is unreliable in case
of applications that send multiple flows of various types.
Nevertheless, it reflects the end user’s needs most strictly, so
it should be the first filter for request flows. Classification by
the transport layer protocol can serve as a fallback mechanism
for flows which fail to be classified by any other criteria. The
final order of filters is illustrated in Figure 2.

V. RECOGNITION OF REQUEST AND RESPONSE FLOWS

A request flow originating from one node and addressed
to the other is usually accompanied by a response flow
transmitted in the opposite direction. These two flows provide
a duplex point-to-point connection between two nodes.

However, as far as DANUMS is concerned, a node which
initiates a request flow should also be charged for the response
flow. Such a node is marked as the “owner” of both flows.
Information about flow “ownership” is propagated by OLSRd
along the flow’s path and allows the flow classifier to differ-
entiate request and response flows.

If the flows were considered separately, a utility function
would be assigned to each of them by the source node. Such a
scheme would have undesirable consequences. Let us consider
a scenario in which the requesting node assigns a utility
function demanding a very low delay to a certain type of flow,
but the responding node user does not require such low delay
for that type of flow. Even though the requests could be sent
quickly, thanks to the assigned utility function, the perceived
utility of network may not be satisfying for requesting node’s
user, as the response flow may fail to be prioritised by the
replying node.

Another example of undesirable consequence of mismatch-
ing utility functions is related to the CARMNET business
model [3]. When the source node is outside the CARMNET
network, the destination node is charged for the transmission
of the flow. Were the flows considered separately, their utility
would be decided by the node at the border of the CARMNET
network (an Internet-sharing node), which forwards the flow to
the destination node inside the CARMNET network. Since the

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-299-8

MESH 2013 : The Sixth International Conference on Advances in Mesh Networks

utility of a flow is closely related to its virtual price, it should
not be set by a node other than the one which is charged for
transmitting the flow.

For the aforementioned reasons, a mechanism for recog-
nising response flows has been implemented that enables two
methods for response flows’ virtual price adjustment. Their
performance has been evaluated in Section VI.

1) Copying the request flow’s virtual price: The informa-
tion about the virtual price of each flow, encapsulated in the
Queue Report Message (QRM) packets [15], is propagated
through the network along the flow’s path. Therefore, it is
available for the replying node and can be applied to the re-
sponse flow. This simple method does not require the replying
node to analyse the flow to which virtual price is applied or to
fetch requesting node’s profile. However, the potential issues
this method introduces need to be considered.

In DANUMS, characteristics of a certain path are measured
on per-flow basis. When the network is congested, throughput
and delay measured at both endpoints of a flow may differ
significantly. Undesired consequences of using this method
may also arise when request and response flows’ requirements
differ. Such situation is illustrated by the first experiment
described in Section VI-B1.

2) Calculating the request flow’s new virtual price by
applying a utility function at the replying node: The other
method of controlling the virtual price of a response flow is
to assign a utility function chosen by the requesting node.
This information can be retrieved from IMS by sending the
Get Profile message [3]. While flows’ owner node can assign
the same utility function to both request and response flows,
its parameters will differ from those measured on each end-
point of respective flows. Network characteristics perceived at
both nodes may be influenced by factors such as congestion,
asymmetry of links or choice of routes. Therefore, it is more
accurate to calculate the flow’s virtual price at the transmitting
node, whether or not it is the flow’s “owner”.

VI. EXPERIMENTS

A. Testbed

Experiments have been performed in a wireless network
testbed called wnPUT [18]. The wnPUT testbed deployment
approach has been influenced by the Distributed Embedded
System Testbed (DES-Testbed) [19] architecture. Currently our
testbed consists of about 20 PC-class machines, each equipped
with two network interfaces, wired and wireless. The wired
network is used for out-of-band management. The wireless
connections are used for experimentation purposes only. Each
testbed node runs a Debian GNU/Linux distribution.

A B C Internet

P1

P1

P1

P1

Figure 3. Copying the flow’s virtual price. A – CARMNET node, B –
CARMNET Relaying node, C – CARMNET Internet Sharing node, P1 –
Virtual price calculated at Node A

A B C

getProfile(A)

Internet

P1

P2

P1

P2

Figure 4. Applying utility function at replying node. A – CARMNET node,
B – CARMNET Relaying node, C – CARMNET Internet Sharing node, P1 –
Virtual price calculated at Node A, P2 – Virtual price calculated at Node C

The testbed allows for an easy and automated experiment
execution. It handles parsing of the experiment description
files, setting up wireless network, configuring topology, ex-
ecuting specified commands and, finally, gathering results.
Experiments are described using the scenario files written in
XML. The syntax of those files is an extension of the DES-
CRIPT [20] language used in DES-Testbed [19]. The unified
format of experiment description files has many benefits such
as portability and expressiveness, as well as allowing the
experiments to be performed on different testbeds. Although
the testbed framework was heavily modified, the phases of
experimentation remain as defined in the previous work [18],
[19]. Status of performed commands and the DANUMS LKM
is acquired in real-time by means of rsyslogd and visualised
by a monitoring system in order to make the analysis easier.

Due to space constraints, currently all nodes are directly
connected to each other in a wireless mesh network sharing the
same collision domain. Taking the wireless networks charac-
teristic into account, in which even nodes separated by 2 hops
might interfere with each other, it has been assumed that 2-
hop topology can be simulated by blocking traffic on software
level. Thus, the wnPUT testbed framework allows user to
specify desired topology, which is attained with iptables
rules generated automatically during experiment initialisation.

B. Experiment scenarios

In order to illustrate the benefits of recognising response
flows, two experiment scenarios were prepared. Their purpose
is to show possible undesirable outcome of miscalculating
flows’ virtual price, which may result from taking wrong mea-
surements under consideration. For both scenarios, the linear
topology consisting of three nodes was used (see Figure 3).

In both experiments, Node A initiates communication by
sending data to Node C. Since Nodes A and C are not directly
connected, Node B forwards the flow in order to provide
connection between them. Node C responds with a reverse
flow addressed to Node A.

In the first experiment, Node C marks the destination of the
response flow (Node A) as its owner in order to inform relaying
nodes (Node B) that the flow’s virtual price has to be copied
from Queue Information Block (QIB) blocks corresponding to
the request flow. In the second experiment, Node C fetches
the profile of Node A and applies the utility function corre-
sponding to the served flow in order to determine response
flow’s virtual price. These two experiments correspond to the
methods of adjusting the virtual price described in Section V.

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-299-8

MESH 2013 : The Sixth International Conference on Advances in Mesh Networks

1) Experiment 1: The first experiment illustrates a possible
undesired consequence of using the method based on virtual
price copying described in Section V-1. This scenario models
a VoIP call (labelled as “RTP C→A” in Figure 5 and Figure 6)
made during a HTTP file transfer (labelled as “HTTP C→A”).
The experiment starts with a HTTP request (labelled as “HTTP
A→C”) sent from Node A to Node C. Its size was artificially
enlarged to 5MB for experiment clarity purposes. Node C
responds to the requester with a 25MB HTTP response, one
second after receiving the request. While the response is
being transmitted, Node C initiates a 35-second long RTP
flow at constant rate of 2.5Mbit/s addressed to Node A. The
experiment ends when both flows originating from Node C are
terminated.

2) Experiment 2: In the second experiment, timing and
characteristics of flows are the same as in Experiment 1. The
only difference is the virtual price of the response flow, which
is now calculated at Node C according to the method described
in Section V-2.

C. Utility functions assignment

For RTP flows, the following utility function was used [15]:

UU (x, d) =
wu(

1 + ea(xt−x)
) (

1 + eb(d−dt)
) (2)

where wu = 106 is an aggressiveness parameter; xt = 2.5·106
and dt = 300 denote desired bitrate and delay respectively;
a = b = 0.01 are parameters controlling the slope of utility
function; The utility function assigned to RTP flows aims to
maintain their delay below 300ms, i.e., the flow’s virtual price
peaks when its delay equals 300ms.

Utility function used for HTTP flows is as follows:

UT (x, d) = wtlog(x) (3)

To ensure desired assignment of the utility functions,
appropriate classification rules have been configured. They
were based on the application filename criterion (discussed
in Section IV-D).

VII. RESULTS

Virtual price values in both experiments indicate that the
flow classifier was able to differentiate flows correctly. Delay-
sensitive utility function has been assigned to the RTP flow
(which may be observed in Figure 5 near t = 55s, when the
flow’s virtual price drops due to high delay) and throughput-
oriented utility function has been assigned to HTTP flows
(whose virtual price rises when its rate drops considerably).

The virtual price values also show that the response flows
have been properly recognised by the classifier. Therefore,
methods for response flows’ virtual price adjusting described
in Section V could be applied and evaluated.

In Experiment 1, the transmission of the RTP flow ended
prematurely, because the HTTP response flow had its virtual
price set inappropriately high. The virtual price was calculated
at Node A for a low-throughput sequence of TCP acknowl-
edgements and was not meant to be used with high-throughput
TCP flows. The HTTP response flow overwhelmed the RTP

0
4000
8000

12000
16000
20000

D
el

ay
[m

s]

0
1
2
3
4
5

A
ve

ra
ge

R
at

e
[M

bi
t/s

]

0
500

1000
1500
2000
2500

Q
ue

ue
(N

od
e

C
)

[p
ac

ke
ts

]

0
20
40
60
80

100
120
140

Q
ue

ue
(N

od
e

B
)

[p
ac

ke
ts

]

1

10

100

1000

V
ir

tu
al

Pr
ic

e
[d

en
ar

ii]

1
10

100
1000

10000
100000

20 30 40 50 60 70 80 90 100

V
ir

tu
al

Q
ue

ue
(N

od
e

C
)

[d
en

ar
ii]

HTTP A→C RTP C→A HTTP C→A

Figure 5. Results of Experiment 1.

flow despite having lower product of utility derivative and
packet queue level, causing the RTP flow’s delay to rise beyond
the dt threshold value, which led to lowering the RTP flow’s
virtual price. Such a behaviour is an undesirable outcome of
copying the virtual price calculated for accompanying request
flow when its characteristics differ considerably.

In Experiment 2, the virtual price of HTTP response flow
was calculated locally on Node C, resulting in much lower
virtual price of the response flow since the derivative of HTTP
flows’ utility declines with the growth of throughput. As a
result, the virtual queue level of the RTP flow was high enough
to successfully compete with HTTP flows while maintaining
a satisfiable delay.

VIII. CONCLUSION AND FUTURE WORK

Two ways of dealing with request/response flows were
presented. The first one is based on copying the flow’s virtual
price between requesting and replying nodes, the second
forces utility recalculation on both nodes. The copying-based
approach is a less demanding solution since it involves sending
the virtual price using CARMNET-specific protocol. However,
as the experiments showed, applying this simplification may
destabilise DANUMS. On the other hand, the virtual price
recalculation using actual parameters at the replying node,
results in a better stability of the system. Nonetheless, the
local resource requirements are higher, as this method requires

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-299-8

MESH 2013 : The Sixth International Conference on Advances in Mesh Networks

0
1000
2000
3000
4000
5000
6000
7000

D
el

ay
[m

s]

0
1
2
3
4
5
6

A
ve

ra
ge

R
at

e
[M

bi
t/s

]

0
50

100
150
200
250

Q
ue

ue
(N

od
e

C
)

[p
ac

ke
ts

]

0
50

100
150
200
250
300
350

Q
ue

ue
(N

od
e

B
)

[p
ac

ke
ts

]

1

10

100

1000

V
ir

tu
al

Pr
ic

e
[d

en
ar

ii]

1
10

100
1000

10000
100000

20 30 40 50 60 70 80 90 100

V
ir

tu
al

Q
ue

ue
(N

od
e

C
)

[d
en

ar
ii]

HTTP A→C RTP C→A HTTP C→A

Figure 6. Results of Experiment 2.

nodes to acquire and store users’ profiles, as well as to
perform additional calculations. Most importantly, after all, this
approach achieves the highest stability.

The implementation of the flow classifier improved flex-
ibility of DANUMS by enabling the use of utility functions
adapted to specific applications’ requirements. However, the
classification could likely be enhanced even further by intro-
ducing more reliable or more fine-grained, but still power-
efficient (in terms of the battery power consumption caused
by necessary computations) filters. Adding the possibility of
combining multiple criteria into a single rule may also be
beneficial to the quality of flow classification.

ACKNOWLEDGEMENT

Supported by a grant from Switzerland through the Swiss
Contribution to the enlarged European Union (PSPB-146/2010,
CARMNET).

REFERENCES

[1] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, Jan. 1997, pp. 33–
37. [Online]. Available: http://doi.wiley.com/10.1002/ett.4460080106

[2] A. Szwabe, P. Misiorek, and P. Walkowiak, “Delay-Aware NUM
system for wireless multi-hop networks,” in European Wireless 2011
(EW2011), Vienna, Austria, Apr. 2011, pp. 530–537.

[3] M. Glabowski and A. Szwabe, “Carrier-Grade Internet Access Sharing
in Wireless Mesh Networks: the Vision of the CARMNET Project,”
The Ninth Advanced International Conference on Telecommunications,
Jun. 2013, in print.

[4] U. Akyol, M. Andrews, P. Gupta, J. D. Hobby, I. Saniee, and A. Stolyar,
“Joint scheduling and congestion control in mobile ad-hoc networks,” in
The 27th IEEE International Conference on Computer Communications
(INFOCOM 2008), Apr 2008, pp. 619–627.

[5] B. Radunović, C. Gkantsidis, D. Gunawardena, and P. Key, “Horizon:
Balancing TCP over multiple paths in wireless mesh network,” in
Proceedings of the 14th ACM international conference on Mobile
computing and networking, MobiCom 2008, 2008, pp. 247–258.

[6] M. Neely, “Delay-based network utility maximization,” In Proc. IEEE
INFOCOM 2010, 2010, pp. 1–9.

[7] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “DiffQ: Practical
differential backlog congestion control for wireless networks,” in The
28th IEEE International Conference on Computer Communications
(INFOCOM 2009), Apr. 2009, pp. 262–270.

[8] Application Layer Packet Classifier for Linux. [Online]. Available:
http://l7-filter.clearfoundation.com [retrieved: Jun., 2013]

[9] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical IP traffic
flow classification,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 5, Oct. 2006, pp. 5–16. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=1163593.1163596

[10] I. Anantavrasilp and T. Schöler, “Automatic flow classification using
machine learning,” in Software, Telecommunications and Computer
Networks, 2007. SoftCOM 2007. 15th International Conference on.
IEEE, 2007, pp. 1–6.

[11] M. Ilvesmäki, M. Luoma, and R. Kantola, “Flow classification
schemes in traffic-based multilayer IP switching–comparison between
conventional and neural approach,” Computer Communications,
vol. 21, no. 13, Sep. 1998, pp. 1184–1194. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366498001637

[12] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling for maximum throughput in multihop
radio networks,” IEEE Transactions on Automatic Control, vol. 37,
no. 12, Dec. 1992, pp. 1936–1949.

[13] A. Szwabe, P. Misiorek, and P. Walkowiak, “Protocol Architecture
for DANUM Systems,” Poznan University of Technology, Institute of
Control and Information Engineering, Tech. Rep. IAII-595, Apr. 2010.

[14] A. Szwabe, “DANUMS: The First Delay-Aware Utility Maximization
System for Wireless Networks,” in Proc. of NEM Summit - Towards
Future Media Internet. NEMS 2009, Sep. 2009, pp. 59–64.

[15] A. Szwabe, P. Misiorek, and P. Walkowiak, “DANUM System for
Single-hop Wireless Mesh Networks,” In Proceedings of 2010 Inter-
national Conference on Future Information Technology (ICFIT 2010),
volume 1, Changsha, China, IEEE Press, Dec. 2010, pp. 365–369.

[16] Application Layer Packet Classifier for Linux – Getting started.
[Online]. Available: http://l7-filter.clearfoundation.com/docs/readme#
getting started [retrieved: Jun., 2013]

[17] L7-filter supported protocols. [Online]. Available: http://l7-filter.
sourceforge.net/protocols [retrieved: Jun., 2013]

[18] A. Nowak, P. Walkowiak, A. Szwabe, and P. Misiorek, “wnPUT
Testbed Experimentation Framework,” in Distributed Computing and
Networking, ser. Lecture Notes in Computer Science, L. Bononi,
A. Datta, S. Devismes, and A. Misra, Eds. Springer Berlin
Heidelberg, 2012, vol. 7129, pp. 367–381. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-25959-3 27

[19] The Distributed Embedded Systems Testbed (DES-Testbed) Webpage.
[Online]. Available: http://www.des-testbed.net [retrieved: Jun., 2013]

[20] M. Güneş, F. Juraschek, B. Blywis, and O. Watteroth, “DES-CRIPT - A
Domain Specific Language for Network Experiment Descriptions,” in
Next Generation Wireless Systems 2009 – Proceedings, N. Chilamkurti,
Ed., Mar. 2010.

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-299-8

MESH 2013 : The Sixth International Conference on Advances in Mesh Networks

